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ABSTRACT. We continue the study of the rich family of norm-closed, auto-
morphism invariant ideals of a continuous nest algebra. First we present a
unified framework which captures all stable ideals as the kernels of limits of
diagonal compressions. We then characterize when two such limits give rise
to the same ideal, and we obtain detailed information of the structure of sums
and intersections of ideals.
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1. INTRODUCTION

In [11] we studied norm-closed, automorphism-invariant ideals of continu-
ous nest algebras, which we termed stable ideals. Our study was motivated by
the fact that a number of natural examples of stable ideals of nest algebras have
been identified and studied, such as the compact operators of the algebra; the
Jacobson radical of the algebra, described in [13]; the strong radical (that is, the
intersection of all maximal two-sided ideals) which was described in [9]; and the
ideals studied by Erdos in [6]. In addition, other interesting ideals narrowly fail
to be automorphism invariant for subtle reasons, specifically Larson’s ideal R∞

[7]. In [11] we were able to find a complete description of all stable ideals of a
continuous nest algebra. In the present paper we continue this study.

In the original description of stable ideals, we identified a family of eleven
exceptional minimal ideals, which we dubbed ideals of compact character, and
then gave a characterization of all remaining stable ideals (see Theorem 2.4, be-
low). In the present paper we start, in Theorem 3.18, by giving a single, unified
description of the stable ideals, which brings together both the compact character
and non-compact character cases. This description generalizes other characteri-
zations given elsewhere of ideals of nest algebras as the kernels of the limits of
certain diagonal expectations.
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As a result of Theorem 3.18, we associate each stable ideal with a net of gen-
eralized partitions of the identity. In Section 4 we investigate when two such nets
give rise to the same stable ideal, and find that the simplest condition, that the
two nets be cofinal in each other, is both necessary and sufficient. In Section 5 we
build on these results to give natural formulas for the quotient norm by a stable
ideal, and in Section 6 we characterize the sums of stable ideals. The quotient
norm formulas substantially generalize the quotient norm formula obtained by
Ringrose for the Jacobson radical [13] and similar formulas found by Erdos [6] for
related ideals.

It is only possible to get such detailed information about stable ideals of
continuous nest algebras because of the very clear understanding we have of the
automorphism groups of nest algebras in general. Two key results underlie all of
the work in this paper: First Ringrose [14] showed that isomorphisms between
nest algebras are necessarily spatial; that is, every isomorphism Φ : AlgL →
AlgM can be expressed as Φ = AdS, where S is a bounded, invertible operator.
Then Davidson [2] gave a necessary and sufficient condition for two nest algebras
to be isomorphic in terms of order-dimension invariants of the nests:

THEOREM 1.1. LetL andM be two nests on separable Hilbert spaces and suppose
there is an order-preserving bijection θ : L →M with the property that

rank θ(M)− θ(L) = rank M− L for all L < M in L.

Then there is an invertible operator S which maps the range of each L ∈ L onto the range
of θ(L). Furthermore, S can be taken to be an arbitrarily small compact perturbation of a
unitary operator.

In addition, the results of [10], although not used directly in the present
work, are crucial in the characterization of stable ideals from [11].

2. PRELIMINARIES

Throughout this paper, N will denote a continuous nest of projections on
a separable Hilbert space H. See [3] for a comprehensive introduction to nest
algebras.

At the heart of our analysis of ideals of continuous nest algebras is a col-
lection of families of submultiplicative seminorms parameterized by N . These
seminorms have their origins in the earliest work in the field; Ringrose intro-
duced i±N in [13] and showed that the Jacobson radical is the intersection of the
kernels of these seminorms. The following lists the full set of seminorms we shall
need:
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DEFINITION 2.1. For X ∈ AlgN and N ∈ N define:

e+
N(X) =

 lim
M↓N

sup
N<L<M

‖(M− L)X(M− L)‖ess if N < I,

0 if N = I;
(2.1)

e−N(X) =

 lim
M↑N

sup
N>L>M

‖(L− M)X(L− M)‖ess if N > 0,

0 if N = 0;
(2.2)

i+N(X) =

 lim
M↓N

‖(M− N)X(M− N)‖N if N < I,

0 if N = I;
(2.3)

i−N(X) =

 lim
M↑N

‖(N − M)X(N − M)‖N if N > 0,

0 if N = 0;
(2.4)

jN(X) =


lim

M↓N,L↑N
‖(M− L)X(M− L)‖N if 0 < N < I,

i+0 (X) if N = 0,
i−I (X) if N = I.

(2.5)

For each N ∈ N the seminorms 0, e±N , i±N , and jN are called the elementary seminorm
functions. If the map (X, N) 7→ ‖X‖N is defined so that for each N ∈ N , ‖ · ‖N
takes one of these seminorms as a value, then ‖ · ‖N is called a diagonal seminorm
function.

REMARK 2.2. For each fixed N ∈ N , the six elementary seminorms at N
form a lattice under pointwise ordering (see Figure 2 of [11]). Thus, with point-
wise ordering as N varies, the family of all diagonal seminorm functions is a
complete lattice. A collection F of diagonal seminorm functions is called a stable
family of diagonal seminorm functions if it is closed under meets and under compo-
sition with order automorphisms of N . In other words if ‖ · ‖(i)

N ∈ F (i = 1, 2)
and θ : N → N is an order automorphism, then

‖ · ‖(1)
N ∧ ‖ · ‖(2)

N and ‖ · ‖θ(N)

also belong to F .

DEFINITION 2.3. We say that an operator K ∈ AlgN is of compact character
if (N − M)K(N − M) is compact for all 0 < M < N < I in N . Say that an ideal
of AlgN is of compact character if all its elements are of compact character.

In [11] we showed that AlgN has exactly eleven stable ideals of compact
character. These ideals (excluding 0) are listed in Figure 1 of [11]. The following
theorem characterizes the stable ideals which are not of compact character, and
will be the basis for all our results on stable ideals in the present paper.
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THEOREM 2.4. Let I be a stable ideal in a continuous nest algebra, AlgN . If I is
not of compact character then there is a stable family F of diagonal seminorm functions
such that X ∈ I if and only if, for any ε > 0, there is a diagonal seminorm function ‖ · ‖N
in F such that ‖X‖N < ε for all N ∈ N .

3. CHARACTERIZATION OF STABLE IDEALS

DEFINITION 3.1. Let P1 and P2 be two families of intervals of N . Say that P1
refines P2, and write P1 > P2, if whenever E ∈ P1 there is an interval F ∈ P2 such
that E 6 F.

DEFINITION 3.2. Let Ω be a set of families of intervals of N . We call Ω a net
of intervals if it is a directed set under the ordering of refinement. Call Ω a stable
net if whenever θ is an order isomorphism of N onto itself and P ∈ Ω then the
set

θ(P) := {θ(E) : E ∈ P}
also belongs to Ω.

PROPOSITION 3.3. If Ω is a net of intervals on N then the set

I :=
{

X ∈ AlgN : lim
P∈Ω

sup
E∈P

‖EXE‖ess = 0
}

is an ideal of AlgN . If Ω is a stable net of intervals, then I is a stable ideal.

Proof. For fixed X, the map P 7→ sup
E∈P

‖EXE‖ess is decreasing in P, and so

the limit exists. Since, for any fixed interval E, ‖EXE‖ess is a submultiplicative
seminorm on AlgN , then so is lim

P∈Ω
sup
E∈P

‖EXE‖ess, and I is its kernel, which is an

ideal.
If AdS is an automorphism of AlgN then S induces an order isomorphism

θ : N → N and it is routine to prove that

k−1 sup
E∈P

‖EXE‖ess 6 sup
E∈θ(P)

‖E(SXS−1)E‖ess 6 k sup
E∈P

‖EXE‖ess

where k = ‖S‖‖S−1‖. It is clear from this, and the stability property of Ω, that I

must be stable under conjugation by S.

REMARK 3.4. We shall say that I is the ideal associated with the net Ω, or
that I arises as the kernel of Ω.

REMARK 3.5. We should make a brief remark concerning the essential norm,
‖X‖ess, which is used ubiquitously throughout this paper. As a result of Theo-
rem 5.1 in [4], we know that for T ∈ AlgN ,

dist(T,K(H)) = dist(T,K(H) ∩AlgN )
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were K(H) ⊆ B(H) is the set of all compact operators. Thus we shall not make
any distinction between the quotient norms on AlgN/(K(H) ∩AlgN ) and on
B(H)/K(H), but shall use ‖X‖ess to denote either, as long as T ∈ AlgN .

EXAMPLE 3.6. Let Ω consist of the single family, {0}. Then the associated
ideal is all of AlgN . Conversely if Ω consists of the singleton {I} then the asso-
ciated ideal is K, the compact operators in AlgN .

EXAMPLE 3.7. Let Ω consist of the single family, {N ∈ N : N < I}, of
all intervals with lower endpoint equal to 0. This is a stable net on N and the
associated ideal is the ideal of compact character, K−. Similarly if Ω consists of
the singleton {M⊥ : M > 0} then the associated ideal isK+. Finally, if Ω contains
the single family {N − M : 0 < M < N < I} then the associated ideal is the ideal
of all operators of compact character, or K+ +K− (see Lemma 2.14 of [11]).

EXAMPLE 3.8. Let Ω consist of the set of all singletons {N} for N > 0. This
is a stable net and the associated ideal is equal to

E0 :=
{

X ∈ AlgN : inf
N>0

‖NEN‖ = 0
}

.

The transition from the essential norm to the operator norm in this example is
routine: If ‖NXN‖ess < ε then there is a compact K ∈ K such that ‖NXN + K‖ <
ε and we can find a projection 0 < M < N in N such that ‖MKM‖ < ε and so
‖MXM‖ < 2ε. In the same way, the set

EI :=
{

X ∈ AlgN : inf
N<I

‖N⊥EN⊥‖ = 0
}

also arises as the kernel of a stable net.

EXAMPLE 3.9. Let Ω consist of all finite partitions of N . That is to say, each
P in Ω is a finite set of pairwise orthogonal intervals which sum to the identity.
Clearly this is a stable net on N , and the associated ideal is the Jacobson radical
of AlgN [13]. The transition from the essential norm to the operator norm is

similar to the last example. If
∥∥∥ m

∑
i=1

EiXEi

∥∥∥
ess

< ε then there is a compact K ∈ K

such that
∥∥∥ m

∑
i=1

EiXEi + K
∥∥∥ < ε. But since K belongs to the Jacobson radical, there

is a finite partition {Fk}n
k=1 refining {Ei} and such that

∥∥∥ n
∑

i=1
FiKFi

∥∥∥ < ε. Thus∥∥∥ n
∑

i=1
FiXFi

∥∥∥ < 2ε.

EXAMPLE 3.10. Let Ω consist of all partitions (finite or infinite) of N . Then
by [7] Ω is a net but not a stable net, and the associated ideal is Larson’s ideal,
R∞
N .
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EXAMPLE 3.11. In [9] a pseudopartition was defined as a maximal (with
respect to set inclusion) family of pairwise orthogonal intervals of N . If Ω is the
set of all pseudopartitions of N then Ω is a stable net and the associated ideal is
I∞

N , which has been shown to be the strong radical of AlgN , or the intersection
of all the maximal two-side ideals of AlgN .

PROPOSITION 3.12. Let Ω and Ψ be two stable nets of intervals on N , associated
with the stable ideals I and J, respectively. Then I∩ J is the kernel of the stable net

Ω + Ψ := {P ∪ Q : P ∈ Ω, Q ∈ Ψ}.

The proof is straightforward, and is left to the reader.

COROLLARY 3.13. All the stable ideals of compact character in AlgN arise as
kernels of stable nets.

Proof. By Theorem 2.16 of [11], the stable ideals of compact character are the
set of ten ideals listed in Figure 1 of [11]. Each of these ideals can be expressed
as an intersection of the ideals K+ +K−, K+, K−, E0, EI , and K. The preceding
examples have shown that these all arise as the kernels of stable nets, and so the
result follows from Proposition 3.12.

REMARK 3.14. In what follows, let I be a fixed stable ideal. For each X ∈ I

and ε > 0 define PX,ε to be the set of all intervals E of N for which ‖EXE‖ess < ε.
Finally, let Ω = {PX,ε : X ∈ I, ε > 0}.

LEMMA 3.15. With the definitions above, Ω is a stable net of intervals on N .

Proof. First we shall show that Ω is a directed set. As is thoroughly de-
scribed in [8], [10], we can find a projection F in N ′′ such that F and F⊥ are both
algebraically equivalent to I. In other words, there are operators A, B, C, D in
AlgN such that AB = F, CD = F⊥ and BA = DC = I, and these operators can
be taken to be compact perturbations of partial isometries. Now let PX,a and PY,b
be collections of intervals belonging to Ω. We shall show that PZ,1 is a refinement
of PX,a and PY,b, where

Z :=
1
a

AXB +
1
b

CXD.

To see this, let E ∈ PZ,1 and observe that the next quantity is less than 1: ‖EZE‖ess

=
∥∥∥ 1

a FE(AXB)EF+ 1
b F⊥E(CYD)EF⊥

∥∥∥
ess

= max
{

1
a‖EAXBE‖ess, 1

b‖ECYDE‖ess

}
,

so that ‖EAXBE‖ess < a and ‖ECYDE‖ess < b. Now since X = BAXBA, it fol-
lows that EXE = EBE(AXB)EAE and so

‖EXE‖ess 6 ‖EB‖ess‖E(AXB)E‖ess‖AE‖ess 6 ‖E(AXB)E‖ess < a

(with the last inequality following since A and B were taken to be compact per-
turbations of partial isometries). Thus E ∈ PX,a and, by the same token, E ∈ PY,b.

Next, we shall show that Ω is stable. In other words, given PX,ε ∈ Ω and
an order isomorphism θ on N we must show that θ(PX,ε) is also in Ω. Now by



THE STABLE IDEALS OF A CONTINUOUS NEST ALGEBRA. II 73

Theorem 1.1, find an invertible S implementing an automorphism of AlgN such
that SN = θ(N)SN for all N ∈ N . Further take S to be a compact perturbation of
a unitary, S = U + K. Then

‖θ(E)SXS−1θ(E)‖ess = ‖θ(E)S(EXE)S−1θ(E)‖ess 6 ‖(U + K)EXE(U + K)−1‖ess

= ‖EXE‖ess .

The same argument, using S−1 and θ−1 in place of S and θ, yields the reverse
inequality and so ‖θ(E)SXS−1θ(E)‖ess = ‖EXE‖ess. Thus θ(PX,ε) = PSXS−1,ε,
which belongs to Ω.

The next definition and the lemma that follows establish a connection be-
tween the collections PT,ε of intervals and diagonal seminorm functions from
Theorem 2.4.

DEFINITION 3.16. Say that a collection P of intervals of N is compatible
with the diagonal seminorm function ‖ · ‖N if, for each N ∈ N :

(i) Whenever ‖ · ‖N = jN there are projections G > N > L in N such that
(G − L) ∈ P.

(ii) Whenever ‖ · ‖N = a+
N ∨ a−N where a±N = 0, e±N , i± then:

(a) If a+
N = i+N then there is a projection G > N in N such that (G −

N) ∈ P.
(b) If a+

N = e+
N then there is a projection G > N in N such that (G− L) ∈

P for all projections G > L > N in N .
(c) If a−N = i−N , e−N then the analogous lower conditions hold.

LEMMA 3.17. Let T ∈ AlgN and a > 0. If PT,ε is compatible with ‖ · ‖N then
‖T‖N 6 ε for all N ∈ N . Conversely, if ‖T‖N < ε for all N ∈ N then PT,ε is
compatible with ‖ · ‖N .

Proof. Suppose PT,a is compatible with ‖ · ‖N and fix N ∈ N . Then A 7→
‖A‖N is one of the 10 possible seminorms listed in Figure 2 of [11]. That is to say,
it is of the form aN(A) ∨ bN(A) where aN is one of 0, e+

N , i+N , jN and bN is one of
0, e−N , i−N , jN .

If aN = 0 there is nothing to prove. Next, suppose aN = e+
N . Since PT,ε is

compatible with ‖ · ‖N , there is a G > N in N such that (G − L) ∈ PT,ε for all
G > L > N. Thus

aN(T) 6 sup{‖(G − L)T(G − L)‖ess : L ∈ N , N < L < G} 6 ε.

Next, suppose aN = i+N . Since PT,ε is compatible with ‖ · ‖N , there is a G > N such
that (G − N) ∈ PT,ε. Thus ‖(G − N)T(G − N)‖ess < ε. Pick a compact operator
K such that ‖(G − N)T(G − N)− K‖ < ε, and then

aN(T) = i+N(T) = i+N(T − K) 6 ‖(G − N)T(G − N)− K‖ < ε.

The argument for the case aN = jN is almost identical.
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Conversely if ‖T‖N < ε for all N ∈ N then it follows directly from the
definitions of the seminorm functions that we can find intervals of N with the
appropriate properties to belong to PT,ε.

THEOREM 3.18. Let I be a non-zero stable ideal of AlgN . Then there is a stable
net Ω of intervals of N such that

I =
{

X ∈ AlgN : lim
P∈Ω

sup
E∈P

‖EXE‖ess = 0
}

.

Proof. By Corollary 3.13 we need only consider the case when I is not of
compact character. As above, let Ω be the set of collections PT,ε as T ranges over
I and ε ranges over all positive values. Since Lemma 3.15 shows Ω is a stable net,
it is clear that the limit lim

P∈Ω
sup
E∈P

‖ETE‖ess exists and is zero for all T ∈ I. The main

body of the theorem is to establish the converse.
Since I is a stable ideal, by Theorem 2.4 there is a setF of diagonal seminorm

functions which specifies I. Now suppose that lim
P∈Ω

sup
E∈P

‖EXE‖ess = 0 for some

X ∈ AlgN . Given ε > 0, find a P ∈ Ω such that ‖EXE‖ess < ε for all E ∈ P.
By definition, P = PT,a for some T ∈ I and a > 0. By rescaling T we may as
well assume P = PT,ε. Since T ∈ I, find a diagonal seminorm function ‖ · ‖N in
F such that ‖T‖N < ε for all N ∈ N . Thus ‖ · ‖N is compatible with PT,ε and
so is compatible with PX,ε, which contains PT,ε. It follows by Lemma 3.17 that
‖X‖N 6 ε for all N ∈ N , and so X ∈ I.

4. COFINAL NETS

The net constructed in Theorem 3.18 for a general stable ideal is much larger
than any of the natural nets given in the examples of the last section. This natu-
rally raises the question of when two nets give rise to the same ideal. Knowing
the answer to this question which will also be essential to proving the quotient
norm formula in Theorem 5.8. Thus this section will be devoted to establishing
the following result:

THEOREM 4.1. Suppose that I1 (respectively I2) is the ideal associated with the
net of intervals Ω1 (respectively Ω2). Then I1 ⊇ I2 if and only if Ω1 is cofinal in Ω2.

If Ω1 is cofinal in Ω2 then clearly for any T ∈ B(H)

lim
P∈Ω2

sup
E∈P

‖ETE‖ess > lim
P∈Ω1

sup
E∈P

‖ETE‖ess

and so I1 ⊇ I2. To prove the converse, suppose that Ω1 is not cofinal in Ω2. This
means that there must be a Q ∈ Ω2 which is not refined by any P ∈ Ω1. The
strategy in this section will be to suppose that nevertheless I1 ⊇ I2 and derive a
contraction.
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Much of the main part of the argument in this section will rely only on
combinatoric arguments concerned with the ordering of R. It will be much more
convenient to work directly with real numbers and intervals of real numbers,
than with projections and intervals in N . Thus let N be parameterized as N(t)
(t ∈ [0, 1]) and for convenience take N(t) = I for t > 1 and N(t) = 0 for t 6 0.
Write E(x, y) := N(y)− N(x) and, if P is a collection of open intervals in R, write
E(P) for the set of intervals {E(a, b) : (a, b) ∈ P}. Write Λ for the set of families
P of open intervals in R for which E(P) is in Ω1. Observe that Λ is a directed set
under refinement, and that if θ : R → R is any order isomorphism then θ(P) ∈ Λ
for all P ∈ Λ.

Fix Q as a collection of open intervals of R with the property that E(Q) ∈ Ω2
and no collection in Λ refines it. The proof of Theorem 4.1 will be established
when we see, in Proposition 4.32, that all sufficiently large P ∈ Λ refine Q.

DEFINITION 4.2. Let P be a collection of open intervals. Say that an interval
is dominated by P if it is a subset of an interval in P.

The next four lemmas establish some basic relationships between Λ and Q.
Once these facts are in place, no other reference to operator theory will be used,
and the remainder of the section will be purely combinatoric.

LEMMA 4.3. Given any sequence of pairwise disjoint intervals, none of which is
dominated by Q, we can find a P ∈ Λ which also does not dominate any of these intervals.

Proof. Let such a sequence of pairwise disjoint intervals, (xi, yi), be given.
For each i choose sequences xi < x(i)

j < y(i)
j < yi with x(i)

j decreasing to xi and

y(i)
j increasing to yi. Let X(i)

j be a finite rank partial isometry mapping N(y(i)
j+1)−

N(y(i)
j ) into N(x(i)

j ) − N(x(i)
j+1) and let X := ∑

i,j
X(i)

j . Because all the ranges and

domains are pairwise orthogonal, the sum for X converges weakly to a partial
isometry in AlgN . Let (a, b) ∈ Q. For each i, since no interval of Q contains
(xi, yi), E(a, b)X(i)

j E(a, b) is non-zero for only finitely many j. Further, since the
(xi, yi) are pairwise disjoint, no interval of Q can meet more than two of them,
otherwise it would have to contain one of them. Thus in fact E(a, b)X(i)

j E(a, b) is
non-zero for only finitely many values of i and j. Hence E(a, b)XE(a, b) is finite
rank. Since this holds for any (a, b) ∈ Q, we conclude X ∈ I2 and so X ∈ I1. Thus
there must be a P ∈ Λ such that

sup{‖E(a, b)XE(a, b)‖ess : (a, b) ∈ P} < 1.

Clearly this is only possible if no interval in P dominates any (xi, yi).

LEMMA 4.4. Given any sequence of pairwise disjoint intervals (xi, yi) with the
property that no interval (xi, y) is dominated by Q for any y > yi, then we can find a
P ∈ Λ which also does not dominate any interval (xi, y) with y > yi.
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Proof. The proof is very similar to Lemma 4.3. Let the sequence of pairwise
disjoint intervals (xi, yi) be given. For each i choose sequences xi < x(i)

j < yi

and yi < y(i)
j with x(i)

j decreasing to xi and y(i)
j decreasing to yi, and let X(i)

j be

a finite rank partial isometry mapping N(y(i)
j )− N(y(i)

j+1) into N(x(i)
j )− N(x(i)

j+1).

Note that this time, the intervals (y(i)
j+1, y(i)

j ) need not be pairwise disjoint as i, j

vary, but we shall simply stipulate that the X(i)
j should be chosen with pairwise

orthogonal initial spaces so that again X := ∑
i,j

Xi,j converges weakly. If (a, b) ∈ Q

then E(a, b)X(i)
j E(a, b)g is non-zero only if a < yi < b, and this condition can

be met for at most a single value of i. Since (xi, yi) is not dominated by (a, b),
the compression must be finite rank. Thus E(a, b)XE(a, b) is finite rank, and so
X ∈ I2 ⊆ I1. Thus there must be a P ∈ Λ such that

sup{‖E(a, b)XE(a, b)‖ess : (a, b) ∈ P} < 1,

and this is only possible if no interval in P dominates any (xi, y) with y > yi.

The next lemma is almost identical to the last, and the proof is left to the
reader.

LEMMA 4.5. Given any sequence of pairwise disjoint intervals (xi, yi) with the
property that no interval (xi, x) is dominated by Q for any x > xi, then we can find a
P ∈ Λ which also does not dominate any interval (xi, x) with x > xi.

REMARK 4.6. There are obvious analogues to Lemmas 4.4 and 4.5 which
deal with the corresponding behavior at the upper endpoints of the intervals
(xi, yi).

LEMMA 4.7. For all sufficiently large P ∈ Λ,
⋃

P ⊆ ⋃
Q.

Proof. Let K := (
⋃

Q)c. By Lemma 2.4 of [9] there is an X ∈ AlgN such that
‖E(a, b)XE(a, b)‖ess > 1 if (a, b) intersects K and is zero otherwise (the lemma
cited claims a sightly weaker result in its statement, but the construction used
in fact establishes this fact). But thus E(a, b)XE(a, b) = 0 for (a, b) ∈ Q and so
X ∈ I2 ⊆ I1 and so there must be a P ∈ Λ with sup{‖E(a, b)XE(a, b)‖ess : (a, b) ∈
P} < 1. This shows that every (a, b) in P must be a subset of

⋃
Q. Clearly if⋃

P ⊆ ⋃
Q then the same is true for any P′ ∈ Λ that refines P.

REMARK 4.8. Having established some basic relations between the collec-
tion Q and at least all sufficiently large members of the net Λ, we shall now
develop a framework of properties of families of open intervals. The next few
results will make no assumptions about Λ or Q and will not use any operator
theory. We shall return to the context of operator algebras with Lemma 4.28.
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DEFINITION 4.9. Given a collection P of open intervals and x ∈ ⋃
P, write:

LP(x) := inf{a : x ∈ (a, b) for some (a, b) ∈ P},

RP(x) := sup{b : x ∈ (a, b) for some (a, b) ∈ P}.

When the context is clear, we shall omit the subscript P.

REMARK 4.10. Note that L(x) and R(x) are increasing functions and that
for all x ∈ ⋃

P
L(x) < x < R(x).

DEFINITION 4.11. A linked list of intervals is a sequence of intervals (ai, bi)
which is indexed by a finite set of integers, or by one of Z, Z+, or Z−, and has the
property

ai < bi−1 < ai+1 < bi

for all i.

REMARK 4.12. The union of the the intervals of a linked list is always an
open interval.

DEFINITION 4.13. Let P be a collection of open intervals. Say that an inter-
val is approximately dominated by P if it is the union of an increasing sequence of
intervals each of which is dominated by P.

REMARK 4.14. For any x ∈ ⋃
P, the intervals (L(x), x) and (x, R(x)) are

approximately dominated by P.

DEFINITION 4.15. Let P be a collection of open intervals with
⋃

P = (a, b).
A linked list whose union is (a, b) is called an inner cover of (a, b) if every interval
of the list is approximately dominated by P.

DEFINITION 4.16. Let P be a collection of open intervals with
⋃

P ⊆ (a, b).
A linked list of intervals whose union is (a, b) is called an outer cover of (a, b) if
every interval of P is contained in an interval of the list.

Trivially, (a, b) is itself an outer cover for (a, b), so outer covers always exist.
The following lemma shows that inner covers also always exist.

LEMMA 4.17. If P is a collection of open intervals and
⋃

P = (a, b) then (a, b)
has an inner cover with respect to P.

Proof. Pick t0 in (a, b) and inductively pick tk := R(tk−1) for k > 0 and
tk := L(tk+1) for k < 0. The sequence so obtained is strictly increasing, by Re-
mark 4.10. Continue this process for as long as these tk are contained in (a, b). By
compactness, tk increases to b and decreases to a, for only finitely many intervals
are needed to cover any [a + ε, b− ε], and so tk will be below a + ε or above b− ε
after finitely many steps.

Now each tk ∈ (a, b) =
⋃

P and so belongs to an interval of P. We can pick
pairwise disjoint intervals (ak, dk) containing tk and each contained in an interval
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of P. Then choose bk and ck to satisfy

ak < bk < tk < ck < dk.

By construction, each (ck, bk+1) is also contained in an interval of P. If the se-
quence of tk has no greatest or smallest element then the sequence of (ak, dk) and
(ck, bk+1) is an inner cover. If the sequence of tk’s has a final element, tn, take the
final interval of the inner cover to be (cn, b). Likewise if the sequence of tk’s has a
first element, tm, take the first interval of the inner cover to be (a, bm). These last
two intervals need not be dominated by P, but since L(tm) = a and R(tn) = b,
they clearly are approximately dominated by P.

Our goal is to construct outer covers for P ∈ Λ and inner covers for intervals
of Q which are of compatible order type (in a sense made precise in Lemma 4.26).
As partial steps in that direction, the next two lemmas relate the existence of least
elements of a cover to a property that can be transferred between P ∈ Λ and Q
using Lemmas 4.3 to 4.5.

LEMMA 4.18. Let P be a collection of open intervals with
⋃

P = (a, b). Then the
following are equivalent:

(i) There is an x > a with L(x) = a.
(ii) There is an inner cover of (a, b) with a least element.

Proof. Suppose that x > a with L(x) = a. By Lemma 4.17 we know that
inner covers for P can be found. Suppose that (ai, bi) is an inner cover with no
least element. Then eventually, as i decreases, bi < x. Since L(x) = a we know
that (a, x) is approximately dominated by P and so the same is true for (a, bi). It
follows that if we delete all intervals to the left of (ai, bi) and replace (ai, bi) with
(a, bi) then we obtain a new inner cover, having a least element.

On the other hand suppose that there is an inner cover with a least element,
which we can write (a, c). Since (a, c) is the increasing union of intervals which
are contained in members of P clearly L(x) = a for all a < x < c.

LEMMA 4.19. Let P be a collection of open intervals with
⋃

P ⊆ (a, b). Then the
following are equivalent:

(i) There is an x > a in
⋃

P with L(x) = a.
(ii) Every outer cover of (a, b) has a least element.

Proof. Suppose that x > a is in
⋃

P with L(x) = a, and that (ai, bi) is an outer
cover of (a, b). It follows that x ∈ (ak, bk) for some k. If the outer cover has no
least element then there is an interval (aj, bj) which lies to the left of (ak, bk) and
is not its immediate predecessor. Such an interval must satisfy a < aj < bj < x.
However since L(x) = a, there is an interval (u, v) in P satisfying a < u < aj <
bj < x < v. But no interval of a linked list is a subset of any other interval of the
list, and so (u, v) cannot be contained in any (ai, bi), contrary to the property of
an outer cover. Thus every outer cover must have a least element.
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Suppose there is no x > a in
⋃

P with L(x) = a and aim to construct an outer
cover with no least element. If it is possible to find a sequence xi ∈ (a, b) \ ⋃

P
decreasing to a, then we take the cover to be (x2, b) together with the intervals
(x2i+2, x2i−1). Otherwise we assume that for all x sufficiently close to a, x ∈ ⋃

P
and L(x) > a. Then by hypothesis, one can inductively choose a sequence xi ∈⋃

P, decreasing to a with the property that xi+1 < L(xi) for each i. We claim
that the sequence of intervals (L(xi+1), xi), together with (L(x1), b), is an outer
cover for P. Since L(xi+1) < xi+1 < L(xi) < xi, the intervals have the correct
overlapping property to make them a linked list. Now, let an interval (c, d) in
P be given and aim to show it is contained in an interval of the cover. Since
xi decreases to a, eventually xi < d, and so let n be the greatest i with d 6 xi.
Thus, xn+1 < d 6 xn and so L(xn+1) 6 c, so that (c, d) ⊆ (L(xn+1), xn). If there
were no i with d 6 xi then x1 < d and so (c, d) ⊆ (L(x1), b), and the claim is
established.

REMARK 4.20. Clearly there are natural analogues of Lemmas 4.18 and 4.19
relating the condition R(x) = b to the existence of greatest elements in inner and
outer covers.

COROLLARY 4.21. Suppose that there are x, y ∈ ⋂
P = (a, b) such that L(x) = a

and R(y) = b. Then (a, b) admits a finite inner cover.

Proof. By Lemma 4.18 there is an inner cover with a least element. If the
cover has a greatest element we are done, so suppose otherwise. By the dual of
Lemma 4.18, there is another inner cover, having a greatest element, (c, b). All
but finitely many of the intervals from the first cover must be contained in (c, b),
and so we may form a new, finite inner cover consisting of (c, d) together with
those intervals from the first cover which are not contained in (c, d).

COROLLARY 4.22. Suppose that L(x) > a and R(x) < b for all x ∈ ⋃
P ⊆

(a, b). Then there is an outer cover for (a, b) with no greatest or least elements.

Proof. By Lemma 4.19, there is an outer cover (ai, bi) with no least element.
If this cover also has no greatest element we are done, so suppose that it has a
greatest element, and so without loss let the cover be indexed by i ∈ Z−. By
the dual of Lemma 4.19, there is also an outer cover with no greatest element.
Likewise we shall suppose this cover has a least element and so we can list its
elements as the intervals (a′i, b′i) for i ∈ Z+.

Clearly a−1 < b−2 < b−1 = b. Thus b−1 < a′i < b for all sufficiently large
positive values of i. Select an i0 such that b−1 < a′i0 < b and define (a0, b0) to be
(a−1, b′i0). Finally set (ai, bi) := (a′i+i0

, b′i+i0
) for i > 1 and we obtain a linked list

which is easily seen to be an outer cover.

LEMMA 4.23. Let P be a collection of open intervals with
⋃

P ⊆ (a, b). The
following are equivalent:
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(i) There is no two-element outer cover of (a, b).
(ii)

⋃
P = (a, b) and there is an one-element inner cover of (a, b).

(iii) Every interval (c, d) with a < c < d < b is dominated by P.

Proof. Suppose that (a, b) admits no two-element outer covers and consider
the sequence of pairs of intervals (a, b − 1

n ) and (a + 1
n , b). Since these two in-

tervals can never form an outer cover, we must always be able to find an inter-
val (an, bn) in P which is not contained in either. Such an interval must contain
(a + 1

n , b− 1
n ). This shows that the interval (a, b) is approximately dominated by

P. Hence the single interval (a, b) is an inner cover for (a, b).
Conversely, suppose

⋃
P = (a, b) and (a, b) is an inner cover, and suppose

for a contradiction that there is an outer cover (a, d), (c, b) with c < d. Since
(a, b) is an inner cover, (a, b) is the union of an increasing sequence of intervals
dominated by P. Thus one of these intervals must contain both c and d. But this
interval is supposed to be a subset of a member of P, and so be contained in one
of (a, d) or (c, b), which yields a contradiction.

The equivalence of items (ii) and (iii) is an immediate consequence of the
definitions.

LEMMA 4.24. Let P be a collection of open intervals with
⋃

P = (a, b) and sup-
pose there is a sequence x1, . . . , xn in (a, b) satisfying:

a = L(x1), R(xi) = xi+1 (i = 1, . . . , n− 1), and R(xn) = b.

Then:
(i) Every outer cover for (a, b) has at most n + 1 elements.

(ii) There exists an outer cover for (a, b) with b n
2 c+ 1 elements.

(iii) There exists an inner cover for (a, b) with n + 2 elements.

Proof. Suppose if possible that (a1, b1), . . . , (am, bm) is an m-element outer
cover where m > n + 1. Since L(x1) = a, there is an interval (c, d) ∈ P containing
x1 with c < b2. The only interval of the outer cover that can contain this is (a1, b1),
and so x1 ∈ (a1, b1).

Having now established that x1 6 b1, suppose for induction that xk 6 bk.
If it were possible that bk+1 < xk+1 then, since xk+1 = R(xk), there would be an
interval (e, f ) of P containing xk with bk+1 < f . But (e, f ) must be contained in
an interval (ai, bi) satisfying

ai 6 e < xk 6 bk < bk+1 < f 6 bi.

Thus (ai, bi) contains points greater than bk+1. By the ordering property of linked
lists, this implies that i > k + 2. Similarly we see (ai, bi) contains points smaller
than bk which, implies i 6 k + 1. From this contradiction we see by induction
that xi 6 bi for all i = 1, 2, . . . , n. But since R(xn) = b there is an interval (c, d)
in P containing xn with bm−1 < d. The only interval of the outer cover than can
contain (c, d) is (am, bm). But since we have also seen xn 6 bn, this means that



THE STABLE IDEALS OF A CONTINUOUS NEST ALGEBRA. II 81

(am, bm) must meet an (ai, bi) with i 6 n < m − 1 or, in other words, i 6 m − 2.
This is impossible for any linked list, and so m 6 n + 1.

Next we shall construct an outer cover having m := b n
2 c+ 1 elements. Con-

sider the intervals Ei := (x2i−3, x2i) for i = 1, 2, . . . , m (where we define xi to be a
for i 6 0 and to be b for i > n). One readily sees that this sequence is a linked list.
To see that it is an outer cover, let (c, d) ∈ P be given and let i0 be the smallest i
for which c < xi. If i0 = n + 1 then xn 6 c < d 6 xn+1 = b and so (c, d) ⊆ Em.
Otherwise, 1 6 i0 6 n, and either d 6 xi0 , or else c < xi0 < d, which implies
d 6 R(xi0) = xi0+1. In either case, (c, d) ⊆ (xi0−1, xi0+1). Every such interval is
contained in an Ei, so the Ei are an outer cover.

Finally let us construct an inner cover with n + 2 elements. First take the
two intervals (a, x1) and (xn, b). Next, since xn ∈ (a, b) =

⋃
P, find an interval

(an, bn) in P that contains xn. If necessary, adjust an, bn so that xn−1 < an < xn <
bn < b and so that (an, bn) is still dominated by P. Then start at xn−1 and work
backwards, choosing intervals (ai, bi) dominated by P, that contain xi and have
the property xi−1 < ai < xi and ai+1 < bi 6 xi+1. Stepping backwards, we
terminate at i = 1, having found a list of 2 + 1 + (n− 1) = n + 2 intervals.

COROLLARY 4.25. Let P be a collection of open intervals with
⋃

P ⊆ (a, b). If
there is a sequence of pairwise disjoint nonempty subintervals (ai, bi), i = 1, 2, . . . , k of
(a, b) none of which are dominated by P, then (a, b) has an outer cover of size d k

2e.
Proof. First add intervals to P so that in fact

⋃
P(a, b), without in the process

changing the fact that no interval (ai, bi) is dominated by P. This is easy to accom-
plish by, for example, ensuring that every interval added is shorter than all of the
(ai, bi). Now if there is no x ∈ (a, b) for which L(x) = a then by Lemma 4.19 there
is an infinite outer cover. Likewise there is an infinite outer cover if there is no
x ∈ (a, b) for which R(x) = b, and so we may suppose that L(x1) = a for some
x1 > a and that R(x) = b for x sufficiently close to b. Without loss, assume that
the (ai, bi) have been indexed so that the ai (and bi) are strictly increasing. Since
we must have a < b1, we may also suppose x1 < b1.

Now recursively define xi+1 := R(xi) for as long as the sequence lies in
(a, b). This sequence must terminate, for it is strictly increasing and cannot have
a limit point inside (a, b). Thus eventually xi must increase to a value at which
R(xi) = b, at which point the sequence terminates. Suppose that the sequence
has n terms.

Observe that whenever xi 6 bi then xi+1 = R(xi) cannot be greater than
bi+1, otherwise (ai+1, bi+1) would be dominated by P. Thus inductively xi 6 bi
for 1 6 i 6 min{k, n}. But if k > n + 1 then this shows that xn 6 an+1 < bn+1 6
an+2 < b, and, since R(xn) = b, this shows (an+1, bn+1). It follows from this
contradiction that in fact n > k− 1. By Lemma 4.24, there exists an open cover of
at least b k−1

2 c+ 1 = d k
2e terms.
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LEMMA 4.26. Suppose that Ei (i ∈ I) and Fj (j ∈ J) are two linked lists and that
I ⊇ J. Then there is an increasing bijection θ : R → R which maps each interval Ei into
an interval Fj.

Proof. Both I and J are subsets of Z. For each j ∈ J, let Cj be the set of i ∈ I
which are closer to j than to any other element of J. (In the event i is equidistant
from two elements of J, assign it to the smaller of the two.) The Cj partition I into
ranges of consecutive numbers. Each of the sets Gj :=

⋃
i∈Cj

Ei is an interval, and

the collection of intervals so formed is a linked list.
Write Gj = (aj, bj) and Fj = (a′j, b′j). By the overlapping property of linked

lists we can define an order preserving map that takes each aj 7→ a′j and each
bj 7→ b′j. This correspondence can be extended to a piecewise linear bijection of
R → R mapping each Gj to Fj.

DEFINITION 4.27. Let P and Q be two collections of open subintervals of
(a, b). We shall say that P and Q are order compatible if we can find an outer cover
Ei (i ∈ I) of (a, b) with respect to P and an inner cover Fj (j ∈ J) of (a, b) with
respect to Q that satisfy I ⊇ J.

We shall now return to the analysis of the two fixed stable ideals I1 and
I2, with the associated net Λ and fixed family of open intervals Q. Recall in
Lemma 4.7 we saw that

⋃
P ⊆ ⋃

Q for all sufficiently large P ∈ Λ. We shall
fix the following notation for the remainder of this section. Write (ai, bi) (i ∈ N)
for a fixed enumeration of the connected components of

⋃
Q. If P is any collec-

tion of open intervals satisfying
⋃

P ⊆ ⋃
Q we shall write P(i) for the set of all

members of P which are subsets of (ai, bi).
Our main goal in the remainder of this section is to show, in Proposition 4.32,

that all sufficiently large P ∈ Λ refine Q. To do this, we shall find a P with the
property that

⋃
P ⊆ ⋃

Q and use the machinery of the last few lemmas to show
each P(i) refines Q(i). The main intermediate result is to show in Lemma 4.31 that
we can ensure all the P(i) are order compatible with the corresponding Q(i). The
next couple of lemmas are needed to establish this result.

For any collection of open sets write

A(P) :={i : LP(i)(x)> ai for all x> ai}, B(P) :={i : RP(i)(x)<bi for all x<bi}.

LEMMA 4.28. For all sufficiently large P ∈ Λ, A(P) ⊇ A(Q) and B(P) ⊇
B(Q).

Proof. We shall prove only the inclusion for A(P). The result for the B(P)
will follow by dual arguments. If i ∈ A(Q) then LQ(i)(x) > ai for all x > ai.

Thus for each i ∈ A(Q) we can inductively construct sequences x(i)
k , y(i)

k in (ai, bi)

which decrease to ai and satisfy x(i)
k+1 < y(i)

k+1 < LQ(i)(x(i)
k ) for all k. The intervals

Ii,j := (y(i)
k+1, y(i)

k ) cannot be dominated by Q, and are pairwise disjoint as i and k
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run over all possible values. Thus by Lemma 4.3 there must be a P0 in Λ which
does not dominate any Ii,j. Likewise, if P > P0, then P does not dominate any
Ii,j. But if there were any i ∈ A(Q) for which we could find an x > ai with
LP(i)(x) = ai, then P would dominate all Ii,j contained in (ai, x). It follows that
when i ∈ A(Q) then for any x > ai, LP(i)(x) > ai. Thus i ∈ A(P).

LEMMA 4.29. Suppose we are given some P0 ∈ Λ and a collection C of indices
such that, for each i ∈ C, (ai, bi) has a finite outer cover of size ni > 1 with respect to
P(i)

0 . Then there is a P1 such that, for all P > P1 and all i ∈ C, (ai, bi) has an outer cover
of size 2ni − 1 with respect to P(i).

Proof. Fix i and let (xk, yk) (k = 1, 2, . . . , ni) be an outer cover for of (ai, bi)
with respect to P(i)

0 . Since these intervals are a linked list, the endpoints satisfy

(4.1) xk < yk−1 < xk+1 < yk for 2 6 k 6 ni − 1 and x1 = ai, yni = bi.

Thus we can easily pick x′k (2 6 k 6 ni) and y′k (1 6 k 6 ni − 1) to satisfy

(4.2) yk−1 < x′k < y′k−1 < xk+1 for 2 6 k 6 ni − 1

and
yni−1 < x′ni

< y′ni−1 < bi .

Define x′1 := ai and y′ni
:= bi. Then take a continuous increasing bijection that

maps each xk to x′k and each yk to y′k for 1 6 k 6 ni. We can construct a single
function R → R which accomplishes the corresponding mapping on each (ai, bi).
Let P′0 be the image of P0 under this transformation. Since Λ is a stable net, P′0 ∈ Λ.
Let P1 be a collection in Λ that refines both P0 and P′0 and let P be an arbitrary
collection in Λ that refines P1. We shall show that each P(i) has an outer cover of
size 2ni − 1.

If E is an interval in P(i) then it is contained in an interval of P0 and in an
interval of P′0. Since the (xj, yj) are an outer cover for (ai, bi) with respect to P(i)

0
and, correspondingly, the (x′k, y′k) are an outer cover for (ai, bi) with respect to

P′0
(i), it follows that for some j and k,

E ⊆ (xj, yj) ∩ (x′k, y′k).

However by (4.1) and (4.2), the only way this intersection can be non-empty is for
it to equal one of

(xj, y′j−1) or (x′j, yj).

It is routine to check (again by (4.1) and (4.2)) that the collection of intervals
(x′l , yl) (1 6 l 6 ni) together with (xl+1, y′l) (1 6 l 6 ni − 1) is a linked list of
the correct length, and the result follows.

REMARK 4.30. Note that ni > 2 in the hypotheses of Lemma 4.29, and so in
the conclusion 2ni − 1 > 3

2 ni. In the sequel we shall need to apply Lemma 4.29
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repeatedly, and this lower bound on the size of the outer cover will be easier to
iterate.

LEMMA 4.31. There is a P0 in Λ such that for all P > P0 in Λ and all i, P(i) is
order compatible with Q(i).

Proof. By Lemma 4.28, for all sufficiently large P, A(Q) ⊆ A(P) and B(Q) ⊆
B(P). We shall first show that for such a P, P(i) is order compatible with Q(i) for
all i ∈ A(P) ∪ B(P). For if in fact i ∈ A(P) ∩ B(P) then by Corollary 4.22 there
is an outer cover ordered as Z, which clearly is order compatible with any inner
cover for Q(i). On the other hand if i ∈ A(P) \ B(P) then by Lemma 4.19 there ex-
ists an outer cover with respect to P(i) which is ordered as Z−. Correspondingly,
since i 6∈ B(Q), it follows by Lemma 4.18 that there must exist an inner cover
with respect to Q(i) which is either finite or ordered as Z−. In either case P(i) is
order compatible with Q(i). Finally, if i ∈ B(P) \ A(P), compatibility follows by
dual arguments.

Thus we can restrict attention to the case i 6∈ A(P) ∪ B(P). In such a case,
by Corollary 4.21, since i 6∈ L(Q) ∪ R(Q), (ai, bi) has a finite inner cover with
respect to Q(i). Suppose in each such case we have picked an inner cover of least
cardinality, mi. Because there is a finite inner cover, we can find a sequence

ai = LQ(i)(x1) < x1 < RQ(i)(x1) = x2 < RQ(i)(x2) = x3 < · · · < RQ(i)(xn) = b

and by Lemma 4.24 together with the minimality of mi, we have n > mi − 2.
Thus we can choose ki := bmi−2

2 c > mi−3
2 pairwise disjoint subintervals of (ai, bi),

each of which contains both x2j−1 and x2j for some j. None of these intervals can

be dominated by Q(i). Write (a(i)
j , b(i)

j ) (j = 1, 2, . . . , ki) for these intervals. Thus,

by Lemma 4.3, for all sufficiently large P ∈ Λ, no interval of P(i) contains any
(a(i)

j , b(i)
j ). This shows, by Corollary 4.25, that there is an outer cover of (ai, bi)

with respect to P(i) that has at least ni := d ki
2 e > mi−3

4 elements.
Let C be the set of i 6∈ A(P) ∪ B(P) for which mi > 15. Then for all suffi-

ciently large P, P(i) has a finite outer cover of size at least ni for all i ∈ C, and
ni > mi−3

4 > 1. Thus we can apply Lemma 4.29 four times, and conclude that for
all sufficiently large P, each P(i) has an outer cover of size at least(

3
2

)4
ni > 5ni >

5mi − 15
4

> mi .

It remains to deal with those i for which mi 6 15.
Consider the set C of all i for which 1 < mi 6 15. By Lemma 4.23, we can

find ai < ci < di < bi such that the interval (ci, di) is not dominated by Q(i). By
Lemma 4.3, for all sufficiently large P, no P(i) with i ∈ C contains (ci, di). Thus,
again by Lemma 4.23, all (ai, bi) with i ∈ C have two-element outer covers with
respect to P(i). Applying Lemma 4.29 repeatedly five times, we conclude that for
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all sufficiently large P, we can find outer covers for all P(i) (i ∈ C) of size at least
( 3

2 )5 × 2 > 15.
For all remaining i, mi = 1 and since every P(i) trivially has an outer cover

of length 1, we are done.

PROPOSITION 4.32. For all sufficiently large P ∈ Λ, P refines Q.

Proof. By Lemma 4.31 we can find a P0 ∈ Λ such that each P(i)
0 is order

compatible with Q(i)
0 . By Lemma 4.26 we can find order preserving bijections

defined on each (ai, bi) which map the intervals of an outer cover of (ai, bi) with
respect to P(i)

0 into the intervals of an inner cover of (ai, bi) with respect to Q(i).
We can patch these maps together and extend to a single map θ : R → R which
maps an outer cover on each (ai, bi) into an inner cover.

Next, transform P0 to P1 := θ(P0), which belongs to Λ because of the stabil-
ity property of Λ. Now pick an arbitrary interval E which is dominated by P1, and
aim to show E ∈ Q. Since by definition the (ai, bi) are the connected components
of

⋃
Q, we can find i such that E ⊆ (ai, bi). Thus E ⊆ θ(E′) for some E′ ∈ P(i)

0 .

There is an outer cover of (ai, bi) with respect to P(i)
0 which θ maps into an inner

cover of (ai, bi) with respect to Q(i). Since E′ is a subset of an interval of the outer
cover, θ(E′) is a subset of an interval of the inner cover, and so the same is true
for E. If it so happens that E = (x, y) where ai < x and y < bi then E must in
fact be dominated by Q, and we are done. Thus we shall consider the case when
E = (ai, x). The case of E = (x, bi) is analogous.

Let C be the set of i for which no interval (ai, x) belongs to Q for any x > ai.
Applying Lemma 4.5 to the intervals (ai, bi) shows that we can find P2 > P1 such
that, for i ∈ C, no interval (ai, x) is dominated by P1 for any x > ai. Thus for
E = (ai, x), provided at least that E is dominated by P2, then we know i 6∈ C.

For i 6∈ C, define ci := sup{x : (ai, x) ∈ Q} and let A := {i 6∈ C : (ai, ci) 6∈
Q} and B := {i /∈ C : (ai, ci) ∈ Q}. Apply Lemma 4.3 to the intervals (ai, ci) for
i ∈ A, and apply Lemma 4.4 to the intervals (ai, ci) for i ∈ B, and so conclude
there is a P3 > P2 which dominates no (a, ci) (for i ∈ A) or (ai, x) (for i ∈ B and
c > ci). Thus, provided E = (ai, x) is dominated by P3, we know that i must be in
A or B, and that in either of these cases, E is in Q.

After applying a similar argument to deal with the case E = (x, bi), we
finally obtain P4 > P3 with the property that every interval dominated by P4
must be dominated by Q, and we are done.

With Proposition 4.32 we have established the final step of the proof of The-
orem 4.1. However in Proposition 3.3 we saw that nets which may not be sta-
ble still give rise to ideals (though not stable ideals), and so it is natural to ask
whether the conclusion of Theorem 4.1 holds without the assumption of stability.
The following example shows that it does not. Thanks are due to David Pitts for
suggesting that this example should be included.
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EXAMPLE 4.33. Let N \ {0, I} be parameterized by R with the strongly con-
tinuous mapping t 7→ Nt and, for any S ⊆ R, define

PS := {Ns+1 − Ns : s ∈ S}.

Let Ω1 be the set of all PS where S ⊆ Q and Q \ S is a Gδ set, and let Ω2 be the
singleton {PR\Q}. One readily verifies that Ω1 and Ω2 are nets (although not
stable nets) of intervals and that Ω1 is not cofinal in Ω2 (or vice versa, for that
matter). Nevertheless we shall show that if I1 and I2 are the ideals induced by
Ω1 and Ω2 respectively, then I1 ⊇ I2.

To see this, suppose that X 6∈ I1, and aim to show X 6∈ I2. Since X 6∈ I1,
there is an ε0 > 0 such that for every Gδ subset L of Q,

sup{‖(Ns+1 − Ns)X(Ns+1 − Ns)‖ess : s ∈ Q \ L} > ε0.

Now consider the set T of all x ∈R for which inf
t>0

‖(Nx+t−Nx)X(Nx+1−Nx+1−t)‖ess

> ε0
3 . If T contains any irrationals then ‖(Ns+1 − Ns)X(Ns+1 − Ns)‖ess must be

at least ε0
3 for some s ∈ R \ Q, and so X 6∈ I2. Thus for the remainder of this

argument we can assume T ⊆ Q.
Recall we are working over a separable Hilbert space, and so let Fj be a

countable norm dense sequence in the set of compact operators. It follows that
x ∈ T if and only if

‖(Nx+ 1
i
− Nx)X(Nx+1 − Nx+1− 1

i
)− Fj‖ >

ε0

3
− 1

k
for all i, j, k ∈ N. By strong upper continuity of the norm, the set of x satisfying
this last inequality is an open set, and so T is a Gδ subset of Q. But of course, by
the Baire Category Theorem, Q is not itself a Gδ set and so Q \ T is non-empty
and we can find an s ∈ Q \ T such that ‖(Ns+1 − Ns)X(Ns+1 − Ns)‖ess > 2ε0

3 .
However since s 6∈ T, for all sufficiently small η > 0,

‖(Ns+η − Ns)X(Ns+1 − Ns+1−η)‖ess <
ε0

3
and so we shall fix on a small irrational value of η for which this holds. From
the last two inequalities it follows that ‖(Ns+1 − Ns)X(Ns+1 − Ns) − (Ns+η −
Ns)X(Ns+1 − Ns+1−η)‖ess > ε0

3 and therefore at least one of the following must
hold:

‖(Ns+1−η − Ns−η)X(Ns+1−η − Ns−η)‖ess >
ε0

6
,

‖(Ns+1+η − Ns+η)X(Ns+1+η − Ns+η)‖ess >
ε0

6
.

However since s± η is irrational this means

sup{‖EXE‖ess : E ∈ PR\Q} >
ε0

6
and so, since Ω2 is a singleton, the limit over Ω2 is non-zero, and X 6∈ I2.



THE STABLE IDEALS OF A CONTINUOUS NEST ALGEBRA. II 87

5. QUOTIENT NORMS

The main result of this section will be Theorem 5.8, which establishes a for-
mula for the quotient form of AlgN by a stable ideal. We shall first, in Corollar-
ies 5.2 and 5.3 establish a version of the quotient norm formula for two ideals of
compact character, K+ and K−. The following lemma, which is derived from a
theorem of Axler, Berg, Jewell, and Shields ([1], Theorem 2) is needed for these
formulas.

LEMMA 5.1. Let X ∈ B(H) and let P be a projection such that

‖X‖ess < a and ‖XP⊥‖ < a.

Suppose En = EnP is a sequence of operators converging strong-* to P and satisfying
lim

n
‖I − En‖ = 1. Given any ε > 0 there is an n0 such that ‖X(I − En)‖ 6 a + ε for

all n > n0.

Proof. Rescaling as necessary, we shall assume a = 1 and suppose for a
contradiction there is an ε0 > 0 such that ‖X(I− En)‖ > 1 + ε0 for infinitely many
n. For each such n we pick a unit vector tn satisfying ‖X(I − En)tn‖ > 1 + ε0
and set xn := (I − En)tn. Passing to a subsequence we may assume that this
inequality holds for all n and, further, that xn is weakly convergent to a limit x.
Write xn = x + en where w-lim en = 0. We claim that x = P⊥x. To see this,
observe that for any fixed m and y ∈ H, as n → ∞

|〈Em(I − En)tn, y〉| 6 ‖(I − E∗n)E∗my‖ −→ ‖(I − P)E∗my‖ = 0

and thus Emx = w-lim
n→∞

Emxn = 0 for all m. Taking the limit as m → ∞, our claim

follows.
Since ‖X‖ess < 1, find a finite rank projection F such that ‖F⊥X‖ < 1.

Without loss we may assume F includes Xx in its range. Finally, pick n0 such that

‖xn‖ < 1 +
ε0

4
, |〈en, x〉| < ε0

8
and ‖FXen‖ <

ε0

2

for all n > n0. It now follows that for any n > n0, ‖Xxn‖ = ‖FXx + FXen +
F⊥Xx + F⊥Xen‖ 6 ‖FXx + F⊥Xen‖+ ε0

2 and

‖FXx + F⊥Xen‖2 = ‖FXx‖2 + ‖F⊥Xen‖2 = ‖FXP⊥x‖2 + ‖F⊥Xen‖2

< ‖x‖2 + ‖en‖2 (since ‖XP⊥‖ < 1 and ‖F⊥X‖ < 1)

6 ‖xn‖2 + 2|〈en, x〉| < 1 +
ε0

2
<

(
1 +

ε0

2

)2
.

Thus, ‖Xxn‖ < 1 + ε0, contradicting our hypothesis.

COROLLARY 5.2. The quotient norm for AlgN/K− is given by the formula

‖X +K−‖ = sup{‖NXN‖ess : N ∈ N , N < I}.
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Proof. Clearly for any K ∈ K− and N < I in N , ‖X − K‖ > ‖N(X −
K)N‖ess = ‖NXN‖ess, and thus ‖X + K−‖ is at least as big as the supremum
of the ‖NXN‖’s. We must show the reverse inequality.

To this end, suppose that ‖NXN‖ess < a for all N < I, and aim to show that
‖X +K−‖ 6 a. By [5], AlgN has a strongly convergent approximate identity Ek
of finite rank contractions. By Lemma 4.3 of [4] we can assume that Ek converges
strong-* and lim

n
‖I − En‖ = 1. Choose Nn to be a sequence in N that increases to

I, and inductively choose compact operators Kn in AlgN as follows:
Suppose that K1, . . . , Kn−1 have been chosen to have the property that Ki =

Ki(Ni − Ni−1) and ∥∥∥XNn−1 −
n−1

∑
i=1

Ki

∥∥∥ < a

(declaring N0 := 0 for convenience). Let X′ := XNn −
n−1
∑

i=1
Ki, let P := Nn − Nn−1,

and observe that the hypotheses of Lemma 5.1 apply to X′, P, and PEkP. The
result is that we can find a k0 for which∥∥∥XNn −

n−1

∑
i=1

Ki − XPEk0 P
∥∥∥ < a

and the induction is completed on taking Kn := XPEk0 P.

Observe that the series K :=
∞
∑

i=1
Ki converges weakly, ‖X − K‖ 6 a, and for

each n, KNn =
n
∑

i=1
Ki, which is compact, hence K ∈ K−. Thus ‖X +K−‖ 6 a.

The corresponding result for K+ follows analogously:

COROLLARY 5.3. The quotient norm for AlgN/K+ is given by the formula

‖X +K+‖ = sup{‖N⊥XN⊥‖ess : N ∈ N , 0 < N}.

We now turn our attention to estimates for the distance from stable ideals
not of compact character. For these, we will need to work with the characteriza-
tion of stable ideals in terms of diagonal seminorm functions (Theorem 2.4).

LEMMA 5.4. Let ‖ · ‖N be a diagonal seminorm function which takes the values
‖ · ‖N = jN for all 0 < N < I. Let X ∈ AlgN satisfy ‖X‖N < a for all N. Then there
is a T ∈ AlgN with ‖X − T‖ < a and ‖T‖N = 0 for all N.

Proof. A routine compactness argument shows that there is a strictly in-
creasing sequence Ni (i ∈ Z) with lim

n→−∞
Ni = 0, lim

n→∞
Ni = I, and

(5.1) ‖(Ni+1 − Ni−1)X(Ni+1 − Ni−1)‖ < a for all i.

Now consider the possible values of ‖ · ‖N at N = 0. These are 0, i+0 , and e+
0 . We

shall modify the initial tail of the sequence Ni according to which of these values
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occurs. In the first case, make no changes. In the second case (i.e. ‖ · ‖0 = i+0 )
we can renumber the sequence so that N0 = 0 and dispense with the negative-
index terms, while stipulating that estimate (5.1) still holds. In the third case (i.e.
‖ · ‖0 = e+

0 ) we can again dispense with the negative-index terms, as long as we
accept that now a weaker estimate holds for the first term:

(5.2) ‖(N2 − N)X(N2 − N)‖ess < a for all 0 < N < N2

(and the original norm estimates still hold for the remaining terms i > 2). How-
ever, in this case we can use Corollary 5.3 to find K0 = N2K0N2 ∈ K+ such that
‖XN2 − K0‖ < a. The estimate (5.1) now holds with X replaced by X − K0 for
i = 1 and for i > 3. We can recover (5.1) for i = 2 by changing N1 to be a new
value between N0 and N2 chosen so that ‖(N2 − N1)K0(N2 − N1)‖ is sufficiently
small. Making this change does not affect any of the other norm estimates.

In the same way we can modify the sequence based on the values of ‖ · ‖N at
N = I, possibly dispensing with the tail and terminating the sequence at a finite
point, Nn0 = I. In the case that the analogue of estimate (5.2) applies to Nn0 −
Nn0−2, we will find a K1 = N⊥

n0−2K0N⊥
n0−2 ∈ K− such that ‖N⊥

n0−2X − K1‖ < a
and adjust Nn0−1 so that estimate (5.1) still holds for all i for X − K1.

Thus, after adjusting our sequence Ni appropriately, estimate (5.1) will hold
for either X itself, or else the operator X adjusted by subtracting possibly one or
other of K0 and K1. Since (5.1) implies that ‖N⊥

i−1XNi+1‖ < a for all i, it follows
by a version of Arveson’s Distance Formula due to Power [12], that there is an
operator T satisfying N⊥

i−1TNi+1 = 0 for all i, such that ‖X − T‖ < a.
Clearly ‖T‖N = jN(T) = 0 for all 0 < N < I. Next focus on N = 0. If

‖ · ‖0 = 0 then there is nothing to prove. If ‖ · ‖0 = i+0 then since in this case
the sequence of Ni’s terminates at N0 = 0 and so TN2 = 0, therefore ‖T‖0 = 0.
Lastly, if ‖ · ‖0 = e+

0 , since TN2 is again 0 and we adjusted X in the previous
paragraph by the operator K0 ∈ K+ for which e+

0 (K0) = 0, then we can restore X
to its original value and replace T with T + K0, observing that ‖T + K0‖0 is also
zero. A similar argument applies for N = I and we are done.

Recall from Definition 3.14 in [11] that a diagonal seminorm ‖ · ‖N function
is called a greatest diagonal seminorm function if there is an X ∈ AlgN and an
a > 0, so that ‖ · ‖N is the largest diagonal seminorm function for which ‖X‖N <
a for all N ∈ N . Since the collection of all diagonal seminorm functions is a
complete lattice, given any X and a > 0, there is a greatest diagonal seminorm
function for X and a. It is advantageous to work with greatest diagonal seminorm
functions because of a certain regularity they exhibit, as shown by the following
lemma, quoted from Lemma 3.16 in [11]:

LEMMA 5.5. A diagonal seminorm function, ‖ · ‖N , is a greatest diagonal semi-
norm function if and only if it has the following lower semicontinuity property: ‖ · ‖−N =
0 whenever there is a sequence Nn increasing to N with ‖ · ‖Nn 6= jNn for all n, and
‖ · ‖+

N = 0 whenever there is a sequence Nn decreasing to N with ‖ · ‖Nn 6= jNn for all n.
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PROPOSITION 5.6. Let ‖ · ‖N be a greatest diagonal seminorm function and let
X ∈ AlgN satisfy ‖X‖N < a for all N. Then there is a T ∈ AlgN with ‖X − T‖ < a
and ‖T‖N = 0 for all N.

Proof. Let S = {N : ‖ · ‖N = jN}. By Lemma 5.5, this is an open set and
so decomposes as the disjoint union of open intervals (Mn, Nn). For N 6∈ S
write ‖ · ‖N = a−N ∨ a+

N where a±N is one of 0, e±N , or i±N . Note that also by
Lemma 5.5, a−Mn

is zero unless it happens that Mn is the upper endpoint of an-
other component of S (i.e. Mn = Nk for some k). Thus it will suffice to construct
Tn = (Nn − Mn)Tn(Nn − Mn) with the property that ‖Tn‖N = 0 for all N and
‖(Nn − Mn)(X − Tn)(Nn − Mn)‖ < a, for then

T := X −
∞

∑
n=1

(Nn − Mn)(X − Tn)(Nn − Mn)

will have the desired properties. However if we restrict to the nest (Nn − Mn)N
and apply Lemma 5.4 to (Nn − Mn)X(Nn − Mn) in the algebra of this nest, we
obtain the desired Tn.

COROLLARY 5.7. Let I be a stable ideal not of compact character and let F be a
set of diagonal seminorm functions that specify I as in Theorem 2.4. Then the quotient
norm is given by the formula

‖X + I‖ = inf
{

sup
N∈N

‖X‖N : ‖ · ‖N ∈ F
}

.

Proof. If T ∈ I and ε > 0, there is a ‖ · ‖N in F such that ‖T‖N < ε for all N.
Thus

‖X − T‖ > ‖X − T‖N > ‖X‖N − ε

for all N. This proves ‖X + I‖ > inf
{

sup
N∈N

‖X‖N : ‖ · ‖N ∈ F
}

and it remains to

establish the reverse inequality.

Suppose that inf
{

sup
N∈N

‖X‖N : ‖ · ‖N ∈ F
}

< a and aim to show that

‖X + I‖ < a. It follows there is a ‖ · ‖N ∈ F such that ‖X‖N < a for all N.
Although ‖ · ‖N need not be a greatest diagonal seminorm, we can take ‖ · ‖′N to
be the greatest diagonal seminorm for X and a, so that

‖X‖N 6 ‖X‖′N < a

for all N. Applying Proposition 5.6 to ‖ · ‖′N , there is a T ∈ AlgN with ‖X− T‖ <
a and ‖T‖N 6 ‖T‖′N = 0. If follows that T ∈ I and so ‖X + I‖ < a.

THEOREM 5.8. Let I be a stable ideal of AlgN and let Ω be a stable net that
specifies it in the sense of Theorem 3.18. Then the quotient norm is given by the formula

‖X + I‖ = lim
P∈Ω

sup
E∈P

‖EXE‖ess .
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Proof. If ε > 0 we can find a T ∈ I such that ‖X − T‖ < ‖X + I‖+ ε and so,

lim
P∈Ω

sup
E∈P

‖EXE‖ess = lim
P∈Ω

sup
E∈P

‖E(X − T)E‖ess 6 ‖X − T‖ < ‖X + I‖+ ε .

Thus lim
P∈Ω

sup
E∈P

‖EXE‖ess 6 ‖X + I‖ and it remains to prove the reverse inequality.

Let Ω′ be the set of all collections PT,a as T ranges over I and a > 0 (see
Remark 3.14). In Theorem 3.18 we saw that Ω′ specifies I. Since Ω also specifies
I, it follows by Theorem 4.1 that the two nets Ω and Ω′ are mutually cofinal. Thus
for any X ∈ AlgN

lim
P∈Ω

sup
E∈P

‖EXE‖ess = lim
P∈Ω′

sup
E∈P

‖EXE‖ess.

Let F be a set of diagonal seminorms that specify I as in Theorem 2.4. Sup-
pose that lim

P∈Ω′
sup
E∈P

‖EXE‖ess < a, and find a P ∈ Ω′ such that sup
E∈P

‖EXE‖ess < a.

Since P ∈ Ω′, there is a T ∈ I and a c > 0 such that P = PT,c. By rescaling T,
we can assume c = a. Next, since T ∈ I, we can find a diagonal seminorm func-
tion ‖ · ‖N in F such that ‖T‖N < a for all N ∈ N . Thus by Lemma 3.17 ‖ · ‖N
is compatible with PT,a and so also with PX,a, because this contains PT,a. Again,
by Lemma 3.17, we conclude that ‖X‖N < a for all N. Thus by Corollary 5.7,
‖X + I‖ 6 a. The conclusion is thus that

‖X + I‖ 6 lim
P∈Ω′

sup
E∈P

‖EXE‖ess = lim
P∈Ω

sup
E∈P

‖EXE‖ess

and the result follows.

6. SUMS OF IDEALS

In this section we shall study the algebraic sum of two stable ideals, and
show that this is also stable. In Proposition 6.3 we present a natural description
of the sum of two stable ideals in terms of the stable nets giving rise to the sum-
mands.

LEMMA 6.1. Let I1 and I2 be two stable ideals of AlgN . Then the algebraic sum,
I1 + I2, is a stable ideal.

Proof. Clearly I1 + I2 is an automorphism invariant ideal, and we need only
show that it is norm closed. By a standard argument,

AlgN
I1

⊇ I1 + I2

I1
∼=

I2

I1 ∩ I2
.

Since I2
I1∩I2

is complete as a normed space, it suffices to show that the above alge-

bra isomorphism is isometric, for then I1+I2
I1

is closed in AlgN
I1

, and I1 + I2 is its
preimage under the quotient map. To this end, choose X ∈ I2 and let the stable
nets Ω1 and Ω2 respectively induce I1 and I2. Clearly ‖X + I1‖ 6 ‖X +(I1 + I2)‖.
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On the other hand, by Theorem 5.8, given ε > 0, we can find P1 ∈ Ω1 such that
sup
E∈P1

‖EXE‖ess < ‖X + I1‖+ ε and, since X ∈ I2, we can certainly find P2 ∈ Ω2

such that sup
E∈P2

‖EXE‖ess < ‖X + I1‖ + ε. But then P1 ∪ P2 ∈ Ω1 + Ω2 and, by

Proposition 3.12 and Theorem 5.8,

‖X + (I1 ∩ I2)‖ = lim
P∈Ω1+Ω2

sup
E∈P

‖EXE‖ess 6 max
i=1,2

sup
E∈Pi

‖EXE‖ess < ‖X + I1‖+ ε.

Since ε was arbitrary, the result follows.

LEMMA 6.2. Let ‖ · ‖(1)
N and ‖ · ‖(2)

N be two diagonal seminorm functions and write

‖ · ‖(1)
N ∧ ‖ · ‖(2)

N for their meet in the lattice of diagonal seminorm functions. Suppose

that ‖ · ‖(1)
N is in fact a greatest diagonal seminorm function and that for some Y ∈ AlgN

and ε > 0

‖Y‖(1)
N ∧ ‖Y‖(2)

N < ε for all N ∈ N .

Then Y = Y1 +Y2 for some Yi ∈ AlgN where ‖Y1‖
(1)
N < ε and ‖Y2‖

(2)
N < ε for all N ∈

N .

Proof. By Lemma 5.5, S := {N : ‖ · ‖(1)
N = jN} is an open set, which de-

composes as the disjoint union of intervals (Mn, Nn). Let Y1 := Y − ∑
n
(Nn −

Mn)Y(Nn − Mn). Clearly ‖Y1‖
(1)
N = 0 for all N ∈ S and observe that for N 6∈ S,

‖ · ‖N = a−N ∨ a+
N where a±N is one of 0, e±N , or i±N . Also by Lemma 5.5, a−Mn

(respec-
tively, a+

Nn
) is zero unless it happens that Mn is the upper endpoint (respectively,

Mn is the lower endpoint) of another component of S, and so ‖Y1‖
(1)
N = 0 for all

N ∈ N .
Next, consider Y′ := Y − Y1 = ∑

n
(Nn − Mn)Y(Nn − Mn). If N ∈ S then

‖ · ‖(1)
N = jN > ‖ · ‖(2)

N and so, since ‖Y‖(i)
N > ‖Y′‖(i)

N , we cannot have ‖Y′‖(2)
N > ε.

Thus ‖Y′‖(2)
N < ε for all N ∈ S.

For N 6∈ S write ‖ · ‖(i)−
N and ‖ · ‖(i)+

N for the left and right respective parts

of ‖ · ‖(i)
N . In other words, ‖ · ‖(i)

N = ‖ · ‖(i)−
N ∨ ‖ · ‖(i)+

N and each ‖ · ‖(i)±
N is one of

0, e±N , i±N . Let A− := {n : ‖Y′‖(2)−
Nn

> ε} and A+ := {n : ‖Y′‖(2)+
Mn

> ε}. If n ∈ A−

then

‖Y′‖(1)−
Nn

< ε 6 ‖Y′‖(2)−
Nn

.

Conversely, any N ∈ (Mn, Nn) that satisfies ‖Y′‖(1)
N > ε, must have ‖Y′‖(2)

N < ε,

and so ‖ · ‖(2)
N 6= jN (since jN dominates all other diagonal seminorms). It follows

by Lemma 5.5 that since ‖Y′‖(2)−
Nn

6= 0, Nn cannot be the limit from below of such

N. Thus there is an Ln ∈ (Mn, Nn) such that ‖Y′‖(1)
N < ε for all N ∈ [Ln, Nn).
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By the same token, if n ∈ A+ we can find Gn ∈ (Mn, Nn) so that ‖Y′‖(1)
N < ε

for all N ∈ (Mn, Gn]. Without loss, insist that Mn < Gn < Ln < Nn for n ∈
A− ∩ A+.

Let Y′
1 := ∑

i∈A−
(Ni − Li)Y(Ni − Li)+ ∑

j∈A+
(Gj−Mj)Y(Gj−Mj). Then ‖Y′

1‖
(1)
N

< ε for all N, by a similar argument to the first paragraph, and clearly ‖Y′ −
Y′

1‖
(2)
N < ε for all N. Thus Y = (Y1 + Y′

1) + (Y′ − Y′
1), which has the desired

properties.

PROPOSITION 6.3. Let I1 and I2 be stable ideals specified respectively by the stable
nets Ω1 and Ω2. For P1 ∈ Ω1 and P2 ∈ Ω2 define

P1 · P2 := {E1E2 : E1 ∈ P1, E2 ∈ P2},

Ω1 ·Ω2 := {P1 · P2 : P1 ∈ Ω1, P2 ∈ O2}.

Then Ω :=Ω1·Ω2 is a stable net, and I1+I2 =
{

X ∈ AlgN : lim
P∈Ω

sup
E∈P

‖EXE‖ess =0
}

.

Proof. It is routine to verify that Ω := Ω1 ·Ω2 is a stable net and whenever
Y = Y1 + Y2 ∈ I1 + I2 then lim

P∈Ω
sup
E∈P

‖EYE‖ess = 0. It remains to suppose that

lim
P∈Ω

sup
E∈P

‖EYE‖ess = 0 for some Y ∈ AlgN and show that Y ∈ I1 + I2.

Since the ideals Ii (i = 1, 2) are stable ideals, there are families of diagonal
seminorm functionsFi which determine them. Let Ω′

i be the set of PT,a as T varies
over Ii and a > 0. As we saw in Theorem 3.18, each Ω′

i determines Ii and so, by
Theorem 4.1, each Ω′

i is mutually cofinal with each Ωi. Thus it is easily seen that
Ω′ := Ω′

1 ·Ω′
2 and Ω are mutually cofinal.

Given ε > 0, since lim
P∈Ω′

sup
E∈P

‖EYE‖ess = lim
P∈Ω

sup
E∈P

‖EYE‖ess = 0, we can find

a P ∈ Ω′ such that ‖EYE‖ess < ε for all E ∈ P. However P = P1 · P2 where
each Pi = PTi ,ε for a suitably scaled Ti ∈ Ii. Thus we can find ‖ · ‖(i)

N ∈ Fi such

that ‖Ti‖
(i)
N < ε for all N. Since the proof of Lemma 6.2 requires ‖ · ‖(1)

N to be

a greatest diagonal seminorm function, let us replace ‖ · ‖(1)
N with the greatest

diagonal seminorm function for which ‖T1‖
(1)
N < ε for all N.

From the definition, each Pi is compatible with ‖ · ‖(i)
N in the sense of Defi-

nition 3.16. It is straightforward to check that therefore P = P1 · P2 is compatible
with ‖ · ‖(1)

N ∧ ‖ · ‖(2)
N . Therefore also PY,ε ⊇ P is compatible with ‖ · ‖(1)

N ∧ ‖ ·
‖(2)

N and so, by Lemma 3.17, ‖Y‖(1)
N ∧ ‖Y‖(2)

N < ε.

It follows from Lemma 6.2 that Y = Y1 + Y2 where ‖Yi‖
(i)
N < ε for all N

and i = 1, 2. Although for technical reasons we replaced the original ‖ · ‖(1)
N from

F1 with the greatest diagonal seminorm function for T1 and ε, nevertheless since
that seminorm function dominated the original one, the current estimate for Y1

holds with the original ‖ · ‖(1)
N from F1 too. But thus, by Theorem 5.8, Y is at
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most distance 2ε from I1 + I2. Finally, since ε was arbitrary, Lemma 6.1 shows
that Y ∈ I1 + I2.
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