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ABSTRACT. We describe a class of C*-algebras which simultaneously gener-
alise the ultragraph algebras of Tomforde and the shift space C*-algebras of
Matsumoto. In doing so we shed some new light on the different C*-algebras
that may be associated to a shift space. Finally, we show how to associate a
simple C*-algebra to an irreducible sofic shift.
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1. INTRODUCTION

The purpose of this paper is to introduce a class of C*-algebras associated
to labelled graphs. Our motivation is to provide a common framework for work-
ing with the ultragraph algebras of Tomforde (see [26], [27]) and the C*-algebras
associated to shift spaces studied by Matsumoto and Carlsen (see [14], [16], [6],
[8] amongst others). Here a labelled graph (E, £) over an alphabet A is a directed
graph E, together with a map £ : E! — A. An ultragraph G is a particular ex-
ample of a labelled graph (see Example 3.3 (ii)), and a shift space A has many
presentations as a labelled graph (see Example 3.3 (iii) of [13]). Hence it is natural
to give our common framework in terms of labelled graphs.

To a two-sided shift space A over a finite alphabet, Matsumoto associates
two C*-algebras O and O+ generated by partial isometries (see [8]). Although
Ox and O, are generated by elements satisfying the same relations, it turns out
that they are not isomorphic in general (see Theorem 4.1 of [8]). This fact mani-
fests itself in our realisation in Section 6.2 of O and O A« as the C*-algebras of the
labelled graphs (E4, £4) and (Ep+, L+) respectively, which are not necessarily
isomorphic as labelled graphs. Moreover, in Corollary 6.9 we show that using
labelled graphs gives us the facility to canonically associate a simple C*-algebra
to an irreducible sofic shift (cf. [8], [6], [7]).
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In fact we can associate a number of (possibly different) C*-algebras to a
labelled graph. This leads us to the notion of a labelled space, which we describe
in Section 3. Briefly, a labelled space (E, £, B) consists of a labelled graph (E, £)
together with a collection B C 2E” which plays the same role as G° in [26] and
is related to the abelian AF-subalgebra A 4 (respectively A«) in O 4 (respectively
O +) generated by the source projections.

In Section 4 we define a representation of a labelled space in terms of par-
tial isometries {s, : @ € A} and projections {p4 : A € B} subject to certain
relations. Our relations generalise those found in [26], [14]. In order to build a
nondegenerate C*-algebra from a representation of (E, £, B) it is necessary for
B to be weakly left-resolving: a condition which is a generalisation of the left-
resolving property for labelled graphs. Hence we may define C*(E, £, B) to be
the C*-algebra which is universal for representations of the weakly left-resolving
labelled space (E, £, B). Since any ultragraph has a natural realisation as a left-
resolving labelled graph, the class of C*-algebras of labelled spaces contains the
ultragraph algebras (and hence, graph algebras and Exel-Laca algebras).

In Section 5 we give a version of the gauge-invariant uniqueness theorem
for C*(E, £, B) which will ultimately allow us to make the connection with the
Matsumoto algebras.

In Section 6 we give three applications of our uniqueness theorem: In Sec-
tion 6.1 we show how to construct a dual labelled space, which is the analogue of
the higher block presentation of a shift space (cf. [13]). We give an isomorphism
theorem for dual labelled spaces which is a generalisation of Corollary 2.5 in [4]
and forms a starting point for future work (see [3]). In Section 6.2 we show that if
O (respectively O x+) has a gauge action, then it is isomorphic to the C*-algebra
of a certain labelled space. Then in Section 6.3 we give necessary conditions for
the C*-algebra of a labelled space to be isomorphic to the C*-algebra of the un-
derlying directed graph. We then show how to associate a simple C*-algebra to
an irreducible shift space. By example, we show that in general the C*-algebra of
a labelled space will not be isomorphic to the C*-algebra of any directed graph;
hence labelled graph C*-algebras form a strictly larger class of C*-algebras than
graph algebras.

This paper has benefitted from several helpful suggestions made by the
anonymous referee and Toke Carlsen.

Since we seek to generalise them, we begin by giving a brief description of
ultragraph algebras and Matsumoto algebras.

2. ULTRAGRAPH ALGEBRAS AND MATSUMOTO ALGEBRAS

2.1. ULTRAGRAPH ALGEBRAS. Following [26], an ultragraph G = (G% G1,7,s)
consists of a countable set of vertices G, a countable set of edges Gl and func-
tionss : G - Glandr : G — 26" Let GY be the smallest collection of 26’
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which contains s(e) and r(e) for all e € G! and is closed under finite intersections
and unions. The ultragraph algebra C*(G) is the universal C*-algebra for Cuntz-
Krieger G-families: collections of partial isometries {s, : e € G'} with mutually
orthogonal ranges, and projections {p4 : A € G°} satisfying the relations:

(1) pp =0, paps = parg and paus = pa + pp — pans forall A, B € G%;

(2) 525e = Pr(e) and ses; < py(e) foralle € Gl

(B)po= ¥ ses: whenever 0 < [s71(v)] < oo;

s(e)=v
(see Definition 2.7 in [26]). Recall that v € G is an infinite emitter if |s~!(v)| = co.
If G has no infinite emitters, then the underlying graph (see Examples 3.3

(ii)) can still fail to be row-finite. With this in mind we make the following defini-
tion (cf. Remark 2.6 in [26]):

DEFINITION 2.1. The ultragraph G is row-finite if there are no infinite emit-
ters and r(e) is finite for alle € G'.

Ultragraph algebras simultaneously generalise graph C*-algebras and Exel-
Laca algebras (see Sections 3 and 4 of [26]). By Corollary 5.5 in [27] there is a non
row-finite ultragraph whose C*-algebra is not isomorphic to a graph algebra or
an Exel-Laca algebra.

2.2. MATSUMOTO ALGEBRAS. For an introduction to shift spaces we refer the
reader to the excellent treatment in [13]. Let A be a two-sided shift space over a
finite alphabet A. Let

(2.1) XA ={(xi)iz1: (xi)icz € A}

denote the set of all right-infinite sequences in A.
For each k > 1, let A¥ be the set of all words with length k appearing in some

14 0o
x € A. Weset Ay = U Afand A* = U AF where A denotes the empty word @.

k=0 =
Following [8] there are two C*-algebras associated to A. Each C*-algebra is
generated by partial isometries {t, : a4 € A} subject to

(2.2) Z fath =1, and t:(f,xt,g = tﬁtzﬁtaﬁ, where a, B, 2 € A*.
acA

As in [8] we denote by O 4 the C*-algebra defined directly on Hilbert space
in [18], [20] and by O 5+ the C*-algebra defined using the Fock space construction
in [14], [16], [17], [15], [19]. Because of the different ways in which the relations
(2.2) are realised it turns out that O, and O« are not isomorphic in general (see
Section 6 in [8]).

There is a uniqueness theorem for O, (respectively Ox«) when A satisfies
Condition (I) (respectively Condition (I*)) given in Section 4 of [8] (respectively
Section 3 of [8]).
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CONDITION I. For x € Xpand ! € Nput Aj(x) = {p € A; : uyx € Xu}.
Two infinite paths x, y € X, are [-past equivalent (written x ~; y) if A;(x) = A;(y).
The shift space X, satisfies Condition (I) if for any / € N and x € X4 there exists
y € Xpsuchthaty # x,y ~ x.

CONDITION I*. Forw € A*and ! € Nweset Aj(w) = {p : |u| <1, pw €
A*}. Two words y,v € A* are said to be [-past equivalent (written y ~; v ) if
Aj(p) = Ay(v). The subset A} C A* is defined by

A ={weA :|{pe A"y~ w} <oo}.

The shift space A satisfies Condition (I*) if for every [ € Nand u € A} there
exist distinct words &1, & € A* with |&1] = |&2] = m such that

p~Gim and  po~p &2
for some 1,72 € A},

PROPOSITION 2.2. Let A be a two-sided shift space over a finite alphabet which
satisfies Condition (1). Then there is a strongly continuous action B of T on O 5 such that
Bz(ta) = zt, foralla € Aand z € T.

Proof. That each B, is an automorphism of O, for each z € T follows from
Proposition 4.2 in [8]. A standard €/3 argument shows that  is strongly contin-
uous. |

From p. 363 in [14] there is always a gauge action on O 5«. In [19] Matsumoto
defines A-graph systems £ 4 and £« associated to a two-sided shift space A to-
gether with corresponding C*-algebras O, and O .. By Theorem 5.6 in [8] we
see that if A satisfies Condition (I) then O = O, and if A satisfies Condition (I*)
then Op- = O, . Hence, for our purposes, it suffices to work with O and Ox:.

3. LABELLED SPACES

A directed graph E consists of a quadruple (E°, E!,r,s) where EY and E!
are countable sets of vertices and edges respectively and r,s : E! — EY are maps
giving the direction of each edge. A path A = e;---e, is a sequence of edges
e; € E! such that r(e;) = s(e;jy1) fori = 1,...,n — 1. The collection of paths of
length n in E is denoted E" and the collection of all finite paths in E by E*, so
that E* = |J E". The edge shift (Xg, 0r) associated to a directed graph E with no

n=0
sinks or sources is defined by:
Xg = {x € (EM? :s(xjpq) = r(x;) foralli € Z} and (0px); = ;41 fori€ Z.

The following definition is adapted from Definition 3.1.1 in [13]:

DEFINITION 3.1. A Iabelled graph (E,L) over an alphabet A consists of a
directed graph E together with a labelling map £ : E! — A.
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Without loss of generality we may assume that the map £ is onto. We say
that the labelled graph (E, £) is row-finite if the underlying graph E is row-finite.

Given a labelled graph (E, £) such that every vertex in E emits and receives
an edge, we may define a subshift (X(g 1), o) of AZ by

XiEe)y=1{v e AZ : there exists x € X such thaty; = L(x;) foralli € Z},

where ¢ is the shift map. The labelled graph (E, £) is said to be a presentation of
the shift space X = X ). As shown in Section 3.1 of [13] a shift space may have
many different presentations (see Examples 3.3 (ii), (vi), (vii)).

Let A* be the collection of all words in the symbols of A (see Section 0.2 of
[25]). The map L extends naturally to a map £ : E" — A*, where n > 1: for
A=e---e, € E"put L(A) = L(e1)--L(ey); in this case the path A € E" is
said to be a representative of the labelled path L(eq)--- L(ey). Let L(E") denote
the collection of all labelled paths in (E, £) of length n, then L*(E) = | L(E")

n=>1

denotes the collection of all words in the alphabet .4 which may be represented
by paths in the labelled graph (E, £). In this way £ induces a map from the

language |J E" of the subshift of finite type Xg associated to E into L*(E), the
n=1

language of the shift space X(g ) presented by (E, £) (see Section 3 of [13]). The
usual length function | - | : E* — N transfers naturally over to £L*(E).
For a in L*(E) we put

sp(a) ={s(A) € E°: L(A) =a} and rp(a) = {r(A) € E*: L(A) =a},

so that rp,sp : L*(E) — 2E°. We shall drop the subscript on 1, and s, if the
context in which it is being used is clear. For «, € L*(E) we have ap € L*(E) if
and only if r(a) Ns(B) # @.

Where possible we shall denote the elements of A = L(E!) as a,b, etc.,
elements of L*(E) as «, B, etc., leaving e, f for elements of E Land A, u for elements
of E*.

Let (E,£) and (F, L) be graphs labelled by the same alphabet. A graph
isomorphism ¢ : E — F is a labelled graph isomorphism if L' (¢(e)) = L(e) for all
e € E' and we write ¢ : (E, L) — (F,L').

DEFINITION 3.2. The labelled graph (E, £) is left-resolving if for all v € E°
the map £ : r~1(v) — A is injective.
The left-resolving condition ensures that for all v € E° the labels {L£(e) :

r(e) = v} of all incoming edges to v are all different. In particularif A,y € |J E"
n=1

satisfy L(A) = L(pu) and r(A) = r(u) then A = p.

EXAMPLES 3.3. (i) Let E be a directed graph. Put A = E' and let £ : E! —
E! be the identity map (the trivial labelling); then (E, £) is a left-resolving labelled
graph.
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(ii) Let G = (GY, G, r,s) be an ultragraph. Define E = Eg by putting E* = G°,
E' = {(e,w) : e € G, w € r(e)} and defining ,s' : E! — E° by s'(e,w) = s(e),
r'(e,w) = w. Set A = G! and define Lg : E! — Aby Lg(e,w) = e. The resulting
labelled graph (Eg, Lg) is left-resolving since the source map is single-valued. If
G is row-finite in the sense of Definition 2.1 then Eg is row-finite.

On the other hand, given a left-resolving labelled graph (E, £) over an al-
phabet A where s : L*(E) — 2E" is single-valued, we can form a ultragraph
Gy = (E%Ar,s') withs' = spand v’ = rg. If (E, £) is row-finite then the
ultragraph G g ) is row-finite.

(iif) Following Section 3 of [13] the labelled graphs

(Ei, L1) = 1 Q/\ov

0
(Ez,ﬁz) = 1 M/)\OU

(E3, L3):= 1 u/\ov

have the same language as the even shift Y since between any two 1’s there must
be an even number of 0’s. Hence X(Ei, L) = Y fori = 1,2,3 by Proposition 1.3.4
(3) of [13]. Only graphs (E1, £1) and (E;, £;) are left-resolving.

(iv) Let E be a directed graph and I" a group which acts on (the right of) E.
Define £, : E! — E'/I' by L,(e) = q(e) where q : E! — E!/T is the quotient
map. If the action of I is free on E!, then the resulting labelled graph (E, Ly) is
left-resolving. More generally, if p : F — E is a graph morphism then there is a
labelling £, : F! — E! givenby L,(f) = p(f) forall f € EL. If p is a covering
map then L, is left-resolving.

(v) Recall from Section 3 of [2], that an out-splitting of a directed graph E
is formed by a partition P of s~!(v) into m(v) > 1 non-empty subsets for each
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v € EY (if s!(v) = @ then m(v) = 0). Given such a partition 7 one may construct
a directed graph Es(P) where Es(P') = {e/ : e € EL,1 < j < m(r(e))} U {e :
m(r(e)) = 0}. Define £ : E(P)! — Elby L(e/) = e for 1 < j < m(r(e)) and
L(e) = eif m(r(e)) = 0. For an in-splitting (see Section 5 in [2]) of E using a parti-
tion P, a similar construction also yields a labelled graph. However the resulting
labelling £ of the in-split graph E,(P) will not be left-resolving in general.

(vi) Let A be a two-sided shift space over a finite alphabet .4 with X, defined
as in (2.1). Let X, = {(xi)ico : (Xi)icz € A} so that any element x € A may
be written as x = x~xT. For arbitrary x™ € X, and x~ € X the bi-infinite
sequence y = x~ xT may not belong to A. Define the past set of t € X as

Po(t) ={x~ € X, : xt€ A}

A shift is sofic if and only if the number of past sets is finite [11], [13].

For s,t € X,, we say that s is past equivalent to t (denoted s ~ t) if
Pw(s) = Pw(t). Define a labelled graph (Ex, £,) as follows: let E) = {[o] :
v € Xpo/ ~oo}, E} = {([v],a,[w]) : a € A aw ~ v} with s([v],a, [w]) = [0]
and r([0],a, [w]) = [w]. If ([0],a, [w]) € E} we put L4([v],a, [w]) = a. The result-
ing left-resolving labelled graph is usually referred to as the left-Krieger cover of
A and the construction is evidently independent of the choice of representatives
(see [11]).

If Y is the even shift then (Ey, Ly) is labelled graph isomorphic to (Ey, £)
in (iii) above. Let Z be shift over the alphabet {1,2,3,4} in which the words

{12¥1,3212,32%13,42F14 : k > 0}

do not occur (see Section 4 of [8]) then (Ez, L) has six vertices.
(vii) Let A be a two-sided shift over a finite alphabet A. We construct a variant
of the predecessor graph (E+, £+) in the following way. For u € A* we define
P(u) :={A: Aue A"}

and define an equivalence relation by y ~ v if P(i) = P(v). A shift is sofic if and
only if the number of predecessor sets is finite [13].

Let A%, denote those p € A* which have an infinite equivalence class. Since
A is finite A%,/ ~ canbe identified with Q+ = liin ] as described in Section 2 of
[16]. We set E}. = AL/ ~, Ej. = {([u],a,[v]) :a € A, [u] = [av]}, r([u],a, [v]) =
[v] and s([u],a, [v]) = [u]. The labelling map is defined by Lx-([y],a,[v]) = a.
The resulting labelled graph is evidently left-resolving.

If Y is the even shift then (Ey+, Ly~ ) is labelled graph isomorphic to (Ey, £)
in (iii) above (cf. [6], [16]). If Z is the sofic shift described in Example 3.3 (vi) then
(Ez+, Lz+) has seven vertices and contains (Ez, L) as a subgraph.

DEFINITION 3.4. Let (E, £) be a labelled graph. For A C E® and « € £*(E)
the relative range of a with respect to A is defined to be

r(A,a) ={r(A): A € E*,L(A) = a,s(A) € A}.
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REMARK 3.5. Forany A, B C E? and a € £*(E) we have

r(ANB,a) Cr(A,a)Nr(B,a) and r(AUB,a) =r(A,a)Ur(B,«).
Forall AC E'and « € L*(E) we have r(A, ) = r(ANs(a),a).

A collection B C 2E° of subsets of EV is said to be closed under relative ranges
for (E, L) ifforall A € Band w € L*(E) wehaver(A,«) € B. If Bis closed under

relative ranges for (E, £), contains r(«) for alla € £*(E) and is also closed under
finite intersections and unions, then we say that B is accommodating for (E, L).

DEFINITION 3.6. A labelled space consists of a triple (E, £, B), where (E, L)
is a labelled graph and B is accommodating for (E, L) .

DEFINITION 3.7. A labelled space (E, £, B) is weakly left-resolving if for every
A,B € Bandevery a € L*(E) wehave r(A,a) Nr(B,a) =r(ANB,«).

In particular, the labelled space (E, £, B) is weakly left-resolving if no pair
of disjoint sets A, B € B can emit paths A, u respectively with £(A) = L(p) and
r(A) = r(u). If (E, L) is left-resolving then (E, £, B) is weakly left-resolving for
any B. Evidently if (E, £, B) is weakly left-resolving, then (E, £, B') is weakly
left-resolving for any B’ C B.

Consider the following subsets of 2F";

E={{v} :veEis asource or asink }U{r(a):acL*(E)}U{s(a):acL*(E)},
E ={{v}:veEisasink }U{r(a):a c L*(E)}.
The following definition is analogous to the definition of GYin [26].

DEFINITION 3.8. Let £ (respectively £%~) denote the smallest subset of 2
containing & (respectively £ ) which is accommodating for (E, £) .

REMARK 3.9. If o, B € L*(E) are such that ap € L*(E) then

r(s(a),ap) = r(ap) and r(r(a),p) = r(ap).
Fora, B € L*(E) withaB € L*(E) and A C E® we have r(r(A,a), B) = r(A, ap).

For labelled spaces (E, £, %) which are weakly left-resolving Remark 3.5
and Remark 3.9 show that to form £V it suffices to form

EU{r(A,a):Ac & ne LYE)}

and then close under finite intersections and unions. To form £%~, by Remark 3.5
it suffices to close £~ under finite intersections and unions. Evidently, £~ C £9;
the containment can be strict, for instance this occurs when E has sources. One
can show that £9 = £%~ if and only if for every & € £*(E), s(a) can be written as
n
a finite union of sets of the form ) 7(B;). Since E°, L*(E) and & are countable it
i=1
follows that £2 and £%~ are countable.
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For A € 2E" and n >1let
W={ae LE"): Ans(a) # D}

denote those labelled paths of length n whose source intersects A nontrivially.

4. C*-ALGEBRAS OF LABELLED SPACES

DEFINITION 4.1. Let (E, £, B) be a weakly left-resolving labelled space. A
representation of (E, £, B) consists of projections {p4 : A € B} and partial isome-
tries {s, : a € L(E')} with the properties that:

() If A, B € Bthen pspp = panp and paup = pa + ps — pans, where pg = 0.
(ii)Ifa € £(E') and A € B then pys, = SaPr(Aa)-
(iii) If a,b € L(E') then s}s, = p,(,) and s;sp = O unless a = b.
(iv) For A € B, if LY, is finite and non-empty we have

(4.1) pa = 2 sapr(A,u)SZ'

acll
Ifa,b € L(E') are such that ab € £*(E) then we have

(5254)(56Sh) = Pr(a)56Sh = SbPr(r(a)b)Sb = 5bSbPr(a) = (5b5p)(Sa5a)-

Hence s,sy, is a partial isometry which is nonzero if and only if s, and s, are.
Therefore we may define s, = s,s;, and similarly define s, foralla € £*(E). One
checks that Definition 4.1 (ii) holds for « € L£*(E), Definition 4.1 (iii) holds for
a,p € L(E") for n > 1 and Definition 4.1 (iv) holds for A € B with finite and
nonempty L, for n > 1. Then (cf. (2.2)) we have

SxSuSp = Pr(n)Sp = SBPr(r(a),6)) = SBPr(ap) = SBSapSup-

To justify the requirement that (E, £, B) is weakly left-resolving in Defini-
tions 4.1, consider the following: Let {p4,s,} be a representation of (E, £, B) in
which pg # 0 for all A € B. By Definition 4.1 (i) we have (pa — pans)(ps —
pang) = 0 for all A,B € B. Suppose, for contradiction, that there is « € L*(E)
such that (A, «) N7(B,a) # r(AN B,a). From Definition 4.1 (iv) we have

PA—PANB >Sﬂ(pr(A,a) - pr(AﬂB,rx))S; and PB—PAnB 250{(?1’(3,&) - pr(AﬂB,a))S;

s0 (pa —pans)(PB — Pans) #0, a contradiction. Thus a representation of (E, £, B)
will be degenerate if (E, £, B) is not weakly left-resolving.

Relation (iv) in Definition 4.1 can make sense even if A € B emits infin-
itely many edges in E: If there are only finitely many different labels attached to
the edges which A emits then L} is finite. For directed graphs the analogue of
equation (4.1) holds when a vertex has finite valency; when this is true at every
vertex, the graph is called row-finite. With this in mind, we make the following
definition:
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DEFINITION 4.2. Let (E, £, B) be a labelled space. We say that A € B is
singular if LY, is infinite. If no set A € B is singular we say that (E, £, B) is set-
finite.

If (E, L, B) is set-finite, then L'} is finite for all A € Band alln > 1. In
the examples below, the resulting labelled space will be set-finite whenever the
original graph is row-finite.

EXAMPLES 4.3. (i) Let E be a directed graph with the trivial labelling L.
Then £° consists of all the finite subsets of E°. If E is row-finite then (E, £, £0)
and (E, L, & O") are set-finite. One may show that a representation of (E, £, £ 0) is
a Cuntz-Krieger E-family and conversely (see [1], [4] for instance). If all sources
in E have finite valency, then the x-algebra generated by a representation of
(E, £,£%7) contains a representation of (E, £, E°). If there is a source v € E? with
infinite valency then there is no representative of p, in the x-algebra generated
by a representation of (E, £, 50").

(i) Under the identification of an ultragraph G with a labelled graph (Eg, Lg)
we have £) = G°. Since A = G a representation of (Eg, Lg,£J) is a Cuntz-
Krieger G-family (see Definition 2.7 of [26]). If G has sources which are singular
then we get similar behaviour to that described in (i) above.

(iif) In Examples 3.3 (iii) we have Eio = 2F fori = 1,2,3. Though 5?’_ = ZE?,
we find that &)~ = {{w}, {u,w}, {v,w}, {u,0,w}} and &y~ = {@,{u},{v},
{u,v},{u,v,w}}. Arepresentation of (Ep, L, SS’_) is generated by partial isome-
tries sg, s1 satisfying the relations in Proposition 8.3 of [14] and Section 2 of [6] for
Oy, where Y is the even shift.

(iv) A covering p : F — E of directed graphs yields a labelling £, : F* — EL.
We may identify F° with the collection of inverse images of the finite subsets of
EO. A representation of (F, £,, F°) is a Cuntz-Krieger E-family. If F has sources
with infinite valency, then we get similar behaviour to that described in (i) above.

(v) An outsplitting Es(P) of E gives rise to a labelling £ : Es(P)! — EL If P
is proper then we may identify & (P)° with the collection of finite subsets of E,
and a representation of (Es(P), L, &, (P)%)is a Cuntz-Krieger E-family. If E has
sources with infinite valency then, we get similar behaviour to that described in
(i) above, even when the outsplitting is proper.

(vi) An arbitrary shift A C AZ gives rise to a left-resolving labelled graph
(Ea, L) with no sources or sinks, called the Left Krieger cover. If A is finite then
the generators of O form a representation of (Ep, L4, 59"7) (cf. [8], [14]).

(vii) An arbitrary shift A C A” gives rise to a left-resolving labelled graph
(Ea+, Lp+) with no sources or sinks, called the predecessor graph. If A is finite
then the generators of O~ form a representation of the (Ex+, £+, 5%*_ ) (cf. [8],

[14]).
Examples 4.3 (i)—(v) show that it is possible for £° and £%~ to be different,
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but for the *-algebras generated by representations of (E, £, &%) and (E, £, £%7)
to be the same.

Let (E, £, B) be a labelled space. Let B* = £*(E) U B and extend 7, s to B*
by r(A) = A,s(A) = Aforall A € B. For A € B, putsy = py, so sg is defined
forall g € B*.

LEMMA 4.4. Let (E, L, B) be a weakly left-resolving labelled space and {s,, pa }
be a representation of (E,L,B). Then any nonzero product of s,, pa and s; can be
written as a finite combination of elements of the form sypasy for some A € B, and

a, B € B* satisfying A C r(a) Nr(B) # D.
Proof. Since s,XpAs;*3 = sapr(“)mAm,(ﬁ)s;g it follows that s,prs;g is zero unless

Anr(a)Nr(p) # @ and without loss of generality we may assume that A C
r(a)Nr(B). Fora,B,7v,0 € L*(E) and A, B € B we have

Szw/pr(A,'y’)ﬂBszf if y = ﬁ’)/lr
saParv(Bp)Ssp if B =P
SaPANBS; if =1,

0 otherwise .

(42) (supasp)(syPBs;) =

To see this, suppose v = By thenas A C r(B) Nr(a)

SKPAS}SyPBS] = SaPASSpSy PBS) = SxPAPy(p)Sy PBS)
= SocPAS'y’ﬁBS}< = saﬂr’pr(A,'y’)ﬁBsg :

A similar calculation gives the desired formulas in the cases § = yp’ and
B = . If B and y have no common initial segment, then without loss of generality,
assume that § € L(E") and v € L(E™) with n > m. Write p = p'p"” where
B’ € L(E™), and then by Definition 4.1(iv) we have s;s, = sgisgsy = 0 since
B’ # 7 and so sup Aszsyp 485 = 0. By Definition 4.1 (i) and (ii) we may extend
(4.2) to the case when «, B,v,0 € B*. 1

THEOREM 4.5. Let (E, L, B) be a weakly left-resolving labelled space. There exists
a C*-algebra B generated by a universal representation of {s,, pa} of (E, L, B). Further-
more the s;’s are nonzero and every p o with A # @ is nonzero.

Proof. Let S rp) = {(a, A B) 1 a,p € B, A € B,AC r(a)Nr(B)} and
let k(g2 5) be the space of functions of finite support on S 1 ). The set of point
masses {er : T € S(g 5} forms a basis for k(g o ). Set (a, A, B)" := (B, A, u);
then thinking of e(, 4 g) as sap ASE and using (4.2) we can define a multiplication
with respect to which k(g 1 ) is a *-algebra.

As a x-algebra k(g ) is generated by the elements g4 := e(4 4 4) for A € B
and f4 1= €(4r(a) r(a)) fOr a € L(EY). Our definition of multiplication ensures that
properties (ii) and (iii) of Definition 4.1 hold; moreover g4qp = g4np- We mod out
by the ideal | generated by the elements gaup — g4 — g + gang for A, B € B, and
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qa— Y SaPr(aa)Ss for A € Bwith LY nonempty and finite. Then the images r4
aeLh

of g4 and u, of t, in kg £ 3)/] form a representation of (E, £, B) that generates

k(g,c,B)/]. The triple (k(g )/ ], 74, a) has the required universal property, but

isnot a C*-algebra. Using a standard argument we can convert this triple to a C*-

algebra B satisfying the required properties (see Theorem 2.1 of [10] for instance).
Now foreacha € L(E')ande € L7 (a), let H, . be an infinite-dimensional

Hilbert space. Also for each v € s(a) we define H, ,) := @ H(ae)- I

{e:s(e)=v,L(e)=a}

v is a sink let H;, be an infinite-dimensional Hilbert space. For A € B we define

Hp:= D ) H(b,v) and then note that each Hilbert space we have defined
beLl ves(b)NA

is a subspace of

He (D D Huw) @ Ho

acL(E1) ves(a) {v:s71(0)=0})

For each a € L(E'), let S, be a partial isometry with initial space H, () and

final space EB( )H(a,v) C Hy(a)- For A € B, define P4 to be the projection of H
ves(a

onto H 4, where this is interpreted as the zero projection when A = @.

It is easy to verify that since (E, £, B) is weakly left-resolving, the operators
{Sa, Pa} form a representation of (E, £, B) in which S;, P4 are nonzero. By the
universal property there exists a homomorphism 7tgp : B — C*({S,;, P4 }). Since
the S;’s and P,4’s are nonzero, it follows that the s,’s and p 4’s are also nonzero. 1

DEFINITION 4.6. Let (E, £, B) be a weakly left-resolving labelled space, then
C*(E, L, B) is the universal C*-algebra generated by a representation of (E, £, B).

Let (E, £, B) be a weakly left-resolving labelled space and {s,, pa} be the
universal representation of (E, £, B), then by Lemma 4.4

span {supasg:a,p € L7(E), A€ B,ACr(a)Nr(p)}
is a dense *-subalgebra of C*(E, L, B). The following result may be proved along

the same lines as Lemma 3.2 of [26].

LEMMA 4.7. Let A be finite, E have no sinks, and (E, L, B) be a weakly left-
resolving labelled space. Then C*(E, L, B) is unital.

Proof. Observe that ) s,s} is a unit for C*(E, £, B). 1
acA

LEMMA 4.8. If ¢ : (E, L) — (F, L") is a labelled graph isomorphism, then for all
B which are accommodating for (E, L) we have C*(E, L, B) = C*(F, L', ¢(B)).

Proof. The map ¢ induces a bijection between the generators of C*(E, £, B)
and C*(F, L', ¢(B)) and so by the universal property there are homomorphisms
from one C*-algebra to the other which are also inverses of each other. 1
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5. GAUGE INVARIANT UNIQUENESS THEOREM

Let {ss, pa} be the universal representation of (E, £, B) which generates
C*(E,L,B).Forz€ T,a € L(E')and A € Blet

to 1= 7280 =25 and g4 1= 7zpa = pa;

then the family {t;,,qa} € C*(E, L, B) is also a representation of (E, £, B). By
universality of C*(E, £, B) and a routine €/3 argument we see that 7 extends to
a strongly continuous action

v:T — Aut C*(E, L, B)

which we call the gauge action.

PROPOSITION 5.1. (i) Let E be a directed graph with the trivial labelling L. Then
C*(E, L, &% = C*(E).

(ii) Let G be an ultragraph. Then C*(Eg, Lg,EY) =2 C*(G), where (Eg, Lg) is the
labelled graph associated to G .

(iii) Let p : F — E be a covering map with induced labelling L, : F* — E'. Then
C*(F,L,, FY) = C*(E).

(iv) Let E be a directed graph and let E5(P) be an outsplitting. Let L be the labelling of
Es(P) induced by the outsplitting. If P is a proper partition then C*(Es(P), £, Es(P)?)
= C*(E).

Proof. In each case the left hand side contains a generating set for the C*-
algebra on the right as shown in Examples 4.3. We apply the appropriate gauge-
invariant uniqueness theorem for the algebra on the right hand side to obtain the
isomorphism. 1

To establish connections with the Matsumoto algebras we need a version of
the gauge-invariant uniqueness theorem for labelled graph algebras.

LEMMA 5.2. Let (E, L, B) be a weakly left-resolving labelled space, {s,, pa} a
representation of (E,L,B), and Y = {sypa;sp : i = 1,...,N} be a set of partial
isometries in C*(E, L, B) which is closed under multiplication and taking adjoints. If q
is a minimal projection in C*(Y') then either

(i) g = sa,.pAl.s;jifor somel <i< N;or
m
(ii) g = sa;pa,5s, —q whereq' = Y- sak(,)pAkms;‘(m) and 1 < i < N; moreover there
=1
Is A MONZETO T = Su,pPr( A, p)Su,p € C*(E, L, B) such that g'r = 0and g > r.

Proof. By 4.2 any projection in C*(Y) may be written as

*

n m
*
Z{ Sai(j) P Ai) Soy(jy 1215 k() P Ak Sy
]: =
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where the projections in each sum are mutually orthogonal and for each [ there is

a unique j such that s, ; 2P A ( 2 Suy(y P Ay Sy

Ifg = i Sayj) P Ay j) S g 0 PAS () is a minimal projection in C*(Y)
then we must haven = 1. If m_: 0 then q = Sa;PA;Sy, forsome 1 < i < N. If
m # 0 then q = sq;pa,sy, — q whereq' = Z Sagry P Ay andl k < N. Since

g’ is the sum of finitely many projections and g #0it follows by repeated use of
Definition 4.1 (iv) that there is a nonzero r = sy,gp;(4,p) lxi 8 in C*(E, L, B) such

thatrg =0andg>r. 1

THEOREM 5.3. Let (E, L, B) be a weakly left-resolving labelled space and let
{Sa, P4} be a representation of (E, L, B) on Hilbert space. Take 1tgp to be the repre-
sentation of C*(E, L, B) satisfying ms p(sqs) = Sq and 1tsp(pa) = Pa. Suppose that
each P, is non-zero whenever A # @, and that there is a strongly continuous action
of T on C*(Sy, Pa) such that forall z € T, B, o 7tg p = 7tg p © ;. Then 713 p is faithful.

Proof. A straightforward argument along the lines of Lemma 2.2.3 of [22]
shows that

C*(E,L,B)" = span{sspasy : &, p € L(E") for some nand A C r(a) N r(B)}

where C*(E, £, B)" is the fixed point algebra of C*(E, £, B) under the gauge ac-
tion y. We claim that C*(E, £, B)" is AF. Let Y be a finite subset of C*(E, £, B)".
Since y € Y may be approximated by a finite linear combination of elements of
the form s,pas; where |a| = [B| we may assume that Y = {sypa,sp, : |ai| =
\Bil,i=1,...,N}.

Let M be the length of the longest word in {ay,...,an}. Let W denote the
collection of all words in L*(E) of length at most M that can be formed from
composing subwords of &1,...,an,B1,...,BN. Let C be the collection all finite
intersections of {A;}" ; and {r(A;,v) : 1 < i < N,v € W}. By (42) a non-
zero product of elements of Y is of the form s, p4s; where 7,6 € Wand A € C.
Since W and C are finite it follows that Y’ = {sypas} : 7,6 € W,A € C} is
finite, closed under adjoints and C*(Y) = C*(Y’). Hence we may assume that
Y is closed under multiplication and taking adjoints. Thus C*(Y) = span(Y) is
finite dimensional and so C*(E, £, B)" is AF by Theorem 2.2 of [5], establishing
our claim.

To show that the canonical map 7tgp : C*(E, L, B) — C*(S4, Pa) is injec-
tive on C*(E, L, B)" we write C*(E, £, B)" as |JC*(Y,) where {Y,, : n > 1} isan
increasing family of finite sets which are closed under multiplication and taking
adjoints. Suppose, for contradiction, that 7rg p is not faithful on C*(Y},) for some
n. Then its kernel is an ideal and so must contain a nonzero minimal projection
q- Yy = {sypas :1=1,...,N(n)} then by Lemma 5.2 either g = s4,p 4,55,
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m
for some 1 < i < N(n) or q = su;pa;sy, —q whereq' = ¥ sy P Ay Sayy and
k=1
1 <i < N(n). In the first case 75 p(sa;p4,) = Sa;Pa, is a partial isometry with
initial projection Py4; and final projection Sy, P4, Sy . But P4, = msp(pa,) # 0by
hypothesis and so 75 p(q) = 75 p(5a;P4;5x,) = Sa;Pa,Sa, # 0 which is a contra-
diction. In the second case by Lemma 5.2 (ii) there is r = s4,8p, (4, p)S,, B such that

q > rand q'r = 0. We may apply the above argument to show that 7tg p(r) # 0
and hence 75 p(q) > mgp(r) # 0 which is also a contradiction. Hence g p is
injective on C*(Y},) and the result follows by arguments similar to those in Theo-
rem 2.1 of [4]. 1

6. APPLICATIONS

6.1. DUAL LABELLED GRAPHS. Let E have no sinks and (E, £) be a labelled graph
over alphabet A. From this data we may form the dual labelled graph (E, L) over al-
phabet A := L(E?2) as follows: Let E® = E!, E' = E? and the maps #/,s' : E! — E°
be given by #'(ef) = f and s'(ef) = e. The labelling £ : E! — A is induced by
the original labelling, so that Z(ef) = L(e)L(f). For ab € L(E') = L(E2) we
have

rp(ab) = {f : L(ef) =ab}, and sz(ab) = {e: L(ef) = ab}
and for B € 2F'
rz(B,ab) = {f : L(ef) = ab,e € B}.
These maps extend naturally to £*(E) = |J L(E") where forn > 1, L(E")

n>1
is identified with £(E"*1). Consider the following subsets of oF!

E= {{e} :s(e) isasource} U {rz(a) :a € 2*(?)} U{sp(a)ra e EA*(E)},
& ={rp(a):a € L*(E)}.

Let £° (respectively £%) be the smallest collection of subsets of 2E' con-
taining & (respectively £~) which is accommodating for (E, £). One checks eas-
ily that if (E, L, B) is left-resolving, then (E, L, l?) is weakly left-resolving for
B=¢980-.

For B € &Y (respectively B € E0) we set

Lk ={abe L(E"): sz(ab) N B # @}
If E has no sources and sinks, the shift X(E £) determined by the dual la-

belled graph (E, £) of (E, £) is the second higher block shift XE;] ) formed from
X(E,L) (cf. Section 1.4 of [13]).
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REMARK 6.1. Suppose that ab € L£(E?) then ¢ € Li(ﬂb) if and only if bc €

L}A(ab); moreover r(r(ab),c) = r(s(rz(ab)),bc). Suppose that A € &0 (respec-
z

tively A € E97) thena € LY, and ab € £(E?) if and only if ab € ngl(A)'

THEOREM 6.2. Let (E, L) be a set-finite, left-resolving labelled graph with no
sinks; then C*(E, £, EY) = C*(E, E,SAO), moreover C*(E, £, %) = C*(E, L, EAO’)

Proof. Let {s,, pa} be a representation of (E, £, £%) and {t,,, qp} be a repre-
sentation of (E, Z,EY). Forab € L(E') and B € £V let T, = s45ps; and

QB =Y SabPr(s(B)ab)Sap-
abeL}
Since (E, L, & O) is set-finite (E, E, 50) is set-finite by Remark 6.1 and so the above
sum is finite. One checks that {T,;,, Qp} is a representation of (E, Z, £°).

By the universal property there is a homomorphism 777 g : C* (E,L,&% —
C*(E, £, &%) with rpo(ts) = Tup and mr,g(gqs) = Qp. Since 71, intertwines
the respective gauge actions and Qp # 0 it follows from Theorem 5.3 that 717 is
faithful. We claim that 7t7 ; is surjective. Fora € £(E!) we have

So = SaPra) =S Y, SoPr(r(a)h)Sh = D, SaSbSySbPr(a)Sh

bEL}(lz) bEL}(”)
= Z SaSpSh Z Sbcpr(r(ah),c)SZc
beL}(u) ceLi(ub)
= Z Tap Z Sbcpr(s(rf(ub)),hc)sgc (by Remark 6.1) = Z Tuerz(ab)
bely,) hCGL}E(ub) beLiq)

and so s, € C*(T,, Qp). For A € £, by Remark 6.1 we have
PA= Zsﬂpr(/},ﬂ)s;: ZSH Z prr(r(A,a),h)SZSsz: Z Suhpr(A,ab)S:b:stl(A)

1 1 1 71
acly, a€ly, DbeL abeLsil(A)

r(Aa)
which establishes our claim. The second isomorphism is proved along similar
lines. 1

6.2. MATSUMOTO ALGEBRAS.

THEOREM 6.3. Let A be a shift space over a finite alphabet A which satisfies Con-
dition (1) and has left-Krieger cover (Ep, L) then O = C*(E, La, 59\'_). Moreover,
if A has predecessor graph (E =, L« ) then Op+ = C*(Epx, L+, 59"[).

Proof. By definition every A € 59\’_ can be written as a union of sets of the
m()
form A; = Ql r(ul) forj = 1,...,n. For p € A* let Gr(n) = tyty, then since the

projections {t;t, : p € A"} are mutually commutative (see p. 686 of [16]) we
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may define q,(,)nr(v) = 9r(u)9r(v), and hence define qa; for1 < j < n. By the
inclusion-exclusion principle one may further define
n
ga =Y 44 — Y 4ada, + -+ (=1)"qa, - qa,
=1 j#k

Using calculations along the lines of those in Section 3 of [14] one checks that
{ta, g4} is a representation of (Ex, L, 5?1’7). Let {s4, pa} be a representation of
(Ea, L4, EY7). By the universal property for C*(Ex, L4, EY ™) there is amap 7114 :
C*(Ea, Lx, 6’9"_) — O, such that 714 4(s,) = t; and 714(pa) = g4, in particular
Tt,4 is surjective. Since A satisfies Condition (I) it follows by Proposition 2.2 that
O, carries a strongly continuous action B of T. Since B, o 7114 = 71,4 © 7, for all
z € Tand 714(pa) = g4 # 0 it follows from Theorem 5.3 that 714 is injective,
which completes the proof of the first statement.

The second statement is proved similarly. 1

REMARKS 6.4. (i) In Section 5 of [8] a Condition (*) is given under which for
shift spaces A satisfying (*) Conditions (I) and (I*) are equivalent and O = Ox-.
This suggests that if A satisfies (x) then (E4, £,) is labelled graph isomorphic
to (Ea+, L) and the isomorphism of O and O+ can be deduced from Theo-
rem 4.8. However Theorem 6.1 of [8] shows that, in general, O and O 4+ are not
isomorphic. In particular, (Ep, £4) and (Ex+, £4+) are not labelled graph isomor-
phic in general.

(ii) The isomorphism of C*(E4, L4, 89\’7) and O, identifies C*(p : A € 59{)
with Ay C Ox. Recall from Corollary 4.7 of [16] that Ay = C(Q,), hence we
may think of the elements of 59"7 as indexing closed sets in (24.

(iif) In [7] Carlsen constructs a C*-algebra which has O, as a quotient, that is
isomorphic to O, if A satisfies Condition (I), and always carries a gauge action.
A proof along the lines of Theorem 6.3 shows that this new algebra is isomorphic
to C*(Ex, L4, EY7) for all A,

6.3. FINITENESS CONDITIONS.

DEFINITION 6.5. A labelled graph (E, £) is label-finite if |[£~1(a)| < oo for
alla € L(EY).

If (E, L) is label-finite then £~!(«) is finite for all « € £*(E) and so all sets
in £° are finite (and conversely). If (E, £) is label-finite then (E, £) is label-finite.
If E is row-finite and (E, £) is label-finite then (E, £, £°) is set-finite.

The following result generalises Corollary 2.5 in [4] (see also Remark 3.3 (i)
in [2]).

THEOREM 6.6. Let (E, L) be a row-finite left-resolving labelled graph which is
label-finite and satisfies {v} € E° forallv € E°. Then C*(E, L, %) = C*(E); moreover
if {v} € €% forallv € E° then C*(E, £,£%) = C*(E).
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Proof. Let {se, pv} be the canonical Cuntz-Krieger E-family and {t,, 44} be

the canonical generators of C*(E, £, £%). Fora € L(E') and A € £° let
T.= Y, s, and Qa=) po.
ecEl:L(e)=a vEA

The above sums make sense since (E, £) is label-finite. Since E is row-finite
one may easily check that these operators define a representation of (E, £, £9). By
the universal property of C*(E, £, £°) there is a homomorphism 77 o : C*(E, £, £°)
— C*(E) given by nt7o(ts) = T, and w1,g(q4) = Qa foralla € L(E') and A €
&Y. Since {v} € &% for all v € E°, we have p, = Q, € C*(T,,Qa) forall v € E°.
Since our labelled graph is left-resolving we have s, = T; () Q) € C*(Ta, Qa)
forall e € E!, and so 77, is surjective. The canonical gauge actions on C*(E)
and C*(E, £, £°) satisfy the required properties and 711,5(g4) = Qa # 0 for all
A € Y, s0 17 is an isomorphism by Theorem 5.3.

The proof of the second isomorphism is essentially the same. 1

COROLLARY 6.7. Let G = (GO, Gl,r, s) be a row-finite ultragraph; then C*(G) =
C*(Eg) where Eg is the underlying directed graph of G.

Proof. From Examples 3.3 (ii) a row-finite ultragraph G may be realised as
a row-finite left-resolving labelled graph (Eg, Lg). As Eg is row-finite it follows
that (Eg, Lg) is label-finite. Since the source map is single-valued it follows that
vE Eg forallv € G* = Eg and hence the result follows from Theorem 6.6. 1

The following result was first observed in Theorem 3.5 of [6] (see also Corol-
lary 3.4.5 in [24]).

COROLLARY 6.8. Let A be a sofic shift over a finite alphabet; then O == C*(E,)
where (Ex, L) is the left-Krieger cover of A.

Proof. As EY is finite and each v € EY, has a different past there are the word
wy € L*(Ep) with 7z, (ay) = {v}. Hence {v} € 5%7 for all v € EY. The result
follows by Theorem 6.6. 1

From Theorem 3.3.18 in [13] any two minimal left-resolving representations
(E, L), (F, L) of an irreducible sofic shift are labelled graph isomorphic and so
C*(E,L£,&%) = C*(F, L', F°) by Lemma 4.8. Moreover, one may use the mini-
mality of the representation to show that the underlying graph E is irreducible
(cf. Lemma 3.3.10 in [13]). Hence we have:

COROLLARY 6.9. Let (E, L) be a minimal left-resolving presentation of an irre-
ducible sofic shift over a finite alphabet, then C*(E, £,£%) = C*(E, L, £°) is simple.

REMARK 6.10. Recall that the graph (Ey, £;) in Examples 3.3 (ii) is the left-
Krieger cover of the even shift Y. Although Y is irreducible, (Ep, £;) is not a
minimal left-resolving presentation of Y and Oy = C*(E;) is not simple. How-
ever the graph (Eq, £1) Examples 3.3 (ii) is a minimal left-resolving cover of Y
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and so
C*(Ey, L1,E)7) 2 C*(Ey, L4, E)) = C*(Ey)

is simple. Similarly C*(Ez, Lz, 8%7) = C*(Ez) is simple where Z is the irre-
ducible shift introduced in Examples 3.3 (vi).

Thus, if one wishes to associate a simple C*-algebra to an irreducible sofic
shift A, then one should use the minimal left-resolving presentation of A ([6], [7]).

For a general shift space A, either (E,, £,) will not be row-finite or there
willbe v € EY witho ¢ 5?"_. This indicates that the C*-algebras corresponding to
presentations of such shift spaces will not be Morita equivalent to graph algebras.
The shift associated to a certain Shannon graph (see Theorem 7.7 of [21]) provides
such an example.
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