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ABSTRACT. We study the boundedness and the compactness of the differ-
ences of two composition operators on the Bloch and the little Bloch spaces.
We prove that the weak compactness of the differences on the little Bloch space
is equivalent to the compactness. Moreover we will give attention to the topo-
logical structure of the space of composition operators on the Bloch space in
the operator topology.
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1. INTRODUCTION

Throughout this paper let D be the open unit disc and ∂D the unit circle. Let
H(D) be the space of all analytic functions on D. We denote by S(D) the set of
analytic self-maps of D. Every self-map ϕ induces the composition operator Cϕ

defined by Cϕ f = f ◦ ϕ for f ∈ H(D).
We recall that the Bloch space B consists of all f ∈ H(D) such that

||| f ||| = sup
z∈D

(1− |z|2)| f ′(z)| < ∞.

Then ||| · ||| is a complete semi-norm on B and is Möbius invariant. Let the little
Bloch space Bo denote the subspace of B consisting of functions f with

lim
|z|→1

(1− |z|2) f ′(z) = 0.

It is well known that B is a Banach space under the norm

‖ f ‖B = | f (0)|+ ||| f |||
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and that Bo is a closed subspace of B. In particular, Bo is the closure in B of the
polynomials. Let H∞ = H∞(D) be the set of all bounded analytic functions on D.
Then H∞ is the Banach algebra with the supremum norm

‖ f ‖∞ = sup
z∈D

| f (z)|.

Note that H∞⊂B and that ||| f |||6‖ f ‖∞ if f ∈H∞. For ϕ∈S(D), |||ϕ|||6‖ϕ‖∞ 61.
Madigan and Matheson [7] shed light on the study of composition opera-

tors on B and Bo and Montes-Rodríguez [8] expressed their norms. On the other
hand, MacCluer, Zhao and the second author [6] considered the topological struc-
ture of the space of composition operators on H∞ that was originally studied by
Sundberg and Shapiro [10] in the case of the Hilbert Hardy space. They gave a re-
lationship between such a problem and the boundedness and compactness of the
difference Cϕ − Cψ of two composition operators from B to H∞. Explicitly they
showed that the compactness of Cϕ − Cψ : H∞ → H∞ is equivalent to the com-
pactness of Cϕ − Cψ acting from B to H∞ and moreover that Cϕ and Cψ are in the
same path component of the space of composition operators on H∞ if and only if
Cϕ − Cψ : B → H∞ is bounded. Also see [4] for more results. So we wonder how
Cϕ − Cψ would be acting on B. This is our outset. In this paper we will consider
the differences of composition operators on B and Bo. In Section 2, we have the
inequality estimating the differences of two Bloch-type derivatives which would
be a useful tool to obtain our main results. In Section 3 we characterize the bound-
edness and the compactness of the differences of two composition operators on
B and Bo. Moreover we can show that the weakly compact difference Cϕ − Cψ is
compact on Bo, using the interpolation result in the Bloch space (see [7]). Finally
in Section 4 we will present some comments to study the topological structure of
the space of composition operators on the Bloch space in the operator topology.

Our results involve the pseudo-hyperbolic metric. For p ∈ D, let αp be the
automorphism of D exchanging 0 for p. Then αp has the following form:

αp(z) =
p − z

1− pz
.

For z, w in D, the pseudo-hyperbolic distance between z and w is given by

ρ(z, w) = |αz(w)| =
∣∣∣ z − w
1− zw

∣∣∣.
We will also use the hyperbolic metric, which is given by

β(z, w) =
1
2

log
1 + ρ(z, w)
1− ρ(z, w)

.

For ϕ ∈ S(D), the Schwarz-Pick type derivative ϕ# of ϕ is defined by

(1.1) ϕ#(z) =
1− |z|2

1− |ϕ(z)|2
ϕ′(z).
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By the Schwarz-Pick lemma, |ϕ#(z)| 6 1 on D. If ϕ is an automorphism of D, the
equality holds for all z ∈ D and then ‖ϕ#‖∞ = 1.

Let UB be the closed unit ball of B with respect to the norm ‖ · ‖B and

V = { f ∈ B : ||| f ||| 6 1}.

We collect here some basic properties of functions in B and composition operators
on B. It is known that the following hold (see [1], [9] and [11]): for z, w ∈ D

β(z, w) = sup
f∈V

| f (z)− f (w)|,(1.2)

||| f ||| = sup
z 6=w

| f (z)− f (w)|
β(z, w)

,(1.3)

(1− |z|2)(1− |w|2)
|1− zw|2

= 1− ρ(z, w)2.(1.4)

Moreover we have

sup
f∈UB

(1− |w|2)| f ′(w)| = sup
f∈V

(1− |w|2)| f ′(w)| = 1,(1.5)

|||Cϕ f ||| = sup
z∈D

(1− |z|2)|ϕ′(z)|| f ′(ϕ(z))|(1.6)

= sup
z∈D

|ϕ#(z)|(1− |ϕ(z)|2)| f ′(ϕ(z))|.

2. PREREQUISITES

To investigate the behaviors of Cϕ − Cψ, we will consider the following in-
duced distance on D.

DEFINITION 2.1. For z, w ∈ D, we define

(2.1) [(z, w) = sup
f∈V

|(1− |z|2) f ′(z)− (1− |w|2) f ′(w)|.

We prove here the following useful result in the next section.

PROPOSITION 2.2. There exists a constant C > 0 such that

(2.2) ρ(z, w)2 6 [(z, w) 6 Cρ(z, w)

for all z, w ∈ D.

Proof. For p ∈ D, the automorphism αp is an element of V and

α′p(z) = − 1− |p|2

(1− pz)2 .



232 TAKUYA HOSOKAWA AND SHÛICHI OHNO

So, for p, q ∈ D, we have that

[(p, q) > |(1− |p|2)α′p(p)− (1− |q|2)α′(q)| > 1− (1− |p|2)(1− |q|2)
|1− pq|2

= ρ(p, q)2.

Next we will prove that for s ∈ D
(2.3) [(s, 0) 6 16ρ(s, 0).

For f ∈ V, we have that

|(1− |s|2) f ′(s)− f ′(0)| =
∣∣∣ 1∫

0

d
dt
{(1− |s|2t2) f ′(st)}dt

∣∣∣
6

1∫
0

2|s|2t| f ′(st)|dt +

1∫
0

|s|(1− |s|2t2)| f ′′(st)|dt.

Here by 4.2.1 in [11],

f ′(z) = 2
∫

D

(1− |w|2)2 f ′(w)
(1− zw)3 dA(w)

where dA(w) is the normalized area measure on D. Differentiating this equality
with respect to a variable z,

sup
z∈D

(1− |z|2)2| f ′′(z)| 6 sup
z∈D

3! (1− |z|2)2
∫
D

||| f |||
|1− zw|4

dA(w)

= sup
z∈D

3! (1− |z|2)2 ||| f |||
(1− |z|2)2 = 6 ||| f |||.(2.4)

Hence we have that

[(s, 0) 6 sup
f∈V

( 1∫
0

2|s|(1− |s|2t2)| f ′(st)|
1− |s|2t2 dt +

1∫
0

|s|(1− |s|2t2)2| f ′′(st)|
1− |s|2t2 dt

)

6 sup
f∈V

(2 + 6)||| f |||
1∫

0

|s|dt
1− |s|2t2 6 8 β(s, 0).

Moreover if ρ(s, 0) 6 1/2, then β(s, 0) 6 2ρ(s, 0). If ρ(s, 0) > 1/2, then we have
that

[(s, 0) 6 2 < 4ρ(s, 0).
Anyway we obtain the inequality (2.3),

[(s, 0) 6 16ρ(s, 0).

To complete this proof, note that

( f ◦ αq)′(z) = − 1− |q|2

(1− qz)2 f ′(αq(z)).
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Then we have that by (1.4) and putting p = αq(s)

|(1− |p|2) f ′(p)− (1− |q|2) f ′(q)|

= |(1− |αq(s)|2) f ′(αq(s))− (1− |q|2) f ′(αq(0))|

=
∣∣∣ (1− |q|2)(1− |s|2)

|1− qs|2
(1− qs)2

1− |q|2
( f ◦ αq)′(s)− (1− |q|2) 1

1− |q|2
( f ◦ αq)′(0)

∣∣∣
=

∣∣∣ (1− qs)2

|1− qs|2
(1− |s|2)( f ◦ αq)′(s)− ( f ◦ αq)′(0)

∣∣∣
6 |(1− |s|2)( f ◦ αq)′(s)− ( f ◦ αq)′(0)|+

∣∣∣ (1− qs)2

|1− qs|2
− 1

∣∣∣(1− |s|2)|( f ◦ αq)′(s)|.

This implies that

[(p, q) 6 sup
f∈V

|(1− |s|2)( f ◦ αq)′(s)− ( f ◦ αq)′(0)|

+
∣∣∣ (1− qs)2

|1− qs|2
− 1

∣∣∣ sup
f∈V

(1− |s|2)|( f ◦ αq)′(s)|

6 18ρ(s, 0) +
|pq − pq|
|1− qp|

6 18ρ(p, q) + 2ρ(p, q) = 20ρ(p, q).

3. DIFFERENCES OF COMPOSITION OPERATORS

In this section, we consider the behaviors of Cϕ − Cψ on the Bloch and the
little Bloch spaces.

At first we study the Bloch space case. Then Cϕ − Cψ is always bounded on
B. So we consider the compactness of Cϕ −Cψ. It is easy to prove the next lemma
by adapting the proof of Proposition 3.11 in [1].

LEMMA 3.1. Let ϕ and ψ be in S(D). Then the following are equivalent:
(i) Cϕ − Cψ is compact on B.

(ii) ‖(Cϕ − Cψ) fn‖B → 0 for any bounded sequence { fn} in B that converges to 0
uniformly on every compact subset of D.

(iii) |||(Cϕ − Cψ) fn||| → 0 for any sequence { fn} as in (ii).

To discuss the compactness on B, we define here by Γ(ϕ) the set of se-
quences {zn} in D such that |ϕ(zn)| → 1. Moreover we also denote by Γ#(ϕ)
the set of sequences {zn} in D such that |ϕ(zn)| → 1 and ϕ#(zn) 6→ 0. Then it is
clear that Γ#(ϕ) ⊂ Γ(ϕ).

It is well known that Cϕ is compact on H∞ if and only if ‖ϕ‖∞ < 1 if and
only if Γ(ϕ) = ∅. In [7], it is shown that Cϕ is compact on B if and only if
Γ#(ϕ) = ∅.

Now we can characterize the compactness of Cϕ − Cψ on B.
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THEOREM 3.2. Let ϕ and ψ be in S(D). Suppose that neither Cϕ nor Cψ is com-
pact on B. Then the following are equivalent:

(i) Cϕ − Cψ is compact on B.
(ii) Both (a) and (b) hold:

(a) Γ#(ϕ) = Γ#(ψ) 6= ∅. Then Γ#(ϕ) ⊂ Γ(ϕ) ∩ Γ(ψ).
(b) For {zn} ∈ Γ(ϕ) ∩ Γ(ψ), lim

n→∞
|ϕ#(zn)− ψ#(zn)| = 0 and

lim
n→∞

ϕ#(zn)ρ(ϕ(zn), ψ(zn)) = lim
n→∞

ψ#(zn)ρ(ϕ(zn), ψ(zn)) = 0.

(iii) lim
|λ|→1

|||(Cϕ − Cψ)αλ||| = 0 and lim
|λ|→1

|||(Cϕ − Cψ)(αλ)2||| = 0.

Proof. The implication (i) ⇒ (iii) can be shown by applying Lemma 3.1 in-
stead to fλ = αλ − λ and gλ = αλ(αλ − λ).

Suppose that the condition (iii) holds. Since Cϕ is not compact on B, there
exists a sequence {zn} ∈ Γ#(ϕ) that is satisfying |ϕ(zn)| → 1 and ϕ#(zn) 6→ 0. For
such the sequence {ϕ(zn)}, we have that

|||(Cϕ − Cψ)αϕ(zn)||| > (1− |zn|2)|((Cϕ − Cψ)αϕ(zn))
′(zn)|

= (1− |zn|2)
∣∣∣ ϕ′(zn)
1− |ϕ(zn)|2

− ψ′(zn)(1− |ϕ(zn)|2)
(1− ϕ(zn)ψ(zn))2

∣∣∣
>

∣∣∣ϕ#(zn)− (1− |ϕ(zn)|2)(1− |ψ(zn)|2)
(1− ϕ(zn)ψ(zn))2

ψ#(zn)
∣∣∣

> | |ϕ#(zn)| − (1− ρ(ϕ(zn), ψ(zn))2)|ψ#(zn)| |

and

|||(Cϕ − Cψ)(αϕ(zn))
2||| > (1− |zn|2)|((Cϕ − Cψ)(αϕ(zn))

2)′(zn)|

> 2(1− ρ(ϕ(zn), ψ(zn))2)|ψ#(zn)|ρ(ϕ(zn), ψ(zn)).

By the condition (iii),

lim
n→∞

| |ϕ#(zn)| − (1− ρ(ϕ(zn), ψ(zn))2|ψ#(zn)| | = 0,(3.1)

lim
n→∞

(1− ρ(ϕ(zn), ψ(zn))2)|ψ#(zn)|ρ(ϕ(zn), ψ(zn)) = 0.(3.2)

By the assumption that ϕ#(zn) 6→ 0 and (3.1),

lim
n→∞

(1− ρ(ϕ(zn), ψ(zn))2)|ψ#(zn)| 6= 0.

Thus by (3.2), we have that

(3.3) lim
n→∞

ρ(ϕ(zn), ψ(zn)) = 0

for any sequence {zn} such that ϕ#(zn) 6→ 0. Consequently for any sequence {zn}
such that |ϕ(zn)| → 1,

(3.4) lim
|ϕ(zn)|→1

ϕ#(zn)ρ(ϕ(zn), ψ(zn)) = 0.
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The same is true with the role of ϕ and ψ interchanged, noticing that (3.3) implies
lim

|ϕ(zn)|→1
|ϕ(zn)− ψ(zn)| = 0 for any {zn} ∈ Γ#(ϕ).

Considering again the estimation of |||(Cϕ − Cψ)αϕ(zn)||| for any sequence
{zn} such that ϕ#(zn) 6→ 0,

|||(Cϕ−Cψ)αϕ(zn)|||> |ϕ#(zn)−ψ#(zn)|−|ψ#(zn)|
∣∣∣1− (1−|ϕ(zn)|2)(1−|ψ(zn)|2)

(1−ϕ(zn)ψ(zn))2

∣∣∣
> |ϕ#(zn)− ψ#(zn)| − |ψ#(zn)| |(1− |ϕ(zn)|2)α′ϕ(zn)(ϕ(zn))

− (1− |ψ(zn)|2)α′ϕ(zn)(ψ(zn))|

> |ϕ#(zn)− ψ#(zn)| − |ψ#(zn)|[(ϕ(zn), ψ(zn))

> |ϕ#(zn)− ψ#(zn)| − C|ψ#(zn)|ρ(ϕ(zn), ψ(zn)).

The last inequality follows from Proposition 2.2. Hence by (3.3), we get

(3.5) lim
n→∞

|ϕ#(zn)− ψ#(zn)| = 0

for any sequence {zn} such that ϕ#(zn) 6→ 0.
For any sequence {zn} such that |ϕ(zn)| → 1, |ψ(zn)| → 1 and ϕ#(zn) → 0,

we will use
lim

|ψ(zn)|→1
ψ#(zn)ρ(ϕ(zn), ψ(zn)) = 0

and so obtain
lim

n→∞
ϕ#(zn) = lim

n→∞
ψ#(zn) = 0.

Consequently we get (b).
Furthermore, from (3.3) and (3.5), we have that if {zn} is in Γ#(ϕ), then

|ψ(zn)| → 1 and ψ#(zn) 6→ 0. This means that Γ#(ϕ) ⊂ Γ#(ψ). Similarly we can
get Γ#(ψ) ⊂ Γ#(ϕ) and this implies that Γ#(ϕ) = Γ#(ψ). Recall that Γ#(ϕ) ⊂ Γ(ϕ)
and Γ#(ψ) ⊂ Γ(ψ). Then we have that Γ#(ϕ) ⊂ Γ(ϕ) ∩ Γ(ψ).

Finally assume that (ii) holds. Let { fn} be a sequence in B such that ||| fn||| 6 1
and fn converges to 0 uniformly on every compact subset of D. To prove that
|||(Cϕ − Cψ) fn||| → 0, suppose not. We may assume that for some ε > 0, |||(Cϕ −
Cψ) fn||| > ε for all n. Then for each n, there exists a sequence {zn} ⊂ D such that

(3.6) |ϕ#(zn)(1− |ϕ(zn)|2) f ′n(ϕ(zn))− ψ#(zn)(1− |ψ(zn)|2) f ′n(ψ(zn))| > ε.

This implies that either |ϕ(zn)| or |ψ(zn)| tends to 1. Suppose that |ϕ(zn)| → 1
and ψ(zn) → ω. If |ω| < 1, then {zn} is not in Γ(ϕ) ∩ Γ(ψ). By the condition (a),
we have ϕ#(zn) → 0. On the other hand, |ω| < 1 implies that f ′n(ψ(zn)) → 0. This
contradicts (3.6). Hence we obtain |ω| = 1. This means that |ϕ(zn)|, |ψ(zn)| → 1.
Then by the conditions of (b), we have that

|ϕ#(zn)(1− |ϕ(zn)|2) f ′n(ϕ(zn))− ψ#(zn)(1− |ψ(zn)|2) f ′n(ψ(zn))|

6 |ϕ#(zn)− ψ#(zn)|||| fn|||+ C|ψ#(zn)|ρ(ϕ(zn), ψ(zn)) → 0.
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This contradicts (3.6). Thus we finish the proof.

EXAMPLE 3.3. We present analytic self-maps of D such that neither Cϕ nor
Cψ is compact on B but Cϕ − Cψ is compact on B.

(i) Let ϕ(z) = (z + 1)/2 and ψ(z) = ϕ(z) + t(z − 1)3 for small t.
(ii) Let σ(z) = (1 + z)/(1− z) and ϕ(z) = (σ(z)1/2 − 1)/(σ(z)1/2 + 1) be a lens

map. And let ψ(z) = 1−
√

2(1− z).
These functions satisfy the conditions of Theorem 3.2.

Now we study the little Bloch space case. At first we characterize the bound-
edness of Cϕ − Cψ on Bo.

THEOREM 3.4. Let ϕ and ψ be in S(D). Then the following are equivalent:
(i) Cϕ − Cψ is bounded on Bo.

(ii) Both (a) and (b) hold:
(a) ϕ − ψ ∈ Bo.
(b) lim

|z|→1
(1−|z|2)|ϕ(z)−ψ(z)||ϕ′(z)| = 0 and lim

|z|→1
(1−|z|2)|ϕ(z)−ψ(z)|

|ψ′(z)|=0.
(iii) ϕ − ψ ∈ Bo and ϕ2 − ψ2 ∈ Bo.

Proof. Suppose that Cϕ − Cψ is bounded on Bo, that is, (Cϕ − Cψ) f ∈ Bo for
any f ∈ Bo. Taking f as the identity function and f (z) = z2, we have ϕ − ψ ∈ Bo
and ϕ2 − ψ2 ∈ Bo. Then the implication (i) ⇒ (iii) holds.

Next suppose the condition (iii) is true. As ϕ2 − ψ2 = (ϕ − ψ)(ϕ + ψ) ∈ Bo,
we have

lim
|z|→1

(1− |z|2)|(ϕ′(z)− ψ′(z))(ϕ(z) + ψ(z)) + (ϕ(z)− ψ(z))(ϕ′(z) + ψ′(z))| = 0.

Since ϕ − ψ ∈ Bo, we obtain

lim
|z|→1

(1− |z|2)|(ϕ(z)− ψ(z))(ϕ′(z) + ψ′(z))| = 0.

Thus

(1− |z|2)|ϕ(z)− ψ(z)||ϕ′(z)|

= (1− |z|2)|ϕ(z)− ψ(z)|
∣∣∣ ϕ′(z) + ψ′(z)

2
+

ϕ′(z)− ψ′(z)
2

∣∣∣
6 2−1{(1− |z|2)|(ϕ(z)− ψ(z))(ϕ′(z) + ψ′(z))|

+ (1− |z|2)|(ϕ(z)− ψ(z))(ϕ′(z)− ψ′(z))|}.

So by the above estimate we have

lim
|z|→1

(1− |z|2)|ϕ(z)− ψ(z)||ψ′(z)| = 0.

Similarly we obtain

lim
|z|→1

(1− |z|2)|ϕ(z)− ψ(z)||ψ′(z)| = 0.
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So the condition (ii) holds.
Finally we will show the implication (ii) ⇒ (i). Let fn(z) = zn. Then fn ∈ Bo

and

(Cϕ − Cψ) fn(z) = (ϕ(z)− ψ(z))(ϕn−1(z) + · · ·+ ψn−1(z)).

So

(1− |z|2)|((Cϕ − Cψ) fn)′(z)|

6 (1− |z|2)|ϕ′(z)− ψ′(z)||ϕn−1(z) + · · ·+ ψn−1(z)|

+ (1− |z|2)|ϕ(z)− ψ(z)||(n − 1)ϕn−2(z)ϕ′(z) + · · ·+ (n − 1)ψn−2(z)ψ′(z)|

6 n(1− |z|2)|ϕ′(z)− ψ′(z)|+ n(n − 1)
2

(1− |z|2)|ϕ(z)− ψ(z)|(|ϕ′(z)|+ |ψ′(z)|).

Thus by the condition (ii), we have that (Cϕ − Cψ) fn ∈ Bo. Hence (Cϕ − Cψ)p ∈
Bo for any polynomial p. As the set of polynomials is dense in Bo and Cϕ − Cψ is
bounded on B, we can prove that Cϕ − Cψ is bounded on Bo.

We present here analytic self-maps ϕ and ψ of D such that neither Cϕ nor
Cϕ is bounded on Bo but Cϕ − Cψ is bounded on Bo.

EXAMPLE 3.5. Let S(z) = exp(−(1 + z)/(1 − z)) be a singular inner func-
tion. It is known that S is a function in H∞ that is not in Bo. Let p(z) = (z− 1)/2.
And we put ϕ = (S + p)/2 and ψ = (S− p)/2. Then we can check these functions
have the condition (ii) of Theorem 3.4.

Next we characterize the compactness of Cϕ − Cψ on Bo.

THEOREM 3.6. Let ϕ and ψ be in S(D). Then the following are equivalent:
(i) Cϕ − Cψ is compact on Bo.

(ii) Both (a) and (b) hold:
(a) lim

|z|→1
ϕ#(z)ρ(ϕ(z), ψ(z)) = lim

|z|→1
ψ#(z)ρ(ϕ(z), ψ(z)) = 0.

(b) lim
|z|→1

∣∣∣ϕ#(z)− ψ#(z)
∣∣∣ = 0.

Proof. Suppose that the conditions (a) and (b) hold. Then we can check that
Cϕ − Cψ is bounded on Bo. Indeed, we have

(1− |z|2)|ϕ′(z)− ψ′(z)|

= (1− |z|2)
∣∣∣1− |ϕ(z)|2

1− |ϕ(z)|2
ϕ′(z)− 1− |ψ(z)|2

1− |ψ(z)|2
ψ′(z)

∣∣∣
6 |ϕ#(z)− ψ#(z)|+ |ψ(z)|2|ϕ#(z)− ψ#(z)|+ | |ϕ(z)|2 − |ψ(z)|2||ϕ#(z)|

6 2|ϕ#(z)− ψ#(z)|+ 2ρ(ϕ(z), ψ(z))|ϕ#(z)|.

So the conditions (a) and (b) imply that ϕ − ψ ∈ Bo.
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Moreover we have

(1− |z|2)|ϕ(z)− ψ(z)||ϕ′(z)| 6 2ρ(ϕ(z), ψ(z))|ϕ#(z)|(1− |ϕ(z)|2)

(1− |z|2)|ϕ(z)− ψ(z)||ψ′(z)| 6 2ρ(ϕ(z), ψ(z))|ψ#(z)|(1− |ψ(z)|2).

By the condition (a),

lim
|z|→1

(1− |z|2)|ϕ(z)− ψ(z)||ϕ′(z)| = lim
|z|→1

(1− |z|2)|ϕ(z)− ψ(z)||ψ′(z)| = 0.

Thus, by Theorem 3.4, Cϕ − Cψ is bounded on Bo.
Here we recall that Cϕ − Cψ is compact on Bo if and only if

(3.7) lim
|z|→1

sup{(1− |z|2)|((Cϕ − Cψ) f )′(z)| : f ∈ Bo, ‖ f ‖B 6 1} = 0

by Lemma 1 of [7].
For f ∈ B with ‖ f ‖B 6 1, we have

(1− |z|2)|((Cϕ − Cψ) f )′(z)|

6 |ϕ#(z)(1− |ϕ(z)|2) f ′(ϕ(z))− ψ#(z)(1− |ψ(z)|2) f ′(ψ(z))|

6 |ϕ#(z)− ψ#(z)|(1− |ψ(z)|2)| f ′(ψ(z))|

+ |ϕ#(z)||(1− |ϕ(z)|2) f ′(ϕ(z))− (1− |ψ(z)|2) f ′(ψ(z))|

6 |ϕ#(z)− ψ#(z)|+ |ϕ#(z)|[(ϕ(z), ψ(z))

6 |ϕ#(z)− ψ#(z)|+ C|ϕ#(z)|ρ(ϕ(z), ψ(z)).

Hence by the conditions (a) and (b), we obtain (3.7) and so Cϕ − Cψ is compact
on Bo.

Conversely suppose that Cϕ − Cψ is compact on Bo. For a sequence {zn} ⊂
D such that |zn| → 1, take

fn(z) = 2−1αϕ(zn)(z) = 2−1 ϕ(zn)− z
1− ϕ(zn)z

.

Then fn ∈ Bo and ‖ fn‖B = 1. So

(1−|zn|2)|((Cϕ−Cψ) fn)′(zn)|>2−1(1− |zn|2)
∣∣∣ ϕ′(zn)
1−|ϕ(zn)|2

−ψ′(zn)(1−|ϕ(zn)|2)
(1−ϕ(zn)ψ(zn))2

∣∣∣
> 2−1| |ϕ#(zn)| − |ψ#(zn)|(1− ρ(ϕ(zn), ψ(zn))2)|.

Thus

(3.8) lim
|zn |→1

| |ϕ#(zn)| − |ψ#(zn)|(1− ρ(ϕ(zn), ψ(zn))2)| = 0.

Next for the same sequence {zn} ⊂ D as above, put

gn(z) = 4−1(αϕ(zn)(z))2.

Then gn ∈ Bo and ‖gn‖B = 1. So

(1−|zn|2)|((Cϕ−Cψ)gn)′(zn)|>4−1|ψ#(zn)|(1−ρ(ϕ(zn), ψ(zn))2)ρ(ϕ(zn), ψ(zn)).
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Thus we have

(3.9) lim
|zn |→1

|ψ#(zn)|ρ(ϕ(zn), ψ(zn))(1− ρ(ϕ(zn), ψ(zn))2) = 0,

and the same is of course true with the roles of ϕ and ψ interchanged. Now if
ρ(ϕ(zn), ψ(zn))|ϕ#(zn)| does not approach 0 as |zn| → 1, then 1− ρ(ϕ(zn), ψ(zn))2

approaches 0 by (3.9) with ϕ playing the role of ψ, so by (3.8) we would have
ϕ#(zn) → 0. This is a contradiction. Hence ρ(ϕ(zn), ψ(zn))|ϕ#(zn)| → 0 as |zn| →
1, and by symmetry ρ(ϕ(zn), ψ(zn))|ψ#(zn)| → 0. And so the condition (a) is true.

Next we take the functions

hn(z) = 2−1αψ(zn)(z) = 2−1 ψ(zn)− z
1− ψ(zn)z

for a sequence {zn} ⊂ D such that |zn| → 1 and consider the similar estimation
as in the proof of Theorem 3.2. So we can obtain

(1− |zn|2)|((Cϕ − Cψ)hn)′(zn)|>2−1|ϕ#(zn)− ψ#(zn)|−C|ϕ#(zn)|ρ(ϕ(zn), ψ(zn)).

By the condition (a), the second term of the right-side in the above inequality
tends to 0 as |zn| → 1. Consequently

lim
|zn |→1

|ϕ#(zn)− ψ#(zn)| = 0

and the condition (b) also holds.

REMARK 3.7. As we check the conditions that characterize the compactness,
we can obtain the following. Suppose that Cϕ − Cψ is bounded on Bo. Then the
compactness of Cϕ − Cψ on B is equivalent to the compactness on Bo.

Next we consider weakly compactness of differences on Bo and can show
the following using the interpolation result in the Bloch space (see [7]).

THEOREM 3.8. Let ϕ, ψ ∈ S(D) and suppose that Cϕ − Cψ is bounded on Bo.
Then if Cϕ − Cψ is weakly compact on Bo, it is compact on Bo.

Proof. By the Gantmacher’s theorem (see [2]), Cϕ − Cψ is weakly compact
on Bo if and only if (Cϕ − Cψ) f ∈ Bo for every f ∈ B.

We suppose that Cϕ − Cψ is not compact on Bo, that is, there is a sequence
{zn} in D such that |zn| → 1 and a constant δ ∈ (0, 1) such that:

(a) lim
n→∞

|ϕ#(zn)|ρ(ϕ(zn), ψ(zn)) > δ ,
or
(b) lim

n→∞
|ϕ#(zn)− ψ#(zn)| > δ.

At first we discuss the case (a). Then we have |ϕ(zn)| → 1. Indeed, assume
that ϕ(zn) → w ∈ D. Then by the boundedness of Cϕ − Cψ on Bo and the con-
dition (a), lim

n→∞
(1 − |zn|2)|ϕ′(zn)| = 0. And so ϕ#(zn) → 0. This contradicts the

hypothesis.
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On the other hand, if |ψ(zn)| 6→ 1, then similarly we have ψ#(zn) → 0. Since
|ϕ(zn)| → 1, we can choose an R-separated subsequence (which we denote by
the same) of {ϕ(zn)} and so by Proposition 1 of [7], there exists a function f ∈ B
such that (1− |ϕ(zn)|2) f ′(ϕ(zn)) = 1 for all n. Then

(1− |zn|2)|((Cϕ − Cψ) f )′(zn)| > |ϕ#(zn)| − |ψ#(zn)(1− |ψ(zn)|2) f ′(ψ(zn))|.

This contradicts the hypothesis (a).
So we obtain |ϕ(zn)| → 1 and |ψ(zn)| → 1. We can use the argument of an

R-separated sequence again. That is, we can choose an R-separated subsequence
(which we denote by the same) of {ϕ(zn)} ∪ {ψ(zn)}, a function g ∈ B such that
(1− |ϕ(zn)|2)g′(ϕ(zn)) = 1 and (1− |ψ(zn)|2)g′(ψ(zn)) = 0. Thus

(1− |zn|2)|((Cϕ − Cψ)g)′(zn)| = |ϕ#(zn)| > δ.

This is a contradiction.
Next we consider the case (b). That is, we assume that for some sequence

{zn} in D such that |zn| → 1 and a constant δ ∈ (0, 1), ϕ#(zn)ρ(ϕ(zn), ψ(zn)) → 0
and lim

|zn |→1
|ϕ#(zn)− ψ#(zn)| > δ. Here we have

(1− |zn|2)|ϕ′(zn)− ψ′(zn)|

> |ϕ#(zn)− ψ#(zn)|(1− |ψ(zn)|2)− 2|ϕ#(zn)|ρ(ϕ(zn), ψ(zn)).

By the fact that ϕ − ψ ∈ Bo and the assumption above, then |ψ(zn)| → 1. Again,
by passing to a subsequence it be assumed that {ψ(zn)} is R-separated. So there
exists a function f ∈ B such that

(1− |ψ(zn)|2)| f ′(ψ(zn))| = 1

for all n. Then

(1−|zn|2)|((Cϕ − Cψ) f )′(zn)|

> |ϕ#(zn)− ψ#(zn)|(1− |ψ(zn)|2)| f ′(ψ(zn))| − C|ϕ#(zn)|ρ(ϕ(zn), ψ(zn)).

This implies that

lim
n→∞

(1− |zn|2)|((Cϕ − Cψ) f )′(zn)| > δ.

This also is a contradiction.

4. CONNECTED COMPONENTS OF C(B)

For a Banach space X of analytic functions on D, let C(X) be the space of
composition operators on X with the operator norm topology. We write Cϕ ∼X
Cψ if Cϕ and Cψ are in the same path component of C(X).

In [6], MacCluer, Zhao and the second author characterized connected com-
ponents and isolated points in C(H∞) by introducing a topology on S(D).
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Similarly we can define dβ(ϕ, ψ) in the analogous way:

dβ(ϕ, ψ) = sup
z∈D

β(ϕ(z), ψ(z)).

PROPOSITION 4.1. Let ϕ and ψ be in S(D). Then we have

|||Cϕ − Cψ||| 6 dβ(ϕ, ψ).

Proof. Let f ∈ V. By (1.3),

1 > ||| f ||| > | f (ϕ(z))− f (ψ(z))|
β(ϕ(z), ψ(z))

.

Hence we have | f (ϕ(z))− f (ψ(z))| 6 β(ϕ(z), ψ(z)). Suppose that dβ(ϕ, ψ) < ∞.
Then ‖ f ◦ ϕ− f ◦ ψ‖∞ 6 dβ(ϕ, ψ). This means that Cϕ −Cψ is bounded from B to
H∞. Hence we have |||(Cϕ − Cψ) f ||| 6 ‖(Cϕ − Cψ) f ‖∞ 6 dβ(ϕ, ψ).

PROPOSITION 4.2. Let ϕ and ψ be in S(D). Then we have

‖Cϕ − Cψ‖B 6 β(ϕ(0), ψ(0)) + dβ(ϕ, ψ) 6 2dβ(ϕ, ψ).

Proof. For f ∈ UB , then

‖(Cϕ − Cψ) f ‖B = | f (ϕ(0))− f (ψ(0))|+ |||(Cϕ − Cψ) f |||
6 | f (ϕ(0))− f (ψ(0))|+ dβ(ϕ, ψ).

Hence we get

‖Cϕ − Cψ‖B 6 sup
f∈UB

| f (ϕ(0))− f (ψ(0))|+ dβ(ϕ, ψ)

6 β(ϕ(0), ψ(0)) + dβ(ϕ, ψ) 6 2dβ(ϕ, ψ).

COROLLARY 4.3. Let ϕ and ψ be in S(D). If Cϕ ∼H∞ Cψ, then Cϕ ∼B Cψ.

Proof. Let ϕ, ψ be in S(D) such that Cϕ ∼H∞ Cψ. By [6], it is shown that
dρ(ϕ, ψ) < 1 and there is a curve γ from ϕ to ψ in the topological space S(D, dρ).
Since the x 7→ (1/2) log((1 + x)/(1 − x)) is continuous on (0, 1), Proposition 4.2
implies that γ induces a curve from Cϕ to Cψ in C(B).

Finally we present a problem concerning the component of C(B).

PROBLEM. Is the set of compact composition operators on B a (path) component
in C(B)?

ADDENDUM (Addendum). The authors have continued a research concern-
ing the problem above and recently published a paper [5].
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