THE GEOMETRIC MEANS IN BANACH *-ALGEBRAS

BAO QI FENG
Dedicated to Professor Joe Diestel for his $60^{\text {th }}$ birthday

Communicated by Şerban Strătilă

Abstract

The arithmetic-geometric-harmonic inequality has played a special role in elementary mathematics. During the past twenty five years (see [1], [2] and [8] etc.) a great many mathematicians have researched on various kinds of matrix versions of the arithmetic-geometric-harmonic inequality. It is interesting to see whether the arithmetic-geometric-harmonic inequality can be extended to the context of Banach $*$-algebras. In this article we will define the geometric means of positive elements in Banach $*$-algebras and prove that the arithmetic-geometric-harmonic inequality does hold in Banach $*$-algebras.

Keywords: Arithmetic mean, geometric mean, harmonic mean, Banach *-algebra.
MSC (2000): 47A63, 47A64.

INTRODUCTION

Let A be a Banach $*$-algebra. An element $a \in A$ is called self-adjoint if $a^{*}=a . A$ is Hermitian if every self-adjoint element a of A has real spectrum: $\sigma(a) \subset \mathbb{R}$, where $\sigma(a)$ denotes the spectrum of a. We assume in what follows that a Banach $*$-algebra A is Hermitian. Also we assume that A is unital with unit 1. Saying an element $a \geqslant 0$ means that $a=a^{*}$ and $\sigma(a) \subset[0, \infty) ; a>0$ means that $a \geqslant 0$ and $0 \notin \sigma(a)$. Thus, $a>0$ implies its inverse a^{-1} exists. Denote the set of all invertible elements in A by $\operatorname{Inv}(A)$. If $a, b \in A$, then $a, b \in \operatorname{Inv}(A)$ imply $a b \in \operatorname{Inv}(A)$, and $(a b)^{-1}=b^{-1} a^{-1}$. Saying $a \geqslant b$ means $a-b \geqslant 0$, and $a>b$ means $a-b>0$. The Shirali-Ford Theorem ([6] or [3], Theorem 41.5) asserted that $a^{*} a \geqslant 0$ for every $a \in A$. Based on the Shirali-Ford Theorem, Okayasu [5], Tanahashi and Uchiyama [7] proved the following inequalities:
(i) If $a, b \in A$, then $a \geqslant 0, b \geqslant 0$ imply $a+b \geqslant 0$, with $\alpha \geqslant 0$ implies $\alpha a \geqslant 0$.
(ii) If $a, b \in A$, then $a>0, b \geqslant 0$ imply $a+b>0$.
(iii) If $a, b \in A$, then either $a \geqslant b>0$, or $a>b \geqslant 0$ imply $a>0$.
(iv) If $a>0$, then $a^{-1}>0$.
(v) If $c>0$, then $0<b<a$ if and only if $c b c<c a c$; also $0<b \leqslant a$ if and only if $c b c \leqslant c a c$.
(vi) If $0<a<1$, then $1<a^{-1}$.
(vii) If $0<b<a$, then $0<a^{-1}<b^{-1}$; also if $0<b \leqslant a$, then $0<a^{-1} \leqslant b^{-1}$.

Also, Okayasu [5] showed that the following Löwner-Heinz inequality still holds in Banach $*$-algebras:

THEOREM 0.1. Let A be a unital Hermitian Banach $*$-algebra with continuous involution. Let $a, b \in A$ and $p \in[0,1]$. Then $a^{p}>b^{p}$ if $a>b$, and $a^{p} \geqslant b^{p}$ if $a \geqslant b$.

It is natural to ask if there is an arithmetic-geometric-harmonic means inequality in Banach $*$-algebras. In this paper, we will address this problem.

1. THE LAWS OF EXPONENTS

Let $a \in A$ and $a>0$, then $0 \notin \sigma(a)$ and the fact of $\sigma(a)$ being nonempty compact subset of \mathbb{C} implies that

$$
\inf \{z: z \in \sigma(a)\}>0 \quad \text { and } \quad \sup \{z: z \in \sigma(a)\}<\infty .
$$

Choose γ to be a closed rectifiable curve in $\{\operatorname{Rez}>0\}$, the right half open plane of the complex plane, such that $\sigma(a) \subset$ ins γ, the inside of γ. Let G be an open subset of \mathbb{C} with $\sigma(a) \subset G$. If $f: G \rightarrow \mathbb{C}$ is analytic, we define an element $f(a)$ in A by

$$
f(a)=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} f(z)(z-a)^{-1} \mathrm{~d} z
$$

It is known (see pp. 201-204 in [4]) that $f(a)$ does not depend on the choice of γ and the Spectral Mapping Theorem:

$$
\sigma(f(a))=f(\sigma(a))
$$

holds.
For any $\alpha \in \mathbb{R}$, we define

$$
a^{\alpha}=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} z^{\alpha}(z-a)^{-1} \mathrm{~d} z
$$

where z^{α} is the principal α-power of z. Since A is a Banach $*$-algebra, $a^{\alpha} \in A$. Since z^{α} is analytic in $\{\operatorname{Re} z>0\}$, by the Spectral Mapping Theorem

$$
\sigma\left(a^{\alpha}\right)=(\sigma(a))^{\alpha}=\left\{z^{\alpha}: z \in \sigma(a)\right\} \subset(0, \infty)
$$

Thus, we have
Lemma 1.1. If $0<a \in A$ and $\alpha \in \mathbb{R}$, then $a^{\alpha} \in A$ with $a^{\alpha}>0$.
Moreover, one of the laws of exponents holds in Banach $*$-algebras.
Lemma 1.2. If $0<a \in A$ and $\alpha, \beta \in \mathbb{R}$, then $a^{\alpha} a^{\beta}=a^{\alpha+\beta}$.

Proof. Let γ be defined as in the discussion preceding Lemma 1.1. It is known that ([4], VII. 4.7, Riesz Functional Calculus) that the map

$$
f \mapsto f(a)=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} f(z)(z-a)^{-1} \mathrm{~d} z
$$

of $\operatorname{Hol}(a) \rightarrow A$ is an algebra homomorphism, where $\operatorname{Hol}(a)=$ all of the functions that are analytic in a neighborhood of $\sigma(a)$. That is, $f(a) g(a)=(f g)(a)$. Moreover, $z^{\alpha} z^{\beta}=z^{\alpha+\beta}$ holds for principal powers of z implies that

$$
a^{\alpha} a^{\beta}=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} z^{\alpha} z^{\beta}(z-a)^{-1} \mathrm{~d} z=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} z^{\alpha+\beta}(z-a)^{-1} \mathrm{~d} z=a^{\alpha+\beta}
$$

Lemma 1.3. If $0<a \in A$ and $\alpha \in \mathbb{R}$, then $\left(a^{\alpha}\right)^{-1}=\left(a^{-1}\right)^{\alpha}=a^{-\alpha}$.
Proof. Note that $a^{0}=1$ ([3], Lemma 1, p. 31), and from Lemma 1.2 we have

$$
a^{\alpha} a^{-\alpha}=a^{\alpha+(-\alpha)}=a^{0}=1 .
$$

By the uniqueness of the inverse of an element in $A,\left(a^{\alpha}\right)^{-1}=a^{-\alpha}$.
Next we want to verify that $\left(a^{-1}\right)^{\alpha}=a^{-\alpha}$. We know that $a>0$ implies that

$$
\inf \{z: z \in \sigma(a)\}>0 \quad \text { and } \quad \sup \{z: z \in \sigma(a)\}<\infty .
$$

Choose positive real numbers r_{1} and r_{2} such that:

$$
\begin{aligned}
& 0<r_{1}<\inf \{z: z \in \sigma(a)\}, \quad r_{2}>\sup \{z: z \in \sigma(a)\} \\
& \frac{1}{r_{1}}>\sup \{z: z \in \sigma(a)\}, \quad 0<\frac{1}{r_{2}}<\inf \{z: z \in \sigma(a)\}
\end{aligned}
$$

Let γ be a closed rectifiable curve in $\{\operatorname{Rez}>0\}$, which passes r_{1} and r_{2} and such that $\sigma(a) \subset \operatorname{ins} \gamma$. Then the curve $1 / \gamma=\{1 / z: z \in \gamma\}$ is also a closed rectifiable with $\sigma(a) \subset \operatorname{ins}(1 / \gamma)$ and $1 / \gamma \subset\{\operatorname{Re} z>0\}$. Thus,

$$
\begin{aligned}
\left(a^{-1}\right)^{\alpha} & =\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} z^{\alpha}\left(z-a^{-1}\right)^{-1} \mathrm{~d} z=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} z^{\alpha}\left(a-\frac{1}{z}\right)^{-1} \frac{a}{z} \mathrm{~d} z \\
& \left.=\frac{a}{2 \pi \mathrm{i}} \int_{1 / \gamma} \lambda^{-\alpha-1}(\lambda-a)^{-1} \mathrm{~d} \lambda \quad \text { (substituting }: \lambda=1 / z\right) \\
& =a a^{-\alpha-1}=a^{-\alpha} \quad \text { (Lemma1.2). }
\end{aligned}
$$

LEMMA 1.4. If $0<a \in A, 0<b \in A, \alpha, \beta \in \mathbb{R}$, and $a b=b a$, then $a^{\alpha} b^{\beta}=b^{\beta} a^{\alpha}$.
Proof. Suppose that $z \notin \sigma(a)$, then $a b=b a \Longrightarrow(z-a) b=b(z-a) \Longrightarrow b(z-$ $a)^{-1}=(z-a)^{-1} b$. Let γ be defined as in the discussion preceding Lemma 1.1.

Then

$$
\begin{aligned}
a^{\alpha} b & =\left(\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} z^{\alpha}(z-a)^{-1} \mathrm{~d} z\right) b=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} z^{\alpha}(z-a)^{-1} b \mathrm{~d} z \\
& =\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} z^{\alpha} b(z-a)^{-1} \mathrm{~d} z=b\left(\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} z^{\alpha}(z-a)^{-1} \mathrm{~d} z\right)=b a^{\alpha} .
\end{aligned}
$$

Thus,

$$
a b=b a \Longrightarrow a^{\alpha} b=b a^{\alpha} \Longrightarrow a^{\alpha} b^{\beta}=b^{\beta} a^{\alpha} .
$$

2. THE ARITHMETIC MEAN, GEOMETRIC MEAN AND HARMONIC MEAN

Naturally, for $a, b \in A$, and w_{1}, w_{2} are positive numbers summing to 1 , their weighted arithmetic mean can be defined as

$$
A_{w}(a, b):=w_{1} a+w_{2} b
$$

If $a>0, b>0$, their weighted harmonic mean can be defined as

$$
H_{w}(a, b):=\left(w_{1} a^{-1}+w_{2} b^{-1}\right)^{-1}
$$

From the point view of matrix analysis (see [1]), if $a>0, b>0$, and w_{1}, w_{2} are positive numbers summing to 1 , their weighted geometric mean can be defined as

$$
G_{w}(a, b):=b^{1 / 2}\left(b^{-1 / 2} a b^{-1 / 2}\right)^{w_{1}} b^{1 / 2}
$$

Denote $A_{w}(a, b), G_{w}(a, b)$ and $H_{w}(a, b)$ by $A(a, b), G(a, b)$ and $H(a, b)$ respectively if $w_{1}=w_{2}=1 / 2$. It is clear that $A_{w}(a, b), G_{w}(a, b), H_{w}(a, b) \in A$ and $H_{w}(a, b)>0$ and $G_{w}(a, b)>0$ by inequalities (ii), (iv), (v) and Lemma 1.1 above. Does the following arithmetic-geometric-harmonic inequalities hold

$$
H_{w}(a, b) \leqslant G_{w}(a, b) \leqslant A_{w}(a, b)
$$

in Banach $*$-algebras?
Based on the lemmas above we can prove some properties of arithmetic mean, geometric mean and harmonic mean mentioned by Ando [1].

Theorem 2.1. Suppose that $a, b \in A$ with $a>0, b>0$, then

$$
H(a, b)=H(b, a) \quad \text { and } \quad G(a, b)=G(b, a)
$$

Proof. $H(a, b)=H(b, a)$ follows the definition of the harmonic mean and the fact that A is an Abelian group.

Observe that $G(a, b)=G(b, a)$ is equivalent to

$$
a^{-1 / 2} b^{1 / 2}\left(b^{-1 / 2} a b^{-1 / 2}\right)^{1 / 2} b^{1 / 2} a^{-1 / 2}=\left(a^{-1 / 2} b a^{-1 / 2}\right)^{1 / 2}
$$

Since positive elements are equal if and only if their squares are equal (see Lemma 6 of [7]), using Lemma 1.2 this is in turn equivalent to

$$
\begin{gathered}
a^{-1 / 2} b^{1 / 2}\left(b^{-1 / 2} a b^{-1 / 2}\right)^{1 / 2}\left[b^{1 / 2} a^{-1} b^{1 / 2}\right]\left(b^{-1 / 2} a b^{-1 / 2}\right)^{1 / 2} b^{1 / 2} a^{-1 / 2} \\
=a^{-1 / 2} b a^{-1 / 2}
\end{gathered}
$$

Since the term in square brackets is just $\left(b^{-1 / 2} a b^{-1 / 2}\right)^{-1}$ by Lemma 1.3, the left hand side of the expression above does indeed reduce to the right hand side when we use Lemma 1.2 again.

THEOREM 2.2. Suppose that $a, b, c \in A$ with $a>0, b>0$ and $c \in \operatorname{Inv}(A)$, then

$$
c^{*} H(a, b) c=H\left(c^{*} a c, c^{*} b c\right) \quad \text { and } \quad c^{*} G(a, b) c=G\left(c^{*} a c, c^{*} b c\right)
$$

Proof. Since $c \in \operatorname{Inv}(\mathrm{~A}), c^{-1}$ exists. Hence

$$
\begin{aligned}
c^{*} H(a, b) c & =c^{*}\left(\frac{1}{2} a^{-1}+\frac{1}{2} b^{-1}\right)^{-1} c=\left(c^{-1}\left(\frac{1}{2} a^{-1}+\frac{1}{2} b^{-1}\right)\left(c^{*}\right)^{-1}\right)^{-1} \\
& =\left(\frac{1}{2} c^{-1} a^{-1}\left(c^{*}\right)^{-1}+\frac{1}{2} c^{-1} b^{-1}\left(c^{*}\right)^{-1}\right)^{-1}=\left(\frac{1}{2}\left(c^{*} a c\right)^{-1}+\frac{1}{2}\left(c^{*} b c\right)^{-1}\right)^{-1} \\
& =H\left(c^{*} a c, c^{*} b c\right) .
\end{aligned}
$$

It is analogous with the proof of Theorem 2.1, we now verify the second equality:

$$
\begin{aligned}
& c^{*} G(a, b) c= G\left(c^{*} a c, c^{*} b c\right) \\
& \Longleftrightarrow c^{*} b^{1 / 2}\left(b^{-1 / 2} a b^{-1 / 2}\right)^{1 / 2} b^{1 / 2} c \\
&=\left(c^{*} b c\right)^{1 / 2}\left(\left(c^{*} b c\right)^{-1 / 2}\left(c^{*} a c\right)\left(c^{*} b c\right)^{-1 / 2}\right)^{1 / 2}\left(c^{*} b c\right)^{1 / 2} \\
& \Longleftrightarrow\left(c^{*} b c\right)^{-1 / 2} c^{*} b^{1 / 2}\left(b^{-1 / 2} a b^{-1 / 2}\right)^{1 / 2} b^{1 / 2} c\left(c^{*} b c\right)^{-1 / 2} \\
&=\left(\left(c^{*} b c\right)^{-1 / 2}\left(c^{*} a c\right)\left(c^{*} b c\right)^{-1 / 2}\right)^{1 / 2} \\
& \Longleftrightarrow\left(\left(c^{*} b c\right)^{-1 / 2} c^{*} b^{1 / 2}\left(b^{-1 / 2} a b^{-1 / 2}\right)^{1 / 2} b^{1 / 2} c\left(c^{*} b c\right)^{-1 / 2}\right)^{2} \\
&=\left(c^{*} b c\right)^{-1 / 2}\left(c^{*} a c\right)\left(c^{*} b c\right)^{-1 / 2}
\end{aligned}
$$

The last equality is true, since by Lemma 1.2

$$
\begin{aligned}
& \left(\left(c^{*} b c\right)^{-1 / 2} c^{*} b^{1 / 2}\left(b^{-1 / 2} a b^{-1 / 2}\right)^{1 / 2} b^{1 / 2} c\left(c^{*} b c\right)^{-1 / 2}\right)^{2} \\
& =\left(\left(c^{*} b c\right)^{-1 / 2} c^{*} b^{1 / 2}\left(b^{-1 / 2} a b^{-1 / 2}\right)^{1 / 2} b^{1 / 2} c\left(c^{*} b c\right)^{-1 / 2}\right) \\
& \quad\left(\left(c^{*} b c\right)^{-1 / 2} c^{*} b^{1 / 2}\left(b^{-1 / 2} a b^{-1 / 2}\right)^{1 / 2} b^{1 / 2} c\left(c^{*} b c\right)^{-1 / 2}\right) \\
& =\left(c^{*} b c\right)^{-1 / 2} c^{*} b^{1 / 2}\left(b^{-1 / 2} a b^{-1 / 2}\right)^{1 / 2} b^{1 / 2} c\left(c^{*} b c\right)^{-1} c^{*} b^{1 / 2} \\
& \quad\left(b^{-1 / 2} a b^{-1 / 2}\right)^{1 / 2} b^{1 / 2} c\left(c^{*} b c\right)^{-1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(c^{*} b c\right)^{-1 / 2} c^{*} b^{1 / 2}\left(b^{-1 / 2} a b^{-1 / 2}\right)^{1 / 2}\left(b^{-1 / 2} a b^{-1 / 2}\right)^{1 / 2} b^{1 / 2} c\left(c^{*} b c\right)^{-1 / 2} \\
& =\left(c^{*} b c\right)^{-1 / 2} c^{*} b^{1 / 2}\left(b^{-1 / 2} a b^{-1 / 2}\right) b^{1 / 2} c\left(c^{*} b c\right)^{-1 / 2} \\
& =\left(c^{*} b c\right)^{-1 / 2} c^{*} a c\left(c^{*} b c\right)^{-1 / 2} .
\end{aligned}
$$

THEOREM 2.3. Suppose that $a, b \in A$ with $a>0, b>0$. Then

$$
H_{w}(a, b)^{-1}=A_{w}\left(a^{-1}, b^{-1}\right) \quad \text { and } \quad G_{w}\left(a^{-1}, b^{-1}\right)=G_{w}(a, b)^{-1} .
$$

Proof. The first equality is obvious from its definitions. Using Lemma 1.2 and Lemma 1.3, we have

$$
\begin{aligned}
G_{w}\left(a^{-1}, b^{-1}\right) & =\left(b^{-1}\right)^{1 / 2}\left(\left(b^{-1}\right)^{-1 / 2} a^{-1}\left(b^{-1}\right)^{-1 / 2}\right)^{w_{1}}\left(b^{-1}\right)^{1 / 2} \\
& =\left(b^{1 / 2}\right)^{-1}\left(\left(b^{-1 / 2} a b^{-1 / 2}\right)^{-1}\right)^{w_{1}}\left(b^{1 / 2}\right)^{-1} \\
& =\left(b^{1 / 2}\left(b^{-1 / 2} a b^{-1 / 2}\right)^{w_{1}} b^{1 / 2}\right)^{-1}=G_{w}(a, b)^{-1} .
\end{aligned}
$$

THEOREM 2.4. Suppose that $a, b \in A$ with $a>0, b>0$, and w_{1}, w_{2} are positive numbers summing to 1 , then

$$
H_{w}(a, b) \leqslant G_{w}(a, b) \leqslant A_{w}(a, b) .
$$

Proof. Firstly we verify the arithmetic-geometric means inequality: $G_{w}(a, b)$ $\leqslant A_{w}(a, b)$. With the help of inequality (v),

$$
\begin{aligned}
G_{w}(a, b) & \leqslant A_{w}(a, b) \\
& \Longleftrightarrow b^{1 / 2}\left(b^{-1 / 2} a b^{-1 / 2}\right)^{w_{1}} b^{1 / 2} \leqslant w_{1} a+w_{2} b \\
& \Longleftrightarrow b^{1 / 2}\left(b^{-1 / 2} a b^{-1 / 2}\right)^{w_{1}} b^{1 / 2} \leqslant b^{1 / 2}\left(w_{1} b^{-1 / 2} a b^{-1 / 2}+w_{2}\right) b^{1 / 2} \\
& \Longleftrightarrow\left(b^{-1 / 2} a b^{-1 / 2}\right)^{w_{1}} \leqslant w_{1} b^{-1 / 2} a b^{-1 / 2}+w_{2} \\
& \Longleftrightarrow w_{1} n+w_{2}-n^{w_{1}} \geqslant 0,
\end{aligned}
$$

where $n:=b^{-1 / 2} a b^{-1 / 2}$. Lemma 1.1 and inequality (v) imply $n>0$, and hence $\sigma(n) \subset(0, \infty)$.

Let $f(z)=w_{1} z+w_{2}-z^{w_{1}}$, where $z^{w_{1}}$ is the principal of the power function. Then $f(z)$ is analytic in the right half open plane $\{\operatorname{Rez>0\} }$ of the complex plane. Next we claim that $f(z) \geqslant 0$ on the positive real line. In fact, let $x=z-1$ in the Bernoulli inequality:

$$
(1+x)^{w_{1}} \leqslant 1+w_{1} x, \quad \text { if } 0<w_{1}<1 \quad \text { and } \quad-1<x .
$$

We have

$$
z^{w_{1}} \leqslant w_{1} z+\left(1-w_{1}\right), \quad \text { if } 0<w_{1}<1 \quad \text { and } \quad 0<z
$$

that is,

$$
f(z) \geqslant 0, \quad \text { if } 0<w_{1}<1 \quad \text { and } \quad 0<z
$$

The Spectral Mapping Theorem implies

$$
\sigma(f(n))=f(\sigma(n)) \subset[0, \infty)
$$

So

$$
f(n)=w_{1} n+w_{2}-n^{w_{1}} \geqslant 0
$$

Hence

$$
G_{w}(a, b) \leqslant A_{w}(a, b)
$$

Replacing a and b by a^{-1} and b^{-1} respectively in the arithmetic-geometric means inequality, Theorem 2.3 and inequality (vii) guarantee that

$$
H_{w}(a, b) \leqslant G_{w}(a, b)
$$

In general, for $a_{1}, a_{2}, \ldots, a_{n} \in A$, and an n-tuple of positive numbers $w_{1}, w_{2}, \ldots, w_{n}$ summing to 1 , their weighted arithmetic mean in A can be defined as

$$
A_{w}\left(a_{1}, a_{2}, \ldots, a_{n}\right):=w_{1} a_{1}+w_{2} a_{2}+\cdots+w_{n} a_{n}
$$

If $a_{i}>0,1 \leqslant i \leqslant n$, their weighted harmonic mean in A can be defined as

$$
H_{w}\left(a_{1}, a_{2}, \ldots, a_{n}\right):=\left(w_{1} a_{1}^{-1}+w_{2} a_{2}^{-1}+\cdots+w_{n} a_{n}^{-1}\right)^{-1}
$$

From the point of view of matrix analysis (see [8]), if $a_{i}>0,1 \leqslant i \leqslant n$, and w_{1}, \ldots, w_{n} are positive numbers summing to 1 , their weighted geometric mean in A can be defined as

$$
\begin{aligned}
G_{w}\left(a_{1}, a_{2}, \ldots, a_{n}\right):= & a_{n}^{1 / 2}\left(a _ { n } ^ { - 1 / 2 } a _ { n - 1 } ^ { 1 / 2 } \cdots \left(a_{3}^{-1 / 2} a_{2}^{1 / 2}\left(a_{2}^{-1 / 2} a_{1} a_{2}^{-1 / 2}\right)^{\alpha_{1}}\right.\right. \\
& \left.\left.a_{2}^{1 / 2} a_{3}^{-1 / 2}\right)^{\alpha_{2}} \cdots a_{n-1}^{1 / 2} a_{n}^{-1 / 2}\right)^{\alpha_{n-1}} a_{n}^{1 / 2}
\end{aligned}
$$

where $\alpha_{i}=1-\left(w_{i+1} / \sum_{j=1}^{i+1} w_{j}\right)$ for $i=1, \ldots, n-1$. Note that this geometric mean is just the inductive generalization of $n=2$ case, which was discussed in Theorem 2.3 and 2.4.

Based on Theorem 2.4 with the same inductive proof as in [8], we have
THEOREM 2.5. Suppose that $a_{i} \in A, 1 \leqslant i \leqslant n$, with $a_{i}>0,1 \leqslant i \leqslant n$, and w_{1}, \ldots, w_{n} are positive numbers summing to 1 , then

$$
H_{w}\left(a_{1}, \ldots, a_{n}\right) \leqslant G_{w}\left(a_{1}, \ldots, a_{n}\right) \leqslant A_{w}\left(a_{1}, \ldots, a_{n}\right)
$$

Acknowledgements. Many thanks to the editor Ş. Strătilă for his help.

REFERENCES

[1] T. ANDO, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl. 26(1979), 203-241.
[2] R. Bhatia, Matrix Analysis, Springer-Verlag, New York 1997.
[3] F.F. Bonsall, J. Duncan, Complete Normed Algebra, Springer-Verlag, New York 1973.
[4] J.B. Conway, A Course in Functional Analysis. Second Edition, Springer-Verlag, New York 1990.
[5] T. OKAYASU, The Löwner-Heinz inequality in Banach *-algebra, Glasgow Math. J. 42(2000), 243-246.
[6] M. SAGAE, K. TANABE, Upper and lower bounds for the arithmetic-geometricharmonic means of positive definite matrices, Linear and Multilinear Algebra 37(1994), 279-282.
[7] S. Shirali, J.W.M. Ford, Symmetry in complex involutory Banach algebras. II, Duke Math. J. 37(1970), 275-280.
[8] K. Tanahashi, A. Uchiyama, The Furuta inequality in Banach $*$-algebras, Proc. Amer. Math. Soc. 128(2000), 1691-1695.

BAO QI FENG, Department of Mathematical Sciences, Kent State University, Tuscarawas Campus, New Philadelphia, OH 44663, USA

E-mail address: bfeng@kent.edu

