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ABSTRACT. The arithmetic-geometric-harmonic inequality has played a spe-
cial role in elementary mathematics. During the past twenty five years (see
[1], [2] and [8] etc.) a great many mathematicians have researched on various
kinds of matrix versions of the arithmetic-geometric-harmonic inequality. It is
interesting to see whether the arithmetic-geometric-harmonic inequality can
be extended to the context of Banach ∗-algebras. In this article we will define
the geometric means of positive elements in Banach ∗-algebras and prove that
the arithmetic-geometric-harmonic inequality does hold in Banach ∗-algebras.
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INTRODUCTION

Let A be a Banach ∗-algebra. An element a ∈ A is called sel f -adjoint if
a∗ = a. A is Hermitian if every self-adjoint element a of A has real spectrum:
σ(a) ⊂ R, where σ(a) denotes the spectrum of a. We assume in what follows that
a Banach ∗-algebra A is Hermitian. Also we assume that A is unital with unit 1.
Saying an element a > 0 means that a = a∗ and σ(a) ⊂ [0, ∞); a > 0 means that
a > 0 and 0 6∈ σ(a). Thus, a > 0 implies its inverse a−1 exists. Denote the set
of all invertible elements in A by Inv(A). If a, b ∈ A, then a, b ∈ Inv(A) imply
ab ∈ Inv(A), and (ab)−1 = b−1a−1. Saying a > b means a − b > 0, and a > b
means a − b > 0. The Shirali-Ford Theorem ([6] or [3], Theorem 41.5) asserted
that a∗a > 0 for every a ∈ A. Based on the Shirali-Ford Theorem, Okayasu [5],
Tanahashi and Uchiyama [7] proved the following inequalities:

(i) If a, b ∈ A, then a > 0, b > 0 imply a + b > 0, with α > 0 implies αa > 0.
(ii) If a, b ∈ A, then a > 0, b > 0 imply a + b > 0.

(iii) If a, b ∈ A, then either a > b > 0, or a > b > 0 imply a > 0.
(iv) If a > 0, then a−1 > 0.
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(v) If c > 0, then 0 < b < a if and only if cbc < cac; also 0 < b 6 a if and only
if cbc 6 cac.

(vi) If 0 < a < 1, then 1 < a−1.
(vii) If 0 < b < a, then 0 < a−1 < b−1; also if 0 < b 6 a, then 0 < a−1 6 b−1.

Also, Okayasu [5] showed that the following Löwner-Heinz inequality still
holds in Banach ∗-algebras:

THEOREM 0.1. Let A be a unital Hermitian Banach ∗-algebra with continuous
involution. Let a, b ∈ A and p ∈ [0, 1]. Then ap > bp if a > b, and ap > bp if a > b.

It is natural to ask if there is an arithmetic-geometric-harmonic means in-
equality in Banach ∗-algebras. In this paper, we will address this problem.

1. THE LAWS OF EXPONENTS

Let a ∈ A and a > 0, then 0 6∈ σ(a) and the fact of σ(a) being nonempty
compact subset of C implies that

inf{z : z ∈ σ(a)} > 0 and sup{z : z ∈ σ(a)} < ∞.

Choose γ to be a closed rectifiable curve in {Rez > 0}, the right half open plane
of the complex plane, such that σ(a) ⊂ insγ, the inside of γ. Let G be an open
subset of C with σ(a) ⊂ G. If f : G → C is analytic, we define an element f (a) in
A by

f (a) =
1

2πi

∫
γ

f (z)(z− a)−1dz.

It is known (see pp. 201–204 in [4]) that f (a) does not depend on the choice of γ
and the Spectral Mapping Theorem:

σ( f (a)) = f (σ(a))

holds.
For any α ∈ R, we define

aα =
1

2πi

∫
γ

zα(z− a)−1dz

where zα is the principal α-power of z. Since A is a Banach ∗-algebra, aα ∈ A.
Since zα is analytic in {Rez > 0}, by the Spectral Mapping Theorem

σ(aα) = (σ(a))α = {zα : z ∈ σ(a)} ⊂ (0, ∞).

Thus, we have

LEMMA 1.1. If 0 < a ∈ A and α ∈ R, then aα ∈ A with aα > 0.

Moreover, one of the laws of exponents holds in Banach ∗-algebras.

LEMMA 1.2. If 0 < a ∈ A and α, β ∈ R, then aαaβ = aα+β.
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Proof. Let γ be defined as in the discussion preceding Lemma 1.1. It is
known that ([4], VII. 4.7, Riesz Functional Calculus) that the map

f 7→ f (a) =
1

2πi

∫
γ

f (z)(z− a)−1dz

of Hol(a) → A is an algebra homomorphism, where Hol(a) = all of the functions
that are analytic in a neighborhood of σ(a). That is, f (a)g(a) = ( f g)(a). Moreover,
zαzβ = zα+β holds for principal powers of z implies that

aαaβ =
1

2πi

∫
γ

zαzβ(z− a)−1dz =
1

2πi

∫
γ

zα+β(z− a)−1dz = aα+β.

LEMMA 1.3. If 0 < a ∈ A and α ∈ R, then (aα)−1 = (a−1)α = a−α.

Proof. Note that a0 = 1 ([3], Lemma 1, p. 31), and from Lemma 1.2 we have

aαa−α = aα+(−α) = a0 = 1.

By the uniqueness of the inverse of an element in A, (aα)−1 = a−α.
Next we want to verify that (a−1)α = a−α. We know that a > 0 implies that

inf{z : z ∈ σ(a)} > 0 and sup{z : z ∈ σ(a)} < ∞.

Choose positive real numbers r1 and r2 such that:

0 < r1 < inf{z : z ∈ σ(a)}, r2 > sup{z : z ∈ σ(a)}
1
r1

> sup{z : z ∈ σ(a)}, 0 <
1
r2

< inf{z : z ∈ σ(a)}.

Let γ be a closed rectifiable curve in {Rez > 0}, which passes r1 and r2 and such
that σ(a) ⊂ insγ. Then the curve 1/γ = {1/z : z ∈ γ} is also a closed rectifiable
with σ(a) ⊂ ins(1/γ) and 1/γ ⊂ {Rez > 0}. Thus,

(a−1)α =
1

2πi

∫
γ

zα(z− a−1)−1dz =
1

2πi

∫
γ

zα
(

a− 1
z

)−1 a
z

dz

=
a

2πi

∫
1/γ

λ−α−1(λ− a)−1dλ (substituting : λ = 1/z)

= aa−α−1 = a−α (Lemma1.2).

LEMMA 1.4. If 0 < a ∈ A, 0 < b ∈ A, α, β ∈ R, and ab = ba, then aαbβ = bβaα.

Proof. Suppose that z 6∈ σ(a), then ab = ba =⇒ (z− a)b = b(z− a) =⇒ b(z−
a)−1 = (z − a)−1b. Let γ be defined as in the discussion preceding Lemma 1.1.
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Then

aαb =
( 1

2πi

∫
γ

zα(z− a)−1dz
)

b =
1

2πi

∫
γ

zα(z− a)−1bdz

=
1

2πi

∫
γ

zαb(z− a)−1dz = b
( 1

2πi

∫
γ

zα(z− a)−1dz
)

= baα.

Thus,

ab = ba =⇒ aαb = baα =⇒ aαbβ = bβaα.

2. THE ARITHMETIC MEAN, GEOMETRIC MEAN AND HARMONIC MEAN

Naturally, for a, b ∈ A, and w1, w2 are positive numbers summing to 1, their
weighted arithmetic mean can be defined as

Aw(a, b) := w1a + w2b.

If a > 0, b > 0, their weighted harmonic mean can be defined as

Hw(a, b) := (w1a−1 + w2b−1)−1.

From the point view of matrix analysis (see [1]), if a > 0, b > 0, and w1, w2 are
positive numbers summing to 1, their weighted geometric mean can be defined as

Gw(a, b) := b1/2(b−1/2ab−1/2)w1 b1/2.

Denote Aw(a, b), Gw(a, b) and Hw(a, b) by A(a, b), G(a, b) and H(a, b) respectively
if w1 = w2 = 1/2. It is clear that Aw(a, b), Gw(a, b), Hw(a, b) ∈ A and Hw(a, b) > 0
and Gw(a, b) > 0 by inequalities (ii), (iv), (v) and Lemma 1.1 above. Does the
following arithmetic-geometric-harmonic inequalities hold

Hw(a, b) 6 Gw(a, b) 6 Aw(a, b)

in Banach ∗-algebras?
Based on the lemmas above we can prove some properties of arithmetic

mean, geometric mean and harmonic mean mentioned by Ando [1].

THEOREM 2.1. Suppose that a, b ∈ A with a > 0, b > 0, then

H(a, b) = H(b, a) and G(a, b) = G(b, a).

Proof. H(a, b) = H(b, a) follows the definition of the harmonic mean and
the fact that A is an Abelian group.

Observe that G(a, b) = G(b, a) is equivalent to

a−1/2b1/2(b−1/2ab−1/2)1/2b1/2a−1/2 = (a−1/2ba−1/2)1/2.
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Since positive elements are equal if and only if their squares are equal (see Lem-
ma 6 of [7]), using Lemma 1.2 this is in turn equivalent to

a−1/2b1/2(b−1/2ab−1/2)1/2[b1/2a−1b1/2](b−1/2ab−1/2)1/2b1/2a−1/2

= a−1/2ba−1/2.

Since the term in square brackets is just (b−1/2ab−1/2)−1 by Lemma 1.3, the left
hand side of the expression above does indeed reduce to the right hand side when
we use Lemma 1.2 again.

THEOREM 2.2. Suppose that a, b, c ∈ A with a > 0, b > 0 and c ∈ Inv(A), then

c∗H(a, b)c = H(c∗ac, c∗bc) and c∗G(a, b)c = G(c∗ac, c∗bc).

Proof. Since c ∈ Inv(A), c−1 exists. Hence

c∗H(a, b)c= c∗
(1

2
a−1 +

1
2

b−1
)−1

c=
(

c−1
(1

2
a−1 +

1
2

b−1
)
(c∗)−1

)−1

=
(1

2
c−1a−1(c∗)−1 +

1
2

c−1b−1(c∗)−1
)−1

=
(1

2
(c∗ac)−1 +

1
2
(c∗bc)−1

)−1

= H(c∗ac, c∗bc).

It is analogous with the proof of Theorem 2.1, we now verify the second
equality:

c∗G(a, b)c = G(c∗ac, c∗bc)

⇐⇒ c∗b1/2(b−1/2ab−1/2)1/2b1/2c

= (c∗bc)1/2((c∗bc)−1/2(c∗ac)(c∗bc)−1/2)1/2(c∗bc)1/2

⇐⇒ (c∗bc)−1/2c∗b1/2(b−1/2ab−1/2)1/2b1/2c(c∗bc)−1/2

= ((c∗bc)−1/2(c∗ac)(c∗bc)−1/2)1/2

⇐⇒ ((c∗bc)−1/2c∗b1/2(b−1/2ab−1/2)1/2b1/2c(c∗bc)−1/2)2

= (c∗bc)−1/2(c∗ac)(c∗bc)−1/2.

The last equality is true, since by Lemma 1.2

((c∗bc)−1/2c∗b1/2(b−1/2ab−1/2)1/2b1/2c(c∗bc)−1/2)2

= ((c∗bc)−1/2c∗b1/2(b−1/2ab−1/2)1/2b1/2c(c∗bc)−1/2)

((c∗bc)−1/2c∗b1/2(b−1/2ab−1/2)1/2b1/2c(c∗bc)−1/2)

= (c∗bc)−1/2c∗b1/2(b−1/2ab−1/2)1/2b1/2c(c∗bc)−1c∗b1/2

(b−1/2ab−1/2)1/2b1/2c(c∗bc)−1/2
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= (c∗bc)−1/2c∗b1/2(b−1/2ab−1/2)1/2(b−1/2ab−1/2)1/2b1/2c(c∗bc)−1/2

= (c∗bc)−1/2c∗b1/2(b−1/2ab−1/2)b1/2c(c∗bc)−1/2

= (c∗bc)−1/2c∗ac(c∗bc)−1/2.

THEOREM 2.3. Suppose that a, b ∈ A with a > 0, b > 0. Then

Hw(a, b)−1 = Aw(a−1, b−1) and Gw(a−1, b−1) = Gw(a, b)−1.

Proof. The first equality is obvious from its definitions. Using Lemma 1.2
and Lemma 1.3, we have

Gw(a−1, b−1) = (b−1)1/2((b−1)−1/2a−1(b−1)−1/2)w1(b−1)1/2

= (b1/2)−1((b−1/2ab−1/2)−1)w1(b1/2)−1

= (b1/2(b−1/2ab−1/2)w1 b1/2)−1 = Gw(a, b)−1.

THEOREM 2.4. Suppose that a, b ∈ A with a > 0, b > 0, and w1, w2 are positive
numbers summing to 1, then

Hw(a, b) 6 Gw(a, b) 6 Aw(a, b).

Proof. Firstly we verify the arithmetic-geometric means inequality: Gw(a, b)
6 Aw(a, b). With the help of inequality (v),

Gw(a, b) 6 Aw(a, b)

⇐⇒ b1/2(b−1/2ab−1/2)w1 b1/2 6 w1a + w2b

⇐⇒ b1/2(b−1/2ab−1/2)w1 b1/2 6 b1/2(w1b−1/2ab−1/2 + w2)b1/2

⇐⇒ (b−1/2ab−1/2)w1 6 w1b−1/2ab−1/2 + w2

⇐⇒ w1n + w2 − nw1 > 0,

where n := b−1/2ab−1/2. Lemma 1.1 and inequality (v) imply n > 0, and hence
σ(n) ⊂ (0, ∞).

Let f (z) = w1z + w2 − zw1 , where zw1 is the principal of the power function.
Then f (z) is analytic in the right half open plane {Rez > 0} of the complex plane.
Next we claim that f (z) > 0 on the positive real line. In fact, let x = z− 1 in the
Bernoulli inequality:

(1 + x)w1 6 1 + w1x, if 0 < w1 < 1 and − 1 < x.

We have
zw1 6 w1z + (1− w1), if 0 < w1 < 1 and 0 < z,

that is,
f (z) > 0, if 0 < w1 < 1 and 0 < z.

The Spectral Mapping Theorem implies

σ( f (n)) = f (σ(n)) ⊂ [0, ∞).
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So
f (n) = w1n + w2 − nw1 > 0.

Hence
Gw(a, b) 6 Aw(a, b).

Replacing a and b by a−1 and b−1 respectively in the arithmetic-geometric means
inequality, Theorem 2.3 and inequality (vii) guarantee that

Hw(a, b) 6 Gw(a, b).

In general, for a1, a2, . . . , an ∈ A, and an n-tuple of positive numbers
w1, w2, . . . , wn summing to 1, their weighted arithmetic mean in A can be defined
as

Aw(a1, a2, . . . , an) := w1a1 + w2a2 + · · ·+ wnan.

If ai > 0, 1 6 i 6 n, their weighted harmonic mean in A can be defined as

Hw(a1, a2, . . . , an) := (w1a−1
1 + w2a−1

2 + · · ·+ wna−1
n )−1.

From the point of view of matrix analysis (see [8]), if ai > 0, 1 6 i 6 n, and
w1, . . . , wn are positive numbers summing to 1, their weighted geometric mean
in A can be defined as

Gw(a1, a2, . . . , an) := a1/2
n (a−1/2

n a1/2
n−1 · · · (a−1/2

3 a1/2
2 (a−1/2

2 a1a−1/2
2 )α1

a1/2
2 a−1/2

3 )α2 · · · a1/2
n−1a−1/2

n )αn−1 a1/2
n ,

where αi = 1−
(

wi+1/
i+1
∑

j=1
wj

)
for i = 1, . . . , n− 1. Note that this geometric mean

is just the inductive generalization of n = 2 case, which was discussed in Theo-
rem 2.3 and 2.4.

Based on Theorem 2.4 with the same inductive proof as in [8], we have

THEOREM 2.5. Suppose that ai ∈ A, 1 6 i 6 n, with ai > 0, 1 6 i 6 n, and
w1, . . . , wn are positive numbers summing to 1, then

Hw(a1, . . . , an) 6 Gw(a1, . . . , an) 6 Aw(a1, . . . , an).
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