
J. OPERATOR THEORY
57:2(2007), 325–346

© Copyright by THETA, 2007

BANACH ALGEBRAS OF OPERATOR SEQUENCES:
APPROXIMATION NUMBERS

A. ROGOZHIN and B. SILBERMANN

Communicated by Nikolai K. Nikolski

ABSTRACT. In this paper we discuss the asymptotic behavior of the approx-
imation numbers for operator sequences belonging to a special class of Ba-
nach algebras. Associating with every operator sequence {An} from such a
Banach algebra a collection {Wt{An}}t∈T of bounded linear operators on Ba-
nach spaces {Et}t∈T , i.e. Wt{An} ∈ L(Et), we establish several properties of
approximation numbers of An, among them the so-called k-splitting property,
and show that the behavior of approximation numbers of An depends heavily
on the Fredholm properties of operators Wt{An}.
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1. INTRODUCTION

Let E be a Banach space. As usual we denote by L(E) the Banach algebra of
all bounded linear operators on E. Further, let {En} be a sequence of finite dimen-
sional subspaces of E and we assume that there is a sequence {Ln} of projections
Ln from E onto En converging strongly to the identity operator I on E.

We denote by F = F{En} the collection of all bounded sequences {An}
of bounded linear operators An ∈ L(En), i.e. of finite matrices An : En → En.
Provided with the operations

λ1{An}+ λ2{Bn} := {λ1 An + λ2Bn}, {An}{Bn} := {AnBn},

and the supremum norm ‖{An}‖ := sup ‖An‖, the set F becomes a Banach alge-
bra with identity {Ln}.

Note that if operators An ∈ L(En) approximate an operator A ∈ L(E) (ap-
proximation here means that AnLn converge strongly to A), then the Banach-
Steinhaus theorem implies the boundedness of the sequence {An}, i.e. the se-
quence {An} is contained in the Banach algebra F .
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It is of considerable interest to study the asymptotic behavior of the approx-
imation numbers sk(An) for operator (matrix) sequences {An} ∈ F (for the defi-
nition of the approximation numbers see Section 3). We are mainly interested in
the so-called k-splitting property of the approximation numbers. The approxima-
tion numbers for a sequence {An} ∈ F are said to have the k-splitting property if
there is an integer k > 0 such that

lim
n→∞

sk(An) = 0 and lim inf
n→∞

sk+1(An) > 0.

For instance the 0-splitting property is equivalent to the stability of a sequence
{An} ∈ F (see [1]). As usual a sequence {An} ∈ F is called stable if, for n > n0,
all operators An are invertible and sup

n>n0

‖A−1
n ‖ < ∞.

Notice that there is a variety of concrete approximation methods for large
classes of operators acting on Hilbert spaces, among them the celebrated finite
section method for Toeplitz operators, for which one can show the k-splitting
property (see [3], [6], [8]). For Banach spaces much less is known. The only avail-
able results are those of [1] and [9], where the finite section method for Toeplitz
operators with admissible continuous symbols is treated in the spaces `p.

If E is a Hilbert space and Ln are the orthogonal projections onto En, then
{An}∗ := {A∗

n} defines an involution in F which makes F to a C∗-algebra. Note
that in this case the approximation numbers of an operator An ∈ L(En) are just
the singular values of An, i.e. the eigenvalues of (A∗

n An)1/2. It was proved by
one of the authors and S. Roch (see [6] and [8]) that the splitting property of the
singular values can be successfully studied in the context of so-called standard
C∗-algebras. In short, a C∗-subalgebra A of the algebra F is called standard if
there is a family {Wt}t∈T of ∗-homomorphisms of special form from the algebra
A into algebras of bounded linear operators on Hilbert spaces {Ht}t∈T , i.e. Wt :
A → L(Ht), having the property that a sequence {An} ∈ A is stable if and only if
all operators Wt{An} are invertible (for detailed notion of standard algebras see
e.g. [6] (Chapter 6) and compare with the definitions of the algebras FT and FT

∗
below). The main result concerning standard algebras reads as follows: For any
standard algebra A we can form a closed two-sided ideal J T := J T(A) such that
the next theorem is in force.

THEOREM 1.1 (see [6]). Let {An} be a sequence from a standard C∗-algebra A.
(i) If the coset {An} + J T is invertible in the quotient algebra A/J T , then all op-

erators Wt{An} are Fredholm on Ht, the number of the non-invertible operators among
the Wt{An} is finite, and the singular values of An have the k-splitting property with

k = ∑
t∈T

dim ker Wt{An}.

(ii) If Wt{An} is not Fredholm for at least one t ∈ T, then for every integer k > 0

sk(An) → 0 as n → ∞.
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It should be noted that to prove these results the singular values were
thought as eigenvalues, leaving out of account that they can be alternatively
viewed as approximation numbers.

The aim of this paper is a generalization of these results to the case when
E is a Banach space. We introduce a special class of subalgebras of the Banach
algebra F , by analogy with standard algebras, for which we are able to obtain
results like Theorem 1.1. Thereby, we propose a completely new proof of the
k-splitting property which leads to an estimate of the convergence speed of the
k-th approximation number to zero, where k is the splitting number. Note also
that the results of this paper allow us to show the k-splitting property for con-
crete approximation methods, even in the case of Hilbert space E, which were
not explicitly treated earlier (see Section 8).

The paper is organized as follows. In Section 2 we introduce a class of sub-
algebras FT of the Banach algebra F and a family {Wt}t∈T of homomorphisms
from FT into algebras of bounded linear operators on Banach spaces {Et}. In Sec-
tions 3 and 4 some properties of approximation numbers for operator sequences
{An} ∈ FT related with properties of the operators Wt{An} are established. In
Section 5, by analogy with standard algebras (see [6]), we define a class of Fred-
holm sequences and show that the Fredholmness of a sequence {An} ∈ FT pre-
cisely implies the k-splitting property. Note that the new proof of the k-splitting
property allows us to leave the class of standard algebras (see Remark 5.5). How-
ever, the notion of standard algebras from [6] implies that the behavior of singu-
lar values for every operator sequence {An} belonging to a standard algebra is
completely described by the Fredholm properties of the operators Wt{An} (see
Remark 5.7). Sections 6 and 7 are devoted to the proof of the k-splitting prop-
erty for Fredholm sequences. Finally, in Section 8 in order to illustrate the results
of this paper we analyze the behavior of approximation numbers for projections
methods for operators αI + K and for finite sections of Toeplitz operators with
Cp + H∞

p matrix valued symbols. A much more complicated situation will be
analyzed in a forthcoming paper, namely the asymptotic behavior of approxima-
tion numbers for finite sections of Toeplitz operators with piecewise continuous
symbols in the `p setting.

2. THE BANACH ALGEBRA OF OPERATOR SEQUENCES FT

Let E be an infinite dimensional Banach space and let {En} be a sequence of
finite dimensional subspaces of E. Moreover, we assume that there is a sequence
{Ln} of projections Ln from E onto En converging strongly to the identity opera-
tor I on E.
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Let further T be a (possibly infinite) index set and suppose that, for every t ∈
T, there is an infinite dimensional Banach space Et with the identity operator It,
a sequence {Lt

n} of projections Lt
n on Et converging strongly to It, and a sequence

{Et
n} of invertible operators Et

n : im Lt
n → im Ln such that (for brevity, we write

E−t
n instead of (Et

n)−1):

(I) sup
n
‖Et

n‖‖E−t
n ‖ < ∞.

We denote by FT the set of all sequences {An} of linear operators An :
im Ln → im Ln, for which there exist operators Wt{An} ∈ L(Et) such that for all
t ∈ T

E−t
n AnEt

n → Wt{An}
holds in the sense of strong convergence for n → ∞. If we define

λ1{An}+ λ2{Bn} := {λ1 An + λ2Bn}, {An}{Bn} := {AnBn},

and

‖{An}‖FT := sup
{
‖An‖L(En) = sup

x∈En , x 6=0

‖Anx‖E
‖x‖E

: n ∈ N
}

,

then it is not hard to see that FT becomes a Banach algebra with the unit element
{Ln} and the mappings Wt : FT → L(Et), {An} 7→ Wt{An}, are unital homo-
morphisms. Note also that the set G of all sequences {Gn} with ‖GnLn‖ → 0 as
n → ∞ forms a closed two-sided ideal of FT .

3. THE APPROXIMATION NUMBERS FOR {AN} AND THE OPERATORS Wt{An}

Let F be a finite dimensional Banach space with dim F = m. The k-th ap-
proximation number (k ∈ {0, 1, 2, . . . , m}) of an operator A ∈ L(F) is defined
as

sk(A) := dist(A,Fm−k(F)) := inf{‖A− F‖L(F) : F ∈ Fm−k(F)},

whereFn−k(F) denotes the collection of all operators from L(F) having the image
of the dimension at most n− k. It is clear that

0 = s0(A) 6 s1(A) 6 s2(A) 6 · · · 6 sm(A) = ‖A‖L(F).

Moreover one can show that (see [1])

s1(A) =

{
1/‖A−1‖L(F) if A is invertible,
0 if A is not invertible.

Note also that in case F is a Hilbert space the approximation numbers {sk(A)}m
k=1

are just the singular values of A, i.e. the eigenvalues of (A∗A)1/2.
In this section we prove the following results which show the relation be-

tween the behavior of the approximation numbers for a sequence {An} ∈ F and
the properties of the operators Wt{An}.
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THEOREM 3.1. Let {An} be a sequence from the Banach algebra FT and let k be
a natural number. If there is an index t ∈ T such that k 6 dim ker Wt{An}, then

sk(An) → 0 as n → ∞.

COROLLARY 3.2. Let {An} be a sequence from the Banach algebra FT . If there is
an index t ∈ T such that the kernel of the operator Wt{An} is infinite dimensional, then
for each l ∈ N

sl(An) → 0 as n → ∞.

THEOREM 3.3. Let {An} be a sequence from the Banach algebra FT . If one of the
operators Wt{An} is not normally solvable, then for each l ∈ N

sl(An) → 0 as n → ∞.

COROLLARY 3.4. Let {An} be a sequence from the Banach algebra FT . If there
exists a number k ∈ N such that lim inf

n
sk(An) > 0, then all operators Wt{An} are

normally solvable and

dim ker Wt{An} 6 k− 1, t ∈ T.

To prove Theorem 3.1, we will employ the following well-known lemma.

LEMMA 3.5. Let x1, x2, . . . , xk be linearly independent vectors from a Banach
space F and let xn

i → xi as n → ∞, 1 6 i 6 k. Then there are numbers γ > 0
and N ∈ N such that

γ
k

∑
i=1

|αi| 6
∥∥∥ k

∑
i=1

αixn
i

∥∥∥
F

for any scalars αi and all n > N.

Proof of Theorem 3.1. Let {An} ∈ FT , let k ∈ N, and let t ∈ T be such that
k 6 dim ker Wt{An}. We choose a system {xi}k

i=1 of linearly independent vectors
belonging to the kernel of the operator Wt{An} and put

xn
i := Lt

nxi, n ∈ N.

Further, for each n > N, we introduce the functionals f n
i : span {xn

1 , xn
2 , . . . , xn

k }
→ C by the rule

f n
i

( k

∑
j=1

αjxn
j

)
= αi, 1 6 i 6 k.

Lemma 3.5 gives that the functionals f n
i are uniformly bounded:

‖ f n
i ‖ 6

1
γ

, 1 6 i 6 k

for all sufficiently large n.
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By the Hahn-Banach theorem, we can extend f n
i to the whole Banach space

Et so that f n
i ∈ (Et)∗ and ‖ f n

i ‖ 6 1/γ, for 1 6 i 6 k and all n large enough.
Now we denote by Sn ∈ L(Et) the linear operators

Snx :=
k

∑
i=1

f n
i (x)xn

i .

We get that the operators Rn := Lt
nSnLt

n ∈ L(im Lt
n) are projections and dim im Rn

= k for all sufficiently large n. Moreover, for any x ∈ im Lt
n, we have

‖E−t
n AnEt

nRnLt
nx‖Et =

∥∥∥E−t
n AnEt

n

k

∑
i=1

f n
i (x)xn

i

∥∥∥
Et

6
k

∑
i=1

| f n
i (x)|‖E−t

n AnEt
nLt

nxi‖Et 6
‖x‖Et

γ

k

∑
i=1

‖E−t
n AnEt

nLt
nxi‖Et .

Since E−t
n AnEt

nLt
n converges strongly to the operator Wt{An}, we obtain

‖E−t
n AnEt

nLt
nxi‖Et → ‖Wt{An}xi‖Et = 0, 1 6 i 6 k.

Hence ‖E−t
n AnEt

nRnLt
n‖L(im Lt

n) → 0 as n → ∞.
Finally, we obtain (we denote m(n) := dim im Ln)

sk(An) 6 ‖Et
n‖‖E−t

n ‖sk(E−t
n AnEt

n)

= ‖Et
n‖‖E−t

n ‖ inf{‖E−t
n AnEt

n + F‖L(im Lt
n) : F ∈ Fm(n)−k(im Lt

n)}

6 ‖Et
n‖‖E−t

n ‖‖E−t
n AnEt

n − E−t
n AnEt

n(Lt
n − Rn)‖L(im Lt

n)

= ‖Et
n‖‖E−t

n ‖‖E−t
n AnEt

nRnLt
n‖L(im Lt

n) → 0.

To prove Theorem 3.3, we will need the following results.

THEOREM 3.6 (see [5], pp. 159–160). Let A be a bounded linear operator on a
Banach space F.

(i) The operator A is normally solvable on F if and only if

kA := sup
x∈F,|Ax‖F=1

inf
x0∈ker A

‖x − x0‖F < ∞.

(ii) If M is a closed subspace of F and dim(F/M) < ∞, then normal solvability of
A|M : M → F is equivalent to the normal solvability of A : F → F.

We prepare the proof of Theorem 3.3 by an auxiliary lemma.

LEMMA 3.7. Let A be a bounded linear operator on a Banach space F and let {Pn}
be a sequence of projections Pn on F converging strongly to the identity operator I on F.
If dim ker A < ∞, then ker A(I − Pn) = im Pn for all sufficiently large n.

Proof. Assume the converse, i.e. that there exists a sequence of numbers
{nm}m∈N, nm → ∞, such that ker A(I − Pnm ) 6= im Pnm for all m ∈ N. This means
that for all m ∈ N there is a vector xnm /∈ im Pnm such that xnm ∈ ker A(I − Pnm ).
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In other words, for all m ∈ N there is a vector ynm = (I − Pnm )xnm 6= 0 such that
ynm ∈ ker A.

Now we claim that for any k ∈ N one can choose k linearly independent
vectors ynm1

, . . . , ynmk
with the mentioned property. This is trivial for k = 1. The

assertion for k > 1 will be checked by induction. Suppose that we have already
k linearly independent vectors ynm1

, . . . , ynmk
. Since the projections Pn converge

strongly to the identity operator I, there is an N ∈ N such that for all n > N the
vectors Pnynm1

, . . . , Pnynmk
are linearly independent (see Lemma 3.5). We choose

a number nmk+1 > max(N, nm1 , . . . , nmk ) and suppose that
k+1
∑

i=1
αiynmi

= 0. Then

0 =
k+1

∑
i=1

αiPnmk+1
ynmi

=
k

∑
i=1

αiPnmk+1
ynmi

+ αk+1Pnmk+1
(I − Pnmk+1

)xnmk+1

=
k

∑
i=1

αiPnmk+1
ynmi

.

Consequently, αi = 0 for all 1 6 i 6 k. Moreover,

αk+1ynmk+1
= 0 ⇒ αi = 0 for all 1 6 i 6 k + 1.

Hence the vectors ynm1
, ynm2

, . . . , ynmk+1
are linearly independent.

On the other hand, ker A is finite dimensional. This contradiction concludes
the proof.

Proof of Theorem 3.3. Let {An} ∈ FT and let t ∈ T be such that the operator
Wt{An} is not normally solvable. In view of Corollary 3.2, it is sufficient to treat
only the case dim ker Wt{An} < ∞.

Contrary to the assertion of the theorem, we assume that there exist l ∈ N
and 0 < d < 1 such that sl(An) > d for infinitely many n.

Let ε > 0 be any number such that (sup
n
‖Lt

n‖ < ∞ by the Banach-Steinhaus

theorem)

ε <
d
4l

(
sup

n
‖Et

n‖‖E−t
n ‖

)−1(
4 sup

n
‖Lt

n‖
)−l

.

We claim that one can choose l vectors z1, . . . , zl ∈ Et such that for all 1 6 j 6 l

(3.1) ‖zj‖ = 1, ‖Wt{An}zj‖ 6 ε,

and the following inequality takes place

(3.2)
l

∑
j=1

|αj| 6
(

4 sup
n
‖Lt

n‖
)l∥∥∥ l

∑
j=1

αjzj

∥∥∥
for all scalars α1, . . . , αl .

Let l = 1. By the previous lemma, there is an N1 such that ker Wt{An}(It −
Lt

n) = im Lt
n for all n > N1. Moreover, in view of Theorem 3.6, for all n ∈ N
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the operators Wt{An}| im(It − Lt
n) : im(It − Lt

n) → Et are not normally solv-
able. Again due to Theorem 3.6, there exists a vector x1 ∈ im(It − Lt

N1
) such that

‖Wt{An}x1‖ = 1 and ‖x1‖ > 1/ε. Setting z1 = x1/‖x1‖, we obtain the assertion
for l = 1 (‖Lt

n‖ > 1, since Lt
n are projections).

The assertion for l > 1 will be proved by induction. Suppose that we have
already l − 1 vectors z1, . . . , zl−1 satisfying (3.1) and (3.2). Since the operators Lt

n
converge strongly to the identity operator It, there is a number Nl > N1 such that
for all n > Nl

‖(I − Lt
n)zj‖ < ε, j = 1, . . . , l − 1.

Further, due to Theorem 3.6, there exists a vector xl ∈ im(It − Lt
Nl

) such that
‖xl‖ > 1/ε and ‖Wt{An}xl‖ = 1. Setting zl = xl/‖xl‖, we get for all scalars
α1, . . . , αl :

2 sup
n
‖Lt

n‖
∥∥∥ l

∑
j=1

αjzj

∥∥∥ >
∥∥∥ l

∑
j=1

αj(I − Lt
Nl

)zj

∥∥∥ > |αl | −
l−1

∑
j=1

|αj|ε,

sup
n
‖Lt

n‖
∥∥∥ l

∑
j=1

αjzj

∥∥∥ >
∥∥∥ l

∑
i=1

αjLt
Nl

zj

∥∥∥ >
((

4 sup
n
‖Lt

n‖
)1−l

− ε
) l−1

∑
j=1

|αj|.

Thus, ‖zl‖ = 1, ‖Wt{An}zl‖ 6 ε, and, for all scalars α1, . . . , αl ,

3 sup
n
‖Lt

n‖
∥∥∥ l

∑
j=1

αjzj

∥∥∥ >
((

4 sup
n
‖Lt

n‖
)1−l

− 2ε
) l−1

∑
j=1

|αj|+ |αl |

>
3
4

(
4 sup

n
‖Lt

n‖
)1−l l

∑
j=1

|αj|.

Now for all large n we introduce the functionals f n
m : span {Lt

nz1, . . . , Lt
nzl} → C

by the rule

f n
m

( l

∑
j=1

αjLt
nzj

)
= αj, m = 1, 2, . . . , l.

From (3.2) we conclude that for all n large enough the functionals f n
m are uni-

formly bounded:

‖ f n
m‖ 6 2

(
4 sup

n
‖Lt

n‖
)l

, m = 1, 2, . . . , l.

By the Hahn-Banach theorem, we can extend f n
m to the whole Banach space Et

such that f n
m ∈ (Et)∗ and ‖ f n

m‖ 6 2
(

4 sup
n
‖Lt

n‖
)l

for m = 1, . . . , l.

Now we denote by Sn ∈ L(Et) the linear operators

Snx :=
l

∑
m=1

f n
m(x)Lt

nzm.
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We get, for all sufficiently large n, that the operators Rn := Lt
nSnLt

n are projec-
tions, Rn ∈ L(im Lt

n), and dim im Rn = l. Moreover, since E−t
n AnEt

nLt
n converges

strongly to Wt{An}, we obtain, for every x ∈ im Lt
n and all n large enough, (see

(3.1))

‖E−t
n AnEt

nRnx‖Et =
∥∥∥E−t

n AnEt
n

( l

∑
m=1

f n
m(x)Lt

nzm

)∥∥∥
Et

6
l

∑
m=1

| f n
m(x)|‖E−t

n AnEt
nLt

nzm‖Et 6 4
(

4 sup
n
‖Lt

n‖
)l

εl‖x‖Et .

This implies that for all n large enough (m(n) = dim im Ln)

sl(An) 6 ‖Et
n‖‖E−t

n ‖sl(E−t
n AnEt

n)

= ‖Et
n‖‖E−t

n ‖ inf{‖E−t
n AnEt

n − Fn‖L(im Lt
n) : Fn ∈ Fm(n)−l(im Lt

n)}

6 ‖E−t
n AnEt

n − E−t
n AnEt

n(Lt
n − Rn)‖L(im Lt

n) sup
n
‖Et

n‖‖E−t
n ‖

6 4l sup
n
‖Et

n‖‖E−t
n ‖

(
4 sup

n
‖Lt

n‖
)l

ε < d.

This contradiction completes the proof.

4. THE ALGEBRA FT
∗

In this section we suppose, in addition, that L∗n → I∗ ∈ L(E∗) and (Lt
n)∗ →

(It)∗ ∈ L((Et)∗), t ∈ T, strongly as n → ∞.
We denote by FT

∗ the Banach algebra of all sequences {An} ∈ FT for which
one has the following strong convergence

s–lim
n→∞

(E−t
n AnEt

n)∗ = (Wt{An})∗, t ∈ T.

One can see that if a sequence {An} ∈ FT
∗ , then {An} itself belongs to the Ba-

nach algebraFT and its adjoint sequence {A∗
n} belongs to another Banach algebra

F̃T which corresponds to the Banach spaces E∗, E∗
n, (Et)∗, (Et

n)∗, the projections
L∗n, (Lt

n)∗, and the operators (Et
n)∗.

THEOREM 4.1. Let {An} be a sequence from the Banach algebra FT
∗ . If one of the

operators Wt{An} is not Fredholm, then for each l ∈ N
sl(An) → 0 as n → ∞.

Proof. Let t ∈ T be an index such that the operator Wt{An} is not Fredholm.
We have three possibilities for the operator Wt{An} to be not Fredholm:

(i) Wt{An} is not normally solvable;
(ii) dim ker Wt{An} = ∞;
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(iii) dim coker Wt{An} = ∞.
To the case (i) and (ii) we can apply Theorem 3.3 and Corollary 3.2, respec-

tively. Moreover, since the adjoint matrices (Et
n)∗A∗

n(E−t
n )∗ converge strongly to

the operator (Wt(An))∗ and sl(An) = sl(A∗
n) for any l ∈ N, the case (iii) can be

also treated with the help of Corollary 3.2.

COROLLARY 4.2. Let {An} be a sequence from the Banach algebra FT
∗ . If there

exists a number k ∈ N such that lim inf
n

sk(An) > 0, then all operators Wt{An} are
Fredholm and, for all t ∈ T,

dim ker Wt{An} 6 k− 1 and dim coker Wt{An} 6 k− 1.

5. FREDHOLM SEQUENCES

In this section we suppose that, besides the condition (I), the operators
Et

n, t ∈ T, satisfy the following separation condition:

(II) 1
‖E−τ

n ‖‖Et
n‖

E−τ
n Et

nLt
n ⇁ 0 weakly as n → ∞ for every τ, t ∈ T with τ 6= t.

Notice that the condition (II) coincides with the following condition (II’).

(II’) For every t ∈ T and every compact operator Kt ∈ K(Et), the sequence
{Et

nLt
nKtE−t

n } belongs to the Banach algebra FT and, for all τ ∈ T,

Wτ{Et
nLt

nKtE−t
n } =

{
Kt if τ = t,
0 if τ 6= t.

LEMMA 5.1. If the condition (I) is satisfied, then the conditions (II) and (II’) are
equivalent.

For a proof of this lemma we recall the well-known result.

LEMMA 5.2. Let F be a Banach space. If A, An ∈ L(F), K ∈ K(F), and An → A
weakly, then KAn → KA strongly.

Proof of Lemma 5.1. First we show that the condition (II’) follows from the
condition (II). Let t ∈ T. Obviously, we have

Wt{Et
nLt

nKtE−t
n } = s–lim Lt

nKtLt
n = Kt.

Moreover, for all τ 6= t, Lemma 5.2 gives

Wτ{Et
nLt

nKtE−t
n } = s–lim E−τ

n Et
nLt

nKtE−t
n Eτ

n Lτ
n

= s–lim ‖Eτ
n‖‖E−t

n ‖E−τ
n Et

nLt
nKt 1

‖Eτ
n‖‖E−t

n ‖
E−t

n Eτ
n Lτ

n = 0.
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Now we check that the condition (II’) implies the condition (II). Let t, τ ∈ T and
τ 6= t. We have to show that for any vector x ∈ Et and any functional f ∈ (Eτ)∗

f (
1

‖E−τ
n ‖‖Et

n‖
E−τ

n Et
nLt

nx) → 0 as n → ∞.

We take an arbitrary vector y ∈ Eτ with ‖y‖ = 1 and define the operator K f on
the Banach space Eτ by the rule

K f z := f (z)y, z ∈ Eτ .

Obviously, the operator K f ∈ K(Eτ). This implies∣∣∣ f (
1

‖E−τ
n ‖‖Et

n‖
E−τ

n Et
nLt

nx)
∣∣∣

=
∥∥∥K f

1
‖E−τ

n ‖‖Et
n‖

E−τ
n Et

nLt
nx

∥∥∥
6

∥∥∥E−τ
n Et

nE−t
n Eτ

n Lτ
nK f

1
‖E−τ

n ‖‖Et
n‖

E−τ
n Et

nLt
nx

∥∥∥
+

∣∣∣ f (
1

‖E−τ
n ‖‖Et

n‖
E−τ

n Et
nLt

nx)
∣∣∣‖(I − Lτ

n)y‖

6 ‖E−t
n Eτ

n Lτ
nK f E−τ

n Et
nLt

nx‖+ ‖ f ‖‖Lτ
n‖‖x‖‖(I − Lτ

n)y‖ → 0.

Now, for each t ∈ T, we introduce the subset J t of the Banach algebra FT

J t := {{Et
nLt

nKtE−t
n }+ {Gn} : Kt ∈ K(Et), {Gn} ∈ G}.

Let AT be the set of all sequences {An} ∈ FT such that {An}J t ⊆ J t and
J t{An} ⊆ J t for all t ∈ T. Obviously, AT is the largest closed subalgebra of
FT such that, for each t ∈ T, the set J t forms a closed two-sided ideal of AT .
Moreover, it is clear that the Banach algebra AT contains the unit element {Ln}.

Further, we denote by J T the smallest closed two-sided ideal of AT which
contains all sequences {Jn} such that {Jn} belongs to one of the ideals J t, t ∈ T.
It is easy to see that, actually, the ideal J T is the closure in FT of the set{

{Jn} =
m

∑
i=1
{Jti

n } : m ∈ N, {Jti
n } ∈ J ti

}
.

Corresponding to the ideal J T we introduce a class of Fredholm sequences
by calling a sequence {An} ∈ AT Fredholm if the coset {An} + J T is invertible
in the quotient algebra AT/J T . The following basic properties of Fredholm se-
quences are obvious:

(i) The set of Fredholm sequences is open in AT .
(ii) The sum of a Fredholm sequence and a sequence from the ideal J T is

Fredholm.
(iii) The product of two Fredholm sequences is Fredholm.
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THEOREM 5.3. If a sequence {An} ∈ AT is Fredholm, then all operators Wt{An}
are Fredholm on Et, and the number of the non-invertible operators among the Wt{An}
is finite.

Proof. Let {An} + J T be invertible in the quotient algebra AT/J T . Then
there are sequences {Bn} ∈ AT and {Jn}, {Kn} ∈ J T such that

{Bn}{An} = {Ln}+ {Jn} and {An}{Bn} = {Ln}+ {Kn}.

By the definition of the ideal J T , there exist finite subsets {t1,. . ., tm} and {τ1,. . ., τl}
of T as well as sequences {Jti

n } ∈ J ti and {Kτi
n } ∈ J τi such that

{Jn} =
m

∑
i=1
{Jti

n }+ { Ĵn} and {Kn} =
l

∑
i=1
{Kτi

n }+ {K̂n},

with { Ĵn}, {K̂n} ∈ J T and ‖{ Ĵn}‖, ‖{K̂n}‖ < 1/2.
Since the sequences {Ln} + { Ĵn} and {Ln} + {K̂n} are invertible in the Ba-

nach algebra AT , we can define the following sequences:

{B̂n} := ({Ln}+ { Ĵn})−1{Bn} ∈ AT ,

{Ĉn} := {Bn}({Ln}+ {K̂n})−1 ∈ AT ,

{ Ĵti
n } := ({Ln}+ { Ĵn})−1{Jti

n } ∈ J ti , i = 1, . . . , m,

{K̂τi
n } := {Kτi

n }({Ln}+ {K̂n})−1 ∈ J τi , i = 1, . . . , l.

Due to the definition of the ideals J t, we get

{B̂n}{An} = {Ln}+
m

∑
i=1
{ Ĵti

n } = {Ln}+
m

∑
i=1
{Eti

n Lti
n Jti E−ti

n }+ {Gn},(5.1)

{An}{Ĉn} = {Ln}+
l

∑
i=1
{K̂τi

n } = {Ln}+
l

∑
i=1
{Eτi

n Lτi
n Kτi E−τi

n }+ {Ĝn}.(5.2)

Finally, applying Wt, t ∈ T, to the equations (5.1) and (5.2) we find

Wt{B̂n}Wt{An} =

{
It t /∈ {t1, . . . , tm},
Iti + Jti t ∈ {t1, . . . , tm},

Wt{An}Wt{Ĉn} =

{
It t /∈ {τ1, . . . , τl},
Iτi + Kτi t ∈ {τ1, . . . , τl}.

Thus all operators Wt{An} are Fredholm on Et, and the number of the non-
invertible operators among the Wt{An} is at most m + l.
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Theorem 5.3 allows us to introduce three finite numbers for a Fredholm se-
quence {An}∈AT , its nullity α({An}), deficiency β({An}), and index ind({An}), by

α({An}) = ∑
t∈T

dim ker Wt{An},

β({An}) = ∑
t∈T

dim coker Wt{An},

ind({An}) = α({An})− β({An}).

Applying the well-known properties of Fredholm operators, it is not hard to
prove the following results:

(i) If {An} ∈ AT is a Fredholm sequence and {Bn} ∈ AT is a sufficiently
small sequence, then α({An} + {Bn}) 6 α({An}), β({An} + {Bn}) 6 β({An}),
and ind({An}+ {Bn}) = ind({An}).

(ii) If {An} ∈ AT is a Fredholm sequence and {Kn} ∈ AT is a sequence from
the ideal J T , then ind({An}+ {Kn}) = ind({An}).

(iii) If {An} ∈ AT and {Bn} ∈ AT are Fredholm sequences, then ind({An}{Bn})
= ind({An}) + ind({Bn}).

The following theorem provides a relation between the nullity of a Fred-
holm sequence {An} ∈ AT and the asymptotic behavior of the approximation
numbers of An.

THEOREM 5.4. Let {An} ∈ AT be a Fredholm sequence. Then the approximation
numbers of An have the k-splitting property with k = α({An}), i.e.

lim
n→∞

sα({An})(An) = 0 and lim inf
n→∞

sα({An})+1(An) > 0.

This theorem will be proved in the subsequent two sections (see Lemma 6.2
and Corollary 7.5).

REMARK 5.5. To check that a sequence {An} is Fredholm it is not necessary
to consider the whole algebraAT . Indeed, letA be a closed subalgebra of FT such
that, for each t ∈ T, the set J t forms a closed two-sided ideal of A. We denote
by J T

A the smallest closed two-sided ideal of A which contains all sequences {Jn}
which belong to one of the ideals J t, t ∈ T. Obviously, A ⊂ AT and J T

A = J T .
Hence, if the coset {An}+ J T

A is invertible in A/J T
A then {An} is Fredholm. For

instance, the algebra FT
∗ provides an example for such an algebra A (compare

with the definition of standard algebras in [6]).

Now we again suppose that L∗n → I∗ ∈ L(E∗) and (Lt
n)∗ → (It)∗ ∈ L((Et)∗),

t ∈ T, strongly as n → ∞. Furthermore, we denote by AT
F the set of all sequences

{An} ∈ AT except such sequences for which all operators Wt{An} are Fredholm,
the number of the non-invertible operators among the Wt{An} is finite, but the
coset {An}+ J T is not invertible (compare with Theorem 5.3).
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Combining Theorems 4.1 and 5.4 we obtain that the behavior of the approx-
imation numbers for a sequence {An} ∈ FT

∗ ∩ AT
F is completely described by the

Fredholm properties of the operators Wt{An}, t ∈ T.

THEOREM 5.6. Let (An) be a sequence from the set FT
∗ ∩AT

F .
(i) If all operators Wt{An} are Fredholm on Et and the number of the non-invertible

operators among the Wt{An} is finite, then the approximation numbers of An have the
k-splitting property with k = ∑

t∈T
dim ker Wt{An}.

(ii) Otherwise, sl(An) → 0 as n → ∞ for each l ∈ N.

REMARK 5.7. Taking into account Theorem 5.41 from [6] one can show that
any standard algebra is contained in the set FT

∗ ∩AT
F .

Finally, we would like to mention that in Hilbert space setting there is a
general notion of Fredholm sequences which does not depend on the underlying
algebra FT (see [6], [7]). Thereby, in case of sequences in a standard algebra this
general notion reduces to the notion of Fredholm sequences considered in this
section (which, at least formally, depends on the underlying algebra FT).

6. THE α({An})-TH APPROXIMATION NUMBER FOR A FREDHOLM SEQUENCE {An} ∈ AT

Let {An} ∈ AT be a Fredholm sequence. In this section we show that the
first α({An}) approximation numbers of An converge to zero.

Due to (5.1), there exist sequences {Bn} ∈ AT , {Gn} ∈ G, a finite subset
{t1, . . . , tm} of T, and compact operators Kti ∈ K(Eti ) such that

{Bn}{An} = {Ln}+
m

∑
i=1
{Eti

n Lti
n Kti E−ti

n }+ {Gn}.

Hence, the operators Wt{An} have a trivial kernel for every t ∈ T \ {t1, . . . , tm},
and

α({An}) =
m

∑
i=1

dim ker Wti{An}.

For each i let ki refer to dim ker Wti{An} and let {xi,l}
ki
l=1 with ‖xi,l‖ = 1 be

a basis of ker Wti{An}. We define vectors xn
i,l ∈ im Ln by

xn
i,l :=

1
‖Eti‖

Eti
n Lti

n xi,l , i = 1, . . . , m, l = 1, . . . , ki.

LEMMA 6.1. There exist numbers N ∈ N and γ > 0 such that

γ
m

∑
i=1

ki

∑
l=1

|αi,l | 6
∥∥∥ m

∑
i=1

ki

∑
l=1

αi,l x
n
i,l

∥∥∥
for all n > N and all scalars αi,l .
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Proof. Assume the converse, i.e. that there is an infinite set N1 ⊂ N, a se-
quence of numbers {γn}n∈N1 with γn → 0, and sequences of scalars {αn

i,l}n∈N1

such that

γn

m

∑
i=1

ki

∑
l=1

|αn
i,l | >

∥∥∥ m

∑
i=1

ki

∑
l=1

αn
i,l x

n
i,l

∥∥∥, n ∈ N1.

For each n ∈ N1 we find 1 6 in 6 m and 1 6 ln 6 kin such that |αn
in ,ln

| =
maxi,l |αn

i,l | and put βn
i,l := αn

i,l/αn
in ,ln

. We get |βn
i,l | 6 1, βn

in ,ln
= 1, and

∥∥∥ m

∑
i=1

ki

∑
l=1

βn
i,l x

n
i,l

∥∥∥ < γn

m

∑
i=1

ki

∑
l=1

|βn
i,l | 6 γn

m

∑
i=1

ki = γnα({An}) → 0.

Since for any fixed i and l the sequence {βn
i,l}n∈N1 is bounded, one can choose an

infinite subset N2 of N1 and scalars βi,l such that |βi,l | 6 1, at least one of βi,l is
equal to one, and βn

i,l → βi,l , n ∈ N2. Without lose of generality we suppose that
β1,1 = 1. Taking into account that ‖xn

i,l‖ 6 const, we get

m

∑
i=1

ki

∑
l=1

βi,l x
n
i,l = zn with ‖zn‖ → 0, n ∈ N2.

By the definition of the vectors xn
i,l , we obtain

k1

∑
l=1

β1,l L
t1
n x1,l

= ‖Et1
n ‖‖E−t1

n ‖
( m

∑
i=2

ki

∑
l=1

βi,l
1

‖E−t1
n ‖‖Eti

n ‖
E−t1

n Eti
n Lti

n xi,l +
1

‖E−t1
n ‖

E−t1
n zn

)
.(6.1)

Since the vectors {x1,l}
k1
1 are linearly independent, we can take a functional f ∈

(Et1)∗ such that

f (x1,1) = 1 and f (x1,l) = 0 for all l = 2, . . . , k1.

Applying the functional f to the left hand side of (6.1), we get

f (
k1

∑
l=1

β1,l L
t1
n x1,l) →

k1

∑
l=1

β1,l f (x1,l) = β1,1 = 1.

On the other hand, the separation condition (II) implies that

f (‖Et1
n ‖‖E−t1

n ‖(
m

∑
i=2

ki

∑
l=1

βi,l
1

‖E−t1
n ‖‖Eti

n ‖
E−t1

n Eti
n Lti

n xi,l +
1

‖E−t1
n ‖

E−t1
n zn))

converge to zero. This contradiction completes the proof.
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Now, for each n> N, we introduce the functionals f n
i,l : span{xn

1,1, . . . , xn
m,km

}
→ C by the rule

f n
i,l(

m

∑
j=1

ki

∑
v=1

αj,vxn
j,v) = αi,l , 1 6 i 6 m, 1 6 l 6 ki.

By the Hahn-Banach theorem, we can extend f n
i,l to the whole Banach space E so

that f n
i,l ∈ E∗ and ‖ f n

i,l‖ 6 1/γ for all n large enough (see Lemma 6.1).
Further, we denote by Sn ∈ L(E) the linear operators

Snx :=
m

∑
i=1

ki

∑
l=1

f n
i,l(x)xn

i,l .

We get that the operators Rn := LnSnLn are projections, Rn∈L(En), and dim im Rn

=
m
∑

i=1
ki = α({An}) for all sufficiently large n. Moreover, for any x ∈ En, we have

‖AnRnLnx‖E =
∥∥∥An

m

∑
i=1

ki

∑
l=1

f n
i,l(x)xn

i,l

∥∥∥
E

6
m

∑
i=1

ki

∑
l=1

| f n
i,l(x)|

∥∥∥An
1

‖Eti‖
Eti

n Lti
n xi,l

∥∥∥
E

6 const ‖x‖E
m

∑
i=1

ki

∑
l=1

‖E−ti
n AnEti

n Lti
n xi,l‖Eti .(6.2)

Since, for each i, E−ti
n AnEti

n Lti
n converges strongly to the operator Wti{An}, it fol-

lows that

‖E−ti
n AnEti

n Lti
n xi,l‖Eti → ‖Wti{An}xi,l‖Eti = 0, 1 6 i 6 m, 1 6 l 6 ki.

Hence, we conclude that
sα({An})(An) = inf{‖An + F‖L(En) : F ∈ Fm(n)−α({An})(En)}

6 ‖An − An(Ln − Rn)‖L(En) = ‖AnRnLn‖L(En) → 0.

Thus, we have proved the following result.

LEMMA 6.2. If a sequence {An} ∈ AT is Fredholm, then the α({An})-th approx-
imation number of An tends to zero as n → ∞.

Note that the inequality (6.2) gives us an estimate for the convergence speed
of the α({An})-th approximation number of An to zero.

7. THE (α({An}) + 1)-ST APPROXIMATION NUMBER FOR A
FREDHOLM SEQUENCE {An} ∈ AT

Let {An} ∈ AT be a Fredholm sequence. In this section we show that the
(α({An}) +1)-st approximation number of An is bounded away from zero.

First we recall the concept of the generalized invertibility. Let F be a Banach
space. An operator A(−1) ∈ L(F) is said to be a generalized inverse of A ∈ L(F)
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if the equality AA(−1)A = A holds. One can show that if A(−1) is a generalized
inverse of A then the following relations take place

(7.1) A(−1)A = I − Pker A and AA(−1) = Pim A,

where Pker A and Pim A are projections onto the kernel and the image of A, respec-
tively. Notice that any Fredholm operator is generalized invertible. Moreover, it
is not hard to prove the next lemma.

LEMMA 7.1. Let A be a Fredholm operator on a Banach space F. For given a gener-
alized inverse A(−1) and a right regularizer B of A (I − AB ∈ K(F)), there is a compact
operator X ∈ K(F) such that A(−1) = B + X.

LEMMA 7.2. If a sequence {An} ∈ AT is Fredholm, then

lim inf
n

sβ({An})+1(An) > 0.

For a proof of this lemma we recall the well-known result.

LEMMA 7.3. Let F be a Banach space. If A, An ∈ L(F), K ∈ K(F), and An → A
strongly, then ‖AnK − AK‖ → 0 as n → ∞.

Proof of Lemma 7.2. Due to (5.2), there exist sequences {Bn} ∈ AT , {Gn} ∈ G,
a finite subset {τ1, . . . , τl} of T, and compact operators Kτi ∈ K(Eτi ) such that

{An}{Bn} = {Ln}+
l

∑
i=1
{Eτi

n Lτi
n Kτi E−τi

n }+ {Gn}.

Hence, for each 16 i6 l the operator Wτi{Bn} is a right regularizer of Wτi{An} and

β({An}) =
l

∑
i=1

dim coker Wτi{An}.

Further, let (Wτi{An})(−1) be generalized inverses of Wτi{An}). By Lemma 7.1,
there are compact operators Xτi ∈ K(Eτi ) such that

(Wτi{An})(−1) = Wτi{Bn}+ Xτi , i = 1, . . . , l.

In view of (7.1), we obtain for any i = 1, . . . , l

Pim Wτi {An} = Wτi{An}(Wτi{An})(−1) = Wτi{An}(Wτi{Bn}+ Xτi )

= I + Kτi + Wτi{An}Xτi .
(7.2)

Now we introduce the sequence {Cn} ∈ AT by

{Cn} := {Bn}+
l

∑
i=1
{Eτi

n Lτi
n Xτi E−τi

n }.
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Taking into account Lemma 7.3 and (7.2), we get

{An}{Cn} = {Ln}+
l

∑
i=1
{Eτi

n Lτi
n Kτi E−τi

n }+ {Gn}+ {An}
l

∑
i=1
{Eτi

n Lτi
n Xτi E−τi

n }

= {Ln}+
l

∑
i=1
{Eτi

n Lτi
n Kτi E−τi

n }+ {Gn}+
l

∑
i=1
{Eτi

n E−τi
n AnEτi

n Lτi
n Xτi E−τi

n }

= {Ln}+
l

∑
i=1
{Eτi

n Lτi
n (Kτi + Wτi{An}Xτi )E−τi

n }+ {Ĝn}

= {Ln} −
l

∑
i=1
{Eτi

n Lτi
n (I − Pim Wτi {An})E−τi

n }+ {Ĝn},

with a sequence {Ĝn} ∈ G. Since ‖Ĝn‖ → 0, we conclude that for all sufficiently
large n the matrix Ln + Ĝn is invertible and ‖(Ln + Ĝn)−1‖ 6 2. Thus, for all n
large enough

0 <
1
2

6 ‖(Ln + Ĝn)−1‖−1 = s1(Ln + Ĝn)

= inf{‖Ln + Ĝn + F‖ : F ∈ Fm(n)−1(En)}

6 inf
{∥∥∥Ln + Ĝn + F −

l

∑
i=1
{Eτi

n Lτi
n (I − Pim Wτi {An})E−τi

n }
∥∥∥ :

F ∈ Fm(n)−β({An})−1(En)
}

= inf{‖AnCn + F‖ : F ∈ Fm(n)−β({An})−1(En)}
6 inf{‖AnCn + FCn‖ : F ∈ Fm(n)−β({An})−1(En)}
6 sup

n
‖Cn‖ inf{‖An + F‖ : F ∈ Fm(n)−β({An})−1(En)}

6 const sβ({An})+1(An).

We complete this section by the following result which shows that, in the
case at hand, the nullity and the deficiency of a Fredholm sequence coincide.

THEOREM 7.4. The index of a Fredholm sequence is equal to zero.

Proof. Let {An} ∈ AT be a Fredholm sequence. Comparing Lemma 6.2 with
Lemma 7.2, we conclude that β({An}) > α({An}). In other words, ind({An}) 6
0. Further, let {Bn} ∈ AT be such that

{Bn}{An} = {Ln}+ {Jn} and {An}{Bn} = {Ln}+ {Kn},

where {Jn}, {Kn}∈J T . Hence, the sequence {Bn} is also Fredholm and ind({Bn})
6 0. On the other hand, we have

ind({Bn})+ind({An})= ind({Bn}{An})= ind({Ln}+{Jn})= ind({Ln}) = 0.

Thus, ind({An}) = − ind({Bn}) = 0.
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COROLLARY 7.5. If a sequence {An} ∈ AT is Fredholm, then

lim inf
n→∞

sα({An})+1(An) > 0.

8. SOME EXAMPLES

In this section we illustrate the results of this paper by a few examples.

8.1. EXAMPLE 1 : PROJECTION METHODS FOR OPERATORS αI + K. Let E be an
infinite dimensional Banach space, and let {Ln} and {Rn} be two sequences of
finite dimensional projections on E with im Rn = im Ln and Ln, Rn → I strongly
as n → ∞.

We denote by T1 the index set {1} and by FT1 the Banach algebra of all
operator sequences {An}, An ∈ L(im Ln), for which there exists

s–lim An =: W1{An}.

Further we introduce the subset J 1 = J T1 of the Banach algebra FT1

J 1 = {{LnKLn}+ {Gn} : K ∈ K(E), ‖Gn‖ → 0}.

Now let A1 stand for the set of all sequences {An} ∈ FT1 having the form

An = αLn + RnKLn + Gn

with a compact operator K ∈ K(E), α ∈ C, and ‖Gn‖ → 0. One can check that A1
is a subalgebra of FT1 and that J 1 = J T1 forms a closed two-sided ideal of A1.

THEOREM 8.1. Let {An} ∈ A1, i.e. {An} = {αLn + RnKLn + Gn}.
(i) If α 6= 0, then the approximation numbers of An have the k-splitting property with

k = dim ker(αI + K).
(ii) If α = 0, then sl(An) → 0 for each l ∈ N.

Proof. If α 6= 0, then the coset {An}+ J T1 is invertible in the quotient alge-
bra A1/J T1 (see Lemma 7.3). Thus, the first assertion follows immediately from
Theorem 5.4.

If α = 0, then W1{An} = K is a compact operator. This implies that either
W1{A} is not normally solvable or dim im W1{An} < ∞. Hence, in this case we
can apply Theorem 3.3 or Corollary 3.2.

8.2. EXAMPLE 2 : FINITE SECTIONS OF TOEPLITZ OPERATORS WITH Cp + H∞
p

SYMBOLS. For 1 < p < ∞, let `
p
N denote the Banach space of all sequences x :

Z+ → CN , Z+ = {i ∈ Z : i > 0}, such that

‖x‖`
p
N

:=
( ∞

∑
i=0

‖xi‖
p
p

)1/p
< ∞,

where ‖xi‖
p
p = ‖(x1

i , x2
i , . . . , xN

i )‖p
p = |x1

i |
p + |x2

i |
p + · · ·+ |xN

i |
p.
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Further, let T be the complex unit circle and let Mp stand for the set of all
functions a ∈ L∞(T) for which the Toeplitz operator T(a) is bounded on `p =
`

p
1 . We denote by Cp the closure in Mp of the trigonometric polynomials and by

H∞ the subset of L∞(T) which consists of all functions with vanishing positive
Fourier coefficients. Furthermore, let H∞

p := H∞ ∩ Mp, Cp + H∞
p := { f + g : f ∈

Cp, g ∈ H∞
p }, and (Cp + H∞

p )N×N be the collection of N×N-matrices with entries
from Cp + H∞

p .
It is clear that if a ∈ (Cp + H∞

p )N×N , then the Hankel operator H(a) is com-
pact on `

p
N . Moreover we have

THEOREM 8.2 (see Theorem 2.94 of [2]). The Toeplitz operator T(a) with a ∈
(Cp + H∞

p )N×N is Fredholm on `
p
n if and only if the function a is invertible in (Cp +

H∞
p )N×N .

Now, for n ∈ N, we introduce the projections Pn and operators Wn on the
space `

p
N acting by the rule

Pnx = Pn(x0, x1, . . . , xn−1, xn, xn+1, . . .) := (x0, x1, . . . , xn−1, 0, 0, . . .),

Wnx = Wn(x0, x1, . . . , xn−1, xn, xn+1, . . .) := (xn−1, xn−2, . . . , x0, 0, 0, . . .).

We denote by T2 the index set {1, 2} and by FT2 the Banach algebra of all operator
sequences {An}, An ∈ L(im Pn), for which there exist

s–lim An =: W1{An} and s–lim Wn AnWn =: W2{An}.

Further we introduce the subsets J 1 and J 2 of the Banach algebra FT2

J 1 = {{PnKPn}+ {Gn} : K ∈ K(`p
N), ‖Gn‖ → 0},

J 2 = {{WnKWn}+ {Gn} : K ∈ K(`p
N), ‖Gn‖ → 0}.

Now let A2 stand for the set of all sequences {An} ∈ FT2 having the form

An = PnT(a)Pn + PnKPn + WnLWn + Gn,

where a ∈ (Cp + H∞
p )N×N , K and L are compact operators on `

p
N , and ‖Gn‖ → 0.

One can check that A2 is a subalgebra of FT2∗ and that each of the sets J 1,J 2

forms a closed two-sided ideal of A2.

THEOREM 8.3. Let {An}∈A2, i.e. {An}={PnT(a)Pn+PnKPn+WnLWn+Gn}.
(i) If the function a is invertible in (Cp + H∞

p )N×N , then the operators W1{An} =
T(a) + K and W2{An} = T(ã) + L (ã(t) = a(1/t)) are Fredholm on `

p
N and the ap-

proximation numbers of An have the k-splitting property with k = dim ker W1{An}+
dim ker W2{An}.

(ii) Otherwise, sl(An) → 0 for each l ∈ N.

Proof. By Theorem 8.2 the operator W1{An} is Fredholm on `
p
N if and only

if the function a is invertible in (Cp + H∞
p )N×N . From this and the formula (see
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e.g. 7.7(2) of [2])

{PnT(a)Pn}{PnT(b)Pn} = {PnT(ab)Pn} − {Pn H(a)H(b̃)Pn} − {Wn H(ã)H(b)Wn}

we deduce that if the operator W1{An} is Fredholm then the coset {An} + J T2

is invertible in A2/J T2 (its inverse is the coset {PnT(a−1)Pn} + J T2 ). Hence
A2 ⊂ AT2

F ∩ FT2∗ and the assertions of the theorem follow immediately from
Theorem 5.6.

REMARK 8.4. Using the same Banach algebra FT2 one can show that if a
function a ∈ M2 = L∞(T) is locally sectorial over QC (for the definition see e.g.
Section 2.84 of [2]) then the singular values for the finite sections {PnT(a)Pn} have
the k-splitting property with k = dim ker T(a) + dim ker T(ã).
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