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INTRODUCTION

Hasumi [12], Sarason [17], and Voivhick [19] started operator theory related
to function theory on multiply connected domains by providing an analogue (in
the scalar case) of Beurling’s theorem on invariant subspaces of the Hardy spaces
of the open unit disk. Their work was continued in the work of Abrahamse–
Douglas [1], [2], and of Ball [4], [5]. In particular, J.A. Ball [4] introduced the class
of C0-operators relative to a bounded finitely connected region Ω in the com-
plex plane, whose boundary ∂Ω consists of a finite number of disjoint, analytic,
simple closed curves. J. Agler [3] showed that the existence of normal boundary
dilations — an analogue of Sz.-Nagy dilation theorem — still holds for annuli but
it may fail for domains of connectivity greater than two (Dritschel–McCullough
[11]). However it holds up to similarity (R.G. Douglas–Paulsen [10]); this allowed
Zucchi [20] to provide a classification of C0-operators relative to Ω. Since no ana-
logue of the characteristic function of a contraction is available in that context,
that study does not yield some of the results available for the unit disk. In this
paper we use a substitute for the characteristic function, suggested by an ana-
logue of Beurling’s theorem provided by M.A. Abrahamse and R.G. Douglas [2].
This allows us to prove a relationship between the Jordan models of a C0-operator
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relative to Ω, of its restriction to an invariant subspace, and of its compression to
the orthocomplement of that subspace. In the case of the open unit disk, this
result was proved by H. Bercovici and D. Voiculescu [7].

This paper is organized as follows. Section 1 contains preliminaries about
bundle shifts and operators of class C0. Here we define the notion of an operator-
valued quasi-inner function and prove a useful reformulation of the description
of invariant subspaces given in [2].

In Section 2, we review concepts relating quasi-equivalence and quasi- sim-
ilarity, which were first introduced in [13], [14] and we prove the main result.

1. PREMIMINARIES AND NOTATIONS

In this paper, C, M, and L(K1, K2) denote the set of complex numbers, the
(norm) closure of a set M, and the set of bounded linear operators from K1 to K2
where K1 and K2 are Hilbert spaces, respectively.

1.1. HARDY SPACES. We refer to [16] for basic facts about Hardy spaces, and
recall here the basic definitions.

DEFINITION 1.1. The space H2(Ω) is defined to be the space of analytic
functions f on Ω such that the subharmonic function | f |2 has a harmonic majo-
rant on Ω. For a fixed z0 ∈ Ω, there is a norm on H2(Ω) defined by

‖ f ‖ = inf{u(z0)1/2 : u is a harmonic majorant of | f |2}.

Let m be a harmonic measure for the point z0, let L2(∂Ω) be the L2-space
of complex valued functions on the boundary of Ω defined with respect to m,
and let H2(∂Ω) be the set of functions f in L2(∂Ω) such that

∫
∂Ω

f (z)g(z)dz =

0 for every g that is analytic in a neighborhood of the closure of Ω. If f is in
H2(Ω), then there is a function f ∗ in H2(∂Ω) such that f (z) approaches f ∗(λ0)
as z approaches λ0 nontangentially, for almost every λ0 relative to m. The map
f → f ∗ is an isometry from H2(Ω) onto H2(∂Ω). In this way, H2(Ω) can be
viewed as a closed subspace of L2(∂Ω).

A function f defined on Ω is in H∞(Ω) if it is holomorphic and bounded.
H∞(Ω) is a closed subspace of L∞(Ω) and it is a Banach algebra if endowed with
the supremum norm. Finally, the mapping f → f ∗ is an isometry of H∞(Ω) onto
a week∗-closed subalgebra of L∞(∂Ω).

DEFINITION 1.2. If K is a Hilbert space, then H2(Ω,K) is defined to be the
space of analytic functions f : Ω → K such that the subharmonic function ‖ f ‖2

is majorized by a harmonic function ν. Fix a point z0 in Ω and define a norm on
H2(Ω,K) by

‖ f ‖ = inf{ν(z0)
1/2 : ν is a harmonic majorant of ‖ f ‖2}.
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As before, H2(Ω,K) can be identified with a closed subspace of the space
L2(∂Ω,K) of square integrable K-valued functions on ∂Ω. Define SK : H2(Ω,K) →
H2(Ω,K) by (SK f )(z) = z f (z).

1.2. VECTOR BUNDLES. We present in this section and in Section 1.3 the standard
definitions of analytic vector and flat unitary vector bundles. We refer to [2] for
this material.

Let K be a Hilbert space. An analytic vector bundle over Ω with fiber K is a
pair (E, p), where p : E → Ω is a continuous surjective map such that:

(1) Each z ∈ Ω has a neighborhood Uz for which there is a homeomorphism
ϕz : Uz×K → p−1(Uz) satisfying ϕz(ω, k) ∈ p−1(ω) for ω ∈ Uz and k ∈ K.

(2) If z1, z2 ∈ Ω, there is an analytic map ψz1,z2 : Uz1 ∩Uz2 → GL(K) satisfy-
ing ϕz1(ω, k) = ϕz2(ω, ψz1,z2(ω)k), where GL(K) is the set of all invertible linear
operators on K.

If we can choose Uz = Ω for some z ∈ Ω, we say that (E, p) is a trivial
bundle. If each ψz1,z2 is a constant unitary operator for every z1, z2 ∈ Ω, then
(E, p) is called a flat unitary vector bundle.

THEOREM A. [8] Every analytic vector bundle over Ω is analytically trivial.

1.3. BUNDLE SHIFT. Let E be a vector bundle over Ω. A cross section of a vector
bundle E over Ω is a continuous function f from Ω into E such that p( f (z)) = z
for all z in Ω. For each ω in Uz, define a map ϕω

z : K → p−1(ω) by ϕω
z (k) =

ϕz(ω, k).
If E is a flat unitary vector bundle over Ω with fiber K and if f is a cross sec-

tion of E, then for ω in Uz1 ∩Uz2 (z1, z2 ∈ Ω), the operator (ϕω
z1

)−1 ϕω
z2

is unitary
so that ‖(ϕω

z2
)−1( f (z))‖=‖(ϕω

z1
)−1( f (z))‖. This means that there is a function

h f : Ω → R defined by hE
f (z)=‖(ϕω

z2
)−1( f (z))‖, where ω is in Uz2 .

DEFINITION 1.3. We define H2(Ω, E) to be the space of analytic cross sec-
tions f of E such that (hE

f )
2 is majorized by a harmonic function.

We can define the bundle shift TE on H2(Ω,E) by (TE f )(z)=z f (z) for z ∈
Ω. The operator TE admits a functional calculus defined on the algebra R(Ω) of
rational functions with poles off Ω. More precisely, if u ∈ R(Ω), (u(TE) f )(z) =
u(z) f (z) for z ∈ Ω and f ∈ H2(Ω, E).

1.4. QUASI-INNER FUNCTION. If E and F are flat unitary bundles over Ω that
extend to an open set Ω′ containing the closure of Ω, and Θ is a bounded holo-
morphic bundle map from E to F, then Θ can be shown to have nontangential
limits a.e. relative to m on ∂Ω. The limit at a point z of ∂Ω can be regarded as an
operator from the fiber of E at z to the fiber of F at z.

DEFINITION 1.4. (i) A bounded holomorphic bundle map Θ is inner if the
nontangential limits are isometric operators a.e. relative to m.
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(ii) Let K and K′ be Hilbert spaces and let H∞(Ω,L(K,K′)) be the Banach space
of all analytic functions Φ : Ω → L(K, K′) with the supremum norm. For ϕ ∈
H∞(Ω, L(K, K′)), we will say that ϕ is quasi-inner if there exists a constant c > 0
such that for every k ∈ K and almost every z ∈ ∂Ω we have ‖ϕ(z)k‖ > c‖k‖.

THEOREM B. [2]. Let TE be a bundle shift on H2(Ω,E). Then a closed subspace
M of H2(Ω,E) is invariant under the algebra {u(TE) : u ∈ R(Ω)} if and only if
M=ΘH2(Ω,F), where F is a flat unitary bundle over Ω and Θ is an inner bundle map
from F to E.

It will be convenient to reformulate Theorem B in terms of quasi-inner func-
tions without use of vector bundles. We will say that a space M is R(Ω)-invariant
for an operator T if it is invariant under u(T) for every u ∈ R(Ω). For a Hilbert
space K, define an operator SK on H2(Ω,K) by (SK f )(z)=z f (z) for z ∈ Ω.

The proper setting here is maps of flat unitary vector bundles, i.e., multi-
plicative multivalued operator-valued functions. We will convert these to usual
single valued analytic functions by composing them with some bundle isomor-
phisms. This has been done quite often in the scalar case, see, e.g., Royden [15].

THEOREM 1.5. Let K be a Hilbert space. Then a closed subspace M of H2(Ω,
K) is R(Ω)-invariant for SK if and only if there is a Hilbert space K′ and a quasi-inner
function ϕ : Ω →L(K′,K) such that M = ϕH2(Ω,K′).

Proof. It is clear that a subspace of the form ϕH2(Ω,K′) with ϕ : Ω →L(K′,K)
quasi-inner, is R(Ω)-invariant. Conversely, consider a closed subspace M ⊂
H2(Ω, K) which is R(Ω)-invariant. Let M′ = {G ∈H2(Ω, Ω × K) : G(z) =
(z, g(z)) for some g ∈M}. Then M′ is a closed subspace of H2(Ω, Ω× K) which
is R(Ω)-invariant for TΩ×K and so, by Theorem B, there is a flat unitary bundle
F over Ω with fiber K′, and an inner bundle map Θ : F → Ω × K, such that
M′ = ΘH2(Ω,F). We know that there is a flat unitary vector bundle F′ over
an open set Ω′ containing the closure of Ω, with fiber K′, such that F is unitary
equivalent to the bundle F′|Ω [2]. By Theorem A, there is an analytic isomor-
phism Λ : Ω′ × K′ → F′.

Define an invertible operator W : H2(Ω,K′) → H2(Ω, F′|Ω) by (W f )(z) =
Λ(z, f (z)) = Λz( f (z)) for f∈H2(Ω,K′). Then M′ = ΘUWH2(Ω, K′) where U:
H2(Ω,F′|Ω)→ H2(Ω,F) is a unitary operator. For each z ∈ Ω, we can define
a bounded operator Wz: K′ →Fz by Wza=(U(Wha))(z) for a ∈K′ where ha ∈
H2(Ω, K′) defined by ha(z) = a.

Let ϕ(z)=ΘzWz for z ∈ Ω where Θz = Θ|Fz. Then ϕ ∈H∞(Ω, L(K′, K)) and
M = ϕH2(Ω,K′). To conclude our proof, we must verify that ϕ is quasi-inner.

From the fact that Λ is an analytic isomorphism, we see that the function
z → (Λz)−1 is holomorphic on Ω′, and so there is m > 0 such that ‖(Λz)−1‖6
m for any z∈Ω. Therefore ‖W−1

z ‖ 6 m for any z∈Ω as well, so that ‖a‖/m6
‖ϕ(z)a‖ a.e. on ∂Ω for a ∈ K′ as desired.
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LEMMA 1.6. Let K1 and K2 be separable Hilbert spaces. If T : H2(Ω, K1) →
H2(Ω, K2) is a bounded linear operator such that TSK1 = SK2 T, then there is a func-
tion ψ ∈H∞(Ω, L(K1, K2)) such that T = Mψ, where Mψ(g)(z) = ψ(z)g(z) for
g ∈H2(Ω, K1), and we have ‖T‖ = ‖ψ‖∞.

Proof. Define Y ∈ (SK1⊕K2)
′ by Y=

(
0 0
T 0

)
. Then by the Proposition 1.9 in

[2], Y = Mω where ω ∈H∞(Ω, L(K1⊕K2)). Let ω =
(

ω11 ω12
ω21 ω22

)
. Take ψ = ω21,

then T = Mψ and one can check easily that ‖T‖ = ‖ψ‖∞.

COROLLARY 1.7. Let ϕ1 : Ω → L(K1, K) and ϕ2 : Ω → L(K2, K) be quasi-
inner functions.

Then the subspaces ϕ1H2(Ω,K1) and ϕ2H2(Ω,K2) of H2(Ω,K) are equal if and
only if there exist functions ϕ∈H∞(Ω,L(K1, K2)) and ψ ∈H∞(Ω,L(K2,K1)) such that
ϕψ = IK2 , ψϕ = IK1 and ϕ1(z)=ϕ2(z)ϕ(z) for any z∈Ω. In particular, K1 and K2 have
the same dimension.

Proof. The condition ϕ1(z)=ϕ2(z)ϕ(z) with ϕ invertible clearly implies
ϕ1H2(Ω, K1) =ϕ2H2(Ω,K2). Conversely, assume that ϕ1H2(Ω,K1)=ϕ2H2(Ω,K2).
Define an operator T : H2(Ω, K1) → H2(Ω, K2) as follows. For f ∈ H2(Ω, K1),
T f = g such that ϕ1 f = ϕ2g. Since ϕi (i = 1, 2) is a quasi-inner function, T is
well-defined and invertible. Since SK2 T = TSK1 , by the previous lemma T = Mϕ

for a function ϕ∈H∞(Ω,L(K1,K2)). Note that the invertibility of T is equivalent
to the invertibility of ϕ. It follows that ϕ1 f = ϕ2 ϕ f for any f ∈ H2(Ω, K1) and
so ϕ1 = ϕ2 ϕ. Since ϕ(z) is invertible for any z ∈ Ω, K1 and K2 have the same
dimension.

1.5. THE CLASS C0. The theory of Jordan models for contractions of class C0 was
developed by Sz.-Nagy–Foias, Moore–Nordgren, and Bercovici–Voiculescu.

We will present in this section the definition of C0-operators relative to Ω.
Reference for this material is Zucchi [20].

Let H be a Hilbert space and K1 be a compact subset of the complex plane.
If T∈L(H) and σ(T)⊆K1, for r = p/q a rational function with poles off K1, we
can define an operator r(T) by q(T)−1 p(T).

DEFINITION 1.8. If T∈L(H) and σ(T)⊆K1, we say that K1 is a spectral set for
the operator T if ‖r(T)‖6max{|r(z)|: z∈K1}, whenever r is a rational function
with poles off K1.

If T ∈L(H) is an operator with Ω as a spectral set and with no normal sum-
mand with spectrum in ∂Ω, i.e., T has no reducing subspace M⊆H such that T|M
is normal and σ(T|M)⊆∂Ω, then we say that T satisfies Hypothesis (h).
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THEOREM 1.9 ([20], Theorem 3.1.4). Let T∈L(H) be an operator satisfying
Hypothesis (h). Then there is a unique norm continuous representation ΨT of H∞(Ω)
into L(H) such that :

(i) ΨT(1)=IH , where IH∈L(H) is the identity operator;
(ii) ΨT(g)=T, where g(z)=z for all z∈Ω;

(iii) ΨT is continuous when H∞(Ω) and L(H) are given the weak∗-topology.
Moreover ΨT is contractive, i.e., ‖ΨT( f )‖6‖ f ‖ for all f∈H∞(Ω).

From now on we will indicate ΨT( f ) by f (T) for all f∈H∞(Ω).

DEFINITION 1.10. An operator T satisfying hypothesis (h) is said to be of
class C0 relative to Ω if there exists u ∈ H∞(Ω)\{0} such that u(T)=0.

By Theorem 1 in [15], if T is of class C0 relative to Ω, then there is a quasi-
inner function mT ∈ H∞(Ω) such that ker(ΨT) = mT H∞(Ω) and mT is said to be
a minimal function of T.

1.6. JORDAN MODEL.

DEFINITION 1.11. Let H and H′ be Hilbert spaces. An operator T∈L(H) is
called a quasiaffine transform of an operator T′∈L(H′) if there exists an injective
operator X∈L(H, H′) with dense range in H′ such that T′X=XT. We write T ≺
T′ if T is a quasiaffine transform of T′. The operators T and T′ are quasisimilar
(T ∼ T′) if T ≺ T′ and T′ ≺ T.

Let θ and θ′ be two functions in H∞(Ω). We say that θ divides θ′ (or θ|θ′) if
θ′ can be written as θ′=θ·φ for some φ∈H∞(Ω). We will use the notation θ ≡ θ′ if
θ|θ′ and θ′|θ.

DEFINITION 1.12. (i) Given a quasi-inner function θ∈H∞(Ω), the Jordan
block S(θ) is the operator acting on the space H(θ)=H2(Ω)	 θH2(Ω) as follows:

(1.1) S(θ) = PH(θ)S|H(θ)

where S∈L(H2(Ω)) is defined by (S f )(z)=z f (z).
(ii) Let Θ={θi∈H∞(Ω): i = 1, 2, 3, . . .} be a family of quasi-inner functions.

Then Θ is called a model function if θi|θj whenever j 6 i. The Jordan operator S(Θ)
determined by the model function Θ is the C0-operator defined as S(Θ)=

⊕
i<γ′

S(θi),

γ′=min{k: θk ≡ 1}.

We will call S(Θ) the Jordan model of the operator T if S(Θ) ∼ T. From [20],
we can get following results:

THEOREM C. For every operator T of class C0 relative to Ω acting on a separable
space H, there is a unique Jordan model for T.
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PROPOSITION 1.13. Let T be of class C0 relative to Ω acting on a separable space
H and H′ be R(Ω)-invariant for T. If T ∼ ⊕

α<γ
S(θα) and T|H′ ∼ ⊕

α<γ′
S(θ′α), then

θ′α|θα for every α 6 min{γ, γ′}.

1.7. SCALAR MULTIPLES. Let K and K′ be Hilbert spaces and ϕ∈H∞(Ω,L(K,K′))
be a quasi-inner function. We set H(ϕ) = H2(Ω,K′)	 ϕH2(Ω,K) and denote by
S(ϕ) the compression of SK′ to H(ϕ), i.e., S(ϕ) = PH(ϕ) SK′ |H(ϕ), where PH(ϕ)
denotes the orthogonal projection onto H(ϕ).

DEFINITION 1.14. The function ϕ∈H∞(Ω, L(K, K′)) is said to have a scalar
multiple u ∈ H∞(Ω), u 6=0, if there exists ψ∈H∞(Ω,L(K′,K)) satisfying the rela-
tion ϕ(z)ψ(z) = u(z)IK′ for z ∈ Ω.

THEOREM 1.15. Suppose that ϕ∈H∞(Ω,L(K,K′)) is a quasi-inner function and
u∈H∞(Ω). Then the following assertions are equivalent :

(i) u is a scalar multiple of ϕ.
(ii) u(S(ϕ)) = 0.

(iii) uH2(Ω,K′) ⊂ ϕH2(Ω,K).

Proof. Assume (i), and let ψ∈H∞(Ω,L(K′,K)) such that ϕ(z)ψ(z)=u(z)· IK′

for z∈Ω. Then u(S(ϕ))H(ϕ)=PH(ϕ)u(SK′)H(ϕ) ⊂ PH(ϕ)uH2(Ω,K′) ⊂ PH(ϕ)ϕ

H2(Ω,K). Thus u(S(ϕ))=0. Thus (i)→(ii).
Next, assume (ii). Then u(SK′)H(ϕ)=uH(ϕ)⊂ϕH2(Ω,K). It follows that

uH2(Ω, K′) =uH(ϕ)+uϕH2(Ω,K)⊂ϕH2(Ω,K). Thus (ii) → (iii).
To prove (iii)→(i), let M={ f∈H2(Ω,K):ug=ϕ f for some g∈H2(Ω,K′)}. Then

M is R(Ω)-invariant for SK. By Theorem 1.5, there is a Hilbert space K1 and a
quasi-inner function ϕ1∈H∞(Ω,L(K1,K)) such that M=ϕ1H2(Ω,K1). From Theo-
rem 2.2.4 in [20], u=θF where θ is a function such that |θ| is constant almost ev-
erywhere on each component of ∂Ω and F is an outer function in H∞(Ω). By the
definition of M, θH2(Ω, K′)=θFH2(Ω, K′)=uH2(Ω, K′)=ϕM=ϕM=ϕϕ1H2(Ω,K1).
Since θ is quasi-inner, θ IK′∈H∞(Ω,L(K′)) is also quasi-inner. (Note that (θ IK′)(z)
= θ(z)IK′ ). Then by Corollary 1.7, there exist ϕ2∈H∞(Ω,L(K′,K1)) such that
θ IK′ = ϕϕ1 ϕ2. Then uIK′ = ϕ(Fϕ1 ϕ2), i.e. u(z)IK′ = ϕ(z)(F(z)ϕ1(z)ϕ2(z)). Since
Fϕ1 ϕ2 ∈ H∞(Ω, L(K′, K)), u is a scalar multiple of ϕ.

In the next statement, adj ϕ : Ω → L(Cn) is defined by (adj ϕ)(z)=adj(ϕ(z))
which is the algebraic adjoint of ϕ(z) (i.e., A · adj(A)=adj(A) · A=det(A)ICn for
A ∈ L(Cn)).

PROPOSITION 1.16. Let K and K′ be Hilbert spaces with dim K = dim K′ =
n (< ∞).

(i) If ϕ ∈ H∞(Ω, L(Cn)) is a quasi-inner function, then θ, defined by θ(z) =
det(ϕ(z)), is quasi-inner.

(ii) If ϕ∈H∞(Ω,L(Cn)) is a quasi-inner function, then adj ϕ is quasi-inner.
(iii) If ϕ∈H∞(Ω,L(K,K′)) is a quasi-inner function, then S(ϕ) is of class C0.
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Proof. (i) and (ii): Since ϕ is quasi-inner, there exists m > 0 such that for
h∈Cn, m‖h‖ 6 ‖ϕ(z)h‖ a.e. z ∈ ∂Ω. Then

mn 6 |det(ϕ(z))| and mn−1 6 | adj(ϕ(z))| a.e. z ∈ ∂Ω.

From those facts one can conclude that (i) and (ii) are true.
(iii): By Theorem 1.15, it is enough to prove that ϕ has a scalar multiple

u∈H∞(Ω). Let ψ(z)=adj(ϕ(z)) and u(z)=det(ϕ(z)). Then by (ii), ψ∈H∞(Ω,L(K′,
K)) and by (i), u( 6= 0)∈H∞(Ω). Since ϕ(z)[adj(ϕ(z))]=[det(ϕ(z))]IK′ for z ∈ Ω,
it is proven.

Let θ and θ′ be two quasi-inner functions in H∞(Ω). If θ ≡ θ′ i.e., θ and θ′

belong to the same equivalence class under the equivalence relation ≡ between
H∞(Ω) functions introduced after Definition 1.13, then it is convenient to regard
them as the same element in H∞(Ω), and introduce the following definition.

DEFINITION 1.17. Let F be a family of functions in H∞(Ω). A quasi-inner
function θ∈H∞(Ω) is called the greatest common quasi-inner divisor of F if θ divides
every element in F and if θ is a multiple of any other common quasi-inner divisor
of F. The greatest common quasi-inner divisor of F is denoted by

∧
F (or

∧
i∈I

fi if

F={ fi : i∈I }, or f1∧ f2 if F={ f1, f2}).

2. QUASI-EQUIVALENCE AND QUASI-SIMILARITY

2.1. NORMAL FORM.

DEFINITION 2.1. A quasi-unit X of order n is a collection of n × n matrices
over H∞(Ω) such that the family det(X)={det(X) : X∈X} is relatively prime, i.e.∧

det(X) ≡ 1.

DEFINITION 2.2. If A and B are m× n matrices over H∞(Ω), then A is said
to be quasi-equivalent to B if there exist quasi-units X and Y of order m and n
respectively such that XA=BY where XA={XA : X ∈ X} and BY={BY : Y ∈ Y}.

A matrix E over H∞(Ω) is in normal form (or simply normal) provided

(2.1) E =
(

D 0
0 0

)
where D is a diagonal matrix of nonzero quasi-inner functions and each one ex-
cept the first divides its predecessor.

DEFINITION 2.3. Let Dk(A) be the greatest common quasi-inner divisor of
all minors of rank k of A (k is no larger than min{m, n}) and D0=1. Then the
invariant factors for a m× n matrix A over H∞(Ω) are defined by

ξk(A) =
Dk(A)

Dk−1(A)
for k > 1
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such that some minors of rank k are not 0.

The following result is proved as Theorem 3.1 in [14].

PROPOSITION 2.4. Every n×n matrix over H∞(Ω) is quasi-equivalent to a nor-
mal matrix. In fact, for any n×n matrix A over H∞(Ω), A is quasi-equivalent to the
normal matrix formed by the invariant factors of A.

The following result is proved as in the case of the open unit disk [6].

COROLLARY 2.5. Let ϕ be a quasi-inner function in H∞(Ω,L(Cn)). If ϕ is quasi-
equivalent to a normal matrix N whose diagonal entries are θ0, . . . , θn−1, then det ϕ ≡
θ0 · · · θn−1.

Let f1 and f2 be in H∞(Ω). If M is the w∗-closure of f1H∞(Ω) + f2H∞(Ω),
then by the same way as Theorem 1 in [15], we can get M=( f1∧ f2)H∞(Ω).

PROPOSITION 2.6. Let ϕ1, ϕ2∈H∞(Ω) be functions such that ϕ1∧ϕ2 ≡ 1. If
f∈L2(∂Ω,Cn) and ϕ1 f , ϕ2 f∈H2(∂Ω,Cn), then f∈H2(∂Ω,Cn).

Proof. Since ϕ1∧ϕ2≡1, the w∗-closure of ϕ1H∞(∂Ω)+ϕ2H∞(∂Ω) is H∞(∂Ω).
Thus there are nets { fα} and {gα} in H∞(∂Ω) such that hα=ϕ1 fα+ϕ2gα converges
to 1, i.e.

(2.2)
∫

∂Ω

(hα − 1)hdm → 0

for any h∈L1(∂Ω). We will prove that hα f→ f weakly in L2(∂Ω, Cn), i.e. ((hα f -
f ), g)→0 for any g∈L2(∂Ω,Cn). Indeed, if f =( f1, . . . , fn) and g=(g1, . . . , gn), then
(hα f − f , g) =

∫
∂Ω

(hα−1)hdm where h = ∑
i

figi ∈ L1(∂Ω). From (2.2), we have

hα f → f weakly in L2(∂Ω).

Since a subspace of a Banach space is norm closed if and only if it is weakly closed
[9], H2(∂Ω,Cn) is weakly closed. Since ϕ1 f , ϕ2 f∈H2(∂Ω,Cn), hα f∈H2(∂Ω,Cn).
If follows that f∈H2(∂Ω,Cn).

The following results are proved as in the case of the open unit disk [6].

PROPOSITION 2.7. Let ϕ1 and ϕ2 be quasi-inner functions in H∞(Ω,L(Cn)). If
ϕ1 and ϕ2 are quasi-equivalent, then S(ϕ1) and S(ϕ2) are quasisimilar.

COROLLARY 2.8. Let ϕ be a quasi-inner function in H∞(Ω,L(Cn)). If ϕ is quasi-
equivalent to a normal matrix N whose diagonal entries are θ0, . . . , θn−1 (θi+1|θi for

i=0, 1, . . . , n− 1), then S(ϕ) ∼
n−1⊕
i=0

S(θi).

Proof. Since S(N) ∼
n−1⊕
i=0

S(θi), by Proposition 2.7, S(ϕ) ∼
n−1⊕
i=0

S(θi), because

” ∼ ” is an equivalence relation.
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COROLLARY 2.9. Let ϕ1 and ϕ2 be quasi-inner functions in H∞(Ω,L(Cn)). If
S(ϕ1) is a quasi-affine transform of S(ϕ2), then ϕ1 and ϕ2 are quasi-equivalent.

COROLLARY 2.10. Let ϕ be a quasi-inner function in H∞(Ω,L(Cn)). If S(ϕ) ∼
n−1⊕
i=0

S(θi), then detϕ ≡ θ0 · · · θn−1.

Proof. Let N be a normal matrix whose diagonal entries are θ0, . . . , θn−1.

Since S(N) ∼
n−1⊕
i=0

S(θi), S(ϕ) ∼ S(N). By Corollary 2.9, ϕ and N are quasi-

equivalent. Then by Corollary 2.5, det ϕ ≡ θ0 · · · θn−1.

2.2. MAIN RESULTS. In this section, first of all we show how to use Theorem 1.5
and Corollary 1.7.

THEOREM 2.11. Let F and F′ be two separable Hilbert spaces and ϕ be a quasi-
inner function in H∞(Ω,L(F, F′)).

(i) If M ⊂ H(ϕ) is R(Ω)-invariant for S(ϕ), then there is a Hilbert space K and
there are quasi-inner functions ϕ1 ∈ H∞(Ω,L(F, K)) and ϕ2∈H∞(Ω,L(K, F′)) such
that ϕ(z)=ϕ2(z)ϕ1(z) for z∈Ω and

(2.3) M = ϕ2H2(Ω, K)	 ϕH2(Ω, F).

(ii) Conversely, if K, ϕ1 and ϕ2 are as above , then (2.3) defines a R(Ω)-invariant

subspace of H(ϕ). Moreover, if S(ϕ)=
(

T1 X
0 T2

)
is the triangularization of S(ϕ) with

respect to the decomposition H(ϕ)=M ⊕ (H(ϕ) 	M), then T2=S(ϕ2) and S(ϕ1) is
similar to T1.

Proof. (i) Since M is R(Ω)-invariant, the space M⊕ ϕH2(Ω, F) is also R(Ω)
-invariant subspace of H2(Ω, F′) and so Theorem 1.5 implies the existence of a
Hilbert space K and of a quasi-inner function ϕ2∈H∞(Ω,L(K, F′)) such that (2.3)
holds.

The inclusion ϕH2(Ω, F) ⊂ ϕ2H2(Ω, K) implies that for any f∈H2(Ω, F)
there is φ f∈H2(Ω, K) such that ϕ f =ϕ2φ f . Let M′={φ f∈H2(Ω, K) : ϕ f =ϕ2φ f

for some f∈H2(Ω, F)}. Since ϕ(r f )=ϕ2(rφ f ) for any r∈R(Ω) and f∈H2(Ω, F),
M′ is also a R(Ω)-invariant subspace of H2(Ω, K), and so M′=ϕ3H2(Ω, K′) for
some Hilbert space K′ and a quasi-inner function ϕ3∈H∞(Ω,L(K′, K)) by Theo-
rem 1.5. It follows that ϕH2(Ω, F)=ϕ2 ϕ3H2(Ω, K′) by the definition of M′. By
Corollary 1.7, there is a function ϕ4∈H∞(Ω,L(F, K′)) such that ϕ=ϕ2 ϕ3 ϕ4.

Let ϕ1=ϕ3 ϕ4∈H∞(Ω,L(F, K)). Since ϕ and ϕ2 are quasi-inner functions, so
is ϕ1. Thus ϕ1 is a quasi-inner function satisfying ϕ=ϕ2 ϕ1.

(ii) The R(Ω)-invariance of the subspace M described by (2.3) is obvious.
Since H(ϕ)	 M=H2(Ω, F′)	 ϕ2H2(Ω, K)=H(ϕ2), we have

T2
∗ = S(ϕ)∗|H(ϕ)	 M = S∗F′ |H(ϕ2) = S(ϕ2)

∗.
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Thus T2 = S(ϕ2). It remains to prove similarity of T1 and S(ϕ1). Define Y :
H2(Ω, K)→ ϕ2H2(Ω, K) by Y f = ϕ2 f . Clearly Y is onto. Since ϕ2 is a quasi-inner
function, Y is one-to-one. Since Y(ϕ1H2(Ω, F)) = ϕ2 ϕ1H2(Ω, F) = ϕH2(Ω, F),
ϕ2H2(Ω, K) = M ⊕ ϕH2(Ω, F) and H2(Ω, K)=H(ϕ1) ⊕ ϕ1H2(Ω, F), we have
PMY(H(ϕ1))=M. Thus we can define a bounded linear operator F : H(ϕ1) → M
by Fg = PM ϕ2g for g ∈ H(ϕ1), and F is onto. Since ϕ2 is a quasi-inner function,
ker F = {g ∈ H(ϕ1): ϕ2g ∈ ϕH2(Ω, F)} ={g ∈ H(ϕ1) : g∈ ϕ1H2(Ω, F)} = {0}.
It follows that F ∈ L(H(ϕ1), M) is bijective. By the Open Mapping Theorem, F is
invertible and clearly T1F = FS(ϕ1).

Fix n > 1, and consider the mapping Γn : L(F) → L(
⊗nF) given by Γn(T) =

T ⊗ T ⊗ · · · ⊗ T, where F is a Hilbert space and T ∈ L(F).
Define a unitary representation πn : Sn → L(

⊗nF) where Sn denotes the
group of permutations of {1, 2, . . . , n}, defined by

(2.4) πn(σ)(x1 ⊗ x2 ⊗ · · · ⊗ xn) = xσ−1(1) ⊗ xσ−1(2) ⊗ · · · ⊗ xσ−1(n),

σ ∈ Sn, xj ∈ F, 1 6 j 6 n.
The homomorphism πn can be extended to a ∗-homomorphism, still de-

noted πn, from the C∗-algebra consisting of all formal sums ∑
σ∈Sn

ασσ (ασ ∈ C) to

L(⊗nF). We will use the alternating projection an defined by

(2.5) an =
1
n! ∑

σ∈Sn

ε(σ)σ,

where ε(σ) is the sign of σ, i.e. ε(σ) = +1 or −1 according to whether σ is an even
or odd permutation. Let n > 1 be a natural number. We use the notation

∧nF for
πn(an) (⊗nF). The space

∧nF is called the nth exterior power of F. If B ∈ L(F), we
denote by

∧nB the operator Γn(B)|∧nF.

PROPOSITION 2.12. If A and B are quasi-equivalent quasi-inner functions in
H∞(Ω, L(Cn)), then

∧k A and
∧kB are quasi-equivalent, for 1 6 k 6 n.

Proof. This is same as Proposition 6.5.17 in [6].

PROPOSITION 2.13. If A =


θ0 0 . . . 0
0 θ1 . . . 0

0 0 . . . θn−1


n×n

is normal, then S(
∧k A)

has minimal function θ0θ1 · · · θk−1 for k = 1, . . . , n.

Proof. Since
∧k A is also a diagonal quasi-inner function with diagonal en-

tries θi1 θi2 · · · θik where ip 6= iq for p 6= q ([6]), the minimal function of S(
∧k A) is

θ0θ1 · · · θk−1.
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If {Mi}i∈I is a family of subsets of the Hilbert space H, we denote by
∨
i∈I

Mi

the closed linear span generated by
⋃
i∈I

Mi.

DEFINITION 2.14. Let T ∈ L(H) be an operator with spectrum in Ω. A sub-
set G ⊆ H with the property that

∨{r(T)m ; r ∈ R(Ω), m ∈ G} = H, is called
an R(Ω)-cyclic set for T. The multiplicity µT of T is the smallest cardinality of an
R(Ω)-cyclic set for T. The operator T is said to be multiplicity-free if µT = 1. If µT
= 1, any vector x ∈ H such that

∨{r(T)x ; r ∈ R(Ω)} = H is said to be R(Ω)-cyclic
for T.

Recall that if µT 6 n, then Jordan model of T is
n−1⊕
j=0

S(θj) [20].

PROPOSITION 2.15. Assume that T ∈ L(H) is an operator of class C0 relative to

Ω such that µT = n < ∞, H′ is a R(Ω)-invariant subspace for T, and T =
(

T′ Y
0 T′′

)
is the triangularization of T with respect to the decomposition H = H′ ⊕ (H 	 H′). If⊕
j<n

S(θj),
⊕
j<n

S(θ′j), and
⊕
j<n

S(θ′′j ) are the Jordan models of T, T′, T′′, respectively, then

θ0 · · · θk−1|θ′0 · · · θ′k−1θ′′0 · · · θ′′k−1

for every k such that 16k<n, and

θ0 · · · θn−1 ≡ θ′0 · · · θ′n−1θ′′0 · · · θ′′n−1.

Proof. Let f ∈ H∞(Ω,L(Cn)) be a quasi-inner function such that f is a nor-
mal matrix whose diagonal entries are θ0, . . . , θn−1. By Corollary 2.8, S( f ) =
n−1⊕
j=0

S(θj) ∼ T. Thus there is an injective operator X ∈ L(H, H( f )) with dense

range such that S( f )X = XT.
Let M be the closure of XH′. Since H′ is a R(Ω)-invariant subspace for T,

so is M for S( f ). Then by Theorem 2.11, there are quasi-inner functions f1 ∈
H∞(Ω, L(Cn)) and f2 ∈ H∞(Ω, L(Cn)) such that

f = f2 f1 and M = f2H2(Ω, Cn)	 f H2(Ω, Cn).

If S( f ) =
(

T1 Z
0 T2

)
is the triangularization of S( f ) with respect to the decompo-

sition H( f ) = M⊕ (H( f )	 M), then by Theorem 2.11, T1 is similar to S( f1) and
T2 = S( f2).

Let X′ = X|H′. Then T1X′ = S( f )X|H′ = XT|H′ = X′T′ and so T1 ∼

T′ ∼
n−1⊕
j=0

S(θ′j). Since T1 is similar to S( f1), S( f1) ∼
n−1⊕
j=0

S(θ′j). Define X′′ : H( f )	

M → H 	 H′ by X′′ = X∗|H( f )	 M. Then X′′ is injective with dense range in
H 	 H′ and X′′T2

∗ = X∗S( f )∗|H( f )	 M = T∗X∗|H( f )	 M = (T′′)∗X′′. Thus
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T2 ∼ T′′ ∼
n−1⊕
j=0

S(θ′′j ). It follows that S( f2) ∼
n−1⊕
j=0

S(θ′′j ). Fix k such that 1 6 k < n

and note that
∧k f =

∧k f2 ∧
∧k f1. By Proposition 2.13, the minimal function

of S(
∧k f ) is θ0θ1 · · · θk−1. By Corollary 2.9, there are normal matrices N1 and

N2 which are quasi-equivalent to f1 and f2, respectively and diagonal entries of
N1 (N2) are θ′0, θ′1, . . . , θ′n−1 (θ′′0 , θ′′1 , . . . , θ′′n−1 , respectively). By Proposition 2.12,∧k f1 and

∧k N1 are quasi-equivalent. By Proposition 2.7, S(
∧k f1) and S(

∧k N1)
are quasisimilar. Thus the minimal functions of S(

∧k f1) is θ′0θ′1 · · · θ′k−1. Simi-
larly, the minimal function of S(

∧k f2) is θ′′0 θ′′1 · · · θ′′k−1. By Theorem 1.15, there
are functions g′, g′′ ∈ H∞ (Ω, L(

∧k Cn)) such that g′(
∧k f1) = θ′0θ′1 · · · θ′k−1 I

and g′′(
∧k f2) = θ′′0 θ′′1 · · · θ′′k−1 I. Combining these relations we get g′g′′(

∧k f ) =
g′g′′(

∧k f2
∧k f1) = θ′0θ′1 · · · θ′k−1θ′′0 θ′′1 · · · θ′′k−1 I and this corollary follows because

θ0θ1 · · · θk−1 is the least scalar multiple of
∧k f by Theorem 1.15.

Next, for k = n, since S( f ) ∼
n−1⊕
j=0

S(θj), S( f1) ∼
n−1⊕
j=0

S(θ′j), and S( f2) ∼

n−1⊕
j=0

S(θ′′j ), by Corollary 2.10, det( f ) ≡ θ0θ1 · · · θn−1, det( f1) ≡ θ′0θ′1 · · · θ′n−1, and

det( f2) ≡ θ′′0 θ′′1 · · · θ′′n−1. From the fact f = f2 f1, we can get det( f ) = (det( f2))
(det( f1)) which proves the case k = n.

When T ∈ L(H) is an operator of class C0 relative to Ω and K =
∨{r(T)h :

r ∈ R(Ω)}, let mh denote the minimal function of T|K. We have the following
proposition from Theorem 4.3.10 in [20].

PROPOSITION 2.16. Let T ∈ L(H) be an operator of class C0 relative to Ω. If⊕
j<ω

S(θj) is the Jordan model of T, then for any k = 1, 2, 3, . . ., there are R(Ω)-invariant

subspaces M−1, M0,. . . , Mk−2 and h0, h1,. . . ,hk−1 in H such that

(2.6) hi ∈ Mi−1 and mhi
= mT|Mi−1

for i = 0, 1, . . . , k− 1, and

(2.7) Ki ∨ Mi = Mi−1 and Ki ∩ Mi = {0}

for i = 0, 1, . . . , k− 1, where M−1 = H and Ki =
∨{r(T)hi : r ∈ R(Ω)}.

THEOREM 2.17. Assume that T ∈ L(H) is an operator of class C0 relative to Ω,

H′ is a R(Ω)-invariant subspace for T, and T =
(

T′ Y
0 T′′

)
is the triangularization of

T with respect to the decomposition H = H′ ⊕ (H 	 H′). If
⊕
j<γ

S(θj),
⊕
j<γ

S(θ′j), and⊕
j<γ

S(θ′′j ) are the Jordan models of T, T′, T′′, respectively, then

θ0 · · · θk−1|θ′0 · · · θ′k−1θ′′0 · · · θ′′k−1
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for every k = 1, 2, 3, . . . .

Proof. Fix k > 1. Since T ∼ ⊕
j<ω

S(θj), by Proposition 2.16 and proof of

Theorem 4.3.10 in [20], there is a R(Ω)-invariant subspace M for T such that
T1= T|M ∼ ⊕

j<k
S(θj). Clearly H1

′ = M ∩ H′ is R(Ω)-invariant for T1.

Let T1 =
(

T′1 Y1
0 T′′1

)
be the triangularization of T1 with respect to the de-

composition M = H′
1 ⊕ (M	 H′

1). If
⊕

j
S(φ′j) and

⊕
j

S(φ′′j ) are Jordan models of

T′1 and T′′1 , respectively, then

(2.8) θ0 · · · θk−1 ≡ φ′0 · · · φ′k−1φ′′0 · · · φ′′k−1

by Proposition 2.15. (Note µT1 6 k.) Since T′|H1
′ = T1

′, by Proposition 1.13,
φi
′|θi

′ for i = 0, . . . , k− 1.
Next, let H′′

1 = M 	 H′
1, H′′ = H 	 H′, and X : H1

′′ → H′′ be orthogo-
nal projection. If a ∈ kerX, then a ∈ H′ ∩ (M	 H′

1) ⊂ H′ ∩ M = H1
′. Since

a ∈ H′′
1 (= M	 H′

1), a = 0. Thus X is one-to-one. Moreover, H′ is invariant for T,
and H′′ is invariant for T∗. Thus T∗PH′′ = PH′′T∗PH′′ and so PH′′T = (T∗PH′′)∗ =
(PH′′T∗PH′′)∗ = PH′′TPH′′ = T′′PH′′ . Since PH′′T′′1 = PH′′PM	H′

1
T|M	 H′

1 =
PH′′T|M	 H′

1, T′′X = XT′′1 . Since X is one-to-one, T′′1 is quasi-similar to a restric-
tion of T′′ to an invariant subspace and so we can get φi

′′|θi
′′ for i = 0, . . . , k − 1.

Thus from (2.8), we can conclude that θ0 · · · θk−1|θ′0 · · · θ′k−1θ′′0 · · · θ′′k−1.
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