INTERPOLATION CLASSES AND MATRIX MONOTONE FUNCTIONS

YACIN AMEUR, STEN KAIJSER and SERGEI SILVESTROV

Communicated by William B. Arveson

Abstract

An interpolation function of order n is a positive function f on $(0, \infty)$ such that $\left\|f(A)^{1 / 2} T f(A)^{-1 / 2}\right\| \leqslant \max \left(\|T\|,\left\|A^{1 / 2} T A^{-1 / 2}\right\|\right)$ for all $n \times$ n matrices T and A such that A is positive definite. By a theorem of Donoghue, the class C_{n} of interpolation functions of order n coincides with the class of functions f such that for each n-subset $S=\left\{\lambda_{i}\right\}_{i=1}^{n}$ of $(0, \infty)$ there exists a positive Pick function h on $(0, \infty)$ interpolating f at S. This note comprises a study of the classes C_{n} and their relations to matrix monotone functions of finite order. We also consider interpolation functions on general unital C^{*} algebras.

KEYWORDS: Interpolation function, matrix monotone function, Pick function.
MSC (2000): 46B70, 46L05, 47A56.

1. INTRODUCTION

An interpolation function h relative to a positive operator A in a Hilbert space H is a positive continuous function defined on the spectrum of A fulfilling the condition

$$
\begin{equation*}
\left\|h(A)^{1 / 2} \operatorname{Th}(A)^{-1 / 2}\right\| \leqslant \max \left(\|T\|,\left\|A^{1 / 2} T A^{-1 / 2}\right\|\right) \tag{1.1}
\end{equation*}
$$

for every bounded operator T on H. By a theorem of Donoghue [6], [5] (cf. also [1], [2]), it is known that the class of interpolation functions relative to A coincides precisely with the class of restrictions to $\sigma(A)$ of positive Pick functions, i.e., functions of the form

$$
\begin{equation*}
h(\lambda)=\int_{[0, \infty]} \frac{(1+t) \lambda}{1+t \lambda} \mathrm{~d} \rho(t), \quad \lambda>0 \tag{1.2}
\end{equation*}
$$

where ϱ is some positive Radon measure on $[0, \infty]$. The convex cone of functions having such a representation is denoted by the symbol P^{\prime}.

Now fix $n \in \mathbb{N}$, and assume that $H=\ell_{2}^{n}$ is an n-dimensional Hilbert space. We shall say that a function h defined on $\mathbb{R}_{+}=(0, \infty)$ is an interpolation function of order n and write $h \in C_{n}$ if h satisfies (1.1) for every positive operator $A \in B\left(\ell_{2}^{n}\right)$. By the cited theorem of Donoghue, a function f belongs to C_{n} if and only if for every n-set $\left\{\lambda_{i}\right\}_{i=1}^{n} \subset \mathbb{R}_{+}$there exists a function $h \in P^{\prime}$ such that $f\left(\lambda_{i}\right)=h\left(\lambda_{i}\right)$ for $i=1, \ldots, n$. (Of course, the function h depends on f and the set $\left\{\lambda_{i}\right\}_{i=1}^{n}$ and is in general not unique.)

The classes C_{n} are related to the classes P_{n}^{\prime} of positive matrix monotonic functions of order n on \mathbb{R}_{+}. This is the set of functions $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$having the property that for any positive definite $n \times n$-matrices A, B, the condition $A \leqslant B$ implies $h(A) \leqslant h(B)$. Indeed, it is known that $\bigcap_{n=1}^{\infty} P_{n}^{\prime}=\bigcap_{n=1}^{\infty} C_{n}=P^{\prime}$. The equality $\bigcap P_{n}^{\prime}=P^{\prime}$ is a well-known theorem of Löwner [13], whereas the fact that $\bigcap C_{n}=P^{\prime}$ is essentially due to Foiaş and Lions [8].

We remark that Löwner's original proof of the fact that $\bigcap P_{n}^{\prime}=P^{\prime}$ depends on the theory of interpolation of matrix monotone functions by Pick functions. A standard source on this type of interpolation is Donoghue's book [7]. Indeed, by a result from Löwner's theory, a matrix monotone function $h \in P_{n}^{\prime}$ can be interpolated at any subset of \mathbb{R}_{+}consisting of $2 n-1$ points by a P^{\prime}-function, but the latter condition is in general not sufficient for $h \in P_{n}^{\prime}$ to hold. We will use this fact later in Section 3 to prove that $P_{n+1}^{\prime} \subseteq C_{2 n+1} \subseteq C_{2 n} \subseteq P_{n}^{\prime}$ for all n, where all inclusions are proper for appropriate values of n.

We finally remark that a third scale of classes of functions, denoted M_{n}, were introduced by G. Sparr [16], as a means of obtaining a new proof of Löwner's Theorem. The key observation in Sparr's proof is that the classes M_{n} satisfy $P_{n+1} \subseteq M_{n} \subseteq P_{n}$, where P_{n} is the class of all real-valued matrix monotone functions of order n on \mathbb{R}_{+}. The M_{n} 's are moreover defined in a way which is similar to the classes $C_{2 n}$, but there are some differences. In the sequel, we will reserve the letter M_{n} for the algebra of complex $n \times n$-matrices.

New proofs of Löwner's and Donoghue's Theorems can be found in [1], [2].

2. PRELIMINARIES

In this section, we begin by giving a presentation of earlier results which we shall use and discuss further later on.

Let $M_{n}:=B\left(\ell_{2}^{n}\right)$ denote the space of complex $n \times n$ matrices, identified in the natural way with the space of bounded operators on ℓ_{2}^{n}. We shall write $A>0$ if and only if $A \in M_{n}$ is a positive definite matrix. (More generally, we shall write $a>0$ if a is a positive element of a unital C^{*}-algebra \mathcal{A} such that $0 \notin \sigma(a)$.) The class (convex cone) P_{n}^{\prime} of (positive) matrix monotonic functions of order n is by definition the set of functions $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

$$
A, B \in M_{n} \quad \text { and } \quad 0<A \leqslant B \quad \text { imply } \quad h(A) \leqslant h(B)
$$

(Here $h(A)$ and $h(B)$ denote the usual functional calculus in the C^{*}-algebra M_{n}.) In this notation, the well-known theorem of Löwner [13] becomes

$$
\begin{equation*}
\bigcap_{n=1}^{\infty} P_{n}^{\prime}=P^{\prime} \tag{2.1}
\end{equation*}
$$

where P^{\prime} is the class of functions representable in the form (1.2) with some positive Radon measure ϱ on $[0, \infty]$. We shall occasionally need to use the class of (not necessarily positive) Pick functions on \mathbb{R}_{+}, which we denote by P or sometimes $P\left(\mathbb{R}_{+}\right)$. This is the class of functions $h: \mathbb{R}_{+} \rightarrow \mathbb{R}$ which are real-analytic on \mathbb{R}_{+}and admit of analytic continuation to the upper half-plane in \mathbb{C} and have non-negative imaginary parts there. It can be shown [7] that

$$
\begin{equation*}
P^{\prime}=\left\{f \in P: f>0 \text { on } \mathbb{R}_{+}\right\} \tag{2.2}
\end{equation*}
$$

In [12] it was shown that all the classes P_{n}^{\prime} are different, i.e.

$$
\begin{equation*}
P_{n+1}^{\prime} \varsubsetneqq P_{n}^{\prime}, \quad n \in \mathbb{N} . \tag{2.3}
\end{equation*}
$$

(As noted in [12], (2.3) was previously asserted by Donoghue ([7], p. 83), but without a detailed proof.)

In 1961, Foiaş and Lions [8] introduced the class of "interpolation functions" and established their basic properties. For $A \in M_{n}$ such that $A>0$, we define the A-norm on M_{n} by $\|T\|_{A}=\left\|A^{1 / 2} T A^{-1 / 2}\right\|$. We note that for $c \geqslant 0$, the statement $\|T\|_{A} \leqslant c$ is equivalent to $A^{-1 / 2} T^{*} A T A^{-1 / 2} \leqslant c^{2}$, i.e., $T^{*} A T \leqslant c^{2} A$. We shall say that a function $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is an interpolation function of order n, and that it belongs to the class C_{n} if and only if

$$
\|T\|_{h(A)} \leqslant \max \left(\|T\|,\|T\|_{A}\right), \quad \forall T, A \in M_{n}: A>0,
$$

or, equivalently,

$$
\left(\forall T, A \in M_{n}\right): A>0, \quad T^{*} T \leqslant 1, \quad T^{*} A T \leqslant A \quad \text { imply } \quad T^{*} h(A) T \leqslant h(A) .
$$

Evidently $C_{n+1} \subseteq C_{n}$ for all n. In [8], Foiaş and Lions proved an equivalent of the following statement:

$$
\begin{equation*}
\bigcap_{n=1}^{\infty} C_{n}=P^{\prime} . \tag{2.4}
\end{equation*}
$$

See Remark 3.2 (cf. also [1] and [2], Section 4).
In 1967, Donoghue [6], [5] proved a stronger version of the Foiaş-Lions Theorem. In order to formulate Donoghue's Theorem in its full generality, let H be a Hilbert space, and A, B fixed positive, injective (possibly unbounded) operators in H such that there exists a positive number r such that, in the sense of quadratic forms,

$$
\begin{equation*}
\frac{1}{r} A(1+A)^{-1} \leqslant B \leqslant r(1+A) \tag{2.5}
\end{equation*}
$$

Consider the condition

$$
\begin{equation*}
\|T\|_{B} \leqslant \max \left(\|T\|,\|T\|_{A}\right), \quad \forall T \in B(H) \tag{2.6}
\end{equation*}
$$

This condition is equivalent to the following statement: for all $T \in B(H)$ such that $T^{*} T \leqslant 1$ and $T^{*} A T \leqslant A$ holds: $T^{*} B T \leqslant B$. In particular, if we take $T=E$ to be an orthogonal projection, this implication says: $E A E \leqslant E$ implies $E B E \leqslant B$. But for orthogonal projections, the condition $E A E \leqslant A$ is equivalent to that A and E commute. Thus B commutes with every orthogonal projection which commutes with A, that is, B is affiliated with A. It now follows from von Neumann's Bicommutator Theorem that $B=f(A)$ for some Borel measurable positive function f on $\sigma(A)$. With somewhat more effort, it is possible to prove that f may be taken to be continuous.

FACT 2.1. Suppose that (2.5) and (2.6) holds. Then there exists a (unique) continuous positive function h on $\sigma(A)$ such that $B=h(A)$.

For a proof of Fact 2.1, we refer to Lemma 2 of [6], or Lemma 1.1 of [2]. We remark that, in our applications of Fact 2.1 in this paper, the operators A and B will be bounded above and below, whence the condition (2.5) will be trivially satisfied.

DEFINITION 2.2. Let $P^{\prime} \mid \sigma(A)$ be the convex cone of restrictions to $\sigma(A)$ of functions in P^{\prime} (of the form (1.2)). Let C_{A} be the class of continuous functions $h: \sigma(A) \rightarrow \mathbb{R}_{+}$such that the corresponding operator $B=h(A)$ fulfills (2.6). We refer to C_{A} as the class of interpolation functions with respect to A.

THEOREM 2.3. The class of interpolation functions with respect to A coincides precisely with the set of restrictions to $\sigma(A)$ of P^{\prime}-functions. In other words,

$$
\begin{equation*}
C_{A}=P^{\prime} \mid \sigma(A) \tag{2.7}
\end{equation*}
$$

The original formulation of this theorem ([6], Theorem 1) is in the guise of interpolation theory. A proof of this theorem in the present form is given in Theorem 7.1 of [1] (the finite-dimensional case) and [2] (the infinite-dimensional case).

The following corollary is immediate from Theorem 2.3.
Corollary 2.4. A function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$belongs to C_{n} if and only if for every n-set $S=\left\{\lambda_{i}\right\}_{i=1}^{n}$, there exists a P^{\prime}-function h interpolating f at S, i.e. $f\left(\lambda_{i}\right)=h\left(\lambda_{i}\right)$ for $i=1, \ldots, n$.

3. A STUDY OF THE CLASSES C_{n} AND P_{n}^{\prime}

We shall now consider the problem of finding the precise relations between the classes of monotone functions and interpolation functions of finite order. In [1], it was observed that $P_{n+1}^{\prime} \subseteq C_{2 n} \subseteq P_{n}^{\prime}$. We shall now see that this observation
can quite easily be improved, by using two theorems from the Löwner theory, as stated in Donoghue's book [7], Chapter XIV.

We have the following theorem.
THEOREM 3.1. For all $n \in \mathbb{N}$ holds:

$$
\begin{equation*}
P_{n+1}^{\prime} \subseteq C_{2 n+1} \subseteq C_{2 n} \subseteq P_{n}^{\prime} \tag{3.1}
\end{equation*}
$$

Moreover, P_{n}^{\prime} and C_{n} are different classes for all n,

$$
\begin{equation*}
P_{n}^{\prime} \varsubsetneqq C_{n} \tag{3.2}
\end{equation*}
$$

Proof. " $P_{n+1}^{\prime} \subseteq C_{2 n+1}$ ": Let $f \in P_{n+1}^{\prime}$ and let $S=\left\{\lambda_{i}\right\}_{i=1}^{2 n+1} \subseteq \mathbb{R}_{+}$be a subset consisting of $2 n+1$ points, where $0<\lambda_{1}<\cdots<\lambda_{2 n+1}$. Then by Theorem I, p. 128 of [7], there exists a function $h \in P$, rational of degree at most n, such that $h\left(\lambda_{i}\right)=f\left(\lambda_{i}\right), i=1, \ldots, 2 n+1$. Following Donoghue [7], we associate to the set S the polynomial

$$
S(\lambda)=\prod_{i=1}^{2 n+1}\left(\lambda-\lambda_{i}\right)
$$

By Theorem III, p. 131 in [7] we have

$$
\begin{equation*}
(f(\lambda)-h(\lambda)) S(\lambda) \geqslant 0, \quad \lambda>0 \tag{3.3}
\end{equation*}
$$

But in the interval $\lambda \in\left(0, \lambda_{1}\right), S(\lambda)$ is negative, and thus by (3.3), $f(\lambda)-h(\lambda) \leqslant 0$ there. But this means that $h(\lambda) \geqslant f(\lambda)>0, \lambda \in\left(0, \lambda_{1}\right)$, since f is positive on \mathbb{R}_{+}. Thus (since $h \in P$, and since Pick functions are non-decreasing) we obtain $h>0$ on \mathbb{R}_{+}, i.e., $h \in P^{\prime}$ (see (2.2)). Thus f coincides on the set S with a P^{\prime}-function, and since $S=\left\{\lambda_{i}\right\}_{i=1}^{2 n+1} \subseteq \mathbb{R}_{+}$was arbitrary, we deduce using Corollary 2.4 that $f \in C_{2 n+1}$.
${ }^{\prime \prime} C_{2 n} \subseteq P_{n}^{\prime}$ ": This is done as in [1], by using Donoghue's trick ([6], pp. 266267). We include the proof for completeness. Let $f \in C_{2 n}$ and let $A, B \in M_{n}$, $0<A \leqslant B$. Form the $2 n \times 2 n$ matrices

$$
A_{1}=\left(\begin{array}{ll}
B & 0 \\
0 & A
\end{array}\right), \quad T=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

Then

$$
T^{*} A_{1} T=\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right) \leqslant\left(\begin{array}{cc}
B & 0 \\
0 & A
\end{array}\right)=A_{1}
$$

so we deduce that $T^{*} f\left(A_{1}\right) T \leqslant f\left(A_{1}\right)$, or

$$
\left(\begin{array}{cc}
f(A) & 0 \\
0 & 0
\end{array}\right) \leqslant\left(\begin{array}{cc}
f(B) & 0 \\
0 & f(A)
\end{array}\right)
$$

We deduce that $f(A) \leqslant f(B)$, i.e. $f \in P_{n}^{\prime}$. This concludes the proof of (3.1).
To prove that $P_{n}^{\prime} \subseteq C_{n}$ for all $n \in \mathbb{N}$ we now use (3.1) in the following way:

$$
P_{n}^{\prime} \subseteq C_{2 n-1} \subseteq C_{n}, \quad n \geqslant 1
$$

If $n \geqslant 3$, we have furthermore, using (2.3), then (3.1)

$$
P_{n}^{\prime} \varsubsetneqq P_{n-1}^{\prime} \subseteq C_{2 n-3} \subseteq C_{n}
$$

This proves (3.2) for all $n \geqslant 3$.
For $n=2$, we argue as follows. The function $h(\lambda)=\min (1, \lambda)$ is quasiconcave, and thus is C_{2} by Proposition 3.7 below. But by a theorem of Löwner ([13], top of p. 187), a function in P_{2}^{\prime} is either constant or strictly increasing, whence the function h above cannot be in P_{2}^{\prime}. This finishes the proof of (3.2) in the case $n=2$. Finally, for $n=1$ (3.2) is obvious, because any positive function which is somewhere strictly decreasing belongs to C_{1} but not to P_{1}^{\prime}.

REmARK 3.2. Combining Theorem 3.1 with Löwner's theorem (equation (2.1)), we obtain a proof of the Foiaş-Lions theorem (equation (2.4)).

REMARK 3.3. We shall prove below that all inclusions in (3.1) are proper for small values of n. (More precisely, we will prove that $C_{4} \varsubsetneqq P_{2}^{\prime} \varsubsetneqq C_{3} \varsubsetneqq C_{2} \varsubsetneqq P_{1}^{\prime} \varsubsetneqq$ C_{1}.)

CONJECTURE 3.4. All inclusions in (3.1) are proper for all n.
Let $S \subseteq \mathbb{R}_{+}$be an arbitrary set and $f: S \rightarrow \mathbb{R}_{+}$a function. We define the reverse and dual functions f^{*} and \check{f} on the set $S^{-1}=\left\{\frac{1}{\lambda}: \lambda \in S\right\}$ by $f^{*}(\lambda)=$ $\lambda f(1 / \lambda)$ and $\check{f}(\lambda)=\frac{1}{f(1 / \lambda)}$. We also define $\widetilde{f}: S \rightarrow \mathbb{R}_{+}$by $\widetilde{f}(\lambda)=(\check{f})^{*}(\lambda)=\frac{\lambda}{f(\lambda)}$.

Proposition 3.5. A function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$belongs to the class C_{n} if and only if one (and then all three) of the functions f^{*}, \check{f}, and \widetilde{f} belong to C_{n}.

Proof. It suffices to note that a function belongs to C_{n} if and only if $f\left|S \in P^{\prime}\right| S$ for every n-set $S \subseteq \mathbb{R}_{+}$and observe that the class P^{\prime} is closed under the operations $h \mapsto h^{*}$ and $h \mapsto \breve{h}$. The latter statement is clear if h is a constant, and otherwise if one of the functions h, \check{h} or h^{*} has positive imaginary part in the upper half plane, then clearly so does the other two.

A result related to Proposition 3.5 is found in Theorem III of [5].
Recall that a function f belongs to C_{n} if and only if for all subsets $\left\{\lambda_{i}\right\}_{i=1}^{n} \subseteq$ \mathbb{R}_{+}consisting of n points, we have that $f\left|\left\{\lambda_{i}\right\}_{i=1}^{n} \in P^{\prime}\right|\left\{\lambda_{i}\right\}_{i=1}^{n}$. We shall need the following lemma:

LEMMA 3.6. A function $h:\left\{\lambda_{i}\right\}_{i=1}^{n} \rightarrow \mathbb{R}_{+}$belongs to $P^{\prime} \mid\left\{\lambda_{i}\right\}_{i=1}^{n}$ if and only if for all scalar sequences $\left(a_{i}\right)_{i=1}^{n}$ holds:

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} \frac{\lambda_{i}}{t+\lambda_{i}} \geqslant 0, \quad t>0 \quad \text { implies } \quad \sum_{i=1}^{n} a_{i} h\left(\lambda_{i}\right) \geqslant 0 \tag{3.4}
\end{equation*}
$$

Proof. Our proof follows Lemma 7.1 of [1], and the subsequent remarks.
\Rightarrow : Let h be a P^{\prime}-function and let ϱ be the positive Radon measure on $[0, \infty]$ occurring in the representation (1.2) of h. Assuming that the function $v(t):=$
$\sum_{i=1}^{n} a_{i} \frac{\lambda_{i}}{t+\lambda_{i}}$ in non-negative for all $t>0$, we infer that also the function $u(t):=$ $\left(1+t^{-1}\right) v\left(t^{-1}\right)=\sum_{i=1}^{n} a_{i} \frac{(1+t) \lambda_{i}}{1+t \lambda_{i}}$ is non-negative on $[0, \infty]$. The property (3.4) now follows, because

$$
\sum_{i=1}^{n} a_{i} h\left(\lambda_{i}\right)=\sum_{i=1}^{n} a_{i} \int_{[0, \infty]} \frac{(1+t) \lambda_{i}}{1+t \lambda_{i}} \mathrm{~d} \varrho(t)=\int_{[0, \infty]} u(t) \mathrm{d} \varrho(t) \geqslant 0
$$

\Leftarrow : Suppose that h is any function defined on a given finite subset $\left\{\lambda_{i}\right\}_{i=1}^{n} \subset$ \mathbb{R}_{+}such that (3.4) holds. We can without loss of generality assume that the point 1 belongs to the set $\left\{\lambda_{i}\right\}$ (replace the function $h(\lambda)$ by $h(c \lambda)$ for some suitable $c>0)$. Let $C=C([0, \infty])$ be the unital C^{*}-algebra of continuous complex-valued functions on the compact set $[0, \infty]$. Define functions $e_{i}(t):=\frac{(1+t) \lambda_{i}}{1+t \lambda_{i}}$ and let V denote the linear span of the e_{i} 's. Note that V is a finite-dimensional subspace of C, containing the unit $1=e_{1}(t) \in C$. The condition (3.4) says precisely that the functional $\phi: V \rightarrow \mathbb{C}$ defined by $\phi: \sum a_{i} e_{i} \mapsto \sum a_{i} h\left(\lambda_{i}\right)$ is a positive functional on V in the sense that if $u \in V$ and $u(t) \geqslant 0$ for all $t>0$, then $\phi(u) \geqslant 0$. By well-known properties of positive functionals this is equivalent to $\|\phi\|=\phi(1)$. Let $\Phi: C \rightarrow \mathbb{C}$ be a Hahn-Banach extension of ϕ to C of the same norm. Then $\|\Phi\|=\|\phi\|=\phi(1)=\Phi(1)$, and it follows that Φ is a positive functional on C. But then, by the Riesz Representation Theorem, there exists a positive Radon measure ϱ on $[0, \infty]$ such that $\Phi(u)=\int_{[0, \infty]} u(t) \mathrm{d} \varrho(t)$ for all $u \in C$, and in particular

$$
h\left(\lambda_{i}\right)=\phi\left(e_{i}\right)=\Phi\left(e_{i}\right)=\int_{[0, \infty]} \frac{(1+t) \lambda_{i}}{1+t \lambda_{i}} \mathrm{~d} \varrho(t), \quad i=1, \ldots, n
$$

But in view of the representation (1.2), this latter equation means precisely that $h \in P^{\prime} \mid\left\{\lambda_{i}\right\}_{i=1}^{n}$, and our lemma is proved.
3.1. Investigations of the classes C_{2} and C_{3}. We shall now undertake a closer study of the classes C_{n} for $n=2$ and $n=3$. Our point of departure will be Corollary 2.4, a function $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$belongs to C_{n} if and only if its restriction to any subset of \mathbb{R}_{+}consisting of n points coincides there with a P^{\prime} function.

Recall (cf. e.g. [4]) that a positive function h on \mathbb{R}_{+}is quasi-concave if $h(t) \leqslant$ $h(s) \max \left(1, \frac{t}{s}\right)$ for all $s, t>0$. Let \mathcal{Q} denote the class of all quasi-concave functions on \mathbb{R}_{+}. We have the following result.

PROPOSITION 3.7. $C_{2}=\mathcal{Q}$.
Proof. " $\mathcal{Q} \subseteq C_{2}$ ". Take $f \in \mathcal{Q}$. Let $s, t \in \mathbb{R}_{+}$and assume with no loss of generality that $t>s$. Since $f(t) \leqslant f(s) \frac{t}{s}$, we can then find an affine positive function h on \mathbb{R}_{+}such that $h(s)=f(s)$ and $h(t)=f(t)$. (To see this, note that in the extreme case $f(t)=f(s) \frac{t}{s}$, our h is simply the linear function $h(\lambda)=f(s) \frac{\lambda}{s}$.)

But this function h belongs to P^{\prime}. Thus f coincides at any two points of \mathbb{R}_{+}with a P^{\prime}-function, i.e. $f \in C_{2}$.
${ }^{"} C_{2} \subseteq \mathcal{Q}$ ". Take $f \in C_{2}$. Take two points $s, t \in \mathbb{R}_{+}$. Then there exists a P^{\prime}-function h such that $f(s)=h(s)$ and $f(t)=h(t)$. But P^{\prime}-functions are quasiconcave. Thus $f(t)=h(t) \leqslant h(s) \max \left(1, \frac{t}{s}\right)=f(s) \max \left(1, \frac{t}{s}\right)$, i.e. $f \in \mathcal{Q}$.

REMARK 3.8. A function h is quasi-concave if and only if h is increasing and $t \mapsto \frac{h(t)}{t}$ is decreasing on \mathbb{R}_{+}. This yields that quasi-concave functions are continuous on \mathbb{R}_{+}. Thus, by Proposition $3.7, C_{n} \subseteq C_{2} \subseteq C\left(\mathbb{R}_{+}\right)$for $n \geqslant 2$, where $C\left(\mathbb{R}_{+}\right)$is the set of continuous functions on \mathbb{R}_{+}.

We shall now turn to the problem of characterizing the class C_{3}. To this end, our main tool will be polynomial techniques which essentially go back to Sparr [16].

The important observation now is that the property (3.4) is inherited by $C_{n^{-}}$ functions in the following sense: f belongs to C_{n} if and only if for all n-subsets $\left\{\lambda_{i}\right\}_{i=1}^{n} \subseteq \mathbb{R}_{+}$we have

$$
\left(\forall\left(a_{i}\right)_{i=1}^{n} \in \mathbb{R}^{n}\right): \quad\left(\sum_{i=1}^{n} a_{i} \frac{\lambda_{i}}{t+\lambda_{i}} \geqslant 0, \forall t>0\right) \quad \text { implies } \quad \sum_{i=1}^{n} a_{i} f\left(\lambda_{i}\right) \geqslant 0
$$

We shall now use this characterization of C_{n} functions to prove a more convenient one in the case $n=3$. In the sequel, we shall denote by \mathcal{P}_{n} the linear space of real polynomials of degree at most n.

Proposition 3.9. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be an arbitrary function. The following conditions are equivalent:
(i) $f \in C_{3}$;
(ii) for any scalar triple $\left(a_{i}\right)_{i=1}^{3} \in \mathbb{R}^{3}$ holds

$$
\begin{equation*}
\sum_{i=1}^{3} a_{i} \frac{\lambda_{i}}{t+\lambda_{i}} \geqslant 0, \quad t>0 \quad \text { implies } \quad \sum_{i=1}^{3} a_{i} f\left(\lambda_{i}\right) \geqslant 0 \tag{3.5}
\end{equation*}
$$

(iii) for any three numbers $\varepsilon, \lambda, \omega \in \mathbb{R}_{+}$such that $\varepsilon<\lambda<\omega$, and any polynomial $P \in \mathcal{P}_{2}$ such that $P(t) \geqslant 0, t>0$ we have

$$
\begin{equation*}
\frac{P(-\varepsilon)}{\varepsilon(\lambda-\varepsilon)(\omega-\varepsilon)} f(\varepsilon)-\frac{P(-\lambda)}{\lambda(\lambda-\varepsilon)(\omega-\lambda)} f(\lambda)+\frac{P(-\omega)}{\omega(\omega-\varepsilon)(\omega-\lambda)} f(\omega) \geqslant 0 \tag{3.6}
\end{equation*}
$$

(iv) f is concave, and for all $\varepsilon, \lambda, \omega \in \mathbb{R}_{+}$such that $\varepsilon<\lambda<\omega$ and all numbers $c>0$ we have

$$
\begin{equation*}
f(\lambda) \leqslant\left(\frac{\varepsilon+c}{\lambda+c}\right)^{2} \frac{\lambda(\omega-\lambda)}{\varepsilon(\omega-\varepsilon)} f(\varepsilon)+\left(\frac{\omega+c}{\lambda+c}\right)^{2} \frac{\lambda(\lambda-\varepsilon)}{\omega(\omega-\varepsilon)} f(\omega) \tag{3.7}
\end{equation*}
$$

(v) f is concave, and for all $c>0$, the function $\lambda \mapsto(\lambda+c)^{2} \frac{f(\lambda)}{\lambda}$ is convex on \mathbb{R}_{+}.

Proof. (i) \Longleftrightarrow (ii): This is clear by the preceding remarks.
(ii) \Longleftrightarrow (iii): Take an arbitrary function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.

Take $\varepsilon, \lambda, \omega$ as in (iii) and put $L(t)=(t+\varepsilon)(t+\lambda)(t+\omega)$. For $P \in \mathcal{P}_{2}$, we define $a_{i}=a_{i}(P), i=1,2,3$ by

$$
\begin{equation*}
\frac{P(t)}{L(t)}=a_{1} \frac{\varepsilon}{t+\varepsilon}+a_{2} \frac{\lambda}{t+\lambda}+a_{3} \frac{\omega}{t+\omega}, \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{1}=\frac{P(-\varepsilon)}{\varepsilon(\lambda-\varepsilon)(\omega-\varepsilon)}, \quad a_{2}=-\frac{P(-\lambda)}{\lambda(\lambda-\varepsilon)(\omega-\lambda)}, \quad a_{3}=\frac{P(-\omega)}{\omega(\omega-\varepsilon)(\omega-\lambda)} \tag{3.9}
\end{equation*}
$$

By (3.9) is defined a linear bijection

$$
\mathcal{P}_{2} \rightarrow \mathbb{R}^{3} \quad: \quad P \mapsto a=\left(a_{i}\right)_{i=1}^{3}
$$

Moreover, by (3.8), it is clear that $P(t) \geqslant 0, t>0$ if and only if the corresponding sum $a_{1}(P) \frac{\varepsilon}{t+\varepsilon}+a_{2}(P) \frac{\lambda}{t+\lambda}+a_{3}(P) \frac{\omega}{t+\omega}$ is $\geqslant 0$ for $t>0$. Thus for a function f : $\mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, the assertions (3.5) and (3.6) are equivalent, as desired.
(iii) \Longleftrightarrow (iv): Let \mathcal{C} denote the cone of polynomials $P \in \mathcal{P}_{2}$ such that $P(t) \geqslant$ 0 for all $t \geqslant 0$. Let \mathcal{G} denote the subcone of \mathcal{C} consisting of polynomials P of exact degree 2 such that $P(0)>0$. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be an arbitrary function. Since \mathcal{G} is dense in \mathcal{C}, it is sufficient to show that the property that (3.6) holds for f is equivalent to (3.7) for polynomials in the cone \mathcal{G}. Fix a polynomial $P \in$ \mathcal{G}. Multiplying P by a positive constant does not change the problem, so we can assume that the leading coefficient of P is 1 . Moreover, since $P(0)>0$, the constant term of P is of the form c^{2} for some number $c>0$. Thus $P(t)=t^{2}+b t+$ c^{2} for some constants $b \in \mathbb{R}$ and $c>0$. But since $P(c)=c(b+2 c) \geqslant 0$, this yields

$$
b+2 c \geqslant 0
$$

We have thus the following decomposition of a generic polynomial P :

$$
P(t)=a\left((t-c)^{2}+(b+2 c) t\right)
$$

where a is the leading coefficient of P and the term $b+2 c$ is non-negative.
By these considerations, it is clear that a function f satisfies (3.6) for all polynomials $P \in \mathcal{C}$ if and only if it satisfies that same condition with respect to special polynomials of the form
(I) $P(t)=(t-c)^{2}$ where $c>0$ and
(II) $P(t)=t$.

Consider first the case $P(t)=t$. Then (3.6) becomes

$$
f(\lambda) \geqslant \frac{\omega-\lambda}{\omega-\varepsilon} f(\varepsilon)+\frac{\lambda-\varepsilon}{\omega-\varepsilon} f(\omega)
$$

Setting $\lambda=\alpha \varepsilon+(1-\alpha) \omega$, this means $f(\lambda) \geqslant \alpha f(\varepsilon)+(1-\alpha) f(\omega)$, i.e. f is concave on \mathbb{R}_{+}.

There remains to investigate the case of polynomials of the form $P(t)=$ $(t-c)^{2}$ where $c>0$. But in this case, (3.6) becomes

$$
\frac{(\varepsilon+c)^{2}}{\varepsilon(\lambda-\varepsilon)(\omega-\varepsilon)} f(\varepsilon)-\frac{(\lambda+c)^{2}}{\lambda(\lambda-\varepsilon)(\omega-\lambda)} f(\lambda)+\frac{(\omega+c)^{2}}{\omega(\omega-\varepsilon)(\omega-\lambda)} f(\omega) \geqslant 0
$$

which is readily seen to be equivalent to (3.7).
(iv) \Longleftrightarrow (v): Let $0<\varepsilon<\omega$ be given together with a number $\alpha \in(0,1)$, and put $\lambda=\alpha \varepsilon+(1-\alpha) \omega$. Then (3.7) becomes

$$
f(\lambda) \leqslant\left(\frac{\varepsilon+c}{\lambda+c}\right)^{2} \frac{\lambda}{\varepsilon} \alpha f(\varepsilon)+\left(\frac{\omega+c}{\lambda+c}\right)^{2} \frac{\lambda}{\omega}(1-\alpha) f(\omega)
$$

which means precisely that the function $x \mapsto(x+c)^{2} \frac{f(x)}{x}$ is convex.
We have the following corollary.
Corollary 3.10. Let $f \in C_{3}$. Then f is C^{1}-smooth on \mathbb{R}_{+}, and moreover
(i) the function $\lambda \mapsto \lambda f(\lambda)$ is convex on \mathbb{R}_{+};
(ii) the function $\lambda \mapsto f(\lambda)$ is concave on \mathbb{R}_{+};
(iii) the function $\lambda \mapsto \frac{f(\lambda)}{\lambda}$ is convex on \mathbb{R}_{+}.

Proof. Let $f \in C_{3}$. The convexity of all functions $g_{c}(\lambda)=(\lambda+c)^{2} \frac{f(\lambda)}{\lambda}, c>0$ implies that $\lim _{c \rightarrow 0} g_{c}(\lambda)=\lambda f(\lambda)$ is convex and also $\lim _{c \rightarrow \infty} \frac{g_{c}(\lambda)}{c^{2}}=\frac{f(\lambda)}{\lambda}$ is convex. Thus the properties (i),(ii), (iii) follow from (v) of Proposition 3.9.

We prove that f is C^{1}-smooth. Fix a point $\lambda \in \mathbb{R}_{+}$. Since f is concave, the right and left derivatives $f^{\prime}(\lambda+)$ and $f^{\prime}(\lambda-)$ exist and satisfy $f^{\prime}(\lambda-) \geqslant f^{\prime}(\lambda+)$. Similarly the convex function $g(\lambda)=\lambda f(\lambda)$ is right and left differentiable at λ and $g^{\prime}(\lambda-) \leqslant g^{\prime}(\lambda+)$. But since $g^{\prime}(\lambda \pm)=f(\lambda)+\lambda f^{\prime}(\lambda \pm)$, this implies $f^{\prime}(\lambda-) \leqslant$ $f^{\prime}(\lambda+)$. Therefore, we must have $f^{\prime}(\lambda-)=f^{\prime}(\lambda+)$, i.e. $f \in C^{1}$.

REMARK 3.11. Note that for given $t>0$ the P^{\prime}-function $h(\lambda)=\frac{\lambda}{1+t \lambda}$ satisfies

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} \lambda^{2}}\left(\frac{(c+\lambda)^{2}}{\lambda} \frac{\lambda}{1+t \lambda}\right)=2 \frac{(c t-1)^{2}}{(1+t \lambda)^{3}} \geqslant 0, \quad \lambda>0
$$

By this observation and a convexity argument, one obtains an alternative proof of the fact that all P^{\prime} functions fulfill the condition (v) of Proposition 3.9.

Example 3.12. Let \mathcal{F} be the convex set of C_{3}-functions such that $f(1 / 2)=$ $\frac{1}{2}$ and $f(2)=1$, and let $\mathcal{F}_{1}=\{f(1): f \in \mathcal{F}\}$. \mathcal{F}_{1} is a closed convex set of \mathbb{R}_{+}, i.e. an interval of the form $\left[\theta_{0}, \theta_{1}\right]$ for some $\theta_{0}, \theta_{1} \in \mathbb{R}_{+}$. Since functions in \mathcal{F} are concave, it becomes obvious that $\theta_{0} \geqslant \frac{2}{3} \cdot \frac{1}{2}+\frac{1}{3} \cdot 1=\frac{2}{3}$. Furthermore, by choosing $f(\lambda)=\frac{1+\lambda}{3}$, we see that this bound is attained, i.e. $\theta_{0}=\frac{2}{3}$. Moreover, trivially $\theta_{1} \leqslant 1$ because functions in \mathcal{F} are increasing. To determine the precise value of θ_{1}, we make use of the relation (3.7) with $\varepsilon=\frac{1}{2}$ and $\omega=2$ and an arbitrary number
$c>0$. It yields
$f(1) \leqslant\left(\frac{\frac{1}{2}+c}{1+c}\right)^{2} \frac{4}{3} f(1 / 2)+\left(\frac{2+c}{1+c}\right)^{2} \frac{1}{6} f(2)=\left(\frac{\frac{1}{2}+c}{1+c}\right)^{2} \frac{2}{3}+\left(\frac{2+c}{1+c}\right)^{2} \frac{1}{6}, \quad c>0$.
Minimizing the expression in the right hand side, one obtains that the infimum is attained for $c=1$, and equals $\frac{3}{8}+\frac{3}{8}=\frac{3}{4}$. Thus $\theta_{1} \leqslant \frac{3}{4}$. But since the P^{\prime}-function $h(\lambda)=\frac{3}{2} \frac{\lambda}{1+\lambda}$ belongs to \mathcal{F}_{1}, and $h(1)=\frac{3}{4}$, we deduce that $\theta_{1} \geqslant \frac{3}{4}$, and $\mathcal{F}_{1}=\left[\frac{2}{3}, \frac{3}{4}\right]$.

If $f \in \mathcal{F}$ and $f(1)=\theta$, then an explicit P^{\prime}-function h interpolating f at the points $\frac{1}{2}, 1$ and 2 is given by $h(\lambda)=\frac{(5 \theta-3) \lambda+3-4 \theta}{(6 \theta-4) \lambda+5-6 \theta}$. In a similar way, one can deduce that a non-constant C_{3}-function can be interpolated at an arbitrary 3-subset of \mathbb{R}_{+} by a linear fractional P^{\prime}-function.

EXAMPLE 3.13. The conditions (i), (ii), (iii) of Corollary 3.10 are not sufficient to guarantee that a function belongs to C_{3}. A counterexample is provided by the function

$$
f(\lambda)=2 \frac{\lambda}{1+\lambda}+\left(\frac{\lambda}{1+\lambda}\right)^{2}
$$

Indeed, $f^{\prime \prime}(\lambda)=-2 \frac{1+4 \lambda}{(1+\lambda)^{4}}, \frac{\mathrm{~d}^{2}}{\mathrm{~d} \lambda^{2}}\{\lambda f(\lambda)\}=2 \frac{2+5 \lambda}{(1+\lambda)^{4}}$ and $\frac{\mathrm{d}^{2}}{\mathrm{~d} \lambda^{2}}\left\{\frac{f(\lambda)}{\lambda}\right\}=6 \frac{\lambda}{(1+\lambda)^{4}}$ i.e. f fulfills conditions (i), (ii) and (iii). However, it turns out that the function $g_{3 / 2}(\lambda)=\left(\lambda+\frac{3}{2}\right)^{2} \frac{f(\lambda)}{\lambda}$ satisfies $g_{3 / 2}^{\prime \prime}(\lambda)=-\frac{1}{2} \frac{4+\lambda}{(1+\lambda)^{4}}$, i.e. $g_{3 / 2}$ fails to be convex (it is even concave!) whence $f \notin C_{3}$ by (v) of Proposition 3.9.
3.2. The gap between C_{3} and P_{2}^{\prime}. We know from Theorem 3.1 that $P_{2}^{\prime} \subseteq C_{3}$. Our main result in this subsection is the following.

Proposition 3.14. $P_{2}^{\prime} \varsubsetneqq C_{3}$.
Recall ([6], Section VII, Theorem III and Section VIII, Theorem IV) that a function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is in P_{2}^{\prime} if and only if f is C^{1}-smooth, the derivative f^{\prime} is non-negative and convex and the suitably normalized Schwarzian derivative

$$
S f(\lambda):=\frac{2}{3} f^{\prime}(\lambda) f^{\prime \prime \prime}(\lambda)-f^{\prime \prime}(\lambda)^{2}=4 \operatorname{det}\left(\begin{array}{ll}
f^{\prime}(\lambda) & \frac{f^{\prime \prime}(\lambda)}{f^{\prime \prime}(\lambda)} \tag{3.10}\\
\frac{f^{\prime \prime \prime}(\lambda)}{6}
\end{array}\right) \geqslant 0
$$

at all points $\lambda \in \mathbb{R}_{+}$where it makes sense (i.e. almost everywhere on \mathbb{R}_{+}by the convexity of f^{\prime}). (Similar characterizations of P_{n}^{\prime} for every fixed n can be found in Donoghue's book [7], Section VII, Theorem VI and Section VIII, Theorem V.)

We now observe that Hansen, Ji and Tomiyama [12] have recently proved that for every integer $n \geqslant 2$, there exists a positive constant c_{n} such that the function

$$
\begin{equation*}
g_{n}(\lambda)=\sum_{k=1}^{n} \frac{1}{2 k-1}\left(\frac{c_{n} \lambda}{1+\lambda}\right)^{2 k-1} \tag{3.11}
\end{equation*}
$$

satisfies $g_{n} \in P_{n}^{\prime}$. Furthermore, they prove that any function g_{n} of the form (3.11) does not belong to P_{n+1}^{\prime}. Let α_{n} denote the supremum of numbers c_{n} such that the corresponding function $g_{n}(3.11)$ belongs to P_{n}^{\prime}. We have the following lemma.

LEMMA 3.15. $\alpha_{2}^{2}=\frac{1}{2}$.
Proof. Consider for $K \geqslant 0$ the function

$$
\begin{equation*}
f_{K}(\lambda)=K \frac{\lambda}{1+\lambda}+\left(\frac{\lambda}{1+\lambda}\right)^{3} \tag{3.12}
\end{equation*}
$$

The set of K^{\prime} s such that $f_{K} \in P_{2}^{\prime}$ is easily seen to be the interval $\left[3 \alpha_{2}^{-2}, \infty\right)$. Let us compute the first three derivatives of f_{K} :

$$
\left\{\begin{array}{l}
f_{K}^{\prime}(\lambda)=\frac{(3+K) \lambda^{2}+2 K \lambda+K}{(1+\lambda)^{4}} \tag{3.13}\\
f_{K}^{\prime \prime}(\lambda)=-2 \frac{(3+K) \lambda^{2}+(2 K-3) \lambda+K}{(1+\lambda)^{5}} \\
f_{K}^{\prime \prime \prime}(\lambda)=6 \frac{(3+K) \lambda^{2}+(2 K-6) \lambda+K+1}{(1+\lambda)^{6}}
\end{array}\right.
$$

Note that $f_{K}^{\prime} \geqslant 0$ on \mathbb{R}_{+}for all $K \geqslant 0$, which is a necessary condition for $f_{K} \in P_{2}^{\prime}$ to hold. Recall that if f is any smooth increasing function such that $S f \geqslant 0$, then f^{\prime} is necessarily convex (even logarithmically convex, cf. [6], p. 74). The lemma will thus follow if we can prove that the Schwarzian derivative satisfies $S f_{K} \geqslant 0$ on \mathbb{R}_{+}if and only if $K \geqslant 6$. In order to see this, we compute

$$
S f_{K}(\lambda)=\frac{24(1+2 \lambda)+4(K-6)(\lambda+1)^{2}}{(1+\lambda)^{10}}
$$

It is evident that this expression is positive for all $\lambda>0$ if and only if $K \geqslant 6$.
We shall now consider the condition $f_{K} \in C_{3}$, where f_{K} is defined as above (3.12). The set of K^{\prime} s such that this is true is an interval of the form $[\beta, \infty)$ for some $\beta \geqslant 0$. By the preceding proposition and Theorem 3.1, we know that $\beta \leqslant 6$. We shall show that in fact:

Lemma 3.16. $\beta \leqslant 3$.
Proof. It is immediate from (3.13) that f_{K} is concave on \mathbb{R}_{+}if $K \geqslant 3$. Thus by Proposition 3.9, it suffices to prove that, for every $c>0$, the function

$$
g_{c}(\lambda):=\frac{(\lambda+c)^{2} f_{3}(\lambda)}{\lambda}
$$

is convex on \mathbb{R}_{+}. But a direct computation yields:

$$
g_{c}^{\prime \prime}(\lambda)=\frac{4 \lambda^{2}(2 c-3)^{2}+2 \lambda\left((2 c-3)^{2}+3\right)+(4 c-3)^{2}+3}{2(1+\lambda)^{5}}
$$

which is evidently positive for $\lambda>0$. The proof is finished.

REMARK 3.17. By a slightly longer argument, it is possible to prove that $\beta=$ 3. (For each fixed positive number $K<3$, the corresponding function $g_{c}(\lambda)=$ $(\lambda+c)^{2} \frac{f_{K}(\lambda)}{\lambda}$ fails to be convex for $c=\frac{3}{2}$. We omit the details.)

Proof of Proposition 3.14. By the foregoing lemmas, the function (for example)

$$
f_{3}(\lambda)=3 \frac{\lambda}{1+\lambda}+\left(\frac{\lambda}{1+\lambda}\right)^{3}
$$

belongs to $C_{3} \backslash P_{2}^{\prime}$.
3.3. The gap between P_{2}^{\prime} and C_{4}. In this subsection, we want to prove the following.

Proposition 3.18. $C_{4} \varsubsetneqq P_{2}^{\prime}$.
Proof. (Cf. Sparr [16], p. 274). We know that $C_{4} \subseteq P_{2}^{\prime}$. To prove that the inclusion is proper, we shall exploit a fact from Donoghue's book ([7], Section VII, Theorem IV and Section VIII, Theorem III) that a non-constant function $f: \mathbb{R}_{+} \rightarrow$ \mathbb{R}_{+}satisfies $f \in P_{2}^{\prime}$ if and only if f is of class C^{1} and the derivative f^{\prime} is of the form

$$
f^{\prime}(\lambda)=\frac{1}{c(\lambda)^{2}}
$$

with some concave function $c: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$. We choose $c(x)=\min (1+x, 2)$ and

$$
f(\lambda)=\int_{0}^{\lambda} \frac{\mathrm{d} x}{c(x)^{2}}= \begin{cases}\frac{\lambda}{1+\lambda} & \lambda \leqslant 1 \\ \frac{1}{4}(1+\lambda) & \lambda \geqslant 1\end{cases}
$$

Then $f \in P_{2}^{\prime}$. We shall show that $f \notin C_{4}$. Indeed let $\lambda_{i}=i, i=1,2,3$ and $\lambda_{4} \in \mathbb{R}_{+}$ an arbitrary point. If it were true that $f \in C_{4}$, we could find a P^{\prime}-function h interpolating f at the points λ_{i}. However, the only P^{\prime}-function interpolating f at the points λ_{1}, λ_{2} and λ_{3} is the affine function $h(\lambda)=\frac{1}{4}(1+\lambda)$. Thus $f\left(\lambda_{4}\right)=$ $h\left(\lambda_{4}\right)=\frac{1}{4}\left(1+\lambda_{4}\right)$ for all points $\lambda_{4} \in \mathbb{R}_{+}$, a contradiction. This shows that $f \notin$ C_{4}.

REMARK 3.19. It is a simple consequence of the above proof that a C_{4} function is either affine or is strictly concave on \mathbb{R}_{+}.
3.4. INTERPOLATION FUNCTIONS ON UNITAL C*-ALGEBRAS. In this subsection, we prove three propositions, which allow us to transport results from the theory of interpolation functions to unital C^{*}-algebras (other than $B(H)$). The corresponding problem for monotone functions was considered in [12].

Let \mathcal{A} be a unital C^{*}-algebra. We will denote by $\widehat{\mathcal{A}}$ a complete collection of representatives of the unitary equivalence classes of non-zero irreducible representations of \mathcal{A}.

For a fixed strictly positive element a of \mathcal{A}, we define the a-norm on \mathcal{A} by

$$
\|x\|_{a}=\left\|a^{1 / 2} x a^{-1 / 2}\right\| .
$$

Our goal in this section is to characterize the strictly positive elements $b \in \mathcal{A}$ such that the interpolation inequality

$$
\begin{equation*}
\|x\|_{b} \leqslant \max \left(\|x\|,\|x\|_{a}\right), \quad \forall x \in \mathcal{A} \tag{3.14}
\end{equation*}
$$

is satisfied.
It is sometimes convenient to reformulate the condition (3.14) in the following way:

$$
\begin{equation*}
\forall x \in \mathcal{A}: \quad x^{*} x \leqslant 1 \quad \text { and } \quad x^{*} a x \leqslant a \text { imply } x^{*} b x \leqslant b . \tag{3.15}
\end{equation*}
$$

The set of b 's such that (3.15) (or, equivalently, (3.14)) holds form a convex cone. Below, we shall address the problem of finding necessary and sufficient conditions for an element b to belong to that cone.

3.4.1. A sufficient condition. We have the following proposition.

Proposition 3.20. Assume that a and b are fixed strictly positive elements of a unital C^{*}-algebra \mathcal{A}. Suppose that for each irreducible representation $\pi \in \widehat{\mathcal{A}}$ there exists a function $h_{\pi} \in P^{\prime}$ such that $\pi(b)=h_{\pi}(\pi(a))$. Then the interpolation inequality (3.14) holds.

Proof. Let φ be a pure state on \mathcal{A} and let $\left\{H_{\varphi}, \pi_{\varphi}, \xi_{\varphi}\right\}$ be the corresponding GNS representation, i.e.,

$$
\varphi(x)=\left(\pi_{\varphi}(x) \xi_{\varphi}, \xi_{\varphi}\right)_{H_{\varphi}}, \quad x \in \mathcal{A} .
$$

Since φ is pure, π_{φ} is irreducible whence by assumption $\pi_{\varphi}(b)=h_{\varphi}\left(\pi_{\varphi}(a)\right)$ for some function $h_{\varphi} \in P^{\prime} \mid \sigma\left(\pi_{\varphi}(a)\right)$. We conclude that $h_{\varphi} \in C_{\pi_{\varphi}(a)}$ by (2.7). In particular, the following implication holds:

$$
x \in \mathcal{A}, \quad x^{*} x \leqslant 1, x^{*} a x \leqslant a,
$$

implies $\pi_{\varphi}(x)^{*} \pi_{\varphi}(x) \leqslant 1$ and $\pi_{\varphi}(x)^{*} \pi_{\varphi}(a) \pi_{\varphi}(x) \leqslant \pi_{\varphi}(a)$, and so

$$
\pi_{\varphi}(x)^{*} h_{\varphi}\left(\pi_{\varphi}(a)\right) \pi_{\varphi}(x) \leqslant h_{\varphi}\left(\pi_{\varphi}(a)\right) .
$$

This yields

$$
\begin{equation*}
\varphi\left(b-x^{*} b x\right)=\left(\pi_{\varphi}(b) \xi_{\varphi}, \xi_{\varphi}\right)_{H_{\varphi}}-\left(\pi_{\varphi}(x)^{*} \pi_{\varphi}(b) \pi_{\varphi}(x) \xi_{\varphi}, \xi_{\varphi}\right)_{H_{\varphi}} \geqslant 0 \tag{3.16}
\end{equation*}
$$

for every pure state φ. But since all states belong to the weak* closed convex hull of the pure states, the conclusion of (3.16) remains true for all states φ, i.e.,

$$
b-x^{*} b x \geqslant 0 .
$$

The proposition follows.
3.4.2. A NECESSARY CONDITION. We shall now prove a partial converse to Proposition 3.20. In order to formulate our result, we need to make some preliminary remarks.

Fix a strictly positive element a of a unital C^{*}-algebra \mathcal{A}. We shall operate under the following "technical" assumption on a and \mathcal{A} :

$$
\begin{equation*}
{\overline{\pi\left\{x \in \mathcal{A}:\|x\| \leqslant 1,\|x\|_{a} \leqslant 1\right\}}}^{\text {st }}=\left\{T \in B\left(H_{\pi}\right):\|T\| \leqslant 1,\|T\|_{\pi(a)} \leqslant 1\right\} \quad \forall \pi \in \widehat{\mathcal{A}}, \tag{3.17}
\end{equation*}
$$

where "st" denotes the closure with respect to the strong operator topology on $B\left(H_{\pi}\right)$.

REMARK 3.21. When $a=1$, the statement (3.17) holds; indeed, it is equivalent to the Kaplansky Density Theorem. Moreover, (3.17) is trivially satisfied e.g. for C^{*}-algebras having the property that every irreducible representation is finite-dimensional. At present, we do not know whether or not (3.17) holds in general.

We have the following proposition.
Proposition 3.22. Let \mathcal{A} be a unital C^{*}-agebra and $a>0$ a fixed element of \mathcal{A} such that the condition (3.17) is satisfied. Let b be another strictly positive element of \mathcal{A} such that the interpolation inequality (3.14) holds for all $x \in \mathcal{A}$. Then, for every irreducible representation $\pi \in \widehat{\mathcal{A}}$, there exists a function $h_{\pi} \in P^{\prime}$ such that $\pi(b)=$ $h_{\pi}(\pi(a))$.

We shall need a simple lemma.
Lemma 3.23. Let \mathcal{A} be a unital C^{*}-algebra and $\pi: \mathcal{A} \rightarrow B(H)$ a representation of \mathcal{A} on some Hilbert space H. Let $a \in \mathcal{A}$ be a fixed element such that $a>0$, and put $A=\pi(a)$. Let $\varepsilon>0$ be given. Suppose that an operator $T \in \pi(\mathcal{A})$ satisfies $\|T\| \leqslant 1$ and $\|T\|_{A} \leqslant 1$. Then there exists an element $x \in \mathcal{A}$ such that $\pi(x)=T,\|x\| \leqslant 1+\varepsilon$ and $\|x\|_{a} \leqslant 1+\varepsilon$.

Proof. Let u_{λ} be an approximate unit for the ideal $\pi^{-1}(\{0\})$, and take $x_{0} \in \mathcal{A}$ such that $\pi\left(x_{0}\right)=T$. Put $x_{\lambda}=x_{0}\left(1-u_{\lambda}\right)$. Then $\pi\left(x_{\lambda}\right)=T$, and moreover by standard facts about approximate units ([14], Section 3)

$$
\|T\|=\lim \left\|x_{\lambda}\right\| \quad \text { and } \quad\left\|A^{1 / 2} T A^{-1 / 2}\right\|=\lim \left\|a^{1 / 2} x_{\lambda} a^{-1 / 2}\right\| .
$$

Thus, letting $x=x_{\lambda}$ with some sufficiently large λ, we obtain an element with desired properties.

Proof of Proposition 3.22. Let $\pi: \mathcal{A} \rightarrow B(H)$ be an irreducible representation of \mathcal{A}. Put $A=\pi(a)$ and $B=\pi(b)$. Fix $T \in B(H)$ such that $\|T\| \leqslant 1$ and $\|T\|_{A} \leqslant 1$. Take $\varepsilon>0$ and let ξ be a unit vector of H.

By the assumption (3.17), there exists $S \in \pi(\mathcal{A})$ such that $\|S\| \leqslant 1$ and $\|S\|_{A} \leqslant 1$ and also

$$
\begin{equation*}
\left\|B^{1 / 2}(T-S) B^{-1 / 2} \tilde{\xi}\right\|<\frac{\varepsilon}{2} \tag{3.18}
\end{equation*}
$$

(We have here used the simple fact that the map $X \mapsto B^{1 / 2} X B^{-1 / 2}$ is a homeomorphism with respect the strong topology on $B(H)$.)

We now use Lemma 3.23 to find a lifting $x \in \mathcal{A}$ of S such that $\|x\| \leqslant 1+\frac{\varepsilon}{2}$ and $\|x\|_{a} \leqslant 1+\frac{\varepsilon}{2}$. By the condition (3.14), then $\|x\|_{b} \leqslant 1+\frac{\varepsilon}{2}$. Applying the representation π it yields $\|S\|_{B} \leqslant 1+\frac{\varepsilon}{2}$. Combining this estimate with (3.18), we obtain $\left\|B^{1 / 2} T B^{-1 / 2} \xi\right\| \leqslant\left\|B^{1 / 2}(T-S) B^{-1 / 2} \tilde{\xi}\right\|+\left\|B^{1 / 2} S B^{-1 / 2} \xi\right\|<1+\varepsilon$. Since $\varepsilon>0$ was arbitrary, it yields $\left\|B^{1 / 2} T B^{-1 / 2} \xi\right\| \leqslant 1$, and since the unit vector ξ was arbitrary, we get $\|T\|_{B} \leqslant 1$. We infer that $\|T\|_{B} \leqslant \max \left(\|T\|,\|T\|_{A}\right)$ for all $T \in B(H)$. We may thus apply Donoghue's Theorem (Fact 2.1 and Theorem 2.3). It yields that $B=h(A)$ for some function $h \in P^{\prime} \mid \sigma(A)$, as desired.
3.4.3. Interpolation Functions. Let $C_{\mathcal{A}}$ be the set of all continuous positive functions h on \mathbb{R}_{+}such that $\|x\|_{h(a)} \leqslant \max \left(\|x\|,\|x\|_{a}\right)$ for all $x, a \in \mathcal{A}$ such that $a>0$. It makes sense to refer to $C_{\mathcal{A}}$ as the class of interpolation functions with respect to \mathcal{A}. In this notation, of course, $C_{M_{n}}$ coincides with the class C_{n} of interpolation functions of order n. It will be convenient to define C_{n} also for $n=\infty$. We make the following convention

$$
\begin{equation*}
C_{\infty}=P^{\prime} \tag{3.19}
\end{equation*}
$$

Let $C\left(\mathbb{R}_{+}\right)$denote the class of continuous functions on \mathbb{R}_{+}. We have the following proposition:

Proposition 3.24. Let \mathcal{A} be a unital C^{*}-algebra and let $n=\sup \{\operatorname{dim}(\pi)$: $\pi \in \widehat{\mathcal{A}\}}$. Then $C_{n} \cap C\left(\mathbb{R}_{+}\right) \subseteq C_{\mathcal{A}}$. Moreover, if the condition (3.17) is satisfied for all $a \in \mathcal{A}$ such that $a>0$, then $C_{\mathcal{A}}=C_{n} \cap C\left(\mathbb{R}_{+}\right)$.

REMARK 3.25. If $n \geqslant 2$, then $C_{n} \subseteq C\left(\mathbb{R}_{+}\right)$by Remark 3.8. Taking the intersection with $C\left(\mathbb{R}_{+}\right)$in Proposition 3.24 is thus only necessary when $n=1$.

Proof of Proposition 3.24. Fix a strictly positive element $a \in \mathcal{A}$ and a function $f \in C_{n} \cap C\left(\mathbb{R}_{+}\right)$. For every irreducible representation π of \mathcal{A} we have that $\operatorname{dim}(\pi) \leqslant n$, whence there is a function $h_{\pi} \in P^{\prime}$ such that $f=h_{\pi}$ on $\sigma(\pi(a))$. It follows that $f(\pi(a))=h_{\pi}(\pi(a))$. Applying Proposition 3.20, we conclude that (3.14) is valid, i.e., $\|x\|_{f(a)} \leqslant \max \left(\|x\|,\|x\|_{a}\right)$ for all $x \in \mathcal{A}$. Since $a>0$ was arbitrary, $f \in C_{\mathcal{A}}$.

In the other direction, if $f \in C_{\mathcal{A}}$, then $f \in C\left(\mathbb{R}_{+}\right)$by definition. Fix an element $a \in \mathcal{A}$ such that $a>0$. If the condition (3.17) is satisfied, then Proposition 3.22 yields that $\pi(f(a))=h_{\pi}(\pi(a))$ for a P^{\prime}-function h_{π}. Since f and h_{π} are continuous, this yields that $f=h_{\pi}$ on $\sigma(\pi(a))$. If n is finite, then $\sigma(\pi(a))$ can be taken to be any n-subset of \mathbb{R}_{+}, and it follows that $h \in C_{n}$. On the other hand, if $n=\infty$, the same argument shows that $h \in C_{k}$ for all finite k, and thus $h \in P^{\prime}$ by (2.4).

3.5. Completely positive maps and a theorem of Hansen. Let \mathcal{A} be a C^{*} -

 algebra and let $\varphi: \mathcal{A} \rightarrow B(H)$ be a completely positive map from \mathcal{A} to $B(H)$for some Hilbert space H. Then, by Stinespring's Theorem, there exists a Hilbert space K, a representation $\pi: \mathcal{A} \rightarrow B(K)$ and a map $V \in B(H, K)$ such that $\varphi(x)=V^{*} \pi(x) V, x \in \mathcal{A}$, and moreover $\|\varphi\|_{\mathrm{cb}}=\|\varphi\|=\|\varphi(1)\|=\left\|V^{*} V\right\|=\|V\|^{2}$ cf. [3]. Thus if φ is contractive, $\|V\| \leqslant 1$. Fix an element $a \in \mathcal{A}, a>0$. We shall associate to φ the following operators in $B(H \oplus K)$:

$$
A=\left(\begin{array}{cc}
\varphi(a) & 0 \\
0 & \pi(a)
\end{array}\right), \quad T=\left(\begin{array}{cc}
0 & 0 \\
V & 0
\end{array}\right) .
$$

Evidently, $A \geqslant 0$, and if we moreover require that $0 \notin \sigma(\varphi(a))$, then $A>0$. Moreover,

$$
T^{*} T \leqslant 1 \quad \text { and } \quad T^{*} A T=\left(\begin{array}{cc}
\varphi(a) & 0 \tag{3.20}\\
0 & 0
\end{array}\right) \leqslant\left(\begin{array}{cc}
\varphi(a) & 0 \\
0 & \pi(a)
\end{array}\right)=A
$$

Let n be the dimension of $H \oplus K$, where we allow the case $n=\infty$. We shall make use of the convention (3.19). We have the following result.

Proposition 3.26. In the above situation holds: if $h \in C_{n}$, then $\varphi(h(a)) \leqslant$ $h(\varphi(a))$.

Proof. The case $n=\infty$ is (the corollary in [10]), so we may assume that n is finite. It then follows from (3.20) and the assumption $h \in C_{n}$ that $T^{*} h(A) T \leqslant$ $h(A)$, or

$$
\left(\begin{array}{cc}
\varphi(h(a)) & 0 \\
0 & 0
\end{array}\right) \leqslant\left(\begin{array}{cc}
h(\varphi(a)) & 0 \\
0 & h(\pi(a))
\end{array}\right)
$$

and the proposition follows.
EXAMPLE 3.27. Positive linear functionals are completely positive. In this example, we shall consider the algebra $\mathcal{A}=C(X)$ where X is compact. Let $x_{1}, x_{2} \in X, 0<\lambda<1$, and consider the positive functional

$$
\varphi(f)=\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right), \quad f \in C(X)
$$

Then $\varphi(f)=V^{*} \pi(f) V$, where

$$
\pi(f)=\left(\begin{array}{cc}
f\left(x_{1}\right) & 0 \\
0 & f\left(x_{2}\right)
\end{array}\right), \quad V=\binom{\lambda^{1 / 2}}{(1-\lambda)^{1 / 2}}
$$

In this case, $n=\operatorname{dim}(H \oplus K)=3$. Thus, Proposition 3.26 yields that if $a>0$ and $h \in C_{3}$, then $\varphi(h(a)) \leqslant h(\varphi(a))$, or

$$
\lambda h\left(a\left(x_{1}\right)\right)+(1-\lambda) h\left(a\left(x_{2}\right)\right) \leqslant h\left(\lambda a\left(x_{1}\right)+(1-\lambda) a\left(x_{2}\right)\right) .
$$

This is an alternative way to see that C_{3} functions are concave.
3.6. A FURTHER PROPERTY OF interpolation functions. Let H be a Hilbert space and $N \in \mathbb{N}$ a fixed number. Let $A \in B(H)$ be a fixed strictly positive operator. Let us say that a function $h: \sigma(A) \rightarrow \mathbb{R}_{+}$belongs to the class C_{A}^{N} if and only if

$$
\begin{equation*}
\forall\left(\left\{T_{k}\right\}_{k=1}^{N} \subseteq B(H)\right): \quad \sum_{k=1}^{N} T_{k}^{*} T_{k} \leqslant 1 \quad \text { and } \quad \sum_{k=1}^{N} T_{k}^{*} A T_{k} \leqslant A \tag{3.21}
\end{equation*}
$$

implies

$$
\begin{equation*}
\sum_{k=1}^{N} T_{k}^{*} h(A) T_{k} \leqslant h(A) \tag{3.22}
\end{equation*}
$$

This definition actually coincides with the previous definition of the class C_{A}, i.e. we have:

Proposition 3.28. $C_{A}=C_{A}^{N}$.
Proof. It is clear that $C_{A}^{N} \subseteq C_{A}$ (choose $T_{i}=0$ for $i \geqslant 2$). We show the reverse inclusion. Consider the following operators in $B\left(\ell_{2}^{N}(H)\right)$:

$$
T=\left(\begin{array}{cccc}
T_{1} & 0 & \cdots & 0 \\
T_{2} & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
T_{N} & 0 & \cdots & 0
\end{array}\right), \quad A_{1}=\left(\begin{array}{cccc}
A & 0 & \cdots & 0 \\
0 & A & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & A
\end{array}\right)
$$

Evidently the condition (3.21) implies that $T^{*} T \leqslant 1$ and $T^{*} A_{1} T \leqslant A_{1}$. Moreover the operators A and A_{1} have the same spectra. We infer by Theorem 2.3 that $C_{A}=P^{\prime} \mid \sigma(A)=C_{A_{1}}$. In particular, if $h \in C_{A}$, it yields that $T^{*} h\left(A_{1}\right) T \leqslant h\left(A_{1}\right)$, which is readily seen to imply the condition (3.22), i.e. we have $h \in C_{A}^{N}$.

We note the following corollary.
Corollary 3.29. A function f belongs to C_{n} if and only if for every positive definite matrix $A \in M_{n}$, and every finite set of matrices $\left\{T_{i}\right\}_{i=1}^{N} \subseteq M_{n}$, we have the implication $\sum_{1}^{N} T_{i}^{*} T_{i} \leqslant 1$ and $\sum_{1}^{N} T_{i}^{*} A T_{i} \leqslant A$ implies $\sum_{1}^{N} T_{i}^{*} f(A) T_{i} \leqslant f(A)$.

Acknowledgements. This work was supported by the Royal Swedish Academy of Sciences, by the Crafoord Foundation and by the Swedish Foundation for International Cooperation in Research and Higher Education (STINT).

REFERENCES

[1] Y. AMEUR, The Calderón problem for Hilbert couples, Ark. Mat. 41(2003), 203-231.
[2] Y. AMEUR, A new proof of Donoghue's interpolation theorem, J. Funct. Spaces Appl. 2(2004), 253-265.
[3] W. Arveson, Subalgebras of C^{*}-algebras, Acta Math. 123(1969) 141-221.
[4] J. Bergh, J. LÖFSTRÖM, Interpolation Spaces. An Introduction, Springer-Verlag, BerlinNew York 1976.
[5] W. Donoghue, The theorems of Loewner and Pick, Israel J. Math. 4(1966), 153-170.
[6] W. Donoghue, The interpolation of quadratic norms, Acta Math. 118(1967), 251-270.
[7] W. Donoghue, Monotone Matrix Functions and Analytic Continuation, Grundlehren Math. Wiss., vol. 207, Springer-Verlag, New York-Heidelberg 1974.
[8] C. Foiaş, J.L. Lions, Sur certains théorèmes d'interpolation, Acta Sci. Math. (Szeged) 22(1961), 269-282.
[9] C. Foiaş, S.C. Ong, P. Rosenthal, An interpolation theorem and operator ranges, Integral Equations Operator Theory 10(1987), 802-811.
[10] F. HANSEN, An operator inequality, Math. Ann. 246(1980), 249-250.
[11] F. Hansen, G.K. Pedersen, Jensen's inequality for operators and Löwner's theorem, Math Ann. 258(1982), 229-241.
[12] F. HANSEN, G. Ji, J. TOMIYAMA, Gaps between classes of matrix monotone functions, Bull. London Math. Soc. 36(2004), 53-58.
[13] K. LÖWNER, Über monotone Matrixfunktionen, Math. Z. 38(1934), 177-216.
[14] G.J. Murphy, C*-Algebras and Operator Theory, Academic Press, Boston 1990.
[15] J. Peetre, On interpolation functions. I-III. Acta Sci. Math. (Szeged) 27(1966), 167-171; 29(1968), 91-92; 30(1969), 235-239.
[16] G. Sparr, A new proof of Löwner's theorem on monotone matrix functions, Math Scand. 47(1980), 266-274.
[17] W.F. Stinespring, Positive functions on C^{*}-algebras, Proc. Amer. Math. Soc. 6(1955), 211-216.

[^0]Received April 26, 2005; revised February 22, 2006.

[^0]: yACIN AMEUR, Royal Institute of Technology, SE-100 44 Stockholm, SWEDEN

 E-mail address: yacin.ameur@gmail.com
 STEN KAIJSER, Department of Mathematics, Uppsala University, Box 480, SE-751 06, Uppsala, SWEDEN

 E-mail address: sten@math.uu.se
 SERGEI SILVESTROV, Department of Mathematics, Centre for Mathematical Sciences, Lund University, Box 118, SE-221 00 Lund, Sweden

 E-mail address: sergei.silvestrov@math.lth.se

