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ABSTRACT. Under minimal assumptions, we characterize the Fredholm prop-
erty and compute the Fredholm index of abstract differential operators − d

dt
+A(·) acting on spaces of functions f : R → X. Here A(t) are (in general) un-
bounded operators on the Banach space X and our results are formulated in
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1. INTRODUCTION

In this paper we obtain the final version of the infinite dimensional Di-
chotomy Theorem for well-posed differential equations

(1.1) (Gu)(t) := −u′(t) + A(t)u(t) = f (t), t ∈ R,

on a Banach space X. Our main Dichotomy Theorem 1.1 characterizes the Fred-
holm property of the (closure of the) operator G on, say, Lp(R, X) and determines
its Fredholm index in terms of the exponential dichotomies on half lines of the
propagator solving (1.1). The linear operators A(t), t ∈ R, on X are unbounded,
in general, and we only require that the corresponding initial value problem (1.3)
below is well-posed in a mild sense. We reduce the problem to the study of a
weighted shift operator on X-valued sequence spaces, and give a purely oper-
ator theoretical proof of our Theorem 1.1 based on the discrete version of the
“input-output" method from the theory of differential equations.

The Dichotomy Theorem is related to problems arising from finite dimen-
sional dynamics, Morse theory, and the theory of traveling waves. For a detailed
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discussion concerning these connections, we refer to Section 7 in [13]. This the-
orem can further be viewed as an extension of a simple form of the celebrated
Atiyah-Patodi-Singer Index Theorem, cf. [22].

For finite dimensional X = Cd, versions of the Dichotomy Theorem were
established in the papers [6], [17], [18], and [23]. Here A(t) are matrices and
G = − d

dt + A(·) is defined on the Sobolev space W1,p(R, Cd), for instance. In this
case G is Fredholm if and only if the propagator (or evolution family) {U(t, τ)}t>τ

solving (1.1) has exponential dichotomies on R+ and R−. However, applications
to partial differential equations require an infinite dimensional version of the Di-
chotomy Theorem for unbounded A(t). Progresses in this direction have been
made in [2], [3], [4], [5], [9], [10], [12], [13], [19], [20], [21], [24], and the references
therein. We stress that the proofs of the finite and infinite dimensional versions of
the Dichotomy Theorem are quite different due to many new difficulties arising
in the infinite dimensional setting, as described in Sections 1 and 7 of [13].

Recently, several authors discussed the Fredholm property of the operator
G and related questions (such as perturbation results) in specific infinite dimen-
sional settings. In [20] and [21] a differential equation of the form (1.1) on a Ba-
nach space X having the UMD property was studied, where the constant domain
of the operators A(t) is compactly embedded in X and A(t) → A± as t → ±∞.
Assuming that the spectra of A± do not intersect iR, it was proved that G is Fred-
holm on Lp(R, X) for p ∈ (1, ∞), and its index was computed in terms of the
spectral flow of A(·). (Here the Cauchy problem (1.3) could be ill-posed.) In [9]
and [10] theorems of this type are established for general (well-posed) parabolic
problems. The latter approach is based on a detailed study of the maximal regu-
larity property of the solutions to the (inhomogeneous) differential equation. The
case of bounded operators A(t) was considered in [1] in connection with appli-
cations to infinite dimensional Morse theory. In [19] and [24] necessary and suffi-
cient conditions for the Fredholm property of G were given for a special class of
infinite dimensional differential equations having a backward uniqueness prop-
erty, cf. (BU) below. This work is related to a detailed study of traveling waves
for elliptic problems on cylinders. All these papers dealt with the asymptotically
autonomous case (except for [19]) and imposed restrictive regularity hypotheses
ensuring the closedness of G = − d

dt + A(·) defined on dom( d
dt )∩dom(A(·)). See

[9], [10], [13] for more details.
In a different line of research, one starts with a strongly continuous evolu-

tion family {U(t, τ)}t>τ , and constructs an operator G on, say, Lp(R, X) as de-
scribed below. There are no additional restrictions on the regularity or the as-
ymptotic behaviour of A(·). If (1.3) is well-posed in a classical sense, then G is
the closure of G = − d

dt + A(·). In [5] (see also [2], [3], [4]) it was further assumed a
priori that {U(t, τ)}t>τ has exponential dichotomies on semi-lines. Then a “node
operator” was introduced, and it was proved that G and the node operator are
Fredholm at the same time with equal indices. On the other hand, the authors
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in [13] required X to be reflexive and imposed a condition of backward unique-
ness on the evolution family. Under these hypotheses, they could characterize the
Fredholm property of G as we do below. In the current paper we discard any ad-
ditional assumption and establish the following theorem (the relevant definitions
are given in Section 2).

THEOREM 1.1. Assume that U = {U(t, τ) : t > τ; t, τ ∈ R} is a strongly
continuous, exponentially bounded evolution family on a Banach space X, and let G
be the generator of the associated evolution semigroup defined on E(R) = Lp(R, X),
p ∈ [1, ∞), or on E(R) = C0(R, X). Then the operator G is Fredholm if and only if there
exist real numbers a 6 b such that the following two conditions hold:

(i) The evolution family U has exponential dichotomies with the family of projections
{P−

t }t6a and {P+
t }t>b on (−∞, a] and [b, ∞), respectively.

(ii) The node operator N(b, a), acting from ker P−
a to ker P+

b and defined by the rule
N(b, a) = (I − P+

b )U(b, a)|ker P−a , is Fredholm.
Moreover, if G is Fredholm, then we have the equalities dim ker G = dim ker N(b, a),
codim im G = codim im N(b, a), and ind G = ind N(b, a). In particular, the Fred-
holm properties of G are independent of the choice of the function space E(R).

In Proposition 6.1 we further give a description of the range of G in the spirit of
the classical Fredholm alternative using the adjoint evolution family.

The evolution semigroup T = {T(t)}t>0 mentioned in Theorem 1.1 is de-
fined on Lp(R, X), p ∈ [1, ∞), or on C0(R, X) by the formula (T(t) f )(τ)=U(τ, τ−
t) f (τ − t), τ ∈ R, t > 0, see [2], [7], [25]. This is a strongly continuous semigroup,
and we denote its generator by G. The operator G can be described in terms of
mild solutions to an inhomogenous evolution equation, as shown by the follow-
ing lemma, see Proposition 4.32 of [7].

LEMMA 1.2. A function u belongs to the domain dom G of the operator G on
Lp(R, X), p ∈ [1, ∞), respectively, on C0(R, X), if and only if u ∈ Lp(R, X)∩C0(R, X),
respectively, u ∈ C0(R, X), and there exists an f ∈Lp(R, X), respectively, f ∈C0(R, X),
with

(1.2) u(t) = U(t, τ)u(τ)−
t∫

τ

U(t, σ) f (σ)dσ for all t > τ in R.

If (1.2) holds, then Gu = f .

Suppose for a moment that the differential equation

(1.3) u′(t) = A(t)u(t), t > τ, u(τ) = x ∈ dom(A(τ)),

is well-posed in a classical sense, i.e., the operators A(t) are all densely defined
and there is an evolution family U such that U(t, τ) dom(A(τ)) ⊆ dom(A(t)) for
t > τ and u(t) = U(t, τ)x is the unique C1-solution of (1.3). Then G is the closure
of the operator G = − d

dt + A(·) on Lp(R, X), p ∈ [1, ∞), respectively, on C0(R, X),
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with the domain dom G = {u ∈ W1,p(R, X) : u(t) ∈ dom A(t) a.e., A(·)u(·) ∈
Lp(R, X)}, respectively {u ∈ C0(R, X) : u(t) ∈ dom A(t) for t ∈ R, u′(·), A(·)u(·)
∈ C0(R, X)}, where W1,p(R, X), p ∈ [1, ∞), is the usual Sobolev space, cf. Theo-
rem 3.12 of [7]. However, one knows only rather restrictive assumptions on the
operators A(t) implying well-posedness in the above sense, and almost no nec-
essary conditions, see the survey given in [25]. Thus we only assume that the
evolution family U exists, without any reference to operators A(t).

Our Theorem 1.1 was shown in Theorem 1.1 of [13] assuming in addition
that X is reflexive and U has the following backward uniqueness property (BU):

(BU.1): If u ∈ C0(R, X), u(t) = U(t, τ)u(τ) for all t > τ in R, and u(τ) = 0
for some τ ∈ R, then u = 0.

(BU.2): If v ∈ Cw,∗
b (R, X∗), v(τ) = U(t, τ)∗v(t) for all t > τ in R, and v(τ) =

0 for some τ ∈ R, then v = 0.

(See also Remark 7.4 saying that for our purposes Cw,∗
b (R, X∗) can be replaced

by Cw,∗
0 (R, X∗) in (BU.2)). We point out that these properties do not hold for

certain evolution families solving parabolic partial differential equations. Some
sufficient conditions for (BU) are known for specific classes of partial differential
equations. However, in general it is rather difficult to verify (BU), cf. [9] and
references therein. In Section 7 we present two examples, where G is Fredholm
but (BU) fails.

Our proof also shows that if U does satisfy the backward uniqueness prop-
erty (BU), then we can take a = b = 0 in our Theorem 1.1, see Proposition 7.1.
Using a different method, this result was proved in Theorem 1.2 of [13] for reflex-
ive X. As shown in Example 7.3, the conclusion of Theorem 1.1 with a = b = 0 is
false in general if (BU) is violated.

The proof of the (simpler) “if” part of Theorem 1.1 given in [13] or [5] works
without the reflexivity assumption and without the backward uniqueness prop-
erty. The main objective of the current paper is to remove these additional con-
ditions in the proof of the “only if” part. Without these hypotheses the problem
at hand becomes significantly more involved, and thus the methods used in the
current paper are quite different from those in [13]. We use an approach going
back to Daletskii and Krein, [8], and Levitan and Zhikov, [14], which is sometimes
called the “input-output method."

In [8] this technique was used to characterize the exponential stability of an
evolution family U . The basic idea is to solve the equation Gu = f on R+ for
functions of the form f (t) = ϕ′(t)U(t, s)x (where ϕ is a suitable scalar function).
For such f it can be seen that u(t) = −ϕ(t)U(t, s)x using a version of Lemma 1.2.
If G is invertible on R+, one can then deduce the required exponential estimate
by means of the boundedness of G−1. A variant of this argument shows that the
stable and unstable subspaces of U yield a time depending decomposition of X
if G is invertible on R, leading to a characterization of exponential dichotomy
on R given in [14]. In the more recent contributions [15] and [16], this approach
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was employed to characterize exponential dichotomy on R+. Here additional
difficulties appear at the initial time t = 0 which correspond to the fact that the
dichotomy projections are not unique in the half line case, in general. We point
out that the input-output method is quite different from the approach used in [2],
[3], [4], and [7] (and its modifications in [5] and [13]), where the main tool for the
construction of the exponential dichotomy, say, on R was the Riesz projection of
the semigroup generated by G.

In the present paper we deal with operators G being Fredholm. This fact
forces us to “delete” the kernel and co-kernel of G. Moreover, we can only expect
to obtain exponential dichotomies of U on (possibly disjoint) semi-lines (−∞, a]
and [b, ∞), see Example 7.3. Thus we must control the behaviour of U(t, s) at
a, b, and in between. In order to achieve this, we first discretize the problem
(see Section 2). In Section 3, we then treat the stable subspaces on Z+ and the
unstable subspaces on Z−. These spaces are somewhat easier to handle since
they are given explicitly in terms of U , see (3.1) and (3.2). The main difficulty is
the construction of the correct complements of these spaces. Here we need several
decompositions of X given in Lemma 3.6. In Sections 4 and 5 we construct the
dichotomies on [b, ∞) and (−∞, a] by propagating the “traces" of the kernel and
co-kernel of G at the points b and a (Lemmas 4.2 and 5.2). In Section 6 we deal
with the node operator to show condition (ii) in Theorem 1.1, and the formulas for
the defect numbers. In Section 7 we describe the backward uniqueness properties
in terms of the traces of the kernel and co-kernel of G, and show that one can take
a = b = 0 in Theorem 1.1 when the backward uniqueness properties hold, see
Proposition 7.1.

2. NOTATION, DEFINITIONS, AND PRELIMINARY RESULTS

We set R+ = {t ∈ R : t > 0}, R− = {t ∈ R : t 6 0}, Z+ = {n ∈ Z : n > 0},
Z− = {n ∈ Z : n 6 0}, and we use t, τ, σ to denote real numbers and n, m, k, j
to denote integers. We write c for a generic (positive) constant. A∗, dom(A),
ker A, im A are the adjoint, the domain, the kernel and the range of an operator
A on a Banach space X with dual space X∗, and A|Y is the restriction of A on the
subspace Y of X. The set of all bounded linear operators from a Banach space
X to a Banach space Y is designated by B(X, Y), and B(X, X) =: B(X). For a
subspace Y∗ ⊆ X∗, we use the (non-standard !) notation Y⊥

∗ = {x ∈ X : 〈x, ξ〉 =
0 for all ξ ∈ Y∗} for the preannihilator, where 〈·, ·〉 is the (X, X∗)-pairing. If P
and Q are two projections on X, then X = im P ⊕ ker P = im Q ⊕ ker Q, where
throughout “⊕” denotes a decomposition of a Banach space into closed subspaces
with trivial intersection. With respect to these decompositions, each A ∈ B(X)
can be written as the 2× 2 operator matrix

A =
[

PAQ PA(I − Q)
(I − P)AQ (I − P)A(I − Q)

]
.
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C0(R, X) is the space of continuous functions f : R → X vanishing at ±∞;
Cw,∗

b (R, X∗) is the space of bounded, weak star continuous functions f : R → X∗;
Lp(R, X) is the space of (equivalence classes of) Bochner p-integrable functions
f : R → X, where p ∈ [1, ∞). We denote by χM the characteristic function of
a set M. If (ϕk)k∈Z is a numerical sequence and x ∈ X, then ϕ ⊗ x denotes the
X-valued sequence (ϕkx)k∈Z.

An evolution family U = {U(t, τ)}t>τ on a set J ⊆ R is a family of operators
U(t, τ) ∈ B(X), t > τ, t, τ ∈ J, satisfying

U(t, t) = I (the identity operator onX);

U(t, τ)U(τ, σ) = U(t, σ) for all t > τ > σ with t, τ, σ ∈ J.

It is called strongly continuous if the map (t, τ) 7→ U(t, τ)x is continuous for all
x ∈ X and t > τ in J. If ‖U(t, τ)‖ 6 Meω(t−τ) for some constants M > 1 and
ω ∈ R and all t > τ in J, then U is exponentially bounded.

DEFINITION ED. An evolution family U has an exponential dichotomy on J ⊆
R if there exist closed subspaces {Xs(t)}t∈J and {Xu(t)}t∈J of X such that:

(iJ) X = Xs(t) ⊕ Xu(t) for all t ∈ J and U(t, τ)Xs(τ) ⊆ Xs(t), U(t, τ)Xu(τ) ⊆
Xu(t) for all t > τ in J;

(iiJ) U(t, τ)|Xu(τ) is an invertible from Xu(τ) to Xu(t) for all t > τ in J;
(iiiJ) there are constants N, ν > 0 such that

‖U(t, τ)|Xs(τ)‖ 6 Ne−ν(t−τ), ‖(U(t, τ)|Xu(τ))
−1‖6 Ne−ν(t−τ) for all t>τ in J.

We denote by Pt the projection onto Xs(t) parallel to Xu(t). If J = [b, ∞) or J =
Z∩ [b, ∞) we write X+

s,u(t) and P+
t for the respective dichotomy subspaces and the

dichotomy projections, and if J = (−∞, a] or J = Z∩ (−∞, a] we write X−
s,u(t) and

P−
t for the respective dichotomy subspaces and the dichotomy projections. If U is

strongly continuous and exponentially bounded on an unbounded interval J and
(iJ) − (iiiJ) hold, then the function t 7→ Pt is strongly continuous and uniformly
bounded on J, see Lemma IV.1.1, IV.3.2 of [8] or Lemma 4.2 of [16].

In order to prove Theorem 1.1, we pass from continuous time to discrete
time; i.e., we replace the operator G in the statement of Theorem 1.1 by the dif-
ference operator D defined by the formula

(2.1) D(xn)n∈Z = (xn −U(n, n − 1)xn−1)n∈Z,

cf. [3], [7], [11]. The operator D is acting on the sequence space E(Z), where
E(Z) = `p(Z, X) if E(R) = Lp(R, X), p ∈ [1, ∞) and E(Z) = c0(Z, X) if E(R) =
C0(R, X). This replacement is possible due to Theorem 1.4 and Lemma 1.5 of
[13] (cf. also Theorem 7.6.5 of [11], Theorem 1 of [3], and Theorem 2 of [4]).
These results say that U has an exponential dichotomy on R± if it has an ex-
ponential dichotomy on Z± and that im G is closed if and only if im D is closed,
dim ker G = dim ker D, and codim im G = codim im D. In particular, the oper-
ator G is Fredholm if and only if D is Fredholm, and ind G = ind D. Since we
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focus our attention on the proof of the “only if” part of Theorem 1.1, throughout
Sections 2–5 we will assume that D is a Fredholm operator.

In the following we collect some basic properties of the spaces

Xn = {x ∈ X : ∃ (xk)k∈Z ∈ ker D so that x = xn} and(2.2)

Xn,∗ = {ξ ∈ X∗ : ∃ (ξk)k∈Z ∈ ker D∗ so that ξ = ξn},(2.3)

where n ∈ Z. Simple computations show that

D∗(ξn)n∈Z = (ξn −U(n + 1, n)∗ξn+1)n∈Z,

ker D = {(xn)n∈Z ∈ E(Z) : xn = U(n, m)xm for all n > m}(2.4)

ker D∗ = {(ξn)n∈Z ∈ E(Z)∗ : ξm = U(n, m)∗ξn for all n > m}.(2.5)

These formulas imply that U(n, m)Xm = Xn and U(n, m)∗Xn,∗ = Xm,∗ for all
n > m. Because of these identities and the Fredholm property of D, we obtain
0 6 dim Xn+1 6 dim Xn 6 dim ker D < ∞ and 0 6 dim Xn,∗ 6 dim Xn+1,∗ 6
dim ker D∗ < ∞ for all n ∈ Z. Hence, there are a, b ∈ Z with a 6 b such that
dim Xn and dim Xn,∗ are constant for n 6 a and n > b.

Without loss of generality, we may assume that a = 0 and b > 1 due to
the following translation argument: For a ∈ Z, consider the strongly continuous
evolution family Ua defined by Ua(t, τ) = U(t + a, τ + a) for t > τ in R, and the
shift operator Sa on E(Z) acting by Sa(xn)n∈Z = (xn+a)n∈Z. If Da is the differ-
ence operator associated to Ua as in (2.1), then Da = SaDS−1

a , and thus Da and
D have the same Fredholm properties. So, choosing an appropriate a, we have
that dim Xn(Ua) and dim Xn,∗(Ua) are constant for n 6 0. To sum things up, we
impose the following assumption, without loss of generality.

HYPOTHESIS 1. U is a discrete, exponentially bounded evolution family on
Z, D is a Fredholm operator, and dim Xn and dim Xn,∗ are constant for n > b and
n 6 0, for some 1 6 b ∈ Z.

LEMMA 2.1. Let Hypothesis 1 be satisfied. Then dim Xn 6 dim ker D < ∞,
dim Xn,∗ 6 dim ker D∗ < ∞ for n ∈ Z, and the following assertions hold:

(i) U(n, m)Xm = Xn for all n > m.
(ii) U(n, m)∗Xn,∗ = Xm,∗ for all n > m.

(iii) U(n, m)|Xm : Xm → Xn is invertible if m 6 n 6 0 or n > m > b.
(iv) U(n, m)∗|Xn,∗

: Xn,∗ → Xm,∗ is invertible if m 6 n 6 0 or n > m > b.

(v) Xn ⊆ X⊥
n,∗ for all n ∈ Z.

(vi) x ∈ X⊥
m,∗ if and only if U(n, m)x ∈ X⊥

n,∗, where n > m in Z.

Proof. We already observed after (2.4) and (2.5) that the first assertion and
statements (i) and (ii) hold. Assertions (iii) and (iv) follow from these assertions
and Hypothesis 1. In order to show (v), take x = (xk)k∈Z ∈ ker D, ξ = (ξk)k∈Z ∈
ker D∗, and n ∈ Z. Then (2.5) and (2.4) imply that

〈xn, ξn〉 = 〈xn, U(k, n)∗ξk〉 = 〈U(k, n)xn, ξk〉 = 〈xk, ξk〉
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for all k > n. Letting k → ∞, we deduce 〈xn, ξn〉 = 0 since x ∈ c0(Z, X) and ξ is
bounded. Thus assertion (v) holds. The last assertion follows from the identities

〈x, ξm〉 = 〈x, U(n, m)∗ξn〉 = 〈U(n, m)x, ξn〉

for all n > m and all ξ = (ξn)n∈Z ∈ ker D∗.

Since X0 ⊆ X⊥
0,∗ and dim X0 < ∞, we can choose a closed subspace X′

0 of X with

(2.6) X⊥
0,∗ = X0 ⊕ X′

0.

Moreover, we define the following closed subspaces of E(Z) and E(Z)∗:

F = {x = (xn)n∈Z ∈ E(Z) : xn ∈ X⊥
n,∗ for all n ∈ Z},(2.7)

F0 = {x = (xn)n∈Z ∈ F : x0 ∈ X′
0},(2.8)

Fb,∗ = {ξ = (ξn)n∈Z ∈ E(Z)∗ : ξn ∈ Xn,∗ for all n ∈ Z, ξb = 0}.(2.9)

On these spaces the operators D0 := D|F0
and Db,∗ := D∗

|Fb,∗
have better proper-

ties than D and D∗, respectively, as stated in the next lemma.

LEMMA 2.2. Let Hypothesis 1 be satisfied. Then the following assertions hold:
(i) F is D-invariant and D|F : F → F is surjective.

(ii) The operator D0 = D|F0
: F0 → F is invertible;

(iii) Db,∗ = D∗
|Fb,∗

is uniformly injective, that is, ‖Db,∗ξ‖(E(Z))∗ > c‖ξ‖(E(Z))∗ for all
ξ ∈ Fb,∗ and a constant c > 0.

Proof. Assertions (i) and (ii) can be shown exactly as Lemma 2.2 of [13] and
Lemma 2.3 of [13], respectively. To prove (iii), we have to verify that Db,∗ : Fb,∗ →
E(Z)∗ is injective and has closed range. If ξ = (ξn)n∈Z ∈ ker Db,∗ then ξn =
U(b, n)∗ξb = 0 for n 6 b and U(n, b)∗ξn = ξb = 0 for n > b by (2.5). Furthermore,
Lemma 2.1(iv) implies that ξn = 0 for n > b, proving that Db,∗ is injective. Next,
take η = lim

n→∞
Db,∗ξn with ξn ∈ Fb,∗. Since D∗ is Fredholm, im D∗ is closed and

thus there is ζ ∈ E(Z)∗ with η = D∗ζ. Moreover, there exist an operator D† ∈
B(E(Z)∗) and a finite rank operator R such that D†D∗ = I + R and im R ⊆ ker D∗.
Observe that D∗(ζ − ξn) → 0 as n → ∞. Then it follows that ζ − ξn + wn → 0 as
n → ∞ for wn = R(ζ − ξn) ∈ ker D∗. Passing to the elements of the sequences,
we deduce that ζk = lim

n→∞
(ξk,n − wk,n) ∈ Xk,∗ for each k ∈ Z, where ζ = (ζk)k∈Z,

ξn = (ξk,n)k∈Z and wn = (wk,n)k∈Z. There is a vector θ = (θk)k∈Z ∈ ker D∗ with
ζb = θb by (2.3). Hence, ζ − θ ∈ Fb,∗ by (2.9) and η = D∗(ζ − θ) = Db,∗(ζ − θ). So
the range of Db,∗ is closed.

We will need the next elementary lemma which is probably well-known.

LEMMA 2.3. Let V be a subspace of X, {ξ1, . . . , ξd} be a set of linearly independent
vectors in X∗, and Y∗ = Span{ξ1, . . . , ξd}. Then the following assertions hold:

(i) There are x1, . . . , xd ∈ X such that 〈xi, ξ j〉 = δij for all i, j ∈ {1, . . . , d}, where
δij is the Kronecker Delta.



DICHOTOMY AND FREDHOLM PROPERTIES OF EVOLUTION EQUATIONS 395

(ii) Let v1, . . . , vd ∈ V satisfy 〈vi, ξ j〉 = δij for all i, j ∈ {1, . . . , d} and set W =
Span{v1, . . . , vd}. Then V = (V ∩Y⊥

∗ )⊕W.
(iii) codim Y⊥

∗ = d < ∞.

Proof. (i) It is clear that assertion (i) holds if d = 1. Assume that it is true for
some d ∈ N and let {ξ1, . . . , ξd, ξd+1} be a system of linearly independent vectors.
We want to prove by contradiction that

(2.10)
d⋂

i=1

ker ξi * ker ξd+1.

Take x ∈ X and let {x1, . . . , xd} satisfy the induction hypothesis. If (2.10) were
false, then we would obtain

x −
d

∑
j=1

〈x, ξ j〉xj ∈
d⋂

i=1

ker ξi ⊆ ker ξd+1 , i.e., ξd+1 =
d

∑
j=1

〈xj, ξd+1〉ξ j.

This is a contradiction, and so (2.10) is true. Thus there exists xd+1 ∈
d⋂

i=1
ker ξi

with 〈xd+1, ξd+1〉 = 1, concluding the proof of (i).

(ii) Let x ∈ V and set y = x −
d
∑

j=1
〈x, ξ j〉vj ∈ V. Then

〈y, ξi〉 = 〈x, ξi〉 −
d

∑
j=1

〈x, ξ j〉δji = 0

for all i ∈ {1, . . . , d}. As a consequence, y ∈ V ∩Y⊥
∗ and so x ∈ (V ∩Y⊥

∗ ) + W. We
have shown that V ⊆ (V ∩Y⊥

∗ ) + W. The converse inclusion follows directly from

W ⊆ V. If x ∈ (V ∩Y⊥
∗ ) ∩W, then there are λ1, . . . , λd ∈ C such that x =

d
∑

j=1
λjvj.

Therefore

λi =
d

∑
j=1

λjδji =
d

∑
j=1

〈λjvj, ξi〉 = 〈x, ξi〉 = 0

for all i ∈ {1, . . . , d}, and hence (V ∩Y⊥
∗ ) ∩W = {0}. Thus (ii) holds.

(iii) The third assertion follows from (i) and (ii).

LEMMA 2.4. Let (an)n∈Z+ be a sequence of positive numbers and (bn)n∈Z+ ∈
c0(Z+, R+) such that am+n 6 bnam, for all n, m ∈ Z+. Then there are N, ν > 0,
depending only on (bn)n∈Z+ such that an+m 6 Ne−νnam for all n, m ∈ Z+.

Proof. Take n0 ∈ Z+ such that bn0 < e−1. We set N = e(max{b0, . . . , bn0}+
1), ν = 1

n0
, and p = [ n

n0
] for n, m ∈ Z+. Then we obtain

an+m 6bn−pn0 apn0+m 6
N
e

apn0+m 6
N
e

(bn0)
pam
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6 Ne−p−1am 6 Ne−n/n0 am = Ne−νnam .

3. THE STABLE SUBSPACES ON Z+ AND THE UNSTABLE SUBSPACES ON Z−

In this section we will use the notations E(Z±) = `p(Z±, X) if E(Z) =
`p(Z, X), p ∈ [1, ∞), and E(Z±) = c0(Z±, X) if E(Z) = c0(Z, X). We introduce
the stable and unstable subspaces of U on Z+ and Z−, respectively, by

X+
s (k) = {x ∈ X : (U(n + k, k)x)n∈Z+ ∈ E(Z+)}, k > 0,(3.1)

X−
u (k) = {x ∈ X : ∃ (xn)n∈Z− ∈ E(Z−) with xn = U(n, m)xm(3.2)

for m 6 n 6 0 and xk = x}, k 6 0.

We observe that

U(n, m)X+
s (m) ⊆ X+

s (n) for all n > m > 0,(3.3)

U(n, m)X−
u (m) = X−

u (n) for all m 6 n 6 0.(3.4)

Let U+
s (n, m) : X+

s (m) → X+
s (n) and U−

u (n, m) : X−
u (m) → X−

u (n) be the linear
operators defined by U+

s (n, m)x = U(n, m)x for n > m > 0 and x ∈ X+
s (m) and

by U−
u (n, m)x = U(n, m)x for m 6 n 6 0 and x ∈ X−

u (m). The following lemma
shows in particular that the above subspaces do not match at n = 0, in general.

LEMMA 3.1. Let Hypothesis 1 be satisfied. Then the following assertions hold:
(i) X+

s (0) + X−
u (0) = X⊥

0,∗.
(ii) X+

s (0) ∩ X−
u (0) = X0.

Proof. (i) Let ξ = (ξn)n∈Z ∈ ker D∗. Then ξ is bounded, and U(k, 0)∗ξk = ξ0
by (2.5). For x ∈ X+

s (0), (3.1) yields U(k, 0)x → 0 as k → ∞. We compute

〈x, ξ0〉 = 〈x, U(k, 0)∗ξk〉 = 〈U(k, 0)x, ξk〉

for all k > 0. Letting k → ∞, we deduce 〈x, ξ0〉 = 0 and thus x ∈ X⊥
0,∗. For

x ∈ X−
u (0), there is (xk)k∈Z− ∈ E(Z−) such that xn = U(n, m)xm for all m 6 n 6 0

and x0 = x due to (3.2). In this case we have xk → 0 as k → −∞ and

〈x, ξ0〉 = 〈x0, ξ0〉 = 〈U(0, k)xk, ξ0〉 = 〈xk, U(0, k)∗ξ0〉 = 〈xk, ξk〉

for all k 6 0. Letting k → −∞, we infer x ∈ X⊥
0,∗. Hence, X+

s + X−
u ⊆ X⊥

0,∗.
Assume that x ∈ X⊥

0,∗. Then the sequence y = −χ{1}⊗U(1, 0)x belongs toF
due to (2.7) and Lemma 2.1(vi). Lemma 2.2(i) gives a sequence x = (xn)n∈Z ∈ F
with Dx = y. This equation implies that x1 − U(1, 0)x0 = y1 = −U(1, 0)x and
xn − U(n, 1)x1 = yn = 0 for n > 2. We conclude that U(n, 0)(x − x0) = −xn
for all n > 1, and thus x − x0 ∈ X+

s (0) by (3.1). Using Dx = y again, we obtain
xn −U(n, m)xm = yn = 0 for all m 6 n 6 0, so that x0 ∈ X−

u (0) by (3.2). Therefore,
x = x − x0 + x0 ∈ X+

s (0) + X−
u (0), proving (i).

(ii) Let x ∈ X+
s (0)∩X−

u (0). Then xn = U(n, 0)x defines a sequence (xn)n∈Z+

∈ E(Z+) by (3.1), and there is a sequence (xn)n∈Z− ∈ E(Z−) so that x = x0
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and xn = U(n, m)xm for all m 6 n 6 0 due to (3.2). It is easy to check that
xn = U(n, m)xm for all n > m in Z, and thus x ∈ X0 by (2.2) and (2.4). Hence,
X+

s (0)∩X−
u (0) ⊆ X0. The converse inclusion follows directly from the definitions

of X0, X+
s (0), and X−

u (0) in (2.2), (3.1), and (3.2).

REMARK 3.2. Using the same arguments as in the proof of Lemma 3.1(i),
one can establish that X+

s (k) ⊆ X⊥
k,∗ for all k > 0 and X−

u (k) ⊆ X⊥
k,∗ for all k 6 0.

In the derivation of the dichotomy estimates we make use of the following
sequences, where n ∈ Z+ and p ∈ [1, ∞):

αn =

{
(n + 1)1−(1/p), if E(Z)= `p(Z, X),
(n + 1), if E(Z)= c0(Z, X),

βn =

{
(n + 1)1/p, if E(Z)= `p(Z, X),
1, if E(Z)= c0(Z, X).

REMARK 3.3. We note some obvious properties of the above sequences:
(i) αnβn = n + 1 for all n > 0.

(ii)
m+n
∑

k=m
‖xk‖ 6 αn‖x‖E(Z) for all m ∈ Z, n > 0, x = (xk)k∈Z ∈ E(Z).

(iii) ‖χ{m,...,m+n} ⊗ x‖E(Z) = βn‖x‖ for all x ∈ X, m ∈ Z, n > 0.

We can now establish the dichotomy estimates of U+
s (n, m) for n > m > 0,

as well as the invertibility of U−
u (n, m) and the dichotomy estimates of U−

u (n, m)−1

for m 6 n 6 0.

LEMMA 3.4. Let Hypothesis 1 be satisfied. Then the following assertions hold:
(i) There are constants N, ν > 0 such that

‖U+
s (n, m)‖ 6 Ne−ν(n−m) for all n > m > 0.

(ii) X+
s (m) is a closed subspace of X for all m > 0.

Proof. Let m > 0, x ∈ X+
s (m), and (ϕk)k∈Z be a finitely supported numerical

sequence. We define the sequences x = (xk)k∈Z and y = (yk)k∈Z by

(3.5) xk =


0, k 6 m,( k

∑
j=m+1

ϕj

)
U(k, m)x, k > m,

yk =

{
0, k 6 m,
ϕkU(k, m)x, k > m.

Remark 3.2 and (3.3) imply that x ∈ F0, see (2.8). It is straightforward to check
that y = Dx = D0x. We first take (ϕk)k∈Z = χ{m+1}. Lemma 2.2(ii) and the
exponential boundedness of the evolution family U yield

‖U(n, m)x‖ =
∥∥∥ n

∑
j=m+1

χ{m+1}(j) U(n, m)x
∥∥∥ 6 ‖x‖E(Z)

6 c‖D0x‖E(Z) = c‖y‖E(Z) = c‖U(m + 1, m)x‖ 6 cMeω‖x‖

for all n > m + 1. It follows that

(3.6) ‖U+
s (k, j)‖ 6 c for all k > j > 0.
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Second, we take n > l > m and set (ϕk)k∈Z = χ{l,...,n}. For x and y defined in
(3.5), estimate (3.6), Remark 3.3, and Lemma 2.2(ii) imply that

1
2

(n − l + 2)(n − l + 1) ‖U+
s (n, m)x‖

=
n

∑
k=l

(k − l + 1)‖U+
s (n, k)U+

s (k, m)x‖ 6 c
n

∑
k=l

k

∑
j=m+1

ϕj‖U(k, m)x‖

= c
n

∑
k=l

‖xk‖6 cαn−l‖x‖E(Z) 6 cαn−l‖y‖E(Z) 6 cαn−l‖χ{l,...,n} ⊗U+
s (l, m)x‖E(Z)

= cαn−l βn−l‖U+
s (l, m)x‖ = c(n − l + 1)‖U+

s (l, m)x‖.

So we have shown that ‖U(n, m)x‖ 6 bn−l‖U(l, m)x‖ for all n > l > m > 0 and
all x ∈ X+

s (m), where b0 = 1 and bj = c(j + 2)−1 for j > 1. By Lemma 2.4, there
are N, ν > 0 such that ‖U(n, m)x‖ 6 Ne−ν(n−l)‖U(l, m)x‖ for all n > l > m and
all x ∈ X+

s (m), which proves (i). Assertion (ii) follows easily from (i) and (3.1).

LEMMA 3.5. Let Hypothesis 1 be satisfied. Then the following assertions hold:
(i) U−

u (n, m) : X−
u (m) → X−

u (n) is bijective for m 6 n 6 0.
(ii) There are constants N, ν > 0 such that

‖(U−
u (n, m))−1‖ 6 Ne−ν(n−m) for all m 6 n 6 0.

(iii) X−
u (k) is a closed subspace of X for k 6 0.

Proof. (i) Fix m 6 n 6 0. The surjectivity of U−
u (n, m) was already stated

in (3.4). Take x ∈ X−
u (m) with 0 = U−

u (n, m)x = U(n, m)x. By (3.2) there is a
sequence x = (xk)k∈Z− ∈ E(Z−) such that xk = U(k, j)xj for all j 6 k 6 0 and
x = xm. We extend x to a sequence from x ∈ E(Z) by setting xk = 0 for k > 0.
Since x0 = U(0, n)U(n, m)x = 0, the sequence x belongs to ker D. Hence, x ∈ Xm
by (2.2). Lemma 2.1(iii) now yields x = 0, and so (i) is established.

(ii) Take w = (wk)k∈Z− ∈ E(Z−) with wk = U(k, j)wj for all j 6 k 6 0. Let
(ϕk)k∈Z ⊆ C have finite support. We define x = (xk)k∈Z and y = (yk)k∈Z by

(3.7) xk =


0, k > 0,( 0

∑
j=k+1

ϕj

)
wk, k 6 −1,

yk =

{
0, k > 1,
−ϕkwk, k 6 0.

Observe that x ∈ F0 since wk ∈ X−
u (k) ⊆ X⊥

k,∗ for all k ∈ Z− (see (2.8), (3.2), and
Remark 3.2). Moreover, y = Dx = D0x. Let m 6 n − 1 < 0 and choose first
(ϕk)k∈Z = χ{n}. Lemma 2.2(ii) implies that

(3.8) ‖wm‖ = ‖xm‖ 6 ‖x‖E(Z) 6 c‖y‖E(Z) = c‖wn‖.

Second, take (ϕk)k∈Z = χ{m+1,...,n}. Estimate (3.8), Lemma 2.2(ii), and Remark 3.3
now yield

1
2
(n − m)(n − m + 1)‖wm‖
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=
n−1

∑
k=m

(n−k)‖wm‖6 c
n−1

∑
k=m

n

∑
j=k+1

ϕj‖wk‖= c
n−1

∑
k=m

‖xk‖6 cαn−m−1‖x‖E(Z)6 cαn−m−1‖y‖E(Z)

6 cαn−m−1‖χ{m+1,...,n} ⊗ wn‖E(Z) = cαn−m−1βn−m−1‖wn‖ = c(n − m)‖wn‖,

which implies that ‖wm‖ 6 c
n−m+1‖wn‖ for all m 6 n − 1 < 0. Applying

Lemma 2.4 to the sequences an = ‖w−n‖ and bn = c(n + 1)−1, we obtain con-
stants N, ν > 0 (independent of the choice of w = (wk)k∈Z) such that ‖wm‖ 6
Ne−ν(n−m)‖wn‖ for all m 6 n 6 0. We can now deduce (ii) from the definition of
w = (wk)k∈Z and (i).

(iii) It suffices to consider k = 0 due to (i) and (ii). Take x ∈ X and x(n) ∈
X+

u (0), n ∈ Z+, with x(n) → x as n → ∞. Let y(n) = (y(n)
k )k∈Z− be a sequence in

E(Z−) such that y(n)
k = U(k, j)y(n)

j for all j 6 k 6 0 and y(n)
0 = x(n) for all n > 0.

Assertion (ii) yields

‖y(n)
k − y(m)

k ‖ = ‖(U−
u (0, k))−1(x(n) − x(m))‖ 6 Neνk‖x(n) − x(m)‖

for all n, m > 0 and all k 6 0, and thus

‖y(n) − y(m)‖E(Z) 6 c‖x(n) − x(m)‖ for all n, m > 0.

As a result, there exists y = (yk)k∈Z− ∈ E(Z−) with y(n) → y in E(Z−) as n → ∞.
It follows that yk = U(k, j)yj for all j 6 k 6 0 and y0 = x; i.e., x ∈ X−

u (0).

As a preparation for the following two sections, we construct several split-
tings of X. Recall from Lemma 2.1 that X0,∗ is finite dimensional, and let {ξ

(1)
0 , . . . ,

ξ
(d0)
0 } be a basis of X0,∗. By Lemma 2.3 there exist vectors {x(1)

0 , . . . , x(d0)
0 } ⊆ X

such that 〈x(i)
0 , ξ

(j)
0 〉 = δij for all i, j ∈ {1, . . . , d0} and

(3.9) X = X⊥
0,∗ ⊕Y, where Y := Span{x(1)

0 , . . . , x(d0)
0 }.

Recall from (2.6) that we have X⊥
0,∗ = X0 ⊕ X′

0 where X0 is given by (2.2). In order
to relate these spaces with X+

s (0) and X−
u (0), we further introduce the subspaces

(3.10) Z1 = X′
0 ∩ X+

s (0) and Z2 = X′
0 ∩ X−

u (0).

LEMMA 3.6. Let Hypothesis 1 be satisfied. Then the following assertions hold:
(i) X+

s (0) = Z1 ⊕ X0 and X−
u (0) = Z2 ⊕ X0.

(ii) X′
0 = Z1 ⊕ Z2.

(iii) X = X+
s (0)⊕ (Z2 ⊕Y) = X−

u (0)⊕ (Z1 ⊕Y).

Proof. (i) We have seen in Lemma 3.4(ii) and Lemma 3.5(iii) that X+
s (0) and

X−
u (0) are closed subspaces of X. Since X′

0 is also a closed subspace of X, the
spaces Z1 and Z2 are closed in X. We have Z1 ∩ X0 = {0} and Z1 ⊆ X+

s (0) by
(3.10) and (2.6). Lemma 3.1(ii) yields X0 ⊆ X+

s (0), so that X0 + Z1 ⊆ X+
s (0). Let

x ∈ X+
s (0). Then x ∈ X⊥

0,∗ = X0 ⊕ X′
0 by Lemma 3.1(ii) and (2.6). So we can write

x = x0 + x′0 for some x0 ∈ X0 and x′0 ∈ X′
0, implying x′0 = x− x0 ∈ X+

s (0). Hence,
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x′0 ∈ Z1 by (3.10). Thus the first equation in (i) is verified. The second one can be
established in the same way.

(ii) The identities (3.10), Lemma 3.1(ii), and (2.6) yield Z1 ⊆ X′
0, Z2 ⊆ X′

0,
and

Z1 ∩ Z2 = X′
0 ∩ X+

s (0) ∩ X−
u (0) = X′

0 ∩ X0 = {0}.

Let x ∈ X′
0. Then we deduce from (2.6) and Lemma 3.1(i) that x ∈ X⊥

0,∗ = X+
s (0) +

X−
u (0). So assertion (i) provides us with z1 ∈ Z1, z2 ∈ Z2, and v1, v2 ∈ X0 such that

x = z1 + z2 + v1 + v2. Using again Zj ⊆ X′
0, we obtain that v1 + v2 = x− z1 − z2 ∈

X′
0. Hence, v1 + v2 ∈ X′

0 ∩ X0 = {0}. So we have shown that X′
0 ⊆ Z1 + Z2, and

the desired decomposition holds.
(iii) The spaces Z1 ⊕ Y and Z2 ⊕ Y are closed subspaces of X since Z1 and

Z2 are closed in X by (i) and dim Y < ∞ by (3.9). We then derive the splitting
X = X0 ⊕ Z1 ⊕ Z2 ⊕Y from (3.9), (2.6), and (ii). Hence, (iii) follows from (i).

4. EXPONENTIAL DICHOTOMY ON Z+ ∩ [b, ∞)

The main difficulty in establishing the dichotomy on Z+ ∩ [b, ∞) is the con-
struction of the correct complement of the stable subspace X+

s (k). To that pur-
pose, we first deal with the “good part” of X+

u (k) by propagating the space Z2
from (3.10); i.e., we set

(4.1) Z2(k) = U(k, 0)Z2 for k ∈ Z+.

Observe that, due to (3.10), a vector x ∈ Z2 can be propagated backwards to
an element (xn)n∈Z− of E(Z−) with x = U(0, n)xn, but this sequence cannot be
extended to a non-zero element of ker D. These facts are crucial for the next result.

LEMMA 4.1. Let Hypothesis 1 be satisfied. Then the following assertions hold:
(i) U(n, m)|Z2(m) is bijective from Z2(m) to Z2(n) for all n > m > 0.

(ii) There are constants N, ν > 0 such that

‖(U(n, m)|Z2(m))
−1‖ 6 Ne−ν(n−m) for all n > m > 0.

(iii) Z2(k) is a closed subspace of X for all k > 0.

Proof. (i) The definition (4.1) implies that U(n, m)Z2(m) = Z2(n) for all n >
m > 0. Take x ∈ Z2(m) with U(n, m)x = 0. By (4.1), there exists a vector z2 ∈ Z2
such that x = U(m, 0)z2. Since

U(j, 0)z2 = U(j, n)U(n, m)U(m, 0)z2 = U(j, n)U(n, m)x = 0

for all j > n, we obtain z2 ∈ X+
s (0) (see (3.1)). Lemma 3.6(iii) then shows that

z2 = 0, and so x = 0. Thus U(n, m) : Z2(m) → Z2(n) is bijective.
(ii) Let z2 ∈ Z2\{0}. By (3.10) and (3.2) there is a sequence w = (wk)k∈Z− ∈

E(Z−) such that wk = U(k, j)wj for all j 6 k 6 0 and w0 = z2. Let (ϕk)k∈Z be a
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finitely supported numerical sequence. Define x = (xk)k∈Z and y = (yk)k∈Z by

xk =


∞
∑

j=k+1
ϕjU(k, 0)z2, k > 1,

∞
∑

j=1
ϕjwk, k 6 0,

yk =

{
−ϕkU(k, 0)z2, k > 1,
0, k 6 0.

We have wk ∈ X−
u (k) ⊆ X⊥

k,∗ for all k 6 0 due to (3.2) and Remark 3.2. Equations
(3.10) and (2.6) and Lemma 2.1(vi) further imply that U(k, 0)z2 ∈ X⊥

k,∗ for k > 0.
Since also x ∈ E(Z) and w0 = z2 ∈ X′

0 by (3.10), the vector x belongs to F0 (see
(2.8)). Moreover, y = Dx = D0x. Let n > m > 0. Choose first (ϕk)k∈Z = χ{n}.
Then Lemma 2.2(ii) yields

(4.2) ‖U(m, 0)z2‖ = ‖xm‖ 6 ‖x‖E(Z) 6 c‖y‖E(Z) 6 c‖U(n, 0)z2‖.

Second, take (ϕk)k∈Z = χ{m+1,...,n}. In this case, estimate (4.2), Remark 3.3, and
Lemma 2.2(ii) imply that

1
2
(n − m)(n − m + 1)‖U(m, 0)z2‖

=
n−1

∑
k=m

(n − k)‖U(m, 0)z2‖=
n−1

∑
k=m

∞

∑
j=k+1

ϕj‖U(m, 0)z2‖6c
n−1

∑
k=m

∞

∑
j=k+1

ϕj‖U(k, 0)z2‖

= c
n−1

∑
k=m

‖xk‖6cαn−m−1‖x‖E(Z)6cαn−m−1‖y‖E(Z)6cαn−m−1‖cχ{m+1,...,n}⊗U(n, 0)z2‖E(Z)

6 cαn−m−1βn−m−1‖U(n, 0)z2‖ = c(n − m)‖U(n, 0)z2‖.

Therefore ‖U(m, 0)z2‖ 6 c
n−m+1‖U(n, 0)z2‖, and in particular U(n, 0)z2 6= 0, for

all n > m > 0. Applying Lemma 2.4 to the sequences an = ‖U(n, 0)z2‖−1 and
bn = c(n + 1)−1, we obtain constants N, ν > 0 (independent of z2) such that
‖U(m, 0)z2‖ 6 Ne−ν(n−m)‖U(n, 0)z2‖ for all n > m > 0. Using (i), we can now
conclude that (ii) holds.

(iii) Since U(k, 0)|Z2(0) : Z2(0) → Z2(k) is an isomorphism by (i) and (ii), as-
sertion (iii) follows from (4.1) and the closedness of Z2 proved in Lemma 3.6(i).

We next introduce the remaining complement of the unstable subspace. Let
{ξ

(1)
b , . . . , ξ

(db)
b } be a basis of Xb,∗ (cf. Lemma 2.1). By Lemma 2.3(i), there are

vectors x(1)
b , . . . , x(db)

b in X such that 〈x(i)
b , ξ

(j)
b 〉 = δij for all i, j ∈ {1, . . . , db}.

Lemma 2.3(ii) shows that

(4.3) X = X⊥
b,∗ ⊕Y+(b), where Y+(b) := Span{x(1)

b , . . . , x(db)
b }.

We note that Z2 is contained in X⊥
0,∗ due to (3.10) and (2.6). Lemma 2.1(vi) and

equation (4.1) then imply that

(4.4) Z2(n) = U(n, 0)Z2 ⊆ X⊥
n,∗ for all n ∈ Z+.
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Hence, Z2(b) ∩ Y+(b) = {0}. Moreover, Z2(b) is closed by Lemma 4.1(iii). So we
can define a closed subspace of X by

(4.5) X+
u (b) = Z2(b)⊕Y+(b).

We see below that X+
u (b) is indeed the unstable subspace. We propagate these

spaces by the evolution family; i.e., we set

(4.6) X+
u (k) = U(k, b)X+

u (b) and Y+(k) = U(k, b)Y+(b) for all k > b.

Finally, we let U+
u (n, m) = U(n, m)|X+

u (m) for n > m > b. Here we take k > b in
order to make sure that dim Xk,∗, and thus dim Y+(k), is constant.

LEMMA 4.2. Let Hypothesis 1 be satisfied. Then the following assertions hold:
(i) X+

u (k) is closed in X and X+
u (k) = Z2(k)⊕Y+(k) for all k > b.

(ii) U+
u (n, m) is invertible from X+

u (m) to X+
u (n) and U(n, m)|Y+(m) is invertible

from Y+(m) to Y+(n) for all n > m > b.
(iii) X = Y+(k)⊕ X⊥

k,∗ for all k > b.

Proof. (i) Let w ∈ Z2(k) ∩ Y+(k) for some k > b. Then w = U(k, b)x for a
vector x ∈ Z2(b) ∩ Y+(b) by Lemma 4.1(i) and (4.6). Thus equation (4.5) yields
x = 0, and so w = 0. Moreover, Z2(k) ⊕ Y+(k) is closed since Z2(k) is closed
by Lemma 4.1(iii) and Y+(k) is finite dimensional by (4.3). Assertion (i) is now a
consequence of (4.6), (4.5), and Lemma 4.1(i).

(ii) Let n > m > b. The surjectivity of Uu(n, m) : X+
u (m) → X+

u (n) and of
Uu(n, m) : Y+(m) → Y+(n) follows from (4.6). Take x ∈ X+

u (m) with U+
u (n, m)x =

0. By our definitions (4.6), (4.5), and (4.1), there are z2 ∈ Z2 and yb ∈ Y+(b)
such that x = U(m, b)(U(b, 0)z2 + yb). Therefore, 0 = U(n, m)x = U(n, 0)z2 +
U(n, b)yb. On the other hand, U(n, 0)z2 ∈ X⊥

n,∗ by (4.4). For ξ = (ξk)k∈Z ∈ ker D∗

equation (2.5) thus yields

〈yb, ξb〉 = 〈yb, U(n, b)∗ξn〉 = 〈U(n, b)yb, ξn〉 = −〈U(n, 0)z2, ξn〉 = 0.

We obtain yb ∈ X⊥
b,∗ ∩Y+(b) = {0} taking into account (4.3). As a result, U(j, 0)z2

= U(j, n)U(n, 0)z2 = 0 for all j > n, which means that z2 ∈ X+
s (0) ∩ Z2. Lem-

ma 3.6(iii) now yields z2 = 0. This fact leads to x = 0, and so U+
u (n, m) : X+

u (m) →
X+

u (n) is also injective. The assertions then follow from (i) and (4.6).
(iii) As we have seen before (4.3), there exist bases {ξ

(1)
b , . . . , ξ

(db)
b } of Xb,∗

and {x(1)
b , . . . , x(db)

b } of Y+(b) such that 〈x(i)
b , ξ

(j)
b 〉 = δij for all i, j ∈ {1, . . . , db}.

Lemma 2.1(iv) and part (ii) show that {(U(k, b)∗)−1ξ
(1)
b , . . . , (U(k, b)∗)−1ξ

(db)
b } is

a basis of Xk,∗ and {U(k, b)x(1)
b , . . . , U(k, b)x(db)

b } is a basis of Y+(k). Moreover

〈U(k, b)x(i)
b , (U(k, b)∗)−1ξ

(j)
b 〉 = δij for all i, j ∈ {1, . . . , db}. Lemma 2.3(ii) thus

yields the assertion.
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Let n ∈ Z+ and p ∈ [1, ∞). The following sequences are used below when
we estimate the inverses of U+

u (n, m):

α∗n =

{
(n + 1)1/p if E(Z)= `p(Z, X),
(n + 1) if E(Z)= c0(Z, X),

β∗n =

{
(n + 1)1−1/p if E(Z)= `p(Z, X),
1 if E(Z)= c0(Z, X).

REMARK 4.3. We note some immediate properties of the above defined se-
quences:

(i) α∗nβ∗n = n + 1 for n > 0.

(ii)
n+m
∑

k=m
‖ξk‖ 6 α∗n‖ξ‖E(Z)∗ for m ∈ Z, n > 0, ξ = (ξk)k∈Z ∈ E(Z)∗;

(iii) ‖χ{m,...,m+n} ⊗ ξ‖E(Z)∗ = β∗n‖ξ‖ for ξ ∈ X∗, m ∈ Z, n > 0.

LEMMA 4.4. Let Hypothesis 1 be satisfied. Then the following assertions hold:
(i) There are constants N, ν > 0 such that

‖(U(n, m)∗|Xn,∗
)−1‖ 6 Ne−ν(n−m) for n > m > b;

(ii) There are constants N, ν > 0 such that

‖(U+
u (n, m))−1‖ 6 Ne−ν(n−m) for n > m > b.

Proof. (i) Let ξ = (ξk)k∈Z ∈ ker D∗ and (ϕk)k∈Z be a finitely supported nu-
merical sequence. We define the sequences η = (ηk)k∈Z and ζ = (ζk)k∈Z by

ηk =


0, k 6 b,( k

∑
j=b+1

ϕj

)
ξk, k > b + 1,

ζk =

{
0, k 6 b − 1,
−ϕk+1ξk, k > b.

We have η ∈ Fb,∗ since ξ ∈ ker D∗ and ηb = 0 (see (2.3) and (2.9)). Moreover,
ζ = D∗η = Db,∗η. Let n > m + 1 > b. We first choose (ϕk)k∈Z = χ{m+1}. Then
Lemma 2.2(iii) yields

(4.7) ‖ξn‖ = ‖ηn‖ 6 ‖η‖E(Z)∗ 6 c‖ζ‖E(Z)∗ = c‖ξm‖.

Second, choose (ϕk)k∈Z = χ{m+1,...,n}. Making use of estimate (4.7), Remark 4.3,
and Lemma 2.2(iii), we calculate

1
2
(n − m)(n − m + 1)‖ξn‖ =

n

∑
k=m+1

(k − m)‖ξn‖ 6 c
n

∑
k=m+1

k

∑
j=b+1

ϕj‖ξ j‖

= c
n

∑
k=m+1

‖ηk‖6 cα∗n−m−1‖η‖E(Z)∗ 6 cα∗n−m−1‖ζ‖E(Z)∗

= cα∗n−m−1β∗n−m−1‖ξm‖ = c(n − m)‖ξm‖.

As a result, ‖ξn‖ 6 c
n−m+1‖ξm‖ for all n > m > b. Lemma 2.4 provides constants

N, ν > 0 (independent of ξ) such that ‖ξn‖ 6 Ne−ν(n−m)‖ξm‖ for all n > m > b
and ξ = (ξk)k∈Z ∈ ker D∗, proving (i).
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(ii) The decomposition X = Y+(k) ⊕ X⊥
k,∗ from Lemma 4.2(iii) implies that

Y+(k)∗ = Xk,∗ for all k > b since Xk,∗ is finite dimensional. Thus we have

((U(n, m)|Y+(m))
−1)∗ = ((U(n, m)|Y+(m))

∗)−1 = (U(n, m)∗|Xn,∗
)−1

for all n > m > b by Lemmas 4.2(ii) and 2.1(iv). Assertion (i) now yields

(4.8) ‖(U(n, m)|Y+(m))
−1‖ 6 Ne−ν(n−m) for all n > m > b.

Lemmas 4.1 and 4.2 show that U+
u (n, m)−1 has the matrix representation[

(U(n, m)|Z2(m))−1 0
0 (U(n, m)|Y+(m))−1

]
: Z2(m)⊕Y+(m) −→ Z2(n)⊕Y+(n)

for all n > m > b. So the assertion follows from Lemma 4.1(ii) and (4.8).

THEOREM 4.5. Let Hypothesis 1 hold. Then U has an exponential dichotomy on
Z+ ∩ [b, ∞) with subspaces X+

s (k) and X+
u (k) given by (3.1) and (4.6), respectively.

Proof. The spaces X+
s (m) and X+

u (m), m > b, are closed and invariant un-
der U(n, m) due to Lemmas 3.4 and 4.2 and formula (3.3). We have shown the
invertibility of U+

u (n, m) : X+
u (m) → X+

u (n) in Lemma 4.2(ii), and the exponen-
tial estimates of U+

s (n, m) and U+
u (n, m)−1 in Lemmas 3.4 and 4.4. It remains to

verify that X+
s (m)⊕X+

u (m) = X for m > b. In view of Lemma 4.2 this fact follows
from the decomposition

(4.9) X⊥
m,∗ = X+

s (m)⊕ Z2(m) for all m > 0.

We prove (4.9). Let x ∈ X+
s (m) ∩ Z2(m) for some m > 0. Then Lemma 4.1(ii) and

Lemma 3.4(i) yield

‖x‖ 6 Ne−ν(n−m)‖U(n, m)x‖ 6 N2e−2ν(n−m)‖x‖ for all n > m,

which implies that x = 0. Take x ∈ X⊥
m,∗ for some m > 0. We define the sequence

y = (−χ{m+1} ⊗ U(m + 1, m)x)m∈Z which belongs to F by Lemma 2.1(ii) and
(2.7). Lemma 2.2(i) gives a sequence x = (xk)k∈Z ∈ F such that Dx = y. It
follows that

xk −U(k, k − 1)xk−1 = yk = 0 for all k ∈ Z\{m + 1},

xm+1 −U(m + 1, m)xm = −U(m + 1, m)x.
(4.10)

Therefore xk = U(k, j)xj for all j 6 k 6 0, and so x0 ∈ X−
u (0) = Z2 ⊕ X0 by (3.2)

and Lemma 3.6(i). Thus we can write x0 = z2 + v0 with z2 ∈ Z2 and v = (vk)k∈Z ∈
ker D (see (2.2)). The equations (4.10) further yield xj = U(j, m)(xm − x) for all
j > m + 1 and xm = U(m, 0)x0 = U(m, 0)z2 + vj, using also (2.4). We then deduce

U(j, m)(x −U(m, 0)z2) = −xj + U(j, m)(xm −U(m, 0)z2) = −xj + vj

for all j > m + 1. The vector x − U(m, 0)z2 thus belongs to X+
s (m) since x, v ∈

E(Z) (see (3.1)). We thus obtain x = (x − U(m, 0)z2) + U(m, 0)z2 ∈ X+
s (m) +

Z2(m) due to Lemma 4.1(i); i.e., X⊥
m,∗ ⊆ X+

s (m) + Z2(m). The converse inclusion
follows from Remark 3.2 and (4.4).
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5. EXPONENTIAL DICHOTOMY ON Z−

The situation on Z− is simpler than in the previous section since we have
dealt with the unstable subspaces already in Lemma 3.5. We first define our can-
didates for the stable subspaces on Z− by setting

(5.1) X−
s (0) = Z1 ⊕Y and X−

s (k) = {x ∈ X : U(0, k)x ∈ X−
s (0)}

for all k ∈ Z−. Recall from (3.9) that Y is finite dimensional and from Lemma 3.6
that Z1 is closed and Z1 ∩ Y = {0}. We further denote U−

s (n, m) = U(n, m)|X−
s (m)

for m 6 n 6 0, and we introduce the auxiliary spaces

(5.2) Z1(k) = {x ∈ X : U(0, k)x ∈ Z1} ⊆ X−
s (k) for all k ∈ Z− .

REMARK 5.1. Since the subspaces X−
s (0) and Z1 are closed, X−

s (m) and
Z1(m) are closed subspaces of X for all m ∈ Z−. Moreover, U(n, m)X−

s (m) ⊆
X−

s (n) and U(n, m)Z1(m) ⊆ Z1(n) for all m 6 n 6 0.

LEMMA 5.2. Let Hypothesis 1 hold. Then the following assertions hold for k 6 0:
(i) Z1(k) = X−

s (k) ∩ X⊥
k,∗.

(ii) X = X−
s (k)⊕ X−

u (k).

Proof. (i) Since Z1 ⊆ X⊥
0,∗ by (3.10) and (2.6), Lemma 2.1(vi) and (5.2) yield

Z1(k) ⊆ X−
s (k) ∩ X⊥

k,∗ for k ∈ Z−. Let x ∈ X⊥
k,∗ ∩ X−

s (k). Due to (5.1), there are
z1 ∈ Z1 and y ∈ Y such that U(0, k)x = y + z1. We take ξ = (ξn)n∈Z ∈ ker D∗ and
calculate

〈y, ξ0〉 = 〈U(0, k)x, ξ0〉 − 〈z1, ξ0〉 = 〈x, U(0, k)∗ξ0〉 = 〈x, ξk〉 = 0

using (2.5) and Z1 ⊆ X⊥
0,∗. So we obtain y ∈ Y ∩ X⊥

0,∗ = {0} employing also (3.9).
Hence, U(0, k)x = z1 ∈ Z1; i.e., x ∈ Z1(k).

(ii) Lemma 3.6(iii) and (5.1) show that X = X−
s (0) ⊕ X−

u (0). Hence, given
x ∈ X, there exist x−1 ∈ X−

s (0) and x−2 ∈ X−
u (0) with U(0, k)x = x−1 + x−2 . By

(3.2) there is a sequence x = (xn)n∈Z− ∈ E(Z−) such that xn = U(n, m)xm for all
m 6 n 6 0 and x0 = x−2 . Observe that xk ∈ X−

u (k) by (3.2). We further compute

U(0, k)(x − xk) = U(0, k)x − x−2 = x−1 ∈ X−
s (0),

so that x − xk ∈ X−
s (k) by (5.1). As a result, X = X−

s (k) + X−
u (k). Take x ∈

X−
s (k) ∩ X−

u (k). Then equation (3.4) yields U(0, k)x ∈ X−
u (0). As above we see

that U(k, 0)x ∈ X−
u (0). Hence, U(0, k)x = 0 and Lemma 3.5(i) implies x = 0.

LEMMA 5.3. Let Hypothesis 1 hold. Then there are constants N, ν > 0 such that

‖U(n, m)|Z1(m)‖ 6 Ne−ν(n−m) for all m 6 n 6 0.
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Proof. Let m 6 −1, x ∈ Z1(m), and (ϕk)k∈Z be a finitely supported numeri-
cal sequence. We define the sequences x = (xk)k∈Z and y = (yk)k∈Z by

xk =



0, k 6 m − 1,
k
∑

j=m
ϕjU(k, m)x, m 6 k 6 −1,

−1
∑

j=m
ϕjU(k, m)x, k > 0,

yk =


0, k 6 m − 1,
ϕkU(k, m)x, m 6 k 6 −1,
0, k > 0.

We have x ∈ E(Z) and x0 ∈ X′
0 because of U(0, m)Z1(m) ⊆ Z1 = X+

s (0) ∩ X′
0 (see

(5.2), (3.10), and (3.1)). Lemmas 5.2(i) and 2.1(vi) further yield U(k, m)x ∈ X⊥
k,∗ for

k > m. Therefore x ∈ F0 (see (2.8)). Moreover, y = Dx = D0x. Let m 6 n 6 −1.
Choose first (ϕk)k∈Z = χ{m}. Using Lemma 2.2(ii), we estimate

(5.3) ‖U(n, m)x‖ =
n

∑
j=m

ϕj‖U(n, m)x‖ = ‖xn‖ 6 ‖x‖E(Z) 6 c‖y‖E(Z) = c‖x‖.

As a consequence of estimate (5.3), Remark 3.3, and Lemma 2.2(ii), for (ϕk)k∈Z =
χ{m,...,n}, we obtain that

1
2
(n − m + 1)(n − m + 2)‖U(n, m)x‖

=
n

∑
k=m

(k−m+1)‖U(n, m)x‖=
n

∑
k=m

k

∑
j=m

ϕj‖U(n, k)U(k, m)x‖6
n

∑
k=m

k

∑
j=m

ϕjc‖U(k, m)x‖

= c
n

∑
k=m

‖xk‖6cαn−m‖x‖E(Z)6cαn−m‖y‖E(Z)=cαn−mβn−m‖x‖ = c(n−m+1)‖x‖.

It follows that ‖U(n, m)|Z1(m)‖ 6 c
n−m+2 for all m 6 n 6 0. This implies the

assertion by a standard argument, cf. Theorem III.6.1 of [8].

LEMMA 5.4. Let Hypothesis 1 hold. Then there are constants N, ν > 0 such that

‖U(n, m)∗|Xn,∗
‖ 6 Ne−ν(n−m) for all m 6 n 6 0.

Proof. Let ξ= (ξn)n∈Z ∈ ker D∗ and (ϕk)k∈Z be a finitely supported se-
quence. Define the sequences η = (ηk)k∈Z and ζ = (ζk)k∈Z by setting

ηk =


0, k > 0,
−1
∑

j=k
ϕjξk, k 6 −1,

ζk =

{
0, k > 0,
ϕkξk, k 6 −1.

Since ξ ∈ ker D∗, we obtain that η ∈ Fb,∗ (see (2.9) and (2.3)). Moreover, ζ =
Dη = Db,∗η due to (2.5). Let m 6 n 6 −1. First choose (ϕk)k∈Z = χ{n}. Then
Lemma 2.2(iii) yields

(5.4) ‖ξm‖ = ‖ηm‖ 6 ‖η‖E(Z)∗ 6 c‖ζ‖E(Z)∗ = c‖ξn‖.
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Second, choose (ϕk)k∈Z = χ{m,...,n}. Employing inequality (5.4), Remark 4.3, and
Lemma 2.2(iii), we can estimate

1
2
(n − m + 1)(n − m + 2)‖ξm‖

=
n

∑
k=m

(n − k + 1)‖ξm‖ =
n

∑
k=m

−1

∑
j=k

ϕj‖ξm‖ 6 c
n

∑
k=m

−1

∑
j=k

ϕj‖ξk‖ = c
n

∑
k=m

‖ηk‖

6 cα∗n−m‖η‖E(Z)∗ 6 cα∗n−m‖ζ‖E(Z)∗ 6 cα∗n−mβ∗n−m‖ξn‖ = c(n − m + 1)‖ξn‖.

Taking into account that ‖ξ−1‖ 6 Meω‖ξ0‖, we infer ‖ξm‖ 6 c
n−m+2‖ξn‖ for

all m 6 n 6 0. An application of Lemma 2.4 to the sequences aj = ‖ξ−j‖ and
bj = c(j + 2)−1 gives N, ν > 0 such that ‖ξm‖ 6 Ne−ν(n−m)‖ξn‖ for all m 6 n 6 0,
proving the lemma.

THEOREM 5.5. Let Hypothesis 1 be satisfied. Then U has an exponential di-
chotomy on Z− with subspaces X−

s (k) and X−
u (k) given by (5.1) and (3.2), respectively.

Proof. Property (i) in the definition of exponential dichotomy was estab-
lished in Lemma 5.2(ii), Remark 5.1, and (3.4). Lemma 3.5 yields property (ii)
and the second exponential estimate in (iii). In order to prove the remaining
estimate for U−

s (n, m), we fix a basis {ξ
(1)
0 , . . . , ξ

(d0)
0 } of the space X0,∗ (which

is finite dimensional by Lemma 2.1). There exist sequences η1 = (η
(1)
k )k∈Z, . . . ,

ηd0
= (η

(d0)
k )k∈Z belonging to ker D∗ such that η

(j)
0 = ξ

(j)
0 for all j ∈ {1, . . . , d0},

see (2.5). Lemma 2.1(iv) implies that {η
(1)
k , . . . , η

(d0)
k } is a basis of Xk,∗ for all k 6 0.

Using Remark 3.2, we obtain X−
u (k) ⊆ X⊥

k,∗ =
d0⋂

j=1
ker η

(j)
k for all k 6 0. As a conse-

quence of Lemmas 2.3(i) and 5.2(ii) we then find vectors y(1)
k , . . ., y(d0)

k contained

in X−
s (k) such that 〈y(i)

k , η
(j)
k 〉 = δij for all i, j ∈ {1, . . . , d0} and k 6 0. We now

define Y−(k) = Span{y(1)
k , . . . , y(d0)

k }. From Lemmas 2.3(ii) and 5.2(i) we deduce

(5.5) X−
s (k) = (X−

s (k) ∩ X⊥
k,∗)⊕Y−(k) = Z1(k)⊕Y−(k) for all k 6 0.

Let m 6 n 6 0. We further introduce the space

(5.6) Ỹ−(n, m) = Span{U(n, m)y(1)
m , . . . , U(n, m)y(d0)

m } = U(n, m)Y−(m),

where U(n, m)y(j)
m ∈ X−

s (n) for all j ∈ {1, . . . , d0} due to Remark 5.1. Moreover,
〈U(n, m)y(i)

m , η
(j)
n 〉 = 〈y(i)

m , U(n, m)∗η
(j)
n 〉 = 〈y(i)

m , η
(j)
m 〉 = δij for all i, j ∈ {1, . . . , d0}

by (2.5). As in (5.5) we can conclude by Lemma 2.3(iii) that

(5.7) X−
s (n) = (X−

s (n) ∩ X⊥
n,∗)⊕ Ỹ−(n, m) = Z1(n)⊕ Ỹ−(n, m).

Our construction implies that dim Ỹ−(n, m)∗ = dim Xn,∗ < ∞. Therefore (5.7)
yields Xn,∗ ⊆ Ỹ−(n, m)∗, and hence Xn,∗ = Ỹ−(n, m)∗. Similarly, the equality
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Y−(m)∗ = Xm,∗ follows from (5.5). Using Lemma 5.4, we arrive at

(5.8) ‖U(n, m)|Y−(m)‖ = ‖(U(n, m)|Y−(m))
∗‖ = ‖U(n, m)∗|Xn,∗

‖ 6 Ne−ν(n−m)

for m 6 n 6 0 and some constants N, ν > 0. In view of (5.5), (5.7), (5.6), and
Remark 5.1, the operator U−

s (n, m) has the matrix representation[
U(n, m)|Z1(m) 0

0 U(n, m)|Y−(m)

]
: Z1(m)⊕Y−(m) −→ Z1(n)⊕ Ỹ−(n, m).

The exponential estimate for U−
s (n, m) follows from Lemma 5.3 and (5.8).

6. PROOF OF THEOREM 1.1

Sufficiency. Assume that (i) and (ii) in Theorem 1.1 hold. Then the Fred-
holm property of G can be shown exactly as in Theorem 1.1 of [13]. (At this
point of the argument as well as in the proof of Theorem 1.4 and Lemma 1.5 the
conditions (BU.1) and (BU.2) have not been used in [13].)

Necessity. We proceed similarly to [13]. Assume that G is Fredholm. As observed
in Section 2, Theorem 1.4 of [13] then implies Hypothesis 1 for U , where we may
assume that a = 0 without loss of generality. Then Theorems 4.5 and 5.5 show
that U has exponential dichotomies on [b, ∞) ∩ Z+ and Z−. Lemma 1.5 of [13]
(combined with a translation argument) further implies that U has exponential
dichotomies on R− and [b, ∞).

We further have to prove (ii), i.e., the Fredholm property of the node opera-
tor N(b, 0) = (I − P+

b )U(b, a) : ker P−
0 → ker P+

b . Lemma 3.6(i) and (4.5) yield

(6.1) ker P−
0 = X−

u (0) = Z2 ⊕ X0 and ker P+
b = X+

u (b) = Z2(b)⊕Y+(b).

Recall from Lemma 2.1 and (4.3) that X0 and Y+(b) are finite dimensional. Thus
the Fredholm property of N(b, 0) follows from the equations

(6.2) ker N(b, 0) = X0 and im N(b, 0) = Z2(b).

For x = (xn)n∈Z ∈ ker D we obtain N(b, 0)x0 = (I − P+
b )xb = 0 using (2.4), so that

X0 ⊆ ker N(b, 0). Conversely, let x ∈ ker N(b, 0) ⊆ ker P−
0 . Due to (6.1) there are

z2 ∈ Z2 and x0 ∈ X0 with x = z2 + x0. We can then infer N(b, 0)z2 = N(b, 0)x = 0
because of X0 ⊆ ker N(b, 0). Since further U(b, 0)z2 ∈ Z2(b) ⊆ X+

u (b) = ker P+
b

by (4.1) and (4.5), we arrive at 0 = N(b, 0)x = U(b, 0)z2. Now Lemma 4.1(i)
shows that z2 = 0, and thus x = x0 ∈ X0. By the same arguments we deduce
im N(b, 0) = N(b, 0)Z2 = (I − P+

b )Z2(b) = Z2(b).

Finally, we want to show the index and dimension formulas in Theorem 1.1
assuming that G is Fredholm. Define R0 : ker D → X0 and Rb,∗ : ker D∗ → Xb,∗
by R0(xn)n∈Z = x0 and Rb,∗(ξn)n∈Z = ξb, respectively. The maps R0 and Rb,∗
are surjective linear operators, by (2.4) and (2.5). Lemma 2.1(iii) and (iv) then
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show that R0 and Rb,∗ are bijective, so that dim ker D = dim X0 and dim ker D∗ =
dim Xb,∗. Using Theorem 1.4 of [13] and (6.2), we conclude

dim ker G = dim ker D = dim X0 = dim ker N(b, 0).

Employing in addition (4.3) and (6.1), we further deduce

codim im G=codim im D =dimker D∗=dimXb,∗=dimY+(b)=codim im N(b, 0).

Theorem 1.1 has been established.

The image of G admits the following description in terms of trajectories
v(τ) = U(t, τ)∗v(t), i.e., the “solutions of the adjoint problem”; cf. [10] or [17]. In
the following proof it is again convenient to work with D instead of G since we
know D∗ explicitely.

PROPOSITION 6.1. Let G be Fredholm on E(R). Then f ∈ im G if and only if∫
R

〈 f (σ), v(σ)〉dσ = 0 ∀ v ∈ E∗(R) ∩ Cw,∗
b (R, X∗)

with v(τ) = U(t, τ)∗v(t) ∀ t > τ, where E∗(R) = {v : R → X∗ : v is weakly
star measurable, ‖v(·)‖ ∈ Lq(R)}, q = 1 if E(R) = C0(R, X), and 1

p + 1
q = 1 if

E(R) = Lp(R, X) with p ∈ [1, ∞).

Proof. Assume that f ∈ im G and v ∈ E∗(R) ∩ Cw,∗
b (R, X∗) with v(τ) =

U(t, τ)∗v(t) for all t > τ. Due to Lemma 1.2, there is a function u ∈ E(R) ∩
C0(R, X) satisfying (1.2). So we can compute

t∫
τ

〈 f (σ), v(σ)〉dσ =

t∫
τ

〈 f (σ), U(t, σ)∗v(t)〉dσ =

t∫
τ

〈U(t, σ) f (σ), v(t)〉dσ

=
〈 t∫

τ

U(t, σ) f (σ)dσ, v(t)
〉

= 〈U(t, τ)u(τ), v(t)〉 − 〈u(t), v(t)〉

= 〈u(τ), v(τ)〉 − 〈u(t), v(t)〉

for all t > τ. Letting τ → −∞ and t → ∞, we deduce that
∫
R
〈 f (σ), v(σ)〉dσ = 0

by means of u ∈ C0(R, X) and v ∈ Cw,∗
b (R, X∗).

Assume that f ∈ E(R) satisfies the condition in the proposition. We define
the operator R : E(R) → E(Z) by setting

(Rg)n = −
n∫

n−1

U(n, τ)g(τ)dτ for all n ∈ Z.

We claim that R f ∈ im D. Since G is a Fredholm operator, Theorem 1.4 in [13]
shows that im D is closed, and thus im D = (ker D∗)⊥. For ξ = (ξn)n∈Z ∈ ker D∗,
we define v : R → X∗ by v(τ) = U(n, τ)∗ξn for τ ∈ (n − 1, n] and n ∈ Z. Due
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to (2.5), we obtain v ∈ E∗(R) ∩ Cw,∗
b (R, X∗) and v(τ) = U(t, τ)∗v(t) for all t > τ.

Furthermore,

〈R f , ξ〉 = − ∑
n∈Z

〈 n∫
n−1

U(n, τ) f (τ)dτ, ξn

〉
= − ∑

n∈Z

n∫
n−1

〈 f (τ), U(n, τ)∗ξn〉dτ

= − ∑
n∈Z

n∫
n−1

〈 f (τ), v(τ)〉dτ = −
∫
R

〈 f (τ), v(τ)〉dτ = 0,

proving the claim. Using Lemma 6.1(iv) of [13], we conclude that f ∈ im G.

7. BACKWARD UNIQUENESS PROPERTY

In the following proposition we describe the backward uniqueness property
(BU) (see the introduction) in terms of the spaces Xn and Xn,∗.

PROPOSITION 7.1. Assume that the operator G is Fredholm on E(R). Then the
following assertions hold:

(i) (BU.1) holds if and only if dim Xn is constant for n ∈ Z.
(ii) (BU.2) holds if and only if dim Xn,∗ is constant for n ∈ Z.

(iii) If (BU.1) and (BU.2) hold, then we can take a = b = 0 in Theorem 1.1.

Proof. (i) Assume that (BU.1) holds. Take x ∈ Xm with U(n, m)x = 0 for
some n > m. Then there is a sequence x = (xk)k∈Z ∈ ker D such that xm = x
by (2.2). We define the function u : R → X by u(t) = U(t, j)xj for t ∈ [j, j + 1)
and j ∈ Z. It is easy to check that u ∈ C0(R, X) and u(t) = U(t, τ)u(τ) for all
t > τ using (2.4). Since u(n) = U(n, m)xm = U(n, m)x = 0, (BU.1) shows that
u(m) = x = 0. This means that the map U(n, m) : Xm → Xn is injective, and
hence it is bijective by Lemma 2.1(i). As a result, dim Xm = dim Xn for all n > m.

Assume that dim Xn is constant on Z. Let u ∈ C0(R, X) be a function satis-
fying u(t) = U(t, τ)u(τ) for all t > τ and u(τ0) = 0 for some τ0 ∈ R. Obviously,
u(t) = 0 for all t > τ0. By Theorem 1.1, U has an exponential dichotomy on
(−∞, a] for some a ∈ R. Thus, using that sup

τ
‖P−

τ ‖ < ∞, we can estimate

‖P−
t u(t)‖ = ‖U(t, τ)P−

τ u(τ)‖ 6 Ne−ν(t−τ)‖P−
τ u(τ)‖ 6 N′e−ν(t−τ)‖u‖∞

for all τ 6 t 6 a. Letting τ → −∞, we obtain that P−
t u(t) = 0, i.e., u(t) ∈ X−

u (t),
for all t 6 a. Then we derive the inequality

‖u(t)‖ = ‖U−
u (a, t)−1u(a)‖ 6 Ne−ν(a−t)‖u(a)‖

for all t 6 a. As a result, (u(n))n∈Z ∈ ker D which leads to u(n) ∈ Xn for all n ∈ Z
(see (2.4) and (2.2)). The identity dim Xn = dim Xm and Lemma 2.1 then yield the
invertibility of U(n, m) : Xm → Xn for all n > m. Thus u(n) = 0 for all n ∈ Z
since u(n) = 0 for large n.
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(ii) Assume that (BU.2) holds. Take ξ ∈ Xn,∗ with U(n, m)∗ξ = 0. Then
there is a sequence ξ = (ξk)k∈Z ∈ ker D∗ such that ξn = ξ by (2.3). We define
the function v : R → X∗ by v(t) = U(j, t)∗ξ j for t ∈ (j − 1, j] and j ∈ Z. It is
straightforward to see that v ∈ Cw,∗

b (R, X∗) and v(τ) = U(t, τ)∗v(t) for all t > τ.
Since v(m) = U(n, m)∗ξn = U(n, m)∗ξ = 0, (BU.2) yields v = 0, and thus ξ = 0.
Now Lemma 2.1(ii) implies that dim Xn,∗ = dim Xm,∗ for n > m.

Assume that dim Xn,∗ is constant on Z. Let v ∈ Cw,∗
b (R, X) satisfy v(τ) =

U(t, τ)∗v(t) for all t > τ and v(τ0) = 0 for some τ0 ∈ R. Hence, v(τ) = 0 for all
τ 6 τ0. Theorem 1.1 shows that U has an exponential dichotomy on [b, ∞). This
fact, due to sup

τ
‖P+

τ ‖ < ∞, leads to the estimate

|〈P+
τ x, v(τ)〉|= |〈P+

τ x, U(t, τ)∗v(t)〉|= |〈U(t, τ)P+
τ x, v(t)〉|6 N′e−ν(t−τ)‖v‖∞‖x‖

for all t > τ > b and x ∈ X. Letting t → ∞, we obtain that 〈P+
τ x, v(τ)〉 = 0 for all

τ > b and all x ∈ X. We can now conclude that

|〈x, v(τ)〉|= |〈U(τ, b)U+
u (τ, b)−1(I−P+

τ )x, v(τ)〉|= |〈U+
u (τ, b)−1(I−P+

τ )x, v(b)〉|

6 Ne−ν(τ−b)‖I − P+
τ ‖‖x‖‖v(b)‖,

‖v(τ)‖ 6 ce−ν(τ−b)‖v(b)‖,

for all τ > b and all x ∈ X. Consequently, (v(n))n∈Z ∈ ker D∗ and v(n) ∈ Xn,∗
(see (2.5) and (2.3)). Since dim Xn,∗ = dim Xm,∗ for all n > m, Lemma 2.1 implies
the invertibility of U(n, m)∗ : Xn,∗ → Xn,∗ for all n > m. So we arrive at v(n) = 0
for all n ∈ Z, and hence v = 0.

(iii) The last assertion follows from (i), (ii), and the definition of a and b
given after (2.5).

We present the examples mentioned in the introduction. Observe that here
X is a Hilbert space and U is generated by piecewise constant operators A(t) =
A+ for t > 0 and A(t) = A− for t 6 0.

EXAMPLE 7.2. Let X = L2(R+), f0 = χ[0,1], and P0 : X → X, P0 f =
〈 f , f0〉 f0, be the orthogonal projection onto Span{ f0}, and set Q0 = I − P0. Define
(S1(t) f )(τ) = e−t f (t + τ) for t, τ > 0 and f ∈ X, and S2(t) f = etP0 f + e−tQ0 f for
t > 0 and f ∈ X. Let U = {U(t, τ)}t>τ be the strongly continuous, exponentially
bounded evolution family on X given by

U(t, τ) =


S1(t − τ), t > τ > 0,
S1(t)S2(−τ), t > 0 > τ,
S2(t − τ), 0 > t > τ.

G denotes the generator of the associated evolution semigroup on L2(R, X).
We claim that dim ker G = 1 and that, more precisely, ker G is the set of

functions u given by u(t) = S1(t)u(0) for t > 0, u(t) = S2(t)u(0) for t 6 0,
and u(0) ∈ Span{ f0}. Indeed, if u ∈ ker G, then Lemma 1.2 shows that u(t) =
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U(t, 0)u(0) = S1(t)u(0) for all t > 0 and u(0) = U(0, t)u(t) = S2(−t)u(t) for all
t 6 0. Since u ∈ L2(R, X), we must have Q0u(0) = 0. The proof of the converse
inclusion is straightforward. The claim is proved.

Let f ∈ L2(R+) and define u : R → L2(R+) by

u(t) =


−

t∫
−∞

eτ−tQ0 f (τ)dτ +

0∫
t

et−τ P0 f (τ)dτ, t < 0,

−
t∫

0

S1(t − τ) f (τ)dτ − S1(t)Q0

0∫
−∞

eτ f (τ)dτ, t > 0.

Using Lemma 1.2 we see that u ∈ dom G and Gu = f . Therefore G is surjective
and thus Fredholm.

Define u0 ∈ ker G by u0(t) = et f0 for t < 0 and u0(t) = S1(t) f0 for
t > 0. Then u0(t) = U(t, τ)u0(τ) for all t > τ. However, u0(0) = f0 6= 0 and
(u0(2))(τ) = e−2 f0(2 + τ) = 0 for τ > 0. As a result, (BU.1) fails for u = u0.

Using the adjoint of the evolution family U in Example 7.2, one can construct
an example of the evolution family Ũ such that the operator G is Fredholm but
(BU.2) fails (and, of course, for the direct sum of U and Ũ both (BU.1) and (BU.2)
fail).

EXAMPLE 7.3. With the notations in Example 7.2, we define the strongly
continuous evolution family V = {V(t, τ)}t>τ by,

V(t, τ) =


S2(t − τ), t > τ > 1,
S2(t − 1)S1(1− τ)∗, t > 1 > τ,
S1(t − τ)∗, 1 > t > τ.

Arguing as in Example 7.2, we can establish the Fredholm property of the gener-
ator of the evolution semigroup on L2(R, X) associated with V . It is clear that V
has exponential dichotomies on R− and [1, ∞) with projections P−

t = I for t 6 0
and P+

t = Q0 for t > 1, respectively. Looking for a contradiction, we suppose
that V has an exponential dichotomy on R+. The definition of the exponential
dichotomy implies that X+

s (τ) = { f ∈ L2(R+) : V(t, τ) f → 0 as t → ∞}. Hence,
X+

s (1) = ker P0, so that X+
u (1) must be a (one dimensional) complement of ker P0.

On the other hand, P0V(1, 0) = P0S1(1)∗ = 0 contradicting the required surjectiv-
ity of V(1, 0) : X+

u (0) → X+
u (1).

REMARK 7.4. In Propositions 6.1 and 7.1 we can replace Cw,∗
b (R, X∗) by the

space Cw,∗
0 (R, X∗) of continuous functions vanishing at ±∞ if E(R) = C0(R, X)

or E(R) = Lp(R, X) for p ∈ (1, ∞). This fact follows from the proofs of these
results because for an orbit v(·) satisfying v(τ) = U(t, τ)∗v(t) for all t > τ in R,
the conditions v ∈ Cw,∗

b (R, X∗) and v ∈ Cw,∗
0 (R, X∗) are equivalent provided U

has exponential dichotomies on (−∞, a] and [b, ∞).
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