NON COMMUTATIVE SPHERES ASSOCIATED WITH THE HEXIC TRANSFORM AND THEIR K-THEORY

J. BUCK and S. WALTERS

Communicated by William B. Arveson

Abstract

Let A_{θ} be the rotation C^{*}-algebra generated by unitaries U, V satisfying $V U=\mathrm{e}^{2 \pi \mathrm{i} \theta} U V$ and let ρ denote the hexic transform on A_{θ} defined by $\rho(U)=V, \rho(V)=\mathrm{e}^{-\pi \mathrm{i} \theta} U^{-1} V$. (It is the canonical order six automorphism of A_{θ}.) It is shown that ten canonical classes in $K_{0}\left(A_{\theta} \rtimes_{\rho} \mathbb{Z}_{6}\right) \cong \mathbb{Z}^{10}$ yield a basis. The Connes-Chern character $K_{0}\left(A_{\theta} \rtimes_{\rho} \mathbb{Z}_{6}\right) \rightarrow H^{\mathrm{ev}}\left(A_{\theta} \rtimes_{\rho} \mathbb{Z}_{6}\right)^{*}$ is shown to be injective for each θ, and its range is determined.

Keywords: C*-algebras, K-theory, automorphisms, rotation algebras, unbounded traces, Chern characters.

MSC (2000): 46L80, 46L40, 19K14.

1. INTRODUCTION

For $0<\theta<1$ let A_{θ} denote the rotation C^{*}-algebra generated by unitaries U, V satisfying $V U=\lambda U V$, where $\lambda:=\mathrm{e}^{2 \pi \mathrm{i} \theta}$. Denote by ρ the order six automorphism of A_{θ} defined by

$$
\rho(U)=V, \quad \rho(V)=\mathrm{e}^{-\pi \mathrm{i} \theta} U^{-1} V .
$$

We shall call it the hexic transform in accordance with our papers [3] and [15]. Throughout the paper, we shall denote the associated crossed product by $H_{\theta}:=$ $A_{\theta} \rtimes_{\rho} \mathbb{Z}_{6}$, where $\mathbb{Z}_{6}=\mathbb{Z} / 6 \mathbb{Z}$, and call it the hexic C^{*}-algebra. It is the universal C^{*}-algebra generated by unitaries U, V, W enjoying the commutation relations

$$
\begin{equation*}
V U=\lambda U V, \quad W U W^{-1}=V, \quad W V W^{-1}=\lambda^{-1 / 2} U^{-1} V, \quad W^{6}=I . \tag{1.1}
\end{equation*}
$$

We shall also use A_{θ} to denote its canonical smooth dense $*$-subalgebra under the canonical toral action, and by H_{θ} the dense $*$-subalgebra of elements of the form $\sum_{j=0}^{5} a_{j} W^{j}$ where a_{j} are smooth elements in A_{θ}, and W is the canonical order six unitary of the crossed product implementing ρ; so, $\rho(a)=W a W^{-1}$. (This
identification is justified since both the C^{*}-algebra and its smooth $*$-subalgebra have the same K-theory, since the dense $*$-subalgebras are closed under the holomorphic functional calculus, and since it will be clear from the context which algebra is intended.)

In [3], we constructed ten canonical modules over H_{θ} and showed (using theta functions) that they give rise to independent positive classes in $K_{0}\left(H_{\theta}\right)$ for each θ (rational or irrational). (These modules are listed in Table 1 below.) This was done by examination of the Connes-Chern character ch : $K_{0}\left(H_{\theta}\right) \rightarrow$ $H^{\mathrm{ev}}\left(H_{\theta}\right)^{*}$ where $H^{\mathrm{ev}}\left(H_{\theta}\right)$ is Connes' even periodic cyclic cohomology group and $H^{e v}\left(H_{\theta}\right)^{*}$ is its vector space dual ([5], III). (We prefer to view the codomain of ch as above instead of the usual cyclic homology group so as to readily use Connes' canonical pairing between K_{0} and cyclic cohomology.) From ch a group homomorphism $\mathbf{T}: K_{0}\left(H_{\theta}\right) \rightarrow \mathbb{R}^{10}$ can be defined by taking the Connes-Chern character $\operatorname{ch}(x)$ of each element x in $K_{0}\left(H_{\theta}\right)$ and restricting it to a certain 10-dimensional subspace of $H^{\mathrm{ev}}\left(H_{\theta}\right)$ spanned by the unbounded traces on the (smooth) algebra H_{θ} (as in [14]) and by Connes' canonical cyclic 2-cocycle (as in [4] or III.2. β of [5]). In [3] we showed that \mathbf{T} is injective when θ is rational. This suggests, presumably, that the subspace in question is all of $H^{\mathrm{ev}}\left(H_{\theta}\right)$ and that ch will in fact turn out to be, after tensoring with the complex plane, an isomorphism. (In view of this, we shall also refer to \mathbf{T} as the Connes-Chern character.)

The main result of the present paper is to show that the ten canonical classes form a basis for $K_{0}\left(H_{\theta}\right)$ when θ is a special type of rational number (Proposition 5.1). This result allows us to prove that the range of \mathbf{T} on $K_{0}\left(H_{\theta}\right)$ is equal to its range on the span of the ten classes. Combined with a recent result of Polishchuk [10] that $K_{0}\left(H_{\theta}\right) \cong \mathbb{Z}^{10}$ for all θ (which incidently used the independence of the ten classes [3]), this culminates with the following.

THEOREM 1.1. For each $\theta>0$ the following holds:
(i) The ten canonical modules form a basis for $K_{0}\left(H_{\theta}\right)$.
(ii) The Connes-Chern character ch : $K_{0}\left(H_{\theta}\right) \rightarrow H^{\mathrm{ev}}\left(H_{\theta}\right)^{*}$ is injective.
(iii) The range of $\mathbf{T}: K_{0}\left(H_{\theta}\right) \rightarrow \mathbb{R}^{10}$ is the integral span of the rows in Table 1.

Note that a basis for $K_{0}\left(H_{\theta}\right)$ is not given in [10], so our result gives a precise isomorphism. We comment briefly at the end that $K_{1}\left(H_{\theta}\right)=0$ for a dense G_{δ} set of θ^{\prime} s, which in fact holds for all θ as shown in [6].

It is a well-known theorem of Bratteli and Kishimoto [2] (and independently in [13]) that the crossed product $A_{\theta} \rtimes \mathbb{Z}_{2}$ (under the flip) is approximately finite dimensional for any irrational θ. In [16] it is shown that this holds for the Fourier transform for a dense G_{δ} set of irrational θ. In quite recent work of Echterhoff, Lück, Phillips, and the author [6] the AF result is shown to be true for the Fourier, hexic, and cubic transforms (for all irrational θ).

It is of historical interest to know that Hattori [9] and Stallings [12] have obtained (back in 1965) the trace of a finitely generated projective module. These
are some of the earliest attempts to pair elements of K theory of non-commutative algebras with trace-like functionals.

We shall write $e(t):=\mathrm{e}^{2 \pi \mathrm{i} t}$, and δ_{k}^{n} is 1 if $k \mid n$ and 0 otherwise. We have $\sum_{j=0}^{q-1} e(n j / q)=q \delta_{q}^{n}$. Throughout, we shall assume that $0<\theta<1$. Since $\lambda=e(\theta)$, we shall also write $\lambda^{t}=e(t \theta)$. Denote by $\delta_{k, \ell}$ the usual δ-function (1 if and only if $k=\ell$ and 0 otherwise).

2. K-CLASSES AND THEIR CONNES-CHERN CHARACTER

When considering the case that θ is rational, we shall tacitly assume throughout that $\theta=\frac{p}{q}$ where $p<q$ are positive relatively prime integers.

TEN K_{0}-CLASSES. As in [3], one has the following nine projections in H_{θ} :
1, $\quad p_{j}=\frac{1}{6} \sum_{i=0}^{5} \omega^{i j} W^{i}, \quad q_{k}=\frac{1}{3} \sum_{i=0}^{2} \omega^{2 i k} \lambda^{i / 6}\left(U W^{2}\right)^{i}, \quad r=\frac{1}{2}\left(I+U W^{3}\right)$,
where $j=0, \ldots, 4, k=0,1$ and $\lambda^{1 / 6} U W^{2}$ is a unitary of order $3, U W^{3}$ of order 2 , and $\omega:=e(1 / 6)=\frac{1}{2}(1+\mathrm{i} \sqrt{3})$ (a primitive 6 th root of 1).

One further has the hexic module \mathcal{M}_{6} over $H_{\theta}(0<\theta<1)$ which we constructed in [3] from the Heisenberg A_{θ}-module (see [4]) by equipping it with an action of W represented by a suitable scaling of the hexic transform on the Schwartz space $S(\mathbb{R})$ (see [15] for how the hexic transform was obtained). The algebra H_{θ} has the canonical (bounded) trace τ given by $\tau\left(\sum_{j=0}^{5} a_{j} W^{j}\right)=\tau\left(a_{0}\right)$ for $a_{j} \in A_{\theta}$, where $\tau\left(a_{0}\right)$ is the canonical trace of a_{0} in A_{θ} (relative to the unitaries $U, V)$. (It is unique in the irrational case.) In [3] it was shown that one has the following unbounded traces on H_{θ} (the smooth $*$-subalgebra) given by:

$$
\begin{array}{ll}
T_{10}\left(U^{m} V^{n} W^{5}\right)=\lambda^{\left(m^{2}+n^{2}\right) / 2}, & T_{30}\left(U^{m} V^{n} W^{3}\right)=\lambda^{-m n / 2} \delta_{2}^{m} \delta_{2}^{n} \\
T_{20}\left(U^{m} V^{n} W^{4}\right)=\lambda^{(m-n)^{2} / 6} \delta_{3}^{m-n}, & T_{31}\left(U^{m} V^{n} W^{3}\right)=\lambda^{-m n / 2} \\
T_{21}\left(U^{m} V^{n} W^{4}\right)=\lambda^{(m-n)^{2} / 6}, &
\end{array}
$$

where at generic elements $U^{m} V^{n} W^{k}$ for different k they vanish.
Observe that $T_{3 j}$ are self-adjoint trace functionals, but that T_{10} and $T_{2 k}$ are not. However, one can look at the real and imaginary parts of the latter. Let

$$
\phi_{0}=\frac{1}{2}\left(T_{10}+T_{10}^{*}\right), \quad \phi_{0}^{\prime}=-\frac{\mathrm{i}}{2}\left(T_{10}-T_{10}^{*}\right)
$$

be the real and imaginary parts of T_{10}, respectively, and
$\phi_{1}=\frac{1}{2}\left(T_{20}+T_{20}^{*}\right), \quad \phi_{1}^{\prime}=-\frac{1}{2}\left(T_{20}-T_{20}^{*}\right), \quad \phi_{2}=\frac{1}{2}\left(T_{21}+T_{21}^{*}\right), \quad \phi_{2}^{\prime}=-\frac{i}{2}\left(T_{21}-T_{21}^{*}\right)$ be those of T_{20} and $T_{21}\left(\right.$ where $\left.T^{*}(x):=\overline{T\left(x^{*}\right)}\right)$.

The remaining invariant we need is Connes' canonical cyclic 2-cocycle on the rotation algebra A_{θ} :

$$
\varphi\left(x^{0}, x^{1}, x^{2}\right)=\frac{1}{2 \pi \mathrm{i}} \tau\left(x^{0}\left[\delta_{1}\left(x^{1}\right) \delta_{2}\left(x^{2}\right)-\delta_{2}\left(x^{1}\right) \delta_{1}\left(x^{2}\right)\right]\right)
$$

(see III.2. β of [5]) where $\delta_{j}, j=1,2$, are the canonical derivations of A_{θ} under the canonical action of the 2 -torus \mathbb{T}^{2} (relative to U, V). The Chern character invariant that φ induces is the group homomorphism $c_{1}: K_{0}\left(A_{\theta}\right) \rightarrow \mathbb{Z}$ given by the cup product $c_{1}[E]:=\left(\varphi \# \operatorname{Tr}_{n}\right)(E, E, E)$ for E any smooth projection in $M_{n}\left(A_{\theta}\right)$. In Section 4 of [3] this invariant was extended to H_{θ} by taking the composition $C:=c_{1} \circ \Psi_{*}: K_{0}\left(H_{\theta}\right) \rightarrow \mathbb{Z}$ where $\Psi: H_{\theta} \rightarrow M_{6}\left(A_{\theta}\right)$ is the canonical injection given by $\Psi(a)=\left[\rho^{-i}\left(a_{i-j}\right)\right]_{i, j=0}^{5}$ for $a=\sum_{j} a_{j} W^{j} \in H_{\theta}$, where $i-j$ is reduced $\bmod 6$ and where $a_{j} \in A_{\theta}$. (To clarify Ψ_{*}, if E is a projection in some matrix algebra over H_{θ}, then $\Psi(E)$ is a projection in some matrix algebra over $M_{6}\left(A_{\theta}\right)$, hence in a matrix algebra over A_{θ}, and thus gives a class in $K_{0}\left(A_{\theta}\right)$ - e.g. $\Psi_{*}[1]=6[1]_{K_{0}\left(A_{\theta}\right)}$.) For example (and we shall need this later), if e_{θ} is a smooth Powers-Rieffel projection in A_{θ} with trace $\theta(0<\theta<1$ rational or irrational) then, viewing e_{θ} as an element of H_{θ} via the canonical inclusion $A_{\theta} \hookrightarrow H_{\theta}$, one has $C\left[e_{\theta}\right]=-6$. In fact, since $c_{1}\left[e_{\theta}\right]=-1,\left[\rho\left(e_{\theta}\right)\right]=\left[e_{\theta}\right]$ in $K_{0}\left(A_{\theta}\right)$, and $\Psi\left(e_{\theta}\right)=\operatorname{diag}\left(e_{\theta}, \rho^{5}\left(e_{\theta}\right), \rho^{4}\left(e_{\theta}\right), \rho^{3}\left(e_{\theta}\right), \rho^{2}\left(e_{\theta}\right), \rho\left(e_{\theta}\right)\right)$, one has $\Psi_{*}\left[e_{\theta}\right]_{K_{0}\left(H_{\theta}\right)}=$ $6\left[e_{\theta}\right]_{K_{0}\left(A_{\theta}\right)}$, where $\Psi_{*}: K_{0}\left(H_{\theta}\right) \rightarrow K_{0}\left(A_{\theta}\right)$ is the induced map.

Consider the Connes-Chern character ch : $K_{0}\left(H_{\theta}\right) \rightarrow C^{\mathrm{ev}}\left(H_{\theta}\right)^{*}$ where $H C^{\mathrm{ev}}\left(H_{\theta}\right)^{*}$ is the complex vector space dual of the even periodic cyclic cohomology group ([5], III.1. α). From this, one defines the map $\mathbf{T}: K_{0}\left(H_{\theta}\right) \rightarrow \mathbb{R}^{10}$ by the pairing

$$
\begin{aligned}
\mathbf{T}(x) & =\left\langle\left(\tau ; \phi_{0}, \phi_{0}^{\prime} ; \phi_{1}, \phi_{1}^{\prime}, \phi_{2}, \phi_{2}^{\prime} ; T_{30}, T_{31} ; C\right), \operatorname{ch}(x)\right\rangle \\
& =\left(\tau(x) ; \phi_{0}(x), \phi_{0}^{\prime}(x) ; \phi_{1}(x), \phi_{1}^{\prime}(x), \phi_{2}(x), \phi_{2}^{\prime}(x) ; T_{30}(x), T_{31}(x) ; C(x)\right)
\end{aligned}
$$

All computations below will be done in terms of this map (as was done in [3]), so there is some justification for calling \mathbf{T} the Connes-Chern character, since there is evidence that after tensoring with \mathbb{C}, one eventually has an isomorphism $K_{0}\left(H_{\theta}\right)$ $\otimes \mathbb{C} \rightarrow \mathrm{HC}^{\text {ev }}\left(H_{\theta}\right)^{*}$ between vector spaces of dimension nine. The evidence for this comes from the fact proved in [3] (Corollary 3.2) that for irrational θ one has $H C^{0}\left(H_{\theta}\right) \cong \mathbb{C}^{9}$ and has as basis $\left\{\tau, \phi_{0}, \phi_{0}^{\prime}, \phi_{1}, \phi_{1}^{\prime}, \phi_{2}, \phi_{2}^{\prime}, T_{30}, T_{31}\right\}$. These, together with the class associated to Connes' cyclic 2-cocycle would presumably constitute a basis for $H C^{\mathrm{ev}}\left(H_{\theta}\right)$, which the authors suspect is $H C^{0}\left(H_{\theta}\right) \oplus H C^{2}\left(H_{\theta}\right)$ modulo identifications given by the periodicity operator after tensoring with the complex plane over the ring $H C^{*}(\mathbb{C})$. This further suggests that the Hochschild dimension of H_{θ} is two, as Connes showed to be the case for the rotation algebra. (Of course, for rational θ, the group $H C^{0}\left(H_{\theta}\right)$ is infinite dimensional, but one would still \left. expect that the periodic cohomology group ${H C^{e v}}^{\text {ev }} H_{\theta}\right)$ to be finite dimensional in fact, nine-dimensional.)

For the identity element and the Powers-Rieffel projection one clearly has

$$
\mathbf{T}(1)=(1 ; 0,0 ; 0,0,0,0 ; 0,0 ; 0), \quad \mathbf{T}\left(e_{\theta}\right)=(\theta ; 0,0 ; 0,0,0,0 ; 0,0 ;-6) .
$$

The main result of [3] is the following data of Connes-Chern character values for the above nine modules for any θ. In this table we write $\omega=e(1 / 6)=\frac{1}{2}(1+\mathrm{i} \sqrt{3})$.

Table 1. Character table for the hexic transform																	
K_{0}-class	τ	C_{6}	ϕ_{0}	ϕ_{0}^{\prime}	ϕ_{1}	ϕ_{1}^{\prime}	ϕ_{2}	ϕ_{2}^{\prime}	T_{30}	T_{31}							
$[1]$	1	0	0	0	0	0	0	0	0	0							
$\left[p_{0}\right]$	$\frac{1}{6}$	0	$\frac{1}{6}$	0	$\frac{1}{6}$	0	$\frac{1}{6}$	0	$\frac{1}{6}$	$\frac{1}{6}$							
$\left[p_{1}\right]$	$\frac{1}{6}$	0	$\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$-\frac{1}{6}$	$-\frac{1}{6}$							
$\left[p_{2}\right]$	$\frac{1}{6}$	0	$-\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{1}{6}$	$\frac{1}{6}$							
$\left[p_{3}\right]$	$\frac{1}{6}$	0	$-\frac{1}{6}$	0	$\frac{1}{6}$	0	$\frac{1}{6}$	0	$-\frac{1}{6}$	$-\frac{1}{6}$							
$\left[p_{4}\right]$	$\frac{1}{6}$	0	$-\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{1}{6}$	$\frac{1}{6}$							
$\left[q_{0}\right]$	$\frac{1}{3}$	0	0	0	0	$\frac{1}{3}$	0	0	0	0							
$\left[q_{1}\right]$	$\frac{1}{3}$	0	0	0	0	0	$-\frac{1}{6}$	$-\frac{\sqrt{3}}{6}$	0	0							
$[r]$	$\frac{1}{2}$	0	0	0	0	0	0	0	0	$\frac{1}{2}$							
$\left[\mathcal{M}_{6}\right]$	$\frac{\theta}{6}$	-1	$\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$\frac{\sqrt{3}}{36}$	$\frac{1}{4}$	$\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$\frac{1}{3}$							

This table yields the following.
THEOREM 2.1 ([3], Theorem 1.1). For any $\theta>0$, the ten classes $[1],\left[p_{0}\right],\left[p_{1}\right]$, $\left[p_{2}\right],\left[p_{3}\right],\left[p_{4}\right],\left[q_{0}\right],\left[q_{1}\right],[r],\left[\mathcal{M}_{6}\right]$ are independent in $K_{0}\left(H_{\theta}\right)$. When θ is rational, the map \mathbf{T} is injective on $K_{0}\left(H_{\theta}\right)$, and hence so is the Connes-Chern character ch : $K_{0}\left(H_{\theta}\right) \rightarrow$ $H C^{\mathrm{ev}}\left(H_{\theta}\right)^{*}$.

Notation 2.2. We shall denote by \mathcal{R}_{θ} the subgroup of $K_{0}\left(H_{\theta}\right)$ generated by the ten classes listed in Table 1.

Consider the element of $K_{0}\left(H_{p / q}\right)$ defined by (for relatively prime integers p, q)

$$
\kappa_{p, q}=p[1]+q\left(\left[p_{0}\right]-4\left[p_{1}\right]-3\left[p_{2}\right]-2\left[p_{3}\right]-\left[p_{4}\right]+2\left[q_{0}\right]-2\left[q_{1}\right]+3[r]-6\left[\mathcal{M}_{6}\right]\right) .
$$

(Here, p_{j}, q_{j}, r, and \mathcal{M}_{6} are evaluated at $\theta=\frac{p}{q}$.) It is easy to check that $\mathbf{T}\left(\kappa_{p, q}\right)=(0 ; 0,0 ; 0,0,0,0 ; 0,0 ; 6 q)$ from Table 1. Since we have $\mathbf{T}\left(p[1]-q\left[e_{\theta}\right]\right)=$ $(0 ; 0,0 ; 0,0,0,0 ; 0,0 ; 6 q)=\mathbf{T}\left(\kappa_{p, q}\right)$, the injectivity of \mathbf{T} (in the rational case, Theorem 2.1) gives the equality $p[1]-q\left[e_{\theta}\right]=\kappa_{p, q}$ in $K_{0}\left(H_{\theta}\right)$. In fact, in the same manner one easily checks that the Powers-Rieffel projection e_{θ} is related to the nine modules as follows for rational θ

$$
\left[e_{\theta}\right]=-\left[p_{0}\right]+4\left[p_{1}\right]+3\left[p_{2}\right]+2\left[p_{3}\right]+\left[p_{4}\right]-2\left[q_{0}\right]+2\left[q_{1}\right]-3[r]+6\left[\mathcal{M}_{6}\right]
$$

in $K_{0}\left(H_{\theta}\right)$ (the right side evaluated at θ). This shows that $\left[e_{\theta}\right] \in \mathcal{R}_{\theta}$ for rational θ.
Define the reduced character $\mathbf{T}^{\prime}: K_{0}\left(H_{\theta}\right) \rightarrow \mathbb{R}^{9}$ to be the degree zero part of the Connes-Chern character T, namely, $\mathbf{T}^{\prime}=\left(\tau(x) ; \phi_{0}, \phi_{0}^{\prime} ; \phi_{1}, \phi_{1}^{\prime}, \phi_{2}, \phi_{2}^{\prime} ; T_{30}, T_{31}\right)$. Note that $\kappa_{p, q}$ is in $\operatorname{Ker}\left(\mathbf{T}^{\prime}\right)$. Two key steps in the proofs below is to show that in
fact $\kappa_{p, q}$ generates $\operatorname{Ker}\left(\mathbf{T}^{\prime}\right)$ (Corollary 4.3) and that the range of \mathbf{T}^{\prime} on $K_{0}\left(H_{\theta}\right)$ is equal to its range on \mathcal{R}_{θ} for θ in a special dense set of rationals \mathbb{P} described below (Proposition 4.1). These steps lead one to the equality $K_{0}\left(H_{p / q}\right)=\mathcal{R}_{p / q}$, from which it follows that the ten classes form a basis for $K_{0}\left(H_{p / q}\right)$.
2.1. Realization of $A_{p / q}$ AS A DIMENSION-DROP ALGEBRA. Begin with the following realization of the rational rotation algebra as the subalgebra of $C([0,1] \times$ $[0,1], M_{q}$) given in [1], p. 64, by

$$
A_{p / q}=\left\{f \in C\left([0,1] \times[0,1], M_{q}\right): f(x, 1)=\alpha_{1}(f(x, 0)), \quad f(1, y)=\alpha_{2}(f(0, y))\right\}
$$

where $M_{q}:=M_{q}(\mathbb{C})$ is generated by the unitaries

$$
U_{0}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & \lambda & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \lambda^{q-1}
\end{array}\right], \quad V_{0}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

satisfying $V_{0} U_{0}=\lambda U_{0} V_{0}$, where $\lambda=e(p / q)$, and α_{1}, α_{2} are the automorphisms of M_{q} given by $\alpha_{1}\left(U_{0}\right)=U_{0}, \alpha_{1}\left(V_{0}\right)=w V_{0}$ and $\alpha_{2}\left(U_{0}\right)=w U_{0}, \alpha_{2}\left(V_{0}\right)=V_{0}$, where $w=e(1 / q)$. With this realization, the canonical generators U, V of $A_{p / q}$ are given by the functions $U(x, y)=e(x / q) U_{0}, V(x, y)=e(y / q) V_{0}$ and the hexic automorphism is given by

$$
\rho(f)(x, y)=\eta_{0}(f(y, y-x-p \bar{q} / 2))
$$

where $\eta_{0} \in \operatorname{Aut}\left(M_{q}\right)$ is given by $\eta_{0}\left(U_{0}\right)=V_{0}, \eta_{0}\left(V_{0}\right)=\lambda^{-(1 / 2)(1-\bar{q})} U_{0}^{-1} V_{0}$ where $\bar{q}=0$ if q is even, and 1 otherwise. In fact, with W_{0} being the unitary

$$
W_{0}=\frac{1}{\sqrt{q}}\left[\lambda^{i(i+\bar{q}) / 2-i j}\right]
$$

where $i, j=0,1, \ldots, q-1$, one checks that $\eta_{0}(x)=W_{0}^{*} x W_{0}$ (see Sections 2 and 3 of [8]). Indeed, one checks the commutation relations

$$
U_{0} W_{0}=W_{0} V_{0}, \quad V_{0} W_{0}=\lambda^{-(1 / 2)(1-\bar{q})} W_{0} U_{0}^{-1} V_{0}
$$

Consider the following self-adjoint $q \times q$ unitary matrix

$$
\Gamma_{0}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 1 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0
\end{array}\right]
$$

It gives rise to the flip automorphism: $U_{0} \Gamma_{0}=\Gamma_{0} U_{0}^{-1}, V_{0} \Gamma_{0}=\Gamma_{0} V_{0}^{-1}$. The automorphisms α_{1}, α_{2} are given by $\alpha_{i}(x)=W_{i}^{*} x W_{i}, i=1,2$ where

$$
W_{1}=U_{0}^{-p^{\prime}}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & w & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & w^{q-1}
\end{array}\right], \quad W_{2}=V_{0}^{-p^{\prime \prime}}=\left[\begin{array}{cc}
\mathbf{0} & I_{p^{\prime \prime}} \\
I_{q-p^{\prime \prime}} & \mathbf{0}
\end{array}\right]
$$

and I_{n} is the $n \times n$ identity matrix, and $p^{\prime}, p^{\prime \prime}$ are the unique integers in $[1, q-1]$ such that $p p^{\prime} \equiv-1 \bmod q$ and $p p^{\prime \prime} \equiv 1 \bmod q$. One has

$$
W_{1} W_{0}=W_{0} W_{2}^{-1}, \quad W_{2} W_{0}=w^{p^{\prime \prime} / 2} W_{0} W_{2} W_{1}
$$

If q is even (which is all we will need for our purposes) then one can check that

$$
W_{0}^{3}=\frac{G(p, 2 q)}{2 \sqrt{q}} \Gamma_{0}, \quad W_{0}^{2}=\frac{G(p, 2 q)}{2 \sqrt{q}} Z_{0}
$$

where $\left(Z_{0}\right)_{i j}=\frac{1}{\sqrt{q}} \lambda^{-\left(j^{2} / 2\right)-i j}$ for $i, j=0, \ldots, q-1$, and $G(\cdot, \cdot)$ is the classical Gaussian sum (to be recalled below). One can therefore show that $W_{0}^{6}=\mathrm{i} I$ for $\frac{p}{q} \in \mathbb{P}$, where \mathbb{P} is a special dense set of rationals defined below.

Given positive relatively prime integers p, q, let $p^{\prime}, p^{\prime \prime}$ be the integers given above, and write $p p^{\prime}=-1+q \widetilde{p}, p p^{\prime \prime}=1+q \widetilde{q}$ for some integers \widetilde{p} and \widetilde{q}. One easily checks that $p=\widetilde{p}+\widetilde{q}$ and $q=p^{\prime}+p^{\prime \prime}$. In the present paper we shall be interested in the following dense set of rational numbers in $(0,1)$

$$
\mathbb{P}:=\left\{\frac{2^{d+1} k+1}{2^{2 d-1}}: k=3,6, \ldots, 2^{d-2}-1, k \equiv 0 \bmod 3, d \geqslant 3\right\}
$$

For such rationals, $p=2^{d+1} k+1, q=2^{2 d-1}$, and one can verify directly that

$$
p^{\prime}=2^{d+1} k-1, \quad p^{\prime \prime}=2^{d}\left(2^{d-1}-2 k\right)+1, \quad \tilde{p}=8 k^{2}, \quad \tilde{q}=8 k\left(2^{d-2}-k\right)+1 .
$$

2.2. GAUSSIAN SUMS. Recall the classical quadratic Gauss sum is given by

$$
G(p, q)=\sum_{j=0}^{q-1} \lambda^{j^{2}}
$$

where p, q are relatively prime positive integers and $\lambda=e(p / q)=\mathrm{e}^{2 \pi \mathrm{i} p / q}$. It is known that for odd p and $q=4^{d}$ the Gaussian sum takes the simpler form $G\left(p, 4^{d}\right)=2^{d}\left(1+\mathrm{i}^{p}\right)$. So for $\frac{p}{q} \in \mathbb{P}$ one has $G(p, 2 q)=\sqrt{2 q}(1+\mathrm{i})$, since in this case p is $1 \bmod 4$, and $W_{0}^{3}=\frac{1+\mathrm{i}}{\sqrt{2}} \Gamma_{0}$ and hence $W_{0}^{6}=\mathrm{i} I$.

LEMMA 2.3. Let $q=2^{2 d-1}$ where d is a positive integer, let p be an odd positive integer with $p<q$, and $\lambda=e(p / q)$. Then

$$
\sum_{k=0}^{q-1} \lambda^{(1 / 2) k^{2}+a k}=\sqrt{q} \frac{1+\mathrm{i}^{p}}{\sqrt{2}} \lambda^{-(1 / 2) a^{2}}, \quad \sum_{k=0}^{q-1} \lambda^{(3 / 2) k^{2}+a k}=\sqrt{q} \frac{1-\mathrm{i}^{p}}{\sqrt{2}} \lambda^{(1 / 2) a^{2}((2 q-1) / 3)}
$$

for any integer a (here, $\frac{2 q-1}{3}$ is a positive integer).
Proof. Note that since q is even, the functions $\lambda^{(1 / 2) k^{2}}$ and $\lambda^{(3 / 2) k^{2}+a k}$ have period q (so the sums are invariant under integer translations). Let $r=\frac{4^{d}-1}{3}$ (positive integer). Then $1=2 q-3 r$. Letting $\mu=e(3 p / 2 q)=\lambda^{3 / 2}$, we have

$$
\begin{aligned}
\sum_{k=0}^{q-1} \lambda^{(3 / 2) k^{2}+a k} & =\sum_{k=0}^{q-1} \lambda^{(3 / 2) k^{2}+a(2 q-3 r) k}=\sum_{k=0}^{q-1} \lambda^{(3 / 2) k^{2}-3 a r k}=\sum_{k=0}^{q-1} \mu^{k^{2}-2 a r k} \\
& =\frac{1}{2} \sum_{k=0}^{2 q-1} \mu^{k^{2}-2 a r k}=\frac{1}{2} \mu^{-a^{2} r^{2}} \sum_{k=0}^{2 q-1} \mu^{(k-a r)^{2}}=\frac{1}{2} \mu^{-a^{2} r^{2}} \sum_{k=0}^{2 q-1} \mu^{k^{2}} \\
& =\frac{1}{2} \lambda^{-(3 / 2) a^{2} r^{2}} G(3 p, 2 q) .
\end{aligned}
$$

Now as $q=2^{2 d-1}, G(3 p, 2 q)=2^{d}\left(1-\mathrm{i}^{p}\right)$ and $\lambda^{-(3 r / 2) a^{2} r}=\lambda^{(1 / 6) a^{2}\left(4^{d}-1\right)}$, the second sum follows. To get the first sum, one has (by suitable substitution)

$$
2^{d}\left(1+\mathrm{i}^{p}\right)=G(p, 2 q)=\sum_{k=0}^{2 q-1}\left(\lambda^{1 / 2}\right)^{k^{2}}=\sum_{k=0}^{q-1} \lambda^{(1 / 2) k^{2}}+\sum_{k=q}^{2 q-1} \lambda^{(1 / 2) k^{2}}=2 \sum_{k=0}^{q-1} \lambda^{(1 / 2) k^{2}} .
$$

The case for general a (in the first sum in the lemma) follows from the case $a=0$, by translation invariance.

LEMMA 2.4. For relatively prime p, q with $q=2^{2 d-1}$ (d a positive integer), we have:

$$
\begin{aligned}
\operatorname{Tr}\left(U_{0}^{m} V_{0}^{n} W_{0}\right) & =\frac{1-\mathrm{i}^{p}}{\sqrt{2}} \lambda^{(1 / 2)\left(m^{2}+n^{2}\right)}, \\
\operatorname{Tr}\left(U_{0}^{m} V_{0}^{n} W_{0}^{2}\right) & =\mathrm{i}^{p} \lambda^{(1 / 6)(m-n)^{2}} \omega^{-2 p(m-n)^{2}}, \\
\operatorname{Tr}\left(U_{0}^{m} V_{0}^{n} W_{0}^{3}\right) & =\sqrt{2}\left(1+\mathrm{i}^{p}\right) \lambda^{-(1 / 2) m n} \delta_{2}^{m} \delta_{2}^{n}
\end{aligned}
$$

Proof. Since $V_{0}^{n}=\left[\begin{array}{cc}\mathbf{O} & I_{q-n} \\ I_{n} & \mathbf{O}\end{array}\right]$ one decomposes W_{0} into the following block form

$$
W_{0}=\left[\begin{array}{cc}
n \times(q-n) & n \times n \\
(q-n) \times(q-n) & (q-n) \times n
\end{array}\right]=\frac{1}{\sqrt{q}}\left[\begin{array}{cc}
* & X \\
Y & *
\end{array}\right]
$$

where $X=\left[\lambda^{(1 / 2) i^{2}-i(j+q-n)}\right]_{i, j=0, \ldots, n-1}$ with relevant diagonal entries

$$
X=\left[\begin{array}{cccccc}
1 & * & * & \cdots & & \\
* & \lambda^{-(1 / 2)-(q-n)} & * & & & \\
* & * & \ddots & & & \\
\vdots & & * & \lambda^{-(1 / 2) j^{2}-j(q-n)} & & \\
& & & & \ddots & \\
& & & & & \lambda^{-(1 / 2)(n-1)^{2}-(n-1)(q-n)}
\end{array}\right]
$$

where $j=0,1, \ldots, n-1$, and $Y=\left[\lambda^{(1 / 2)(i+n)^{2}-(i+n) j}\right]$ with diagonals

$$
Y=\left[\begin{array}{cccccc}
\lambda^{(1 / 2) n^{2}} & * & * & \cdots & & \\
* & \lambda^{(1 / 2)\left(n^{2}-1\right)} & * & & & \\
* & * & \ddots & & & \\
\vdots & & & \lambda^{(1 / 2)\left(n^{2}-j^{2}\right)} & & \\
& & & & \ddots & \\
& & & & & \lambda^{(1 / 2)\left(n^{2}-(q-n-1)^{2}\right)}
\end{array}\right]
$$

We then have

$$
\sqrt{q} U_{0}^{m} V_{0}^{n} W_{0}=U_{0}^{m}\left[\begin{array}{cc}
\mathbf{O} & I_{q-n} \\
I_{n} & \mathbf{O}
\end{array}\right]\left[\begin{array}{cc}
* & X \\
Y & *
\end{array}\right]=U_{0}^{m}\left[\begin{array}{cc}
Y & * \\
* & X
\end{array}\right]
$$

and since

$$
U_{0}^{m}=\operatorname{diag}\left(1, \lambda^{m}, \ldots, \lambda^{m(q-n-1)}, \lambda^{m(q-n)}, \ldots, \lambda^{m(q-1)}\right)
$$

we obtain

$$
\sqrt{q} \operatorname{Tr}\left(U_{0}^{m} V_{0}^{n} W_{0}\right)=\sum_{j=0}^{q-n-1} \lambda^{m j} \cdot \lambda^{(1 / 2)\left(n^{2}-j^{2}\right)}+\sum_{j=0}^{n-1} \lambda^{m(q-n+j)} \cdot \lambda^{-(1 / 2) j^{2}-j(q-n)} .
$$

Making the substitution $k=j+n$ in the first sum gives

$$
\sum_{k=n}^{q-1} \lambda^{m(k-n)} \lambda^{(1 / 2)\left(n^{2}-(k-n)^{2}\right)}=\sum_{k=n}^{q-1} \lambda^{m(k-n)} \lambda^{-(1 / 2) k(k-2 n)},
$$

and using $\lambda^{q}=1$ allows to write the second sum as $\sum_{j=0}^{n-1} \lambda^{m(j-n)} \lambda^{-(1 / 2) j(j-2 n)}$. It follows, using Lemma 2.3, that

$$
\begin{aligned}
\sqrt{q} \operatorname{Tr}\left(U_{0}^{m} V_{0}^{n} W_{0}\right) & =\lambda^{-m n} \sum_{k=0}^{q-1} \lambda^{-(1 / 2) k^{2}+(m+n) k}=\lambda^{-m n} \lambda^{(1 / 2)(m+n)^{2}} \sum_{k=0}^{q-1} \lambda^{-(1 / 2)(k-(m+n))^{2}} \\
& =\lambda^{(1 / 2)\left(m^{2}+n^{2}\right)} \sum_{k=0}^{q-1} \lambda^{-(1 / 2) k^{2}}=\lambda^{(1 / 2)\left(m^{2}+n^{2}\right)} 2^{d-1}\left(1-\mathrm{i}^{p}\right) .
\end{aligned}
$$

Using the relation $W_{0}^{2}=\frac{1+\mathrm{i} p}{\sqrt{2}} Z_{0}$, one gets $\operatorname{Tr}\left(U_{0}^{m} V_{0}^{n} W_{0}^{2}\right)=\frac{1+\mathrm{i}^{p}}{\sqrt{2}} \operatorname{Tr}\left(U_{0}^{m} V_{0}^{n} Z_{0}\right)$. As with W_{0}, we decompose Z_{0} into the block form

$$
Z_{0}=\left[\begin{array}{cc}
n \times(q-n) & n \times n \\
(q-n) \times(q-n) & (q-n) \times n
\end{array}\right]=\frac{1}{\sqrt{q}}\left[\begin{array}{cc}
* & X^{\prime} \\
Y^{\prime} & *
\end{array}\right],
$$

where $X^{\prime}=\left[\lambda^{-(1 / 2)(j+q-n)^{2}-i(j+q-n)}\right]$ with relevant diagonal entries

$$
X^{\prime}=\left[\begin{array}{ccccc}
\lambda^{-(1 / 2)(q-n)^{2}} & * & * & \cdots & \\
& * & * & & \\
* & * & \ddots & & \\
\vdots & & * & \lambda^{-(1 / 2)(i+q-n)^{2}-i(i+q-n)} & \\
& & & \ddots & \\
& & & & \lambda^{-(1 / 2)(q-1)^{2}-(n-1)(q-n)}
\end{array}\right]
$$

and $Y^{\prime}=\left[\lambda^{-(1 / 2)(i+n)^{2}-(i+n) j}\right]$ with relevant diagonal entries

$$
Y^{\prime}=\left[\begin{array}{ccccc}
1 & * & \cdots & & \\
* & \ddots & & & \\
\vdots & & \lambda^{-(1 / 2) j(3 j+2 n)} & & \\
& & & \ddots & \\
& & & & \lambda^{-(1 / 2)(q-n-1)(3 q-n-3)}
\end{array}\right]
$$

We then have

$$
U_{0}^{m} V_{0}^{n} Z_{0}=\frac{1}{\sqrt{\eta}} U_{0}^{m}\left[\begin{array}{cc}
Y^{\prime} & * \\
* & X^{\prime}
\end{array}\right]
$$

hence

$$
\sqrt{q} \operatorname{Tr}\left(U_{0}^{m} V_{0}^{n} Z_{0}\right)=\sum_{j=0}^{q-n-1} \lambda^{m j} \lambda^{-(3 / 2) j^{2}-n j}+\sum_{j=0}^{n-1} \lambda^{m(q-n+j)} \lambda^{-(1 / 2)(j+q-n)^{2}-j(j+q-n)}
$$

Making the substitution $k=j+n$ in the first sum gives

$$
\sum_{k=n}^{q-1} \lambda^{m(k-n)} \lambda^{-(3 / 2)(k-n)^{2}-n(k-n)}=\sum_{k=n}^{q-1} \lambda^{m(k-n)} \lambda^{-(3 / 2) k^{2}+2 n k-(1 / 2) n^{2}}
$$

and $\lambda^{(1 / 2) q^{2}}=1$ allows us to write the second sum as

$$
\sum_{j=0}^{n-1} \lambda^{m(j-n)} \lambda^{-(1 / 2)(j-n)^{2}-j(j-n)}=\sum_{j=0}^{n-1} \lambda^{m(j-n)} \lambda^{-(3 / 2) j^{2}+2 n j-(1 / 2) n^{2}}
$$

Using Lemma 2.3 again one has

$$
\begin{aligned}
\sqrt{q} \operatorname{Tr}\left(U_{0}^{m} V_{0}^{n} Z_{0}\right) & =\lambda^{-m n-(1 / 2) n^{2}} \sum_{k=0}^{q-1} \lambda^{-(3 / 2) k^{2}+(m+2 n) k} \\
& =\frac{\sqrt{q}\left(1+\mathrm{i}^{p}\right)}{\sqrt{2}} \lambda^{-m n-(1 / 2) n^{2}} \lambda^{-(1 / 6)(m+2 n)^{2}(2 q-1)}
\end{aligned}
$$

and so $\operatorname{Tr}\left(U_{0}^{m} V_{0}^{n} W_{0}^{2}\right)=\mathrm{i}^{p} \lambda^{(1 / 6)(m-n)^{2}} \omega^{-2 p(m-n)^{2}}$. (Recall $\omega=e(1 / 6)$.) From [14], and recalling that q is even and p is odd, we had $\operatorname{Tr}\left(U_{0}^{m} V_{0}^{n} \Gamma_{0}\right)=2 \lambda^{-(1 / 2) m n} \delta_{2}^{n} \delta_{2}^{m}$. Since $W_{0}^{3}=\frac{1+\mathrm{i}^{p}}{\sqrt{2}} \Gamma_{0}$, we have $\operatorname{Tr}\left(U_{0}^{m} V_{0}^{n} W_{0}^{3}\right)=\sqrt{2}\left(1+\mathrm{i}^{p}\right) \lambda^{-(1 / 2) m n} \delta_{2}^{n} \delta_{2}^{m}$.
2.3. CONNES-CHERN' CHARACTER ON A_{θ} (FOR RATIONAL θ). Realizing A_{θ} as M_{q}-valued functions on the unit square as above, where $\theta=\frac{p}{q}$, the canonical trace is given by

$$
\tau(F)=\frac{1}{q} \int_{0}^{1} \int_{0}^{1} \operatorname{Tr}_{q}(F(x, y)) \mathrm{d} x \mathrm{~d} y
$$

for $F \in A_{\theta}$, where Tr_{q} is the usual trace on $M_{q}(\mathbb{C})$. Also, the canonical derivations of A_{θ} are given by $\delta_{1}=q \frac{\partial}{\partial x}, \delta_{2}=q \frac{\partial}{\partial y}$. They are defined by

$$
\delta_{1}\left(U^{m} V^{n}\right)=2 \pi \mathrm{i} m U^{m} V^{n}, \quad \delta_{2}\left(U^{m} V^{n}\right)=2 \pi \mathrm{i} n U^{m} V^{n} .
$$

Connes' canonical cyclic 2-cocycle is given by (see III.2. β of [5]):

$$
\begin{aligned}
\varphi_{q}\left(F^{0}, F^{1}, F^{2}\right) & =\frac{1}{2 \pi \mathrm{i}} \tau\left(F^{0}\left[\delta_{1}\left(F^{1}\right) \delta_{2}\left(F^{2}\right)-\delta_{2}\left(F^{1}\right) \delta_{1}\left(F^{2}\right)\right]\right) \\
& =\frac{q}{2 \pi \mathrm{i}} \int_{0}^{1} \int_{0}^{1} \operatorname{Tr}_{q}\left(F^{0}\left[\frac{\partial F^{1}}{\partial x} \frac{\partial F^{2}}{\partial y}-\frac{\partial F^{1}}{\partial y} \frac{\partial F^{2}}{\partial x}\right]\right) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

where $F^{j} \in A_{\theta}$ (are smooth elements). The extension of φ_{q} to $M_{n}\left(A_{\theta}\right)$ is given by the cup product

$$
\left(\varphi_{q} \# \operatorname{Tr}_{n}\right)\left(F^{0} \otimes a^{0}, F^{1} \otimes a^{1}, F^{2} \otimes a^{2}\right)=\varphi_{q}\left(F^{0}, F^{1}, F^{2}\right) \cdot \operatorname{Tr}_{n}\left(a^{0} a^{1} a^{2}\right)
$$

where $F^{j} \in A_{\theta}$ and $a^{j} \in M_{n}(\mathbb{C})$. The Chern character invariant of Connes c_{1} : $K_{0}\left(A_{\theta}\right) \rightarrow \mathbb{Z}$ is then given by $c_{1}[Q]=\left\langle[Q], \varphi_{q}\right\rangle=\left(\varphi_{q} \# \operatorname{Tr}_{n}\right)(Q, Q, Q)$, where Q is a projection in $M_{n}\left(A_{\theta}\right)$. For $0<\theta<1$ the Powers-Rieffel projection e_{θ} has $c_{1}\left(e_{\theta}\right)=\varphi_{q}\left(e_{\theta}, e_{\theta}, e_{\theta}\right)=-1$ (as was shown by Connes). For $\theta=1$, one can show that c_{1} of the Bott projection is ± 1, depending on the choices made for it (as in Section 5 of [14]).

3. UNBOUNDED TRACES AND SINGULAR SPHERE REALIZATION

In [8] it is proved that the crossed product C^{*}-algebra H_{θ}, for rational $\theta=\frac{p}{q}$ (with $(p, q)=1$), is isomorphic to a subalgebra of $C\left(\mathbb{S}^{2}, M_{6 q}\right)$ of continuous functions on the 2 -sphere \mathbb{S}^{2} with values in $M_{6 q}$ that commute with certain projections at three points (normally referred to as "singularities"). Let Q denote the quadrilateral shown below in Figures 1 and 2.

As in [8], the 2-sphere \mathbb{S}^{2} shall be envisaged as Q with the appropriate edges identified (as shown). For our purposes, we shall view this subalgebra as the set of all functions that commute with certain finite-order unitaries at the singular points.

First, it is easy to check that by the universality of the crossed product H_{θ}, there is a unique C^{*}-injection $H_{\theta} \rightarrow M_{6}\left(A_{\theta}\right)$ such that

$$
\begin{aligned}
& f \mapsto T_{f}:=\left[\begin{array}{cccccc}
f & 0 & 0 & 0 & 0 & 0 \\
0 & \rho(f) & 0 & 0 & 0 & 0 \\
0 & 0 & \rho^{2}(f) & 0 & 0 & 0 \\
0 & 0 & 0 & \rho^{3}(f) & 0 & 0 \\
0 & 0 & 0 & 0 & \rho^{4}(f) & 0 \\
0 & 0 & 0 & 0 & 0 & \rho^{5}(f)
\end{array}\right], \\
& W \mapsto Z:=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
\end{aligned}
$$

where $f \in A_{\theta}$ (understood by the realization mentioned in Section 2). (The " 1 " in the matrix entries here is the identity of A_{θ} which is I_{q}, the identity q by q matrix.) Now consider the 6×6 unitary matrix $E=\frac{1}{\sqrt{6}}\left[\omega^{-i j}\right]$, where $i, j=0,1, \ldots, 5$ and $\omega=e(1 / 6)$. One has

$$
\left(E T_{f} \mathrm{E}^{*}\right)_{i j}=\frac{1}{6} \sum_{k, \ell=0}^{5} \omega^{-i k} \delta_{k, \ell} \rho^{k}(f) \omega^{j \ell}=\frac{1}{6} f_{j-i}
$$

where $f_{r}=\sum_{k=0}^{5} \omega^{r k} \rho^{k}(f)$ (and $j-i$ is reduced mod 6). Further, it is easy to check that

$$
E Z E^{*}=D:=\operatorname{diag}\left(1, \omega, \omega^{2}, \omega^{3}, \omega^{4}, \omega^{5}\right)
$$

Therefore, composing the above injection with the automorphism $\mathrm{E}^{*}(\cdot) E$ (which is just a change of coordinates), one obtains the injection $\gamma: H_{\theta} \rightarrow M_{6}\left(A_{\theta}\right)$ given by

$$
\gamma(f)=\frac{1}{6}\left[\begin{array}{llllll}
f_{0} & f_{1} & f_{2} & f_{3} & f_{4} & f_{5} \\
f_{5} & f_{0} & f_{1} & f_{2} & f_{3} & f_{4} \\
f_{4} & f_{5} & f_{0} & f_{1} & f_{2} & f_{3} \\
f_{3} & f_{4} & f_{5} & f_{0} & f_{1} & f_{2} \\
f_{2} & f_{3} & f_{4} & f_{5} & f_{0} & f_{1} \\
f_{1} & f_{2} & f_{3} & f_{4} & f_{5} & f_{0}
\end{array}\right], \quad \gamma(W)=I_{q} \otimes D
$$

Note that f_{r} is in the eigenspace $A_{\theta}^{\rho}\left(\omega^{-r}\right):=\left\{g \in A_{\theta}: \rho(g)=\omega^{-r} g\right\}$. Fix g in this eigenspace. Then

$$
\begin{equation*}
\omega^{-r} g(x, y)=\eta_{0}(g(y, y-x)) \tag{3.1}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$. Along the left edge of Q one gets $\omega^{-r} g(0, y)=\eta_{0}(g(y, y))$ for $0 \leqslant y \leqslant \frac{1}{2}$. Evaluation of (3.1) at $(z, 1-z)$, for $\frac{1}{3} \leqslant z \leqslant \frac{1}{2}$, one gets (upon reapplying (3.1) and using the fact that $\eta_{0}^{2}=\zeta_{0}$ as q is even):

$$
\begin{aligned}
\omega^{-r} g(z, 1-z) & =\eta_{0}(g(1-z, 1-2 z))=\omega^{r} \eta_{0}^{2}(g(1-2 z,-z)) \\
& =\omega^{r} \zeta_{0} \alpha_{1}^{-1} \alpha_{1}(g(1-2 z,-z))=\omega^{r} \zeta_{0} \alpha_{1}^{-1}(g(1-2 z, 1-z))
\end{aligned}
$$

Thus, $g(z, 1-z)=\omega^{2 r} \zeta_{0} \alpha_{1}^{-1}(g(1-2 z, 1-z))$. This gives

$$
\begin{aligned}
& A_{\theta}^{\rho}\left(\omega^{-r}\right) \\
& =\left\{g \in C\left(Q, M_{q}\right): \begin{array}{cc}
g(0, y)=\omega^{r} \eta_{0}(g(y, y)), & 0 \leqslant y \leqslant \frac{1}{2}, \\
g(z, 1-z)=\omega^{2 r} \zeta_{0} \alpha_{1}^{-1}(g(1-2 z, 1-z)), & \frac{1}{3} \leqslant z \leqslant \frac{1}{2}
\end{array} .\right.
\end{aligned}
$$

For $r=0$ this is the realization obtained in Section 4.4 of [8]. This shows that H_{θ} is isomorphic to the C^{*}-algebra

$$
\left.\begin{array}{rlr}
\mathcal{T}_{\theta}:=\{ & F \in C\left(Q, M_{q} \otimes M_{6}\right): \\
& F(0, y)=\left(\eta_{0} \otimes \operatorname{Ad}_{D^{-1}}\right)(F(y, y)), & 0 \leqslant y \leqslant \frac{1}{2}, \\
& F(z, 1-z)=\left(\zeta_{0} \alpha_{1}^{-1} \otimes \operatorname{Ad}_{D^{-2}}\right)(F(1-2 z, 1-z)), & \frac{1}{3} \leqslant z \leqslant \frac{1}{2}
\end{array}\right\},
$$

where $\operatorname{Ad}_{C}(\cdot)=C(\cdot) C^{*}$. As has been done before (in the Fourier case [14]) and still carries through in our case, there is an isomorphism $\beta: \mathcal{T}_{\theta} \rightarrow S_{\theta}$ where

$$
S_{\theta}:=\left\{\begin{array}{rlcc}
F\left(s_{0}\right) & \leftrightarrow & W_{0} \otimes D \\
F \in C\left(\mathbb{S}^{2}, M_{q} \otimes M_{6}\right): & F\left(s_{1}\right) & \leftrightarrow & U_{0}^{p^{\prime}} \Gamma_{0} \otimes D^{3} \\
& F\left(s_{2}\right) & \leftrightarrow & U_{0}^{p^{\prime}} W_{0}^{2} \otimes D^{2}
\end{array}\right\}
$$

where $s_{0}=(0,0), s_{1}=(0,1 / 2), s_{2}=(1 / 3,2 / 3)$ are the singular points and inserting $W_{1}=U_{0}^{-p^{\prime}}$. (Here, " $A \leftrightarrow B^{\prime}$ " means $A B=B A$.) For $g \in \mathcal{T}_{\theta}$ one defines $\beta(g)$ to be the continuous function on Q such that

$$
\beta(g)(s):=\left(R_{s} \otimes D_{s}\right) \cdot g(s) \cdot\left(R_{s} \otimes D_{s}\right)^{-1}
$$

for $s \in Q-\left\{s_{0}, s_{1}, s_{2}\right\}$, where $s \mapsto R_{s}$ and $s \mapsto D_{s}$ are unitary-valued maps on Q, with respective values in M_{q} and M_{6}, that are continuous on $Q-\left\{s_{0}, s_{1}, s_{2}\right\}$ and have edge-limits as indicated in Figures 1 and 2. (See [8].) The mapping D_{s} can be chosen to be diagonal-valued (since the edge limits are all diagonal), a fact used below. These maps have jump discontinuities at the singular points, but they are carefully chosen so that $\beta(g)(s)$ is well-defined, continuous on Q, and has the same values on the corresponding edges, so that it extends to a continuous function on \mathbb{S}^{2}. Composing β with the isomorphism $H_{\theta} \rightarrow \mathcal{T}_{\theta}$ described above one obtains the isomorphism $\beta \gamma: H_{\theta} \rightarrow S_{\theta}$ that gives the singular sphere realization of the crossed product (in the case θ is rational).

It is easy to see that the canonical (normalized) trace on S_{θ}, which arises from that of A_{θ} given in Section 2, is given by

$$
\begin{equation*}
\tau(F)=\frac{1}{q} \iint_{Q} \operatorname{Tr}_{6 q}(F(x, y)) \mathrm{d} x \mathrm{~d} y . \tag{3.2}
\end{equation*}
$$

Consider the following trace functionals

$$
\begin{aligned}
& \tau_{0 k}(F)=\operatorname{Tr}\left(F\left(s_{0}\right)\left(W_{0} \otimes D\right)^{k}\right), \quad k=0,1,2,3,4,5 ; \\
& \tau_{1 k}(F)=\operatorname{Tr}\left(F\left(s_{1}\right)\left(U_{0}^{p^{\prime}} \Gamma_{0} \otimes D^{3}\right)^{k}\right), \quad k=0,1 ; \\
& \tau_{2 k}(F)=\operatorname{Tr}\left(F\left(s_{2}\right)\left(U_{0}^{p^{\prime}} W_{0}^{2} \otimes D^{2}\right)^{k}\right), \quad k=0,1,2 .
\end{aligned}
$$

(These are in fact tracial maps on S_{θ}.) To simplify, denote the underlying unitaries in each case by $w_{j} \otimes D_{j}, j=0,1,2$, so that all these traces can all be written as

$$
\tau_{j k}(F)=\operatorname{Tr}\left(F\left(s_{j}\right)\left(w_{j} \otimes D_{j}\right)^{k}\right)
$$

Let $Y:=\left\{s_{0}, s_{1}, s_{2}\right\}$. Fixing $f \in A_{\theta}$ and expanding $\gamma(f)$ as

$$
\gamma(f)=\frac{1}{6}\left(f_{0} \otimes I_{6}+\sum_{j=1}^{3} f_{j} \otimes(\text { matrices with zero diagonal })\right)
$$

one has, for s in $Q-Y$,

$$
\begin{aligned}
\beta(\gamma(f))(s) & =\left(R_{s} \otimes D_{s}\right) \cdot \gamma(f)(s) \cdot\left(R_{s} \otimes D_{s}\right)^{-1} \\
& =\frac{1}{6}\left(R_{s} f_{0}(s) R_{s}^{*}\right) \otimes I_{6}+\frac{1}{6} \sum_{j=1}^{5}\left(R_{s} f_{j}(s) R_{s}^{*}\right) \otimes(\text { matrices with zero diagonal })
\end{aligned}
$$

and since $\beta(\gamma(W))=\beta\left(I_{q} \otimes D\right)=I_{q} \otimes D$ (viewed as a constant function on Q) and D_{j} are all diagonal, then using the same idea as in [14] one gets

$$
\tau_{0 k}\left(\beta\left(\gamma(f) \gamma\left(W^{r}\right)\right)\right)=\delta_{6}^{r+k} \operatorname{Tr}\left(f_{0}(0,0) W_{0}^{k}\right), \quad k=0, \ldots, 5 .
$$

(Note: $\operatorname{Tr}\left(D^{n}\right)=6 \delta_{6}^{n}$.) Similarly, for the other two singularities one gets

$$
\begin{aligned}
& \tau_{1 k}\left(\beta\left(\gamma(f) \gamma\left(W^{r}\right)\right)\right)=\delta_{6}^{r+3 k} \operatorname{Tr}\left(f_{0}(0,1 / 2)\left(U_{0}^{p^{\prime}} \Gamma_{0}\right)^{k}\right), \quad k=0,1 \\
& \tau_{2 k}\left(\beta\left(\gamma(f) \gamma\left(W^{r}\right)\right)\right)=\delta_{6}^{r+2 k} \operatorname{Tr}\left(f_{0}(1 / 3,2 / 3)\left(U_{0}^{p^{\prime}} W_{0}^{2}\right)^{k}\right), \quad k=0,1,2 .
\end{aligned}
$$

There is no confusion in denoting by U, V, W the unitaries in S_{θ} corresponding to the original unitaries U, V, W in B_{θ} under the isomorphism $\beta \gamma$. With $f=U^{m} V^{n}$ these yield

$$
\begin{aligned}
\tau_{0 k}\left(U^{m} V^{n} W^{r}\right) & =\delta_{6}^{r+k} \operatorname{Tr}\left(f_{0}(0,0) W_{0}^{k}\right), \quad k=0, \ldots, 5 ; \\
\tau_{1 k}\left(U^{m} V^{n} W^{r}\right) & =\delta_{6}^{r+3 k} \operatorname{Tr}\left(f_{0}(0,1 / 2)\left(U_{0}^{p^{\prime}} \Gamma_{0}\right)^{k}\right), \quad k=0,1 ; \\
\tau_{2 k}\left(U^{m} V^{n} W^{r}\right) & =\delta_{6}^{r+2 k} \operatorname{Tr}\left(f_{0}(1 / 3,2 / 3)\left(U_{0}^{p^{\prime}} W_{0}^{2}\right)^{k}\right), \quad k=0,1,2 .
\end{aligned}
$$

We are now ready to relate the traces $\left\{\tau_{j k}\right\}$ with the original traces $\left\{T_{j k}\right\}$.
Proposition 3.1. With $\frac{p}{q} \in \mathbb{P}$, one has

$$
\begin{array}{ll}
\tau_{01}=3 \sqrt{2}(1-i) T_{10}, & \tau_{02}=6 \mathrm{i}\left[(1+\omega) T_{20}-\omega T_{21}\right], \\
\tau_{03}=6 \sqrt{2}(1+i) T_{30}, & \tau_{11}=4\left(T_{31}-T_{30}\right), \quad \tau_{21}=3 i \omega \lambda^{\left(p^{\prime}\right)^{2} / 6}\left[(\omega-2) T_{20}-\omega T_{21}\right] .
\end{array}
$$

Proof. We shall make free use of the results obtained in Lemma 2.4. We take $f=U^{m} V^{n}$ so that

$$
\begin{aligned}
f_{0}= & \sum_{j=0}^{5} \rho^{j}\left(U^{m} V^{n}\right) \\
= & U^{m} V^{n} \\
& +U^{-m} V^{-n}+\lambda^{-n^{2} / 2-m n}\left(U^{-n} V^{m+n}+U^{n} V^{-(m+n)}\right) \\
& +\lambda^{-m^{2} / 2-m n}\left(U^{-(m+n)} V^{m}+U^{m+n} V^{-m}\right)
\end{aligned}
$$

or

$$
\begin{aligned}
& f_{0}(x, y)=e((m x+n y) / q) U_{0}^{m} V_{0}^{n}+e(-(m x+n y) / q) U_{0}^{-m} V_{0}^{-n} \\
& \quad+\lambda^{-n^{2} / 2-m n}\left(e(((m+n) y-n x) / q) U_{0}^{-n} V_{0}^{m+n}+e((n x-(m+n) y) / q) U_{0}^{n} V_{0}^{-(m+n)}\right) \\
& \quad+\lambda^{-m^{2} / 2 m n}\left(e((m y-(m+n) x) / q) U_{0}^{(m+n)} V_{0}^{m}+e(((m+n) x-m y) / q) U_{0}^{m+n} V_{0}^{-m}\right)
\end{aligned}
$$

For τ_{01} one takes $r=5$ and obtains

$$
\begin{aligned}
& \tau_{01}\left(U^{m} V^{n} W^{5}\right) \\
& \quad=\operatorname{Tr}\left(f_{0}(0,0) W_{0}\right) \\
& \quad=2 \operatorname{Tr}\left(U_{0}^{m} V_{0}^{n} W_{0}\right)+2 \lambda^{-n^{2} / 2-m n} \operatorname{Tr}\left(U_{0}^{-n} V_{0}^{m+n} W_{0}\right)+2 \lambda^{-m^{2} / 2-m n} \operatorname{Tr}\left(U_{0}^{m+n} V_{0}^{-m} W_{0}\right) \\
& \quad=\frac{2(1-\mathrm{i})}{\sqrt{2}}\left(\lambda^{\left(m^{2}+n^{2}\right) / 2}+\lambda^{-n^{2} / 2-m n} \lambda^{\left(n^{2}+(m+n)^{2}\right) / 2}+\lambda^{-m^{2} / 2-m n} \lambda^{\left((m+n)^{2}+m^{2}\right) / 2}\right) \\
& \quad=3 \sqrt{2}(1-\mathrm{i}) \lambda^{\left(m^{2}+n^{2}\right) / 2}=3 \sqrt{2}(1-\mathrm{i}) T_{10}\left(U^{m} V^{n} W^{5}\right) .
\end{aligned}
$$

For τ_{02} one takes $r=4$ and obtains (recalling that $\left.p \equiv 1 \bmod 3\right)$

$$
\begin{aligned}
& \tau_{02}\left(U^{m} V^{n} W^{4}\right)=\operatorname{Tr}\left(f_{0}(0,0) W_{0}^{2}\right) \\
& \quad=2 \operatorname{Tr}\left(U_{0}^{m} V_{0}^{n} W_{0}^{2}\right)+2 \lambda^{-n^{2} / 2-m n} \operatorname{Tr}\left(U_{0}^{-n} V_{0}^{m+n} W_{0}^{2}\right)+2 \lambda^{-m^{2} / 2-m n} \operatorname{Tr}\left(U_{0}^{m+n} V_{0}^{-m} W_{0}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2 \mathrm{i} \omega^{-2 p(m-n)^{2}} \lambda^{(m-n)^{2} / 6}+2 \mathrm{i} \omega^{-2 p(m+2 n)^{2}} \lambda^{-n^{2} / 2-m n} \lambda^{(m+2 n)^{2} / 6} \\
& \quad+2 \mathrm{i} \omega^{-2 p(2 m+n)^{2}} \lambda^{-m^{2} / 2-m n} \lambda^{(2 m+n)^{2} / 6} \\
& =6 \mathrm{i} \omega^{-2 p(m-n)^{2}} \lambda^{(m-n)^{2} / 6}=6 \mathrm{i}\left[(1+\omega) T_{20}\left(U^{m} V^{n} W^{4}\right)-\omega T_{21}\left(U^{m} V^{n} W^{4}\right)\right]
\end{aligned}
$$

For τ_{03} one takes $r=3$ and obtains

$$
\begin{aligned}
& \tau_{03}\left(U^{m} V^{n} W^{3}\right) \\
& =\operatorname{Tr}\left(f_{0}(0,0) W_{0}^{3}\right) \\
& =2 \operatorname{Tr}\left(U_{0}^{m} V_{0}^{n} W_{0}^{3}\right)+2 \lambda^{-n^{2} / 2-m n} \operatorname{Tr}\left(U_{0}^{-n} V_{0}^{m+n} W_{0}^{3}\right)+2 \lambda^{-m^{2} / 2-m n} \operatorname{Tr}\left(U_{0}^{m+n} V_{0}^{-m} W_{0}^{3}\right) \\
& =2 \sqrt{2}(1+\mathrm{i})\left(\lambda^{-m n / 2} \delta_{2}^{m} \delta_{2}^{n}+\lambda^{-n^{2} / 2-m n} \lambda^{(m+n) n / 2} \delta_{2}^{n} \delta_{2}^{m+n}+\lambda^{-m^{2} / 2-m n} \lambda^{(m+n) m / 2} \delta_{2}^{m+n} \delta_{2}^{n}\right) \\
& =6 \sqrt{2}(1+\mathrm{i}) T_{30}\left(U^{m} V^{n} W^{3}\right) .
\end{aligned}
$$

For τ_{11} one observes that $p p^{\prime} \equiv-1 \bmod 2 q$ which allows us to write $e(\alpha / 2 q)=$ $\lambda^{-\alpha p^{\prime} / 2}$, where α is a linear combination of m and n. One then takes $r=3$ and obtains

$$
\begin{aligned}
& \tau_{11}\left(U^{m} V^{n} W^{3}\right)=\operatorname{Tr}\left(f_{0}(0,(1 / 2)) U_{0}^{p^{\prime}} \Gamma_{0}\right)=\frac{\sqrt{2}}{(1+\mathrm{i})} \operatorname{Tr}\left(f_{0}(0,(1 / 2)) U_{0}^{p^{\prime}} W_{0}^{3}\right) \\
& =\frac{\sqrt{2}}{(1+\mathrm{i})}\left[e(n / 2 q) \operatorname{Tr}\left(U_{0}^{m} V_{0}^{n} U_{0}^{p^{\prime}} W_{0}^{3}\right)+e(-n / 2 q) \operatorname{Tr}\left(U_{0}^{-m} V_{0}^{-n} U_{0}^{p^{\prime}} W_{0}^{3}\right)\right. \\
& +\lambda^{-n^{2} / 2-m n}\left(e((m+n) / 2 q) \operatorname{Tr}\left(U_{0}^{-n} V_{0}^{m+n} U_{0}^{p^{\prime}} W_{0}^{3}\right)\right. \\
& \left.+e(-(m+n) / 2 q) \operatorname{Tr}\left(U_{0}^{n} V_{0}^{-(m+n)} U_{0}^{p^{\prime}} W_{0}^{3}\right)\right) \\
& \left.\quad+\lambda^{-m^{2} / 2-m n}\left(e(m / 2 q) \operatorname{Tr}\left(U_{0}^{-(m+n)} V_{0}^{m} U_{0}^{p^{\prime}} W_{0}^{3}\right)+e(-m / 2 q) \operatorname{Tr}\left(U_{0}^{m+n} V_{0}^{-m} U_{0}^{p^{\prime}} W_{0}^{3}\right)\right)\right] \\
& =\frac{\sqrt{2}}{(1+\mathrm{i})}\left[\lambda^{n p^{\prime} / 2} \operatorname{Tr}\left(U_{0}^{m+p^{\prime}} V_{0}^{n} W_{0}^{3}\right)+\lambda^{-n p^{\prime} / 2} \operatorname{Tr}\left(U_{0}^{-m+p^{\prime}} V_{0}^{-n} W_{0}^{3}\right)\right. \\
& +\lambda^{-n^{2} / 2-m n}\left(\lambda^{(m+n) p^{\prime} / 2} \operatorname{Tr}\left(U_{0}^{-n+p^{\prime}} V_{0}^{m+n} W_{0}^{3}\right)+\lambda^{-(m+n) p^{\prime} / 2} \operatorname{Tr}\left(U_{0}^{n+p^{\prime}} V_{0}^{-(m+n)} W_{0}^{3}\right)\right) \\
& \left.+\lambda^{-m^{2} / 2-m n}\left(\lambda^{m p^{\prime} / 2} \operatorname{Tr}\left(U_{0}^{-(m+n)+p^{\prime}} V_{0}^{m} W_{0}^{3}\right)+\lambda^{-m p^{\prime} / 2} \operatorname{Tr}\left(U_{0}^{m+n+p^{\prime}} V_{0}^{-m} W_{0}^{3}\right)\right)\right] \\
& =2 \lambda^{n p^{\prime} / 2} \lambda^{-\left(m+p^{\prime}\right) n / 2} \delta_{2}^{m+p^{\prime}} \delta_{2}^{n}+2 \lambda^{-n p^{\prime} / 2} \lambda^{\left(-m+p^{\prime}\right) n / 2} \delta_{2}^{-m+p^{\prime}} \delta_{2}^{n} \\
& +2 \lambda^{-n^{2} / 2-m n}\left[\lambda^{(m+n) p^{\prime} / 2} \lambda^{-\left(-n+p^{\prime}\right)(m+n) / 2} \delta_{2}^{-n+p^{\prime}} \delta_{2}^{m+n}\right. \\
& \left.+\lambda^{-(m+n) p^{\prime} / 2} \lambda^{\left(n+p^{\prime}\right)(m+n) / 2} \delta_{2}^{n+p^{\prime}} \delta_{2}^{m+n}\right] \\
& +2 \lambda^{-m^{2} / 2-m n}\left[\lambda^{m p^{\prime} / 2} \lambda^{\left(m+n-p^{\prime}\right) m / 2} \delta_{2}^{-(m+n)+p^{\prime}} \delta_{2}^{m}+\lambda^{-m p^{\prime} / 2} \lambda^{\left(m+n+p^{\prime}\right) m / 2} \delta_{2}^{m+n+p^{\prime}} \delta_{2}^{m}\right] \\
& =2 \lambda^{-m n / 2}\left(2 \delta_{2}^{m-1} \delta_{2}^{n}+2 \delta_{2}^{n-1} \delta_{2}^{m+n}+2 \delta_{2}^{m+n-1} \delta_{2}^{m}\right) \\
& =4 \lambda^{-m n / 2}\left(1-\delta_{2}^{m} \delta_{2}^{n}\right)=4\left(T_{31}\left(U^{m} V^{n} W^{3}\right)-T_{30}\left(U^{m} V^{n} W^{3}\right)\right) .
\end{aligned}
$$

Finally, for τ_{21} we observe that $p p^{\prime} \equiv-1 \bmod 6 q$ which allows us to write $e(\alpha / 3 q)$ $=\lambda^{-\alpha p^{\prime} / 3}$, where again α is a linear combination of m and n. One takes $r=4$ and
obtains

$$
\begin{aligned}
& \tau_{21}\left(U^{m} V^{n} W^{4}\right)=\operatorname{Tr}\left(f_{0}(1 / 3,2 / 3)\left(U_{0}^{p^{\prime}} W_{0}^{2}\right)\right) \\
& =e((m+2 n) / 3 q) \lambda^{n p^{\prime}} \operatorname{Tr}\left(U_{0}^{m+p^{\prime}} V_{0}^{n} W_{0}^{2}\right) \\
& +e(-(m+2 n) / 3 q) \lambda^{-n p^{\prime}} \operatorname{Tr}\left(U_{0}^{-m+p^{\prime}} V_{0}^{-n} W_{0}^{2}\right) \\
& +\lambda^{-n^{2} / 2-m n} e((2 m+n) / 3 q) \lambda^{(m+n) p^{\prime}} \operatorname{Tr}\left(U_{0}^{-n+p^{\prime}} V_{0}^{m+n} W_{0}^{2}\right) \\
& +\lambda^{-n^{2} / 2-m n} e(-(2 m+n) / 3 q) \lambda^{-(m+n) p^{\prime}} \operatorname{Tr}\left(U_{0}^{n+p^{\prime}} V_{0}^{-(m+n)} W_{0}^{2}\right) \\
& +\lambda^{-m^{2} / 2-m n} e((m-n) / 3 q) \lambda^{m p^{\prime}} \operatorname{Tr}\left(U_{0}^{-(m+n)+p^{\prime}} V_{0}^{m} W_{0}^{2}\right) \\
& +\lambda^{-m^{2} / 2-m n} e((n-m) / 3 q) \lambda^{-m p^{\prime}} \operatorname{Tr}\left(U_{0}^{m+n+p^{\prime}} V_{0}^{-m} W_{0}^{2}\right) \\
& =\frac{\mathbf{i} \lambda^{p^{\prime 2} / 6} \lambda^{(m-n)^{2} / 6}}{\omega^{2 p p^{\prime 2}} \omega^{2 p(m-n)^{2}}}\left[\omega^{2 p p^{\prime}(m-n)} \lambda^{-(m+2 n) p^{\prime} / 3} \lambda^{3 n p^{\prime} / 3} \lambda^{(m-n) p^{\prime} / 3}\right. \\
& +\omega^{2 p p^{\prime}(n-m)} \lambda^{(m+2 n) p^{\prime} / 3} \lambda^{-3 n p^{\prime} / 3} \lambda^{(n-m) p^{\prime} / 3} \\
& +\omega^{4 p p^{\prime}(m+2 n)} \lambda^{-(2 m+n) p^{\prime} / 3} \lambda^{3(m+n) p^{\prime} / 3} \lambda^{-(m+2 n) p^{\prime} / 3} \\
& +\omega^{2 p p^{\prime}(m+2 n)} \lambda^{(2 m+n) p^{\prime} / 3} \lambda^{-3(m+n) p^{\prime} / 3} \lambda^{(m+2 n) p^{\prime} / 3} \\
& +\omega^{4 p p^{\prime}(2 m+n)} \lambda^{-(m-n) p^{\prime} / 3} \lambda^{3 m p^{\prime} / 3} \lambda^{-(2 m+n) p^{\prime} / 3} \\
& \left.+\omega^{2 p p^{\prime}(2 m+n)} \lambda^{(m-n) p^{\prime} / 3} \lambda^{-3 m p^{\prime} / 3} \lambda^{(2 m+n) p^{\prime} / 3}\right] \\
& =\mathrm{i} \lambda^{p^{\prime 2} / 6} \omega^{-2} \omega^{4(m-n)^{2}} \lambda^{(m-n)^{2} / 6} \\
& \cdot\left[\omega^{4(m-n)}+\omega^{2(m-n)}+\omega^{2(m+2 n)}+\omega^{4(m+2 n)}+\omega^{2(2 m+n)}+\omega^{4(2 m+n)}\right] \\
& =-3 \mathrm{i} \lambda^{p^{\prime 2} / 6} \omega \omega^{4(m-n)^{2}} \lambda^{(m-n)^{2} / 6}\left(\omega^{4(m-n)}+\omega^{2(m-n)}\right) \\
& =3 \mathrm{i} \lambda \lambda^{p^{2} / 6} \omega\left[(\omega-2) T_{20}\left(U^{m} V^{n} W^{4}\right)-\omega T_{21}\left(U^{m} V^{n} W^{4}\right)\right],
\end{aligned}
$$

since $\omega^{4 k^{2}}\left(\omega^{4 k}+\omega^{2 k}\right)=(2-\omega) \delta_{3}^{k}+\omega$. This completes the proof.

4. AN AUXILIARY BASIS FOR $K_{0}\left(H_{p / q}\right)$

As a step toward showing that the ten modules generate $K_{0}\left(H_{\theta}\right)$ (for rational θ), we consider in this section an auxiliary basis for $K_{0}\left(H_{\theta}\right)$ that arises naturally from the realization of H_{θ} as a sphere with singularities, as obtained in the previous section. This will enable one to show that the range of the reduced character \mathbf{T}^{\prime} on $K_{0}\left(H_{\theta}\right)$ (as defined in Section 2) is equal to its range on \mathcal{R}_{θ}. To do this, we shall assume that θ is in the dense set of rationals \mathbb{P}, as defined in Section 2.

Let $\theta=\frac{p}{q}$ be any rational in $(0,1)$. Let F_{0} be a rank one subprojection of the spectral projection of $\omega^{-1 / 4} W_{0}$ (which has order six) corresponding to the eigenvalue 1 (corresponding to the singularity $s_{0}=(0,0)$). Similarly, let F_{1} be
such a projection for $U_{0}^{p^{\prime}} \Gamma_{0}$, and F_{2} for $\mathrm{i}^{-1 / 3} \lambda^{-(1 / 6)\left(p^{\prime \prime}\right)^{2}} U_{0}^{p^{\prime}} W_{0}^{2}$. These are all projections in $M_{q}(\mathbb{C})$, and we think of them as being associated with the singular points s_{0}, s_{1}, s_{2}, respectively (cf. definition of S_{θ} in Section 3). Thus, by definition, one has

$$
W_{0} F_{0}=\omega^{1 / 4} F_{0}, \quad U_{0}^{p^{\prime}} \Gamma_{0} F_{1}=F_{1}, \quad U_{0}^{p^{\prime}} W_{0}^{2} F_{2}=\mathrm{i}^{1 / 3} \lambda^{(1 / 6)\left(p^{\prime \prime}\right)^{2}} F_{2}
$$

Now consider the rank one projection $e_{k}^{j}:=F_{j} \otimes E_{k}$ for $j=0,1,2$ and $k=$ $1,2,3,4,5,6$, where $E_{k} \in M_{6}(\mathbb{C})$ is the diagonal matrix that has 1 at the k-th diagonal entry and zeros elsewhere. It will be convenient to introduce the following notation. If e, f, g are matrix projections of equal rank, we denote by $[e, f, g]$ a smooth projection-valued function on \mathbb{S}^{2} such that

$$
[e, f, g]\left(s_{0}\right)=e, \quad[e, f, g]\left(s_{1}\right)=f, \quad[e, f, g]\left(s_{2}\right)=g
$$

(Such a function clearly exists since the projections have equal rank.) So $[e, f, g]$ defines a projection in S_{θ}, and hence a unique positive class in $K_{0}\left(S_{\theta}\right)$. Now consider the following nine projections in S_{θ} :

$$
\begin{array}{rllll}
{\left[e_{1}^{0}, e_{1}^{1}, e_{1}^{2}\right],} & {\left[e_{4}^{0}, e_{4}^{1}, e_{4}^{2}\right],} & {\left[e_{1}^{0}, e_{2}^{1}, e_{2}^{2}\right],} & {\left[e_{2}^{0}, e_{2}^{1}, e_{2}^{2}\right],} & {\left[e_{5}^{0}, e_{5}^{1}, e_{5}^{2}\right],} \tag{4.1}\\
& {\left[e_{1}^{0}, e_{2}^{1}, e_{3}^{2}\right],} & {\left[e_{3}^{0}, e_{3}^{1}, e_{3}^{2}\right],} & {\left[e_{6}^{0}, e_{6}^{1}, e_{6}^{2}\right],} & {\left[e_{1}^{0}, e_{3}^{1}, e_{3}^{2}\right] .}
\end{array}
$$

We claim that these projections, together with one other class in the kernel of \mathbf{T}^{\prime}, which is $\kappa_{p, q}$, form a basis for $K_{0}\left(S_{\theta}\right) \cong K_{0}\left(H_{\theta}\right)$.

Since $W_{0} \otimes D^{-1}$ has order six, let n_{k} be the dimension of its eigenspace corresponding to the eigenvalue $\omega^{k}, k=1, \ldots, 6$. (So, $\sum_{k} n_{k}=6 q$.) Similarly, let $k, 6 q-k$ be the spectral dimensions of $\Gamma_{0} W_{1} \otimes D^{3}$ (which has order 2), and m_{1}, m_{2}, m_{3} those of $W_{0}^{2} W_{1} \otimes D^{-2}$ (which has order 3). The commutant of $W_{0} \otimes D^{-1}$ in $M_{q} \otimes M_{6}$ is isomorphic to $\bigoplus_{k=1}^{6} M_{n_{k}}$. For $\Gamma_{0} W_{1} \otimes D^{3}$ the commutant algebra is isomorphic to $M_{k} \oplus M_{6 q-k}$, and for $W_{0}^{2} W_{1} \otimes D^{-2}$ it is $\bigoplus_{k=1}^{3} M_{m_{j}}$. (Although these dimensions are known from [8] and [1], their exact values will not be needed here.) Identifying each commutant in this way with its corresponding matrix algebra direct sum, one has the surjective map obtained by evaluations

$$
\begin{align*}
& \mathcal{E}: S_{\theta} \longrightarrow \mathbb{F}:=\left(\bigoplus_{k=1}^{6} M_{n_{k}}\right) \oplus\left(\bigoplus_{j=1}^{3} M_{m_{j}}\right) \oplus\left(M_{k} \oplus M_{6 q-k}\right) \\
& \mathcal{E}(F)=\left(F\left(s_{0}\right) ; \quad F\left(s_{2}\right) ; F\left(s_{1}\right)\right) \tag{4.2}
\end{align*}
$$

where $F\left(s_{1}\right) \in M_{k} \oplus M_{6 q-k}$. Letting J denote the kernel of \mathcal{E}, one has the short exact sequence

$$
\begin{equation*}
0 \longrightarrow J \xrightarrow{j} S_{\theta} \xrightarrow{\mathcal{E}} \mathbb{F} \longrightarrow 0 \tag{4.3}
\end{equation*}
$$

where $j: J \hookrightarrow S_{\theta}$ is inclusion. Under the induced map

$$
\mathcal{E}_{*}: K_{0}\left(S_{\theta}\right) \rightarrow K_{0}(\mathbb{F}) \cong \mathbb{Z}^{6} \oplus \mathbb{Z}^{3} \oplus \mathbb{Z}^{2}
$$

one gets (since F_{j} has rank one)

$$
\begin{align*}
& {\left[e_{1}^{0}, e_{1}^{1}, e_{1}^{2}\right] \mapsto(1,0,0,0,0,0) ;(1,0,0) ;(1,0)} \\
& {\left[e_{2}^{0}, e_{2}^{1}, e_{2}^{2}\right] \mapsto(0,1,0,0,0,0) ;(0,1,0) ;(0,1)} \\
& {\left[e_{3}^{0}, e_{3}^{1}, e_{3}^{2}\right] \mapsto(0,0,1,0,0,0) ;(0,0,1) ;(1,0)} \\
& {\left[e_{4}^{0}, e_{4}^{1}, e_{4}^{2}\right] \mapsto(0,0,0,1,0,0) ;(1,0,0) ;(0,1)} \\
& {\left[e_{5}^{0}, e_{5}^{1}, e_{5}^{2}\right] \mapsto(0,0,0,0,1,0) ;(0,1,0) ;(1,0)} \tag{4.4}\\
& {\left[e_{6}^{0}, e_{6}^{1}, e_{6}^{2}\right] \mapsto(0,0,0,0,0,1) ;(0,0,1) ;(0,1)} \\
& {\left[e_{1}^{0}, e_{2}^{1}, e_{2}^{2}\right] \mapsto(1,0,0,0,0,0) ;(0,1,0) ;(0,1)} \\
& {\left[e_{1}^{0}, e_{2}^{1}, e_{3}^{2}\right] \mapsto(1,0,0,0,0,0) ;(0,1,0) ;(1,0)} \\
& {\left[e_{1}^{0}, e_{3}^{1}, e_{3}^{2}\right] \mapsto(1,0,0,0,0,0) ;(0,0,1) ;(1,0) .}
\end{align*}
$$

Since J is the ideal of all functions $\mathbb{S}^{2} \rightarrow M_{6 q}$ vanishing at the three singular points s_{j}, it is isomorphic to $R_{0} \otimes M_{6 q}$ where

$$
\begin{equation*}
R_{0}:=\left\{f \in C\left(\mathbb{S}^{2}, \mathbb{C}\right): f\left(s_{0}\right)=f\left(s_{1}\right)=f\left(s_{2}\right)=0\right\} \tag{4.5}
\end{equation*}
$$

Hence $K_{0}(J) \cong K_{0}\left(R_{0}\right) \cong \mathbb{Z}$ and $K_{1}(J) \cong K_{1}\left(R_{0}\right) \cong \mathbb{Z}^{2}$. Now consider the following part of the six-term exact K-theory sequence associated with (4.3)

$$
\begin{equation*}
\mathbb{Z} \cong K_{0}(J) \xrightarrow{j_{*}} K_{0}\left(S_{\theta}\right) \xrightarrow{\mathcal{E}_{*}} K_{0}(\mathbb{F})=\mathbb{Z}^{11} \xrightarrow{\delta_{0}} K_{1}(J) \cong \mathbb{Z}^{2} \longrightarrow 0 \tag{4.6}
\end{equation*}
$$

where δ_{0}, the connecting homomorphism, is surjective (as $K_{1}\left(S_{\theta}\right)=0$, by Theorems 3 and 4 of [7]). Since $K_{0}\left(S_{\theta}\right) \cong \mathbb{Z}^{10}$, and since the nine elements in \mathbb{Z}^{11} given by the right sides of (4.4) together with

$$
\begin{equation*}
(0,0,0,0,0,0) ;(0,0,0) ;(0,1) \quad \text { and } \quad(1,0,0,0,0,0) ;(0,0,0) ;(0,0) \tag{4.7}
\end{equation*}
$$

constitute an 11×11 matrix whose determinant is ± 1, it follows that $\mathcal{E}_{*}\left(K_{0}\left(S_{\theta}\right)\right)$ is spanned by the images of the nine projections in (4.1). These, together with the image under j_{*} of a generator ξ of $K_{0}(J)$, constitute a basis for $K_{0}\left(S_{\theta}\right)$. The remaining basis element $j_{*}(\xi)$ will be shown to be $\pm \kappa_{p, q}$ (see Corollary 4.4).

REMARK 4.1. By showing that δ_{0} maps the two K_{0}-elements corresponding to (4.7) are mapped onto generators of $K_{1}(J)$ one obtains another proof that $K_{0}\left(S_{p / q}\right) \cong \mathbb{Z}^{10}$ and $K_{1}\left(S_{p / q}\right)=0$.

Now let us calculate the traces $T_{10}, T_{20}, T_{21}, T_{30}, T_{31}$ on these nine projections. In view of Proposition 3.1 (with $\theta=p / q \in \mathbb{P}$), for $k=1, \ldots, 6$ one has (with " $*$ " denoting any value)

$$
3 \sqrt{2}(1-\mathrm{i}) T_{10}\left[e_{k}^{0}, e_{*}^{1}, e_{*}^{2}\right]=\tau_{01}\left[e_{k}^{0}, e_{*}^{1}, e_{*}^{2}\right]=\operatorname{Tr}\left(e_{k}^{0}\left(W_{0} \otimes D\right)\right)=\operatorname{Tr}\left(F_{0} W_{0}\right) \operatorname{Tr}\left(E_{k} D\right)
$$

since $W_{0} F_{0}=\omega^{1 / 4} F_{0}, \operatorname{Tr}\left(F_{0} W_{0}\right)=\omega^{1 / 4}$, and $\operatorname{Tr}\left(E_{k} D\right)=\omega^{k-1}$, one gets

$$
T_{10}\left[e_{k}^{0}, e_{*}^{1}, e_{*}^{2}\right]=\frac{(1+\mathrm{i})}{6 \sqrt{2}} \omega^{1 / 4} \omega^{k-1}=\frac{1}{6} \omega^{k}
$$

$(k=1, \ldots, 6)$. This gives the values for T_{10} in Table 2. Similar calculations for the other traces yields the following equalities and the remaining values in the table,

$$
\begin{aligned}
& T_{21}\left[e_{k}^{0}, e_{*}^{1}, e_{*}^{2}\right]=-\frac{1}{6} \omega^{2 k}, \quad T_{30}\left[e_{k}^{0}, e_{*}^{1}, e_{*}^{2}\right]=\frac{1}{12}(-1)^{k-1}, \\
& T_{31}\left[e_{k}^{0}, e_{\ell}^{1}, e_{*}^{2}\right]=\frac{1}{12}(-1)^{k-1}+\frac{1}{4}(-1)^{\ell-1}, \quad T_{20}\left[e_{k}^{0}, e_{*}^{1}, e_{m}^{2}\right]=-\frac{1}{9} \omega^{2(m-1)}-\frac{1}{18} \omega^{2 k}, \\
& \omega T_{21}\left[e_{k}^{0}, e_{*}^{1}, e_{m}^{2}\right]=(1+\omega) T_{20}\left[e_{k}^{0}, e_{*}^{1}, e_{m}^{2}\right]+\frac{\mathrm{i}}{6} \omega^{1 / 2} \omega^{2(k-1)} .
\end{aligned}
$$

(To facilitate the computations, one uses the equalities $1+\omega=\mathrm{i} \sqrt{3} \omega^{-1}, \mathrm{i} \omega^{1 / 2}=$ $\omega^{2}, \omega^{2}=\omega-1$.)

Table 2. Values of \mathbf{T}^{\prime} for $p / q \in \mathbb{P}$									
K_{0}-class	τ	ϕ_{0}	ϕ_{0}^{\prime}	ϕ_{1}	ϕ_{1}^{\prime}	ϕ_{2}	ϕ_{2}^{\prime}	T_{30}	T_{31}
$\left[e_{1}^{0}, e_{1}^{1}, e_{1}^{2}\right]$	$\frac{1}{6 q}$	$\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$\frac{\sqrt{3}}{36}$	$\frac{1}{4}$	$\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$\frac{1}{3}$
$\left[e_{2}^{0}, e_{2}^{1}, e_{2}^{2}\right]$	$\frac{1}{6 q}$	$-\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$\frac{\sqrt{3}}{36}$	$-\frac{1}{4}$	$\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$-\frac{1}{3}$
$\left[e_{3}^{0}, e_{3}^{1}, e_{3}^{2}\right]$	$\frac{1}{6 q}$	$-\frac{1}{6}$	0	0	$-\frac{\sqrt{3}}{18}$	0	$-\frac{\sqrt{3}}{6}$	$\frac{1}{12}$	$\frac{1}{3}$
$\left[e_{4}^{0}, e_{4}^{1}, e_{4}^{2}\right]$	$\frac{1}{6 q}$	$-\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$\frac{\sqrt{3}}{36}$	$\frac{1}{4}$	$\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$-\frac{1}{3}$
$\left[e_{5}^{0}, e_{5}^{1}, e_{5}^{2}\right]$	$\frac{1}{6 q}$	$\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$\frac{\sqrt{3}}{36}$	$-\frac{1}{4}$	$\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$\frac{1}{3}$
$\left[e_{6}^{0}, e_{6}^{1}, e_{6}^{2}\right]$	$\frac{1}{6 q}$	$\frac{1}{6}$	0	0	$-\frac{\sqrt{3}}{18}$	0	$-\frac{\sqrt{3}}{6}$	$-\frac{1}{12}$	$-\frac{1}{3}$
$\left[e_{1}^{0}, e_{2}^{1}, e_{2}^{2}\right]$	$\frac{1}{6 q}$	$\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$-\frac{\sqrt{3}}{36}$	$-\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$-\frac{1}{6}$
$\left[e_{1}^{0}, e_{2}^{1}, e_{3}^{2}\right]$	$\frac{1}{6 q}$	$\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$-\frac{1}{6}$
$\left[e_{1}^{0}, e_{3}^{1}, e_{3}^{2}\right]$	$\frac{1}{6 q}$	$\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$\frac{1}{3}$

(The canonical trace values are immediate from the expression for τ in (3.2).) One is now in a position to check that each row of Table 2 is in the \mathbb{Z}-span of the rows of Table 1, and vice versa (a simple computer program can be used to verify this quickly). (Recall that in Table $1, \phi_{k}, \phi_{k}^{\prime}$ are the real and imaginary components of $T_{i j}$.) In checking this, however, it is helpful to use the fact that $\frac{p}{q}$ is in \mathbb{P}, that $1+2^{2 k+1}$ and $2^{2 k}-1$ are divisible by 3 , and that $q-2$ is divisible by 6 .

We have therefore proved the following.
Proposition 4.2. For any $\theta \in \mathbb{P}$, one has $\mathbf{T}^{\prime}\left(K_{0}\left(H_{\theta}\right)\right)=\mathbf{T}^{\prime}\left(\mathcal{R}_{\theta}\right)$.
By the same proof as in [14] (Section 5) one obtains, almost mutatis mutandis, the following result.

Proposition 4.3. For any positive rational $\theta=\frac{p}{q}<1$, the class $\kappa_{p, q} \in K_{0}\left(S_{\theta}\right)$ is the image of a generator of $K_{0}(J) \cong \mathbb{Z}$ under the canonical map $j_{*}: K_{0}(J) \rightarrow K_{0}\left(S_{\theta}\right)$.

Combining this with what we have just shown one obtains:
Corollary 4.4. For $\theta \in \mathbb{P}$, one has $\operatorname{Ker}\left(\mathbf{T}^{\prime}\right)=\mathbb{Z} j_{*}(\xi)=\mathbb{Z} \kappa_{p, q}$.

5. CONCLUSIONS

Proposition 5.1. For $\theta \in \mathbb{P}$, the classes $[1],\left[p_{0}\right],\left[p_{1}\right],\left[p_{2}\right],\left[p_{3}\right],\left[p_{4}\right],\left[q_{0}\right],\left[q_{1}\right]$, $[r],\left[\mathcal{M}_{6}\right]$ form a basis for the group $K_{0}\left(H_{\theta}\right)=\mathbb{Z}^{10}$.

Proof. In view of Theorem 2.1, these classes are already independent (for each θ), so it is enough to show that they generate. Pick any x in $K_{0}\left(S_{\theta}\right)$. From Proposition 4.2 (since $\theta \in \mathbb{P}$) one has $\mathbf{T}^{\prime}(x)=\mathbf{T}^{\prime}(y)$ for some $y \in \mathcal{R}_{\theta}$. Therefore, by the Corollary 4.4, $x-y=m \kappa_{p, q}$ for some integer m (where $\theta=\frac{p}{q}$). Since $\kappa_{p, q}$ is already in \mathcal{R}_{θ}, the result follows.

Using the exact same techniques of [14] one obtains the following result.
THEOREM 5.2. (Range of the Connes-Chern character.) For any $0<\theta<1$ one has the range of the Connes-Chern character: $\mathbf{T}\left(K_{0}\left(H_{\theta}\right)\right)=\mathbf{T}\left(\mathcal{R}_{\theta}\right)$, where \mathcal{R}_{θ} is the subgroup of $K_{0}\left(H_{\theta}\right)$ generated by the ten classes in Table 1. More specifically, the range is spanned by the rows in Table 1.

THEOREM 5.3. For each $\theta>0$ the ten canonical classes form a basis for the group $K_{0}\left(H_{\theta}\right)=\mathbb{Z}^{10}$.

Proof. We use the result of Polishchuk [10] that $K_{0}\left(H_{\theta}\right) \cong \mathbb{Z}^{10}$. Since T is injective on \mathcal{R}_{θ}, whose rank is equal to the rank of $K_{0}\left(H_{\theta}\right)$, it follows that \mathbf{T} is injective on all of $K_{0}\left(H_{\theta}\right)$. Now the result follows from Theorem 5.2 since the ten classes are already known to be independent by Theorem 2.1.

The result for K_{1} can be obtained at this point for a dense G_{δ} set of θ^{\prime} s using essentially the same Baire category argument used in Theorem 7.2-B of [14]. One gets

THEOREM 5.4. There is a dense G_{δ} set of parameters θ in $(0,1)$ (containing the rationals) for which $K_{1}\left(H_{\theta}\right)=0$.

Of course, this result will follow from [6] for all θ since it is shown there that H_{θ} is an AF-algebra.

Acknowledgements. This research was partly supported by a grant from the Natural Science and Engineering Council of Canada, and an NSERC USRA grant. The authors thank the referee for making helpful comments.

REFERENCES

[1] O. Bratteli, G.A. Elliott, D.E. Evans, A. Kishimoto, Non-commutative spheres. II: rational rotations, J. Operator Theory 27(1992), 53-85.
[2] O. Bratteli, A. Kishimoto, Non-commutative spheres. III: Irrational rotations, Comm. Math. Phys. 147(1992), 605-624.
[3] J. Buck, S. Walters, Connes-Chern characters of hexic and cubic modules, J. Operator Theory 57(2007), 35-65.
[4] A. Connes, C^{*}-algebre et geometrie differentielle, C. R. Acad. Sci. Paris Sér. A-B 290(1980), 599-604.
[5] A. Connes, Noncommutative Geometry, Academic Press, San Diego, CA 1994.
[6] S. Echterhoff, W. Lück, N.C. Phillips, S. Walters, The structure of crossed products of irrational rotation algebras by finite subgroups of $\mathrm{SL}_{2}(\mathbb{Z})$, preprint 2007.
[7] C. FARSI, K-thoeretic index theorems for orbifolds, Quart. J. Math. Oxford 43(1992), 183-200.
[8] C. Farsi, N. Watling, Elliptic algebras, J. Funct. Anal. 118(1993), 1-21.
[9] A. Hattori, Rank element of a projective module, Nagoya J. Math. 25(1965), 113-120.
[10] A. POLISHCHUK, Holomorphic bundles on 2-dimensional noncommutative toric orbifolds, preprint 2004.
[11] J. Rosenberg, Appendix to "Crossed products of UHF algebras by product type actions", Duke Math. J. 46(1979), 25-26.
[12] J. Stallings, Centerless groups - an algebraic formulation of Gottlieb's theorem, Topology 4(1965), 129-134.
[13] S.G. WALTERS, Inductive limit automorphisms of the irrational rotation algebra, Comm. Math. Phys. 171(1995), 365-381.
[14] S.G. Walters, K-theory of non commutative spheres arising from the Fourier automorphism, Canad. J. Math. 53(2001), 631-672.
[15] S.G. Walters, Periodic integral transforms and C*-algebras, C. R. Math. Rep. Acad. Sci. Canada 26(2004), 55-61.
[16] S.G. WALTERS, The AF structure of non commutative toroidal $\mathbb{Z} / 4 \mathbb{Z}$ orbifolds, J. Reine Angew. Math. (Crelle's Journal) 568(2004), 139-196.
J. BUCK, Department of Mathematics, University of Oregon, Eugene, OR 97403-1222, USA

E-mail address: jbuck1@darkwing.uoregon.edu
S. WALTERS, Department of Mathematics, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada

E-mail address: walters@hilbert.unbc.ca

Received September 20, 2005; revised December 28, 2005.

