NON COMMUTATIVE SPHERES ASSOCIATED WITH THE HEXIC TRANSFORM AND THEIR K-THEORY

J. BUCK and S. WALTERS

Communicated by William B. Arveson

ABSTRACT. Let A_{θ} be the rotation C^* -algebra generated by unitaries U, V satisfying $VU = e^{2\pi i \theta} UV$ and let ρ denote the hexic transform on A_{θ} defined by $\rho(U) = V, \ \rho(V) = e^{-\pi i \theta} U^{-1} V$. (It is the canonical order six automorphism of A_{θ} .) It is shown that ten canonical classes in $K_0(A_{\theta} \rtimes_{\rho} \mathbb{Z}_6) \cong \mathbb{Z}^{10}$ yield a basis. The Connes-Chern character $K_0(A_{\theta} \rtimes_{\rho} \mathbb{Z}_6) \to H^{\text{ev}}(A_{\theta} \rtimes_{\rho} \mathbb{Z}_6)^*$ is shown to be injective for each θ , and its range is determined.

KEYWORDS: C^* -algebras, K-theory, automorphisms, rotation algebras, unbounded traces, Chern characters.

MSC (2000): 46L80, 46L40, 19K14.

1. INTRODUCTION

For $0 < \theta < 1$ let A_{θ} denote the rotation C^* -algebra generated by unitaries U, V satisfying $VU = \lambda UV$, where $\lambda := e^{2\pi i\theta}$. Denote by ρ the order six automorphism of A_{θ} defined by

$$\rho(U) = V, \quad \rho(V) = e^{-\pi i \theta} U^{-1} V.$$

We shall call it the *hexic* transform in accordance with our papers [3] and [15]. Throughout the paper, we shall denote the associated crossed product by $H_{\theta} := A_{\theta} \rtimes_{\rho} \mathbb{Z}_{6}$, where $\mathbb{Z}_{6} = \mathbb{Z}/6\mathbb{Z}$, and call it the *hexic C*^{*}-algebra. It is the universal *C*^{*}-algebra generated by unitaries *U*, *V*, *W* enjoying the commutation relations

(1.1)
$$VU = \lambda UV, \quad WUW^{-1} = V, \quad WVW^{-1} = \lambda^{-1/2}U^{-1}V, \quad W^{6} = I.$$

We shall also use A_{θ} to denote its canonical smooth dense *-subalgebra under the canonical toral action, and by H_{θ} the dense *-subalgebra of elements of the form $\sum_{j=0}^{5} a_{j}W^{j}$ where a_{j} are smooth elements in A_{θ} , and W is the canonical order six unitary of the crossed product implementing ρ ; so, $\rho(a) = WaW^{-1}$. (This

identification is justified since both the C^* -algebra and its smooth *-subalgebra have the same *K*-theory, since the dense *-subalgebras are closed under the holomorphic functional calculus, and since it will be clear from the context which algebra is intended.)

In [3], we constructed ten canonical modules over H_{θ} and showed (using theta functions) that they give rise to independent positive classes in $K_0(H_{\theta})$ for each θ (rational or irrational). (These modules are listed in Table 1 below.) This was done by examination of the Connes-Chern character ch : $K_0(H_{\theta}) \rightarrow$ $H^{\text{ev}}(H_{\theta})^*$ where $H^{\text{ev}}(H_{\theta})$ is Connes' even periodic cyclic cohomology group and $H^{\text{ev}}(H_{\theta})^*$ is its vector space dual ([5], III). (We prefer to view the codomain of ch as above instead of the usual cyclic homology group so as to readily use Connes' canonical pairing between K_0 and cyclic cohomology.) From ch a group homomorphism $\mathbf{T}: K_0(H_{\theta}) \to \mathbb{R}^{10}$ can be defined by taking the Connes-Chern character ch(x) of each element x in $K_0(H_{\theta})$ and restricting it to a certain 10-dimensional subspace of $H^{\text{ev}}(H_{\theta})$ spanned by the unbounded traces on the (smooth) algebra H_{θ} (as in [14]) and by Connes' canonical cyclic 2-cocycle (as in [4] or III.2. β of [5]). In [3] we showed that T is injective when θ is rational. This suggests, presumably, that the subspace in question is all of $H^{ev}(H_{\theta})$ and that ch will in fact turn out to be, after tensoring with the complex plane, an isomorphism. (In view of this, we shall also refer to T as the Connes-Chern character.)

The main result of the present paper is to show that the ten canonical classes form a basis for $K_0(H_\theta)$ when θ is a special type of rational number (Proposition 5.1). This result allows us to prove that the range of **T** on $K_0(H_\theta)$ is equal to its range on the span of the ten classes. Combined with a recent result of Polishchuk [10] that $K_0(H_\theta) \cong \mathbb{Z}^{10}$ for all θ (which incidently used the independence of the ten classes [3]), this culminates with the following.

THEOREM 1.1. For each $\theta > 0$ the following holds:

- (i) The ten canonical modules form a basis for $K_0(H_{\theta})$.
- (ii) The Connes-Chern character ch : $K_0(H_{\theta}) \rightarrow H^{ev}(H_{\theta})^*$ is injective.
- (iii) The range of $\mathbf{T}: K_0(H_{\theta}) \to \mathbb{R}^{10}$ is the integral span of the rows in Table 1.

Note that a basis for $K_0(H_\theta)$ is not given in [10], so our result gives a precise isomorphism. We comment briefly at the end that $K_1(H_\theta) = 0$ for a dense G_δ set of θ 's, which in fact holds for all θ as shown in [6].

It is a well-known theorem of Bratteli and Kishimoto [2] (and independently in [13]) that the crossed product $A_{\theta} \rtimes \mathbb{Z}_2$ (under the flip) is approximately finite dimensional for any irrational θ . In [16] it is shown that this holds for the Fourier transform for a dense G_{δ} set of irrational θ . In quite recent work of Echterhoff, Lück, Phillips, and the author [6] the AF result is shown to be true for the Fourier, hexic, and cubic transforms (for all irrational θ).

It is of historical interest to know that Hattori [9] and Stallings [12] have obtained (back in 1965) the trace of a finitely generated projective module. These

are some of the earliest attempts to pair elements of *K* theory of non-commutative algebras with trace-like functionals.

We shall write $e(t) := e^{2\pi i t}$, and δ_k^n is 1 if k|n and 0 otherwise. We have $\sum_{j=0}^{q-1} e(nj/q) = q\delta_q^n$. Throughout, we shall assume that $0 < \theta < 1$. Since $\lambda = e(\theta)$, we shall also write $\lambda^t = e(t\theta)$. Denote by $\delta_{k,\ell}$ the usual δ -function (1 if and only if $k = \ell$ and 0 otherwise).

2. K-CLASSES AND THEIR CONNES-CHERN CHARACTER

When considering the case that θ is rational, we shall tacitly assume throughout that $\theta = \frac{p}{q}$ where p < q are positive relatively prime integers.

TEN K_0 -CLASSES. As in [3], one has the following nine projections in H_{θ} :

1,
$$p_j = \frac{1}{6} \sum_{i=0}^{5} \omega^{ij} W^i$$
, $q_k = \frac{1}{3} \sum_{i=0}^{2} \omega^{2ik} \lambda^{i/6} (UW^2)^i$, $r = \frac{1}{2} (I + UW^3)$,

where j = 0, ..., 4, k = 0, 1 and $\lambda^{1/6}UW^2$ is a unitary of order 3, UW^3 of order 2, and $\omega := e(1/6) = \frac{1}{2}(1 + i\sqrt{3})$ (a primitive 6th root of 1).

One further has the hexic module \mathcal{M}_6 over H_θ ($0 < \theta < 1$) which we constructed in [3] from the Heisenberg A_θ -module (see [4]) by equipping it with an action of W represented by a suitable scaling of the hexic transform on the Schwartz space $S(\mathbb{R})$ (see [15] for how the hexic transform was obtained). The algebra H_θ has the canonical (bounded) trace τ given by $\tau \left(\sum_{j=0}^5 a_j W^j\right) = \tau(a_0)$ for $a_j \in A_\theta$, where $\tau(a_0)$ is the canonical trace of a_0 in A_θ (relative to the unitaries U, V). (It is unique in the irrational case.) In [3] it was shown that one has the following unbounded traces on H_θ (the smooth *-subalgebra) given by:

$$\begin{split} T_{10}(U^m V^n W^5) &= \lambda^{(m^2 + n^2)/2}, & T_{30}(U^m V^n W^3) = \lambda^{-mn/2} \,\delta_2^m \delta_2^n, \\ T_{20}(U^m V^n W^4) &= \lambda^{(m-n)^2/6} \,\delta_3^{m-n}, & T_{31}(U^m V^n W^3) = \lambda^{-mn/2}, \\ T_{21}(U^m V^n W^4) &= \lambda^{(m-n)^2/6}, \end{split}$$

where at generic elements $U^m V^n W^k$ for different *k* they vanish.

Observe that T_{3j} are self-adjoint trace functionals, but that T_{10} and T_{2k} are not. However, one can look at the real and imaginary parts of the latter. Let

$$\phi_0 = \frac{1}{2}(T_{10} + T_{10}^*), \quad \phi'_0 = -\frac{1}{2}(T_{10} - T_{10}^*)$$

be the real and imaginary parts of T_{10} , respectively, and

 $\phi_1 = \frac{1}{2}(T_{20} + T_{20}^*), \quad \phi_1' = -\frac{i}{2}(T_{20} - T_{20}^*), \quad \phi_2 = \frac{1}{2}(T_{21} + T_{21}^*), \quad \phi_2' = -\frac{i}{2}(T_{21} - T_{21}^*)$ be those of T_{20} and T_{21} (where $T^*(x) := \overline{T(x^*)}$). The remaining invariant we need is Connes' canonical cyclic 2-cocycle on the rotation algebra A_{θ} :

$$\varphi(x^0, x^1, x^2) = \frac{1}{2\pi i} \tau(x^0[\delta_1(x^1)\delta_2(x^2) - \delta_2(x^1)\delta_1(x^2)])$$

(see III.2. β of [5]) where δ_j , j = 1, 2, are the canonical derivations of A_θ under the canonical action of the 2-torus \mathbb{T}^2 (relative to U, V). The Chern character invariant that φ induces is the group homomorphism $c_1 : K_0(A_\theta) \to \mathbb{Z}$ given by the cup product $c_1[E] := (\varphi \# \operatorname{Tr}_n)(E, E, E)$ for E any smooth projection in $M_n(A_\theta)$. In Section 4 of [3] this invariant was extended to H_θ by taking the composition $C := c_1 \circ \Psi_* : K_0(H_\theta) \to \mathbb{Z}$ where $\Psi : H_\theta \to M_6(A_\theta)$ is the canonical injection given by $\Psi(a) = [\rho^{-i}(a_{i-j})]_{i,j=0}^5$ for $a = \sum_i a_j W^j \in H_\theta$, where i - j is re-

duced mod 6 and where $a_j \in A_{\theta}$. (To clarify Ψ_* , if *E* is a projection in some matrix algebra over H_{θ} , then $\Psi(E)$ is a projection in some matrix algebra over $M_6(A_{\theta})$, hence in a matrix algebra over A_{θ} , and thus gives a class in $K_0(A_{\theta})$ — e.g. $\Psi_*[1] = 6[1]_{K_0(A_{\theta})}$.) For example (and we shall need this later), if e_{θ} is a smooth Powers-Rieffel projection in A_{θ} with trace θ ($0 < \theta < 1$ rational or irrational) then, viewing e_{θ} as an element of H_{θ} via the canonical inclusion $A_{\theta} \hookrightarrow H_{\theta}$, one has $C[e_{\theta}] = -6$. In fact, since $c_1[e_{\theta}] = -1$, $[\rho(e_{\theta})] = [e_{\theta}]$ in $K_0(A_{\theta})$, and $\Psi(e_{\theta}) = \text{diag}(e_{\theta}, \rho^5(e_{\theta}), \rho^4(e_{\theta}), \rho^3(e_{\theta}), \rho^2(e_{\theta}), \rho(e_{\theta}))$, one has $\Psi_*[e_{\theta}]_{K_0(H_{\theta})} = 6[e_{\theta}]_{K_0(A_{\theta})}$, where $\Psi_* : K_0(H_{\theta}) \to K_0(A_{\theta})$ is the induced map.

Consider the Connes-Chern character ch : $K_0(H_\theta) \rightarrow HC^{ev}(H_\theta)^*$ where $HC^{ev}(H_\theta)^*$ is the complex vector space dual of the even periodic cyclic cohomology group ([5], III.1. α). From this, one defines the map **T** : $K_0(H_\theta) \rightarrow \mathbb{R}^{10}$ by the pairing

$$\begin{aligned} \mathbf{T}(x) &= \langle (\tau; \,\phi_0, \phi'_0; \phi_1, \phi'_1, \phi_2, \phi'_2; \, T_{30}, T_{31}; \, C), \, \mathrm{ch}(x) \rangle \\ &= (\tau(x); \,\phi_0(x), \phi'_0(x); \,\phi_1(x), \phi'_1(x), \phi_2(x), \phi'_2(x); \, T_{30}(x), T_{31}(x); \, C(x)) \end{aligned}$$

All computations below will be done in terms of this map (as was done in [3]), so there is some justification for calling **T** the Connes-Chern character, since there is evidence that after tensoring with \mathbb{C} , one eventually has an isomorphism $K_0(H_\theta) \otimes \mathbb{C} \to HC^{\text{ev}}(H_\theta)^*$ between vector spaces of dimension nine. The evidence for this comes from the fact proved in [3] (Corollary 3.2) that for irrational θ one has $HC^0(H_\theta) \cong \mathbb{C}^9$ and has as basis { $\tau, \phi_0, \phi'_0, \phi_1, \phi'_1, \phi_2, \phi'_2, T_{30}, T_{31}$ }. These, together with the class associated to Connes' cyclic 2-cocycle would presumably constitute a basis for $HC^{\text{ev}}(H_\theta)$, which the authors suspect is $HC^0(H_\theta) \oplus HC^2(H_\theta)$ modulo identifications given by the periodicity operator after tensoring with the complex plane over the ring $HC^*(\mathbb{C})$. This further suggests that the Hochschild dimension of H_θ is two, as Connes showed to be the case for the rotation algebra. (Of course, for rational θ , the group $HC^0(H_\theta)$ is infinite dimensional, but one would still expect that the periodic cohomology group $HC^{\text{ev}}(H_\theta)$ to be finite dimensional in fact, nine-dimensional.) For the identity element and the Powers-Rieffel projection one clearly has

$$\mathbf{T}(1) = (1; 0, 0; 0, 0, 0, 0; 0, 0; 0), \quad \mathbf{T}(e_{\theta}) = (\theta; 0, 0; 0, 0, 0, 0; 0, 0; -6).$$

The main result of [3] is the following data of Connes-Chern character values for the above nine modules for any θ . In this table we write $\omega = e(1/6) = \frac{1}{2}(1 + i\sqrt{3})$.

	_		~					~			
Table 1. Character table for the hexic transform											
K ₀ -class	τ	C_6	ϕ_0	ϕ_0'	ϕ_1	ϕ_1'	ϕ_2	ϕ_2'	T_{30}	<i>T</i> ₃₁	
[1]	1	0	0	0	0	0	0	0	0	0	
[<i>p</i> ₀]	$\frac{1}{6}$	0	$\frac{1}{6}$	0	$\frac{1}{6}$	0	$\frac{1}{6}$	0	$\frac{1}{6}$	$\frac{1}{6}$	
[<i>p</i> ₁]	$\frac{1}{6}$	0	$\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$-\frac{1}{6}$	$-\frac{1}{6}$	
[<i>p</i> ₂]	$\frac{1}{6}$	0	$-\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{1}{6}$	$\frac{1}{6}$	
[<i>p</i> ₃]	$\frac{1}{6}$	0	$-\frac{1}{6}$	0	$\frac{1}{6}$	0	$\frac{1}{6}$	0	$-\frac{1}{6}$	$-\frac{1}{6}$	
$[p_4]$	$\frac{1}{6}$	0	$-\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{1}{6}$	$\frac{1}{6}$	
[<i>q</i> ₀]	$\frac{1}{3}$	0	0	0	0	$\frac{1}{3}$	0	0	0	0	
[<i>q</i> ₁]	$\frac{1}{3}$	0	0	0	0	0	$-\frac{1}{6}$	$-\frac{\sqrt{3}}{6}$	0	0	
[<i>r</i>]	$\frac{1}{2}$	0	0	0	0	0	0	0	0	$\frac{1}{2}$	
$[\mathcal{M}_6]$	$\frac{\theta}{6}$	-1	$\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$\frac{\sqrt{3}}{36}$	$\frac{1}{4}$	$\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$\frac{1}{3}$	

This table yields the following.

THEOREM 2.1 ([3], Theorem 1.1). For any $\theta > 0$, the ten classes [1], $[p_0]$, $[p_1]$, $[p_2]$, $[p_3]$, $[p_4]$, $[q_0]$, $[q_1]$, [r], $[\mathcal{M}_6]$ are independent in $K_0(H_{\theta})$. When θ is rational, the map **T** is injective on $K_0(H_{\theta})$, and hence so is the Connes-Chern character ch : $K_0(H_{\theta}) \rightarrow HC^{\text{ev}}(H_{\theta})^*$.

NOTATION 2.2. We shall denote by \mathcal{R}_{θ} the subgroup of $K_0(H_{\theta})$ generated by the ten classes listed in Table 1.

Consider the element of $K_0(H_{p/q})$ defined by (for relatively prime integers p,q)

$$\kappa_{p,q} = p[1] + q([p_0] - 4[p_1] - 3[p_2] - 2[p_3] - [p_4] + 2[q_0] - 2[q_1] + 3[r] - 6[\mathcal{M}_6]).$$

(Here, p_j, q_j, r , and \mathcal{M}_6 are evaluated at $\theta = \frac{p}{q}$.) It is easy to check that $\mathbf{T}(\kappa_{p,q}) = (0;0,0;0,0,0;0,0;6q)$ from Table 1. Since we have $\mathbf{T}(p[1] - q[e_{\theta}]) = (0;0,0;0,0,0;0,0;6q) = \mathbf{T}(\kappa_{p,q})$, the injectivity of **T** (in the rational case, Theorem 2.1) gives the equality $p[1] - q[e_{\theta}] = \kappa_{p,q}$ in $K_0(H_{\theta})$. In fact, in the same manner one easily checks that the Powers-Rieffel projection e_{θ} is related to the nine modules as follows for rational θ

$$[e_{\theta}] = -[p_0] + 4[p_1] + 3[p_2] + 2[p_3] + [p_4] - 2[q_0] + 2[q_1] - 3[r] + 6[\mathcal{M}_6]$$

in $K_0(H_\theta)$ (the right side evaluated at θ). This shows that $[e_\theta] \in \mathcal{R}_\theta$ for rational θ .

Define the *reduced* character $\mathbf{T}' : K_0(H_\theta) \to \mathbb{R}^9$ to be the degree zero part of the Connes-Chern character \mathbf{T} , namely, $\mathbf{T}' = (\tau(x); \phi_0, \phi'_0; \phi_1, \phi'_1, \phi_2, \phi'_2; T_{30}, T_{31})$. Note that $\kappa_{p,q}$ is in Ker(\mathbf{T}'). Two key steps in the proofs below is to show that in

fact $\kappa_{p,q}$ generates Ker(**T**') (Corollary 4.3) and that the range of **T**' on $K_0(H_\theta)$ is equal to its range on \mathcal{R}_θ for θ in a special dense set of rationals \mathbb{P} described below (Proposition 4.1). These steps lead one to the equality $K_0(H_{p/q}) = \mathcal{R}_{p/q}$, from which it follows that the ten classes form a basis for $K_0(H_{p/q})$.

2.1. REALIZATION OF $A_{p/q}$ AS A DIMENSION-DROP ALGEBRA. Begin with the following realization of the rational rotation algebra as the subalgebra of $C([0, 1] \times [0, 1], M_q)$ given in [1], p. 64, by

$$A_{p/q} = \{ f \in C([0,1] \times [0,1], M_q) : f(x,1) = \alpha_1(f(x,0)), \ f(1,y) = \alpha_2(f(0,y)) \}$$

where $M_q := M_q(\mathbb{C})$ is generated by the unitaries

	Г1	Δ		0 7			Γ0	1	0	• • •	[0
		λ					0	0	1	• • •	0
$U_0 =$	0	Λ	•••	0		$V_0 =$:	:	:	•.	:
	1:	÷	۰.	0	,	.0	$\begin{bmatrix} 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & \cdots \end{bmatrix}$	•	•		
		Ο		$\lambda q - 1$			10	0	0	• • •	
	LO	0		<i>Λ</i> ,]			1	0	0		0

satisfying $V_0U_0 = \lambda U_0V_0$, where $\lambda = e(p/q)$, and α_1, α_2 are the automorphisms of M_q given by $\alpha_1(U_0) = U_0$, $\alpha_1(V_0) = wV_0$ and $\alpha_2(U_0) = wU_0$, $\alpha_2(V_0) = V_0$, where w = e(1/q). With this realization, the canonical generators U, V of $A_{p/q}$ are given by the functions $U(x, y) = e(x/q)U_0$, $V(x, y) = e(y/q)V_0$ and the hexic automorphism is given by

$$\rho(f)(x,y) = \eta_0(f(y,y-x-p\overline{q}/2))$$

where $\eta_0 \in \operatorname{Aut}(M_q)$ is given by $\eta_0(U_0) = V_0$, $\eta_0(V_0) = \lambda^{-(1/2)(1-\bar{q})} U_0^{-1} V_0$ where $\bar{q} = 0$ if q is even, and 1 otherwise. In fact, with W_0 being the unitary

$$W_0 = \frac{1}{\sqrt{q}} \left[\lambda^{i(i+\overline{q})/2 - ij} \right]$$

where i, j = 0, 1, ..., q - 1, one checks that $\eta_0(x) = W_0^* x W_0$ (see Sections 2 and 3 of [8]). Indeed, one checks the commutation relations

$$U_0 W_0 = W_0 V_0, \quad V_0 W_0 = \lambda^{-(1/2)(1-\overline{q})} W_0 U_0^{-1} V_0.$$

Consider the following self-adjoint $q \times q$ unitary matrix

$$\Gamma_0 = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \end{bmatrix}.$$

It gives rise to the flip automorphism: $U_0\Gamma_0 = \Gamma_0U_0^{-1}$, $V_0\Gamma_0 = \Gamma_0V_0^{-1}$. The automorphisms α_1, α_2 are given by $\alpha_i(x) = W_i^* x W_i$, i = 1, 2 where

$$W_{1} = U_{0}^{-p'} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & w & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & w^{q-1} \end{bmatrix}, \quad W_{2} = V_{0}^{-p''} = \begin{bmatrix} \mathbf{0} & I_{p''} \\ I_{q-p''} & \mathbf{0} \end{bmatrix}$$

and I_n is the $n \times n$ identity matrix, and p', p'' are the unique integers in [1, q - 1] such that $pp' \equiv -1 \mod q$ and $pp'' \equiv 1 \mod q$. One has

$$W_1W_0 = W_0W_2^{-1}, \quad W_2W_0 = w^{p''/2}W_0W_2W_1.$$

If *q* is even (which is all we will need for our purposes) then one can check that

$$W_0^3 = \frac{G(p, 2q)}{2\sqrt{q}}\Gamma_0, \quad W_0^2 = \frac{G(p, 2q)}{2\sqrt{q}}Z_0$$

where $(Z_0)_{ij} = \frac{1}{\sqrt{q}}\lambda^{-(j^2/2)-ij}$ for i, j = 0, ..., q - 1, and $G(\cdot, \cdot)$ is the classical Gaussian sum (to be recalled below). One can therefore show that $W_0^6 = iI$ for $\frac{p}{q} \in \mathbb{P}$, where \mathbb{P} is a special dense set of rationals defined below.

Given positive relatively prime integers p, q, let p', p'' be the integers given above, and write $pp' = -1 + q\tilde{p}$, $pp'' = 1 + q\tilde{q}$ for some integers \tilde{p} and \tilde{q} . One easily checks that $p = \tilde{p} + \tilde{q}$ and q = p' + p''. In the present paper we shall be interested in the following dense set of rational numbers in (0, 1)

$$\mathbb{P} := \Big\{ \frac{2^{d+1}k+1}{2^{2d-1}} : k = 3, 6, \dots, 2^{d-2} - 1, k \equiv 0 \mod 3, d \ge 3 \Big\}.$$

For such rationals, $p = 2^{d+1}k + 1$, $q = 2^{2d-1}$, and one can verify directly that

$$p' = 2^{d+1}k - 1$$
, $p'' = 2^d(2^{d-1} - 2k) + 1$, $\tilde{p} = 8k^2$, $\tilde{q} = 8k(2^{d-2} - k) + 1$.

2.2. GAUSSIAN SUMS. Recall the classical quadratic Gauss sum is given by

$$G(p,q) = \sum_{j=0}^{q-1} \lambda^{j^2}$$

where p, q are relatively prime positive integers and $\lambda = e(p/q) = e^{2\pi i p/q}$. It is known that for odd p and $q = 4^d$ the Gaussian sum takes the simpler form $G(p, 4^d) = 2^d(1 + i^p)$. So for $\frac{p}{q} \in \mathbb{P}$ one has $G(p, 2q) = \sqrt{2q}(1 + i)$, since in this case p is 1 mod 4, and $W_0^3 = \frac{1+i}{\sqrt{2}}\Gamma_0$ and hence $W_0^6 = iI$.

LEMMA 2.3. Let $q = 2^{2d-1}$ where *d* is a positive integer, let *p* be an odd positive integer with p < q, and $\lambda = e(p/q)$. Then

$$\sum_{k=0}^{q-1} \lambda^{(1/2)k^2 + ak} = \sqrt{q} \frac{1 + i^p}{\sqrt{2}} \lambda^{-(1/2)a^2}, \quad \sum_{k=0}^{q-1} \lambda^{(3/2)k^2 + ak} = \sqrt{q} \frac{1 - i^p}{\sqrt{2}} \lambda^{(1/2)a^2((2q-1)/3)},$$

for any integer a (here, $\frac{2q-1}{3}$ is a positive integer).

Proof. Note that since *q* is even, the functions $\lambda^{(1/2)k^2}$ and $\lambda^{(3/2)k^2+ak}$ have period *q* (so the sums are invariant under integer translations). Let $r = \frac{4^d-1}{3}$ (positive integer). Then 1 = 2q - 3r. Letting $\mu = e(3p/2q) = \lambda^{3/2}$, we have

$$\begin{split} \sum_{k=0}^{q-1} \lambda^{(3/2)k^2 + ak} &= \sum_{k=0}^{q-1} \lambda^{(3/2)k^2 + a(2q-3r)k} = \sum_{k=0}^{q-1} \lambda^{(3/2)k^2 - 3ark} = \sum_{k=0}^{q-1} \mu^{k^2 - 2ark} \\ &= \frac{1}{2} \sum_{k=0}^{2q-1} \mu^{k^2 - 2ark} = \frac{1}{2} \mu^{-a^2r^2} \sum_{k=0}^{2q-1} \mu^{(k-ar)^2} = \frac{1}{2} \mu^{-a^2r^2} \sum_{k=0}^{2q-1} \mu^{k^2} \\ &= \frac{1}{2} \lambda^{-(3/2)a^2r^2} G(3p, 2q). \end{split}$$

Now as $q = 2^{2d-1}$, $G(3p, 2q) = 2^d(1 - i^p)$ and $\lambda^{-(3r/2)a^2r} = \lambda^{(1/6)a^2(4^d-1)}$, the second sum follows. To get the first sum, one has (by suitable substitution)

$$2^{d}(1+\mathbf{i}^{p}) = G(p,2q) = \sum_{k=0}^{2q-1} (\lambda^{1/2})^{k^{2}} = \sum_{k=0}^{q-1} \lambda^{(1/2)k^{2}} + \sum_{k=q}^{2q-1} \lambda^{(1/2)k^{2}} = 2\sum_{k=0}^{q-1} \lambda^{(1/2)k^{2}}.$$

The case for general *a* (in the first sum in the lemma) follows from the case a = 0, by translation invariance.

LEMMA 2.4. For relatively prime p, q with $q=2^{2d-1}$ (d a positive integer), we have:

$$\begin{split} &\operatorname{Tr}(U_0^m V_0^n W_0) = \frac{1 - \mathrm{i}^p}{\sqrt{2}} \lambda^{(1/2)(m^2 + n^2)}, \\ &\operatorname{Tr}(U_0^m V_0^n W_0^2) = \mathrm{i}^p \lambda^{(1/6)(m - n)^2} \omega^{-2p(m - n)^2}, \\ &\operatorname{Tr}(U_0^m V_0^n W_0^3) = \sqrt{2}(1 + \mathrm{i}^p) \lambda^{-(1/2)mn} \delta_2^m \delta_2^n. \end{split}$$

Proof. Since $V_0^n = \begin{bmatrix} \mathbf{O} & I_{q-n} \\ I_n & \mathbf{O} \end{bmatrix}$ one decomposes W_0 into the following block form

$$W_0 = \begin{bmatrix} n \times (q-n) & n \times n \\ (q-n) \times (q-n) & (q-n) \times n \end{bmatrix} = \frac{1}{\sqrt{q}} \begin{bmatrix} * & X \\ Y & * \end{bmatrix},$$

where $X = [\lambda^{(1/2)i^2 - i(j+q-n)}]_{i,j=0,...,n-1}$ with relevant diagonal entries

$$X = \begin{bmatrix} 1 & * & * & \dots & \\ * & \lambda^{-(1/2)-(q-n)} & * & & \\ * & * & \ddots & & \\ \vdots & & * & \lambda^{-(1/2)j^2 - j(q-n)} & & \\ & & & & \ddots & \\ & & & & & \lambda^{-(1/2)(n-1)^2 - (n-1)(q-n)} \end{bmatrix}$$

where j = 0, 1, ..., n - 1, and $Y = [\lambda^{(1/2)(i+n)^2 - (i+n)j}]$ with diagonals

$$Y = \begin{bmatrix} \lambda^{(1/2)n^2} & * & * & \dots \\ * & \lambda^{(1/2)(n^2-1)} & * & & \\ * & * & \ddots & & \\ \vdots & & & \lambda^{(1/2)(n^2-j^2)} & & \\ & & & & \ddots & \\ & & & & & \lambda^{(1/2)(n^2-(q-n-1)^2)} \end{bmatrix}$$

We then have

$$\sqrt{q}U_0^m V_0^n W_0 = U_0^m \begin{bmatrix} \mathbf{O} & I_{q-n} \\ I_n & \mathbf{O} \end{bmatrix} \begin{bmatrix} * & X \\ Y & * \end{bmatrix} = U_0^m \begin{bmatrix} Y & * \\ * & X \end{bmatrix}$$

and since

$$U_0^m = \operatorname{diag}(1, \lambda^m, \dots, \lambda^{m(q-n-1)}, \lambda^{m(q-n)}, \dots, \lambda^{m(q-1)})$$

we obtain

$$\sqrt{q} \operatorname{Tr}(U_0^m V_0^n W_0) = \sum_{j=0}^{q-n-1} \lambda^{mj} \cdot \lambda^{(1/2)(n^2-j^2)} + \sum_{j=0}^{n-1} \lambda^{m(q-n+j)} \cdot \lambda^{-(1/2)j^2-j(q-n)}.$$

Making the substitution k = j + n in the first sum gives

$$\sum_{k=n}^{q-1} \lambda^{m(k-n)} \lambda^{(1/2)(n^2 - (k-n)^2)} = \sum_{k=n}^{q-1} \lambda^{m(k-n)} \lambda^{-(1/2)k(k-2n)},$$

and using $\lambda^q = 1$ allows to write the second sum as $\sum_{j=0}^{n-1} \lambda^{m(j-n)} \lambda^{-(1/2)j(j-2n)}$. It follows, using Lemma 2.3, that

$$\begin{split} \sqrt{q} \mathrm{Tr}(U_0^m V_0^n W_0) &= \lambda^{-mn} \sum_{k=0}^{q-1} \lambda^{-(1/2)k^2 + (m+n)k} = \lambda^{-mn} \lambda^{(1/2)(m+n)^2} \sum_{k=0}^{q-1} \lambda^{-(1/2)(k-(m+n))^2} \\ &= \lambda^{(1/2)(m^2+n^2)} \sum_{k=0}^{q-1} \lambda^{-(1/2)k^2} = \lambda^{(1/2)(m^2+n^2)} 2^{d-1} (1-\mathbf{i}^p). \end{split}$$

Using the relation $W_0^2 = \frac{1+i^p}{\sqrt{2}}Z_0$, one gets $\operatorname{Tr}(U_0^m V_0^n W_0^2) = \frac{1+i^p}{\sqrt{2}}\operatorname{Tr}(U_0^m V_0^n Z_0)$. As with W_0 , we decompose Z_0 into the block form

$$Z_0 = \begin{bmatrix} n \times (q-n) & n \times n \\ (q-n) \times (q-n) & (q-n) \times n \end{bmatrix} = \frac{1}{\sqrt{q}} \begin{bmatrix} * & X' \\ Y' & * \end{bmatrix},$$

and $Y' = [\lambda^{-(1/2)(i+n)^2 - (i+n)j}]$ with relevant diagonal entries

$$Y' = \begin{bmatrix} 1 & * & \dots & & \\ * & \ddots & & \\ \vdots & & \lambda^{-(1/2)j(3j+2n)} & & \\ & & & \ddots & \\ & & & & \lambda^{-(1/2)(q-n-1)(3q-n-3)} \end{bmatrix}$$

We then have

$$U_0^m V_0^n Z_0 = \frac{1}{\sqrt{q}} U_0^m \begin{bmatrix} Y' & * \\ * & X' \end{bmatrix}$$

hence

$$\sqrt{q} \operatorname{Tr}(U_0^m V_0^n Z_0) = \sum_{j=0}^{q-n-1} \lambda^{mj} \lambda^{-(3/2)j^2 - nj} + \sum_{j=0}^{n-1} \lambda^{m(q-n+j)} \lambda^{-(1/2)(j+q-n)^2 - j(j+q-n)}.$$

Making the substitution k = j + n in the first sum gives

$$\sum_{k=n}^{q-1} \lambda^{m(k-n)} \lambda^{-(3/2)(k-n)^2 - n(k-n)} = \sum_{k=n}^{q-1} \lambda^{m(k-n)} \lambda^{-(3/2)k^2 + 2nk - (1/2)n^2}$$

and $\lambda^{(1/2)q^2} = 1$ allows us to write the second sum as

$$\sum_{j=0}^{n-1} \lambda^{m(j-n)} \lambda^{-(1/2)(j-n)^2 - j(j-n)} = \sum_{j=0}^{n-1} \lambda^{m(j-n)} \lambda^{-(3/2)j^2 + 2nj - (1/2)n^2}.$$

Using Lemma 2.3 again one has

$$\begin{split} \sqrt{q} \mathrm{Tr}(U_0^m V_0^n Z_0) &= \lambda^{-mn - (1/2)n^2} \sum_{k=0}^{q-1} \lambda^{-(3/2)k^2 + (m+2n)k} \\ &= \frac{\sqrt{q}(1+\mathbf{i}^p)}{\sqrt{2}} \lambda^{-mn - (1/2)n^2} \lambda^{-(1/6)(m+2n)^2(2q-1)} \end{split}$$

and so $\operatorname{Tr}(U_0^m V_0^n W_0^2) = i^p \lambda^{(1/6)(m-n)^2} \omega^{-2p(m-n)^2}$. (Recall $\omega = e(1/6)$.) From [14], and recalling that *q* is even and *p* is odd, we had $\operatorname{Tr}(U_0^m V_0^n \Gamma_0) = 2\lambda^{-(1/2)mn} \delta_2^n \delta_2^m$. Since $W_0^3 = \frac{1+i^p}{\sqrt{2}} \Gamma_0$, we have $\operatorname{Tr}(U_0^m V_0^n W_0^3) = \sqrt{2}(1+i^p)\lambda^{-(1/2)mn} \delta_2^n \delta_2^m$. 2.3. CONNES-CHERN' CHARACTER ON A_{θ} (FOR RATIONAL θ). Realizing A_{θ} as M_q -valued functions on the unit square as above, where $\theta = \frac{p}{q}$, the canonical trace is given by

$$\tau(F) = \frac{1}{q} \int_{0}^{1} \int_{0}^{1} \operatorname{Tr}_{q}(F(x, y)) \, \mathrm{d}x \, \mathrm{d}y$$

for $F \in A_{\theta}$, where Tr_q is the usual trace on $M_q(\mathbb{C})$. Also, the canonical derivations of A_{θ} are given by $\delta_1 = q \frac{\partial}{\partial x}$, $\delta_2 = q \frac{\partial}{\partial y}$. They are defined by

$$\delta_1(U^mV^n)=2\pi \mathrm{i} m U^mV^n,\quad \delta_2(U^mV^n)=2\pi \mathrm{i} n U^mV^n.$$

Connes' canonical cyclic 2-cocycle is given by (see III.2. β of [5]):

$$\varphi_q(F^0, F^1, F^2) = \frac{1}{2\pi i} \tau(F^0[\delta_1(F^1)\delta_2(F^2) - \delta_2(F^1)\delta_1(F^2)])$$
$$= \frac{q}{2\pi i} \int_0^1 \int_0^1 \operatorname{Tr}_q\left(F^0\left[\frac{\partial F^1}{\partial x}\frac{\partial F^2}{\partial y} - \frac{\partial F^1}{\partial y}\frac{\partial F^2}{\partial x}\right]\right) dxdy$$

where $F^j \in A_\theta$ (are smooth elements). The extension of φ_q to $M_n(A_\theta)$ is given by the cup product

$$(\varphi_q # \operatorname{Tr}_n)(F^0 \otimes a^0, F^1 \otimes a^1, F^2 \otimes a^2) = \varphi_q(F^0, F^1, F^2) \cdot \operatorname{Tr}_n(a^0 a^1 a^2)$$

where $F^j \in A_{\theta}$ and $a^j \in M_n(\mathbb{C})$. The Chern character invariant of Connes $c_1 : K_0(A_{\theta}) \to \mathbb{Z}$ is then given by $c_1[Q] = \langle [Q], \varphi_q \rangle = (\varphi_q \# \operatorname{Tr}_n)(Q, Q, Q)$, where Q is a projection in $M_n(A_{\theta})$. For $0 < \theta < 1$ the Powers-Rieffel projection e_{θ} has $c_1(e_{\theta}) = \varphi_q(e_{\theta}, e_{\theta}, e_{\theta}) = -1$ (as was shown by Connes). For $\theta = 1$, one can show that c_1 of the Bott projection is ± 1 , depending on the choices made for it (as in Section 5 of [14]).

3. UNBOUNDED TRACES AND SINGULAR SPHERE REALIZATION

In [8] it is proved that the crossed product C^* -algebra H_{θ} , for rational $\theta = \frac{p}{q}$ (with (p,q) = 1), is isomorphic to a subalgebra of $C(\mathbb{S}^2, M_{6q})$ of continuous functions on the 2-sphere \mathbb{S}^2 with values in M_{6q} that commute with certain projections at three points (normally referred to as "singularities"). Let Q denote the quadrilateral shown below in Figures 1 and 2.

As in [8], the 2-sphere S^2 shall be envisaged as Q with the appropriate edges identified (as shown). For our purposes, we shall view this subalgebra as the set of all functions that commute with certain finite-order unitaries at the singular points.

First, it is easy to check that by the universality of the crossed product H_{θ} , there is a unique C^* -injection $H_{\theta} \to M_6(A_{\theta})$ such that

$$\begin{split} f &\mapsto T_f := \begin{bmatrix} f & 0 & 0 & 0 & 0 & 0 \\ 0 & \rho(f) & 0 & 0 & 0 & 0 \\ 0 & 0 & \rho^2(f) & 0 & 0 & 0 \\ 0 & 0 & 0 & \rho^3(f) & 0 & 0 \\ 0 & 0 & 0 & 0 & \rho^4(f) & 0 \\ 0 & 0 & 0 & 0 & 0 & \rho^5(f) \end{bmatrix} \\ W &\mapsto Z := \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \end{split}$$

where $f \in A_{\theta}$ (understood by the realization mentioned in Section 2). (The "1" in the matrix entries here is the identity of A_{θ} which is I_q , the identity q by q matrix.) Now consider the 6×6 unitary matrix $E = \frac{1}{\sqrt{6}} [\omega^{-ij}]$, where i, j = 0, 1, ..., 5 and $\omega = e(1/6)$. One has

$$(ET_{f}E^{*})_{ij} = \frac{1}{6}\sum_{k,\ell=0}^{5}\omega^{-ik}\delta_{k,\ell}\rho^{k}(f)\omega^{j\ell} = \frac{1}{6}f_{j-i}$$

where $f_r = \sum_{k=0}^{5} \omega^{rk} \rho^k(f)$ (and j - i is reduced mod 6). Further, it is easy to check that

$$EZE^* = D := \operatorname{diag}(1, \omega, \omega^2, \omega^3, \omega^4, \omega^5).$$

Therefore, composing the above injection with the automorphism $E^*(\cdot)E$ (which is just a change of coordinates), one obtains the injection $\gamma : H_\theta \rightarrow M_6(A_\theta)$ given by

$$\gamma(f) = \frac{1}{6} \begin{bmatrix} f_0 & f_1 & f_2 & f_3 & f_4 & f_5 \\ f_5 & f_0 & f_1 & f_2 & f_3 & f_4 \\ f_4 & f_5 & f_0 & f_1 & f_2 & f_3 \\ f_3 & f_4 & f_5 & f_0 & f_1 & f_2 \\ f_2 & f_3 & f_4 & f_5 & f_0 & f_1 \\ f_1 & f_2 & f_3 & f_4 & f_5 & f_0 \end{bmatrix}, \quad \gamma(W) = I_q \otimes D$$

Note that f_r is in the eigenspace $A^{\rho}_{\theta}(\omega^{-r}) := \{g \in A_{\theta} : \rho(g) = \omega^{-r}g\}$. Fix g in this eigenspace. Then

(3.1)
$$\omega^{-r}g(x,y) = \eta_0(g(y,y-x))$$

for all $x, y \in \mathbb{R}$. Along the left edge of Q one gets $\omega^{-r}g(0,y) = \eta_0(g(y,y))$ for $0 \leq y \leq \frac{1}{2}$. Evaluation of (3.1) at (z, 1-z), for $\frac{1}{3} \leq z \leq \frac{1}{2}$, one gets (upon reapplying (3.1) and using the fact that $\eta_0^2 = \zeta_0$ as q is even):

$$\begin{split} \omega^{-r}g(z,1-z) &= \eta_0(g(1-z,1-2z)) = \omega^r \eta_0^2(g(1-2z,-z)) \\ &= \omega^r \zeta_0 \alpha_1^{-1} \alpha_1(g(1-2z,-z)) = \omega^r \zeta_0 \alpha_1^{-1}(g(1-2z,1-z)). \end{split}$$

Thus,
$$g(z, 1-z) = \omega^{2r} \zeta_0 \alpha_1^{-1} (g(1-2z, 1-z))$$
. This gives
 $A_{\theta}^{\rho}(\omega^{-r})$
 $= \left\{ g \in C(Q, M_q) : \begin{array}{c} g(0, y) = \omega^r \eta_0(g(y, y)), & 0 \leqslant y \leqslant \\ g(z, 1-z) = \omega^{2r} \zeta_0 \alpha_1^{-1} (g(1-2z, 1-z)), & \frac{1}{3} \leqslant z \leqslant \end{array} \right\}$

For r = 0 this is the realization obtained in Section 4.4 of [8]. This shows that H_{θ} is isomorphic to the *C*^{*}-algebra

$$\begin{aligned} \mathcal{T}_{\theta} &:= \left\{ F \in C(Q, M_q \otimes M_6) : \\ F(0, y) &= (\eta_0 \otimes \operatorname{Ad}_{D^{-1}})(F(y, y)), & 0 \leqslant y \leqslant \frac{1}{2}, \\ F(z, 1 - z) &= (\zeta_0 \alpha_1^{-1} \otimes \operatorname{Ad}_{D^{-2}})(F(1 - 2z, 1 - z)), & \frac{1}{3} \leqslant z \leqslant \frac{1}{2} \right\}, \end{aligned}$$

where $Ad_C(\cdot) = C(\cdot)C^*$. As has been done before (in the Fourier case [14]) and still carries through in our case, there is an isomorphism $\beta : \mathcal{T}_{\theta} \to S_{\theta}$ where

$$S_{\theta} := \begin{cases} F(s_0) &\leftrightarrow W_0 \otimes D \\ F \in C(\mathbb{S}^2, M_q \otimes M_6) : F(s_1) &\leftrightarrow U_0^{p'} \Gamma_0 \otimes D^3 \\ F(s_2) &\leftrightarrow U_0^{p'} W_0^2 \otimes D^2 \end{cases}$$

where $s_0 = (0,0), s_1 = (0,1/2), s_2 = (1/3,2/3)$ are the singular points and inserting $W_1 = U_0^{-p'}$. (Here, " $A \leftrightarrow B$ " means AB = BA.) For $g \in \mathcal{T}_{\theta}$ one defines $\beta(g)$ to be the continuous function on Q such that

$$\beta(g)(s) := (R_s \otimes D_s) \cdot g(s) \cdot (R_s \otimes D_s)^{-1}$$

 $\left[\frac{1}{2}\right]$

for $s \in Q - \{s_0, s_1, s_2\}$, where $s \mapsto R_s$ and $s \mapsto D_s$ are unitary-valued maps on Q, with respective values in M_q and M_6 , that are continuous on $Q - \{s_0, s_1, s_2\}$ and have edge-limits as indicated in Figures 1 and 2. (See [8].) The mapping D_s can be chosen to be diagonal-valued (since the edge limits are all diagonal), a fact used below. These maps have jump discontinuities at the singular points, but they are carefully chosen so that $\beta(g)(s)$ is well-defined, continuous on Q, and has the same values on the corresponding edges, so that it extends to a continuous function on \mathbb{S}^2 . Composing β with the isomorphism $H_\theta \to T_\theta$ described above one obtains the isomorphism $\beta\gamma : H_\theta \to S_\theta$ that gives the singular sphere realization of the crossed product (in the case θ is rational).

It is easy to see that the canonical (normalized) trace on S_{θ} , which arises from that of A_{θ} given in Section 2, is given by

(3.2)
$$\tau(F) = \frac{1}{q} \iint_{Q} \operatorname{Tr}_{6q}(F(x,y)) \, \mathrm{d}x \mathrm{d}y.$$

Consider the following trace functionals

$$\begin{aligned} \tau_{0k}(F) &= \operatorname{Tr}(F(s_0) \ (W_0 \otimes D)^k), \quad k = 0, 1, 2, 3, 4, 5; \\ \tau_{1k}(F) &= \operatorname{Tr}(F(s_1) \ (U_0^{p'} \Gamma_0 \otimes D^3)^k), \quad k = 0, 1; \\ \tau_{2k}(F) &= \operatorname{Tr}(F(s_2) \ (U_0^{p'} W_0^2 \otimes D^2)^k), \quad k = 0, 1, 2. \end{aligned}$$

(These are in fact tracial maps on S_{θ} .) To simplify, denote the underlying unitaries in each case by $w_j \otimes D_j$, j = 0, 1, 2, so that all these traces can all be written as

$$\tau_{jk}(F) = \operatorname{Tr}(F(s_j)(w_j \otimes D_j)^k).$$

Let $Y := \{s_0, s_1, s_2\}$. Fixing $f \in A_\theta$ and expanding $\gamma(f)$ as

$$\gamma(f) = \frac{1}{6} \Big(f_0 \otimes I_6 + \sum_{j=1}^3 f_j \otimes (\text{matrices with zero diagonal}) \Big)$$

one has, for *s* in Q - Y,

$$\beta(\gamma(f))(s) = (R_s \otimes D_s) \cdot \gamma(f)(s) \cdot (R_s \otimes D_s)^{-1}$$

= $\frac{1}{6} (R_s f_0(s) R_s^*) \otimes I_6 + \frac{1}{6} \sum_{j=1}^5 (R_s f_j(s) R_s^*) \otimes (\text{matrices with zero diagonal})$

and since $\beta(\gamma(W)) = \beta(I_q \otimes D) = I_q \otimes D$ (viewed as a constant function on *Q*) and D_i are all diagonal, then using the same idea as in [14] one gets

$$\tau_{0k}(\beta(\gamma(f)\gamma(W^r))) = \delta_6^{r+k} \operatorname{Tr}(f_0(0,0)W_0^k), \quad k = 0, \dots, 5.$$

(Note: $Tr(D^n) = 6\delta_6^n$.) Similarly, for the other two singularities one gets

$$\begin{aligned} &\tau_{1k}(\beta(\gamma(f)\,\gamma(\mathsf{W}^r))) = \delta_6^{r+3k}\,\mathrm{Tr}(f_0(0,1/2)(U_0^{p'}\Gamma_0)^k), \quad k = 0,1; \\ &\tau_{2k}(\beta(\gamma(f)\,\gamma(\mathsf{W}^r))) = \delta_6^{r+2k}\,\mathrm{Tr}(f_0(1/3,2/3)\,(U_0^{p'}W_0^2)^k), \quad k = 0,1,2. \end{aligned}$$

There is no confusion in denoting by U, V, W the unitaries in S_{θ} corresponding to the original unitaries U, V, W in B_{θ} under the isomorphism $\beta \gamma$. With $f = U^m V^n$ these yield

$$\begin{aligned} \tau_{0k}(U^m V^n W^r) &= \delta_6^{r+k} \operatorname{Tr}(f_0(0,0) W_0^k), \quad k = 0, \dots, 5; \\ \tau_{1k}(U^m V^n W^r) &= \delta_6^{r+3k} \operatorname{Tr}(f_0(0,1/2) (U_0^{p'} \Gamma_0)^k), \quad k = 0, 1; \\ \tau_{2k}(U^m V^n W^r) &= \delta_6^{r+2k} \operatorname{Tr}(f_0(1/3,2/3) (U_0^{p'} W_0^2)^k), \quad k = 0, 1, 2. \end{aligned}$$

We are now ready to relate the traces $\{\tau_{ik}\}$ with the original traces $\{T_{ik}\}$.

PROPOSITION 3.1. With $\frac{p}{q} \in \mathbb{P}$, one has

$$\begin{aligned} &\tau_{01} = 3\sqrt{2}(1-i)T_{10}, \quad \tau_{02} = 6i[(1+\omega)T_{20} - \omega T_{21}], \\ &\tau_{03} = 6\sqrt{2}(1+i)T_{30}, \quad \tau_{11} = 4(T_{31} - T_{30}), \quad \tau_{21} = 3i\omega\lambda^{(p')^2/6}[(\omega-2)T_{20} - \omega T_{21}]. \end{aligned}$$

Proof. We shall make free use of the results obtained in Lemma 2.4. We take $f = U^m V^n$ so that

$$f_{0} = \sum_{j=0}^{5} \rho^{j} (U^{m}V^{n})$$

= $U^{m}V^{n} + U^{-m}V^{-n} + \lambda^{-n^{2}/2-mn}(U^{-n}V^{m+n} + U^{n}V^{-(m+n)})$
+ $\lambda^{-m^{2}/2-mn}(U^{-(m+n)}V^{m} + U^{m+n}V^{-m})$

or

$$\begin{split} f_{0}(x,y) &= e((mx+ny)/q)U_{0}^{m}V_{0}^{n} + e(-(mx+ny)/q)U_{0}^{-m}V_{0}^{-n} \\ &+ \lambda^{-n^{2}/2-mn}(e(((m+n)y-nx)/q)U_{0}^{-n}V_{0}^{m+n} + e((nx-(m+n)y)/q)U_{0}^{n}V_{0}^{-(m+n)}) \\ &+ \lambda^{-m^{2}/2-mn}(e((my-(m+n)x)/q)U_{0}^{-(m+n)}V_{0}^{m} + e(((m+n)x-my)/q)U_{0}^{m+n}V_{0}^{-m}). \end{split}$$

For τ_{01} one takes r = 5 and obtains

$$\begin{aligned} \tau_{01}(U^m V^n W^5) \\ &= \operatorname{Tr}(f_0(0,0) W_0) \\ &= 2\operatorname{Tr}(U_0^m V_0^n W_0) + 2\lambda^{-n^2/2 - mn} \operatorname{Tr}(U_0^{-n} V_0^{m+n} W_0) + 2\lambda^{-m^2/2 - mn} \operatorname{Tr}(U_0^{m+n} V_0^{-m} W_0) \\ &= \frac{2(1-i)}{\sqrt{2}} (\lambda^{(m^2+n^2)/2} + \lambda^{-n^2/2 - mn} \lambda^{(n^2+(m+n)^2)/2} + \lambda^{-m^2/2 - mn} \lambda^{((m+n)^2 + m^2)/2}) \\ &= 3\sqrt{2}(1-i)\lambda^{(m^2+n^2)/2} = 3\sqrt{2}(1-i)T_{10}(U^m V^n W^5). \end{aligned}$$

For τ_{02} one takes $r = 4$ and obtains (recalling that $p \equiv 1 \mod 3$)

$$\tau_{02}(U^m V^n W^4) = \operatorname{Tr}(f_0(0,0) W_0^2)$$

= 2Tr($U_0^m V_0^n W_0^2$) + 2 $\lambda^{-n^2/2-mn}$ Tr($U_0^{-n} V_0^{m+n} W_0^2$) + 2 $\lambda^{-m^2/2-mn}$ Tr($U_0^{m+n} V_0^{-m} W_0^2$)

$$= 2i\omega^{-2p(m-n)^{2}}\lambda^{(m-n)^{2}/6} + 2i\omega^{-2p(m+2n)^{2}}\lambda^{-n^{2}/2-mn}\lambda^{(m+2n)^{2}/6} + 2i\omega^{-2p(2m+n)^{2}}\lambda^{-m^{2}/2-mn}\lambda^{(2m+n)^{2}/6} = 6i\omega^{-2p(m-n)^{2}}\lambda^{(m-n)^{2}/6} = 6i[(1+\omega)T_{20}(U^{m}V^{n}W^{4}) - \omega T_{21}(U^{m}V^{n}W^{4})].$$

For τ_{03} one takes r = 3 and obtains

$$\begin{split} &\tau_{03}(U^m V^n W^3) \\ &= \operatorname{Tr}(f_0(0,0) W_0^3) \\ &= 2\operatorname{Tr}(U_0^m V_0^n W_0^3) + 2\lambda^{-n^2/2 - mn} \operatorname{Tr}(U_0^{-n} V_0^{m+n} W_0^3) + 2\lambda^{-m^2/2 - mn} \operatorname{Tr}(U_0^{m+n} V_0^{-m} W_0^3) \\ &= 2\sqrt{2}(1+\mathbf{i})(\lambda^{-mn/2} \delta_2^m \delta_2^n + \lambda^{-n^2/2 - mn} \lambda^{(m+n)n/2} \delta_2^n \delta_2^{m+n} + \lambda^{-m^2/2 - mn} \lambda^{(m+n)m/2} \delta_2^{m+n} \delta_2^n) \\ &= 6\sqrt{2}(1+\mathbf{i})T_{30}(U^m V^n W^3). \end{split}$$

For τ_{11} one observes that $pp' \equiv -1 \mod 2q$ which allows us to write $e(\alpha/2q) = \lambda^{-\alpha p'/2}$, where α is a linear combination of *m* and *n*. One then takes r = 3 and obtains

$$\begin{split} \tau_{11}(U^m V^n W^3) &= \mathrm{Tr}(f_0(0,(1/2)) U_0^{p'} \Gamma_0) = \frac{\sqrt{2}}{(1+\mathrm{i})} \mathrm{Tr}(f_0(0,(1/2)) U_0^{p'} W_0^3) \\ &= \frac{\sqrt{2}}{(1+\mathrm{i})} [e(n/2q) \mathrm{Tr}(U_0^m V_0^n U_0^{p'} W_0^3) + e(-n/2q) \mathrm{Tr}(U_0^{-m} V_0^{-n} U_0^{p'} W_0^3) \\ &+ \lambda^{-n^2/2-mn}(e((m+n)/2q) \mathrm{Tr}(U_0^{-n} V_0^{m+n} U_0^{p'} W_0^3) \\ &+ e(-(m+n)/2q) \mathrm{Tr}(U_0^n V_0^{-(m+n)} U_0^{p'} W_0^3) + e(-m/2q) \mathrm{Tr}(U_0^{m+n} V_0^{-m} U_0^{p'} W_0^3))] \\ &= \frac{\sqrt{2}}{(1+\mathrm{i})} [\lambda^{np'/2} \mathrm{Tr}(U_0^{m+p'} V_0^n W_0^3) + \lambda^{-np'/2} \mathrm{Tr}(U_0^{-m+p'} V_0^{-m} W_0^3) \\ &+ \lambda^{-n^2/2-mn}(\lambda^{(m+n)p'/2} \mathrm{Tr}(U_0^{-(m+n)+p'} V_0^{m+n} W_0^3) + \lambda^{-(m+n)p'/2} \mathrm{Tr}(U_0^{m+n+p'} V_0^{-m} W_0^3)) \\ &+ \lambda^{-m^2/2-mn}(\lambda^{mp'/2} \mathrm{Tr}(U_0^{-(m+n)+p'} V_0^m W_0^3) + \lambda^{-mp'/2} \mathrm{Tr}(U_0^{m+n+p'} V_0^{-m} W_0^3))] \\ &= 2\lambda^{np'/2} \lambda^{-(m+p')n/2} \delta_2^{m+p'} \delta_2^n + 2\lambda^{-np'/2} \lambda^{(-m+p')n/2} \delta_2^{-m+p'} \delta_2^n \\ &+ \lambda^{-(m+n)p'/2} \lambda^{(m+n-p')m/2} \delta_2^{-(m+n)+p'} \delta_2^m + n \\ &+ \lambda^{-(m+n)p'/2} \lambda^{(m+n-p')m/2} \delta_2^{-(m+n)+p'} \delta_2^m + \lambda^{-mp'/2} \lambda^{(m+n+p')m/2} \delta_2^{m+n+p'} \delta_2^m] \\ &= 2\lambda^{-mn/2} (2\delta_2^{m-1} \delta_2^n + 2\delta_2^{n-1} \delta_2^{m+n} + 2\delta_2^{m+n-1} \delta_2^m) \\ &= 4\lambda^{-mn/2} (1 - \delta_2^m \delta_2^m) = 4(T_{31}(U^m V^n W^3) - T_{30}(U^m V^n W^3)). \end{split}$$

Finally, for τ_{21} we observe that $pp' \equiv -1 \mod 6q$ which allows us to write $e(\alpha/3q) = \lambda^{-\alpha p'/3}$, where again α is a linear combination of *m* and *n*. One takes r = 4 and

obtains

$$\begin{aligned} &\tau_{21}(U^m V^n W^4) = \mathrm{Tr}(f_0(1/3, 2/3)(U_0^{p'} W_0^2)) \\ &= e((m+2n)/3q)\lambda^{np'} \mathrm{Tr}(U_0^{m+p'} V_0^n W_0^2) \\ &+ e(-(m+2n)/3q)\lambda^{-np'} \mathrm{Tr}(U_0^{-m+p'} V_0^{-n} W_0^2) \\ &+ \lambda^{-n^2/2-mn} e((2m+n)/3q)\lambda^{(m+n)p'} \mathrm{Tr}(U_0^{-n+p'} V_0^{(m+n)} W_0^2) \\ &+ \lambda^{-n^2/2-mn} e(-(2m+n)/3q)\lambda^{-(m+n)p'} \mathrm{Tr}(U_0^{-(m+n)+p'} V_0^m W_0^2) \\ &+ \lambda^{-m^2/2-mn} e((n-n)/3q)\lambda^{-mp'} \mathrm{Tr}(U_0^{-(m+n)+p'} V_0^m W_0^2) \\ &+ \lambda^{-m^2/2-mn} e((n-m)/3q)\lambda^{-mp'} \mathrm{Tr}(U_0^{m+n+p'} V_0^{-m} W_0^2) \\ &= \frac{i\lambda^{p'^2/6} \lambda^{(m-n)^2/6}}{\omega^{2pp'(m-n)^2}} [\omega^{2pp'(m-n)} \lambda^{-(m+2n)p'/3} \lambda^{3np'/3} \lambda^{(m-n)p'/3} \\ &+ \omega^{2pp'(-m)} \lambda^{(m+2n)p'/3} \lambda^{-3np'/3} \lambda^{(n-m)p'/3} \\ &+ \omega^{4pp'(m+2n)} \lambda^{-(2m+n)p'/3} \lambda^{3(m+n)p'/3} \lambda^{-(m+2n)p'/3} \\ &+ \omega^{4pp'(2m+n)} \lambda^{(-m-n)p'/3} \lambda^{3mp'/3} \lambda^{-(2m+n)p'/3} \\ &+ \omega^{4pp'(2m+n)} \lambda^{(m-n)p'/3} \lambda^{-3mp'/3} \lambda^{(2m+n)p'/3}] \\ &= i\lambda^{p'^2/6} \omega^{-2} \omega^{4(m-n)^2} \lambda^{(m-n)^2/6} \\ &\cdot [\omega^{4(m-n)} + \omega^{2(m-n)} + \omega^{2(m+2n)} + \omega^{4(m+2n)} + \omega^{2(2m+n)} + \omega^{4(2m+n)}] \\ &= -3i\lambda^{p'^2/6} \omega((\omega-2)T_{20}(U^m V^m W^4) - \omega T_{21}(U^m V^m W^4)], \end{aligned}$$

since $\omega^{4k^2}(\omega^{4k}+\omega^{2k}) = (2-\omega)\delta_3^k + \omega$. This completes the proof.

4. AN AUXILIARY BASIS FOR $K_0(H_{p/q})$

As a step toward showing that the ten modules generate $K_0(H_\theta)$ (for rational θ), we consider in this section an auxiliary basis for $K_0(H_\theta)$ that arises naturally from the realization of H_θ as a sphere with singularities, as obtained in the previous section. This will enable one to show that the range of the reduced character **T**' on $K_0(H_\theta)$ (as defined in Section 2) is equal to its range on \mathcal{R}_θ . To do this, we shall assume that θ is in the dense set of rationals \mathbb{P} , as defined in Section 2.

Let $\theta = \frac{p}{q}$ be any rational in (0,1). Let F_0 be a rank one subprojection of the spectral projection of $\omega^{-1/4}W_0$ (which has order six) corresponding to the eigenvalue 1 (corresponding to the singularity $s_0 = (0,0)$). Similarly, let F_1 be

such a projection for $U_0^{p'}\Gamma_0$, and F_2 for $i^{-1/3}\lambda^{-(1/6)(p'')^2}U_0^{p'}W_0^2$. These are all projections in $M_q(\mathbb{C})$, and we think of them as being associated with the singular points s_0, s_1, s_2 , respectively (cf. definition of S_θ in Section 3). Thus, by definition, one has

$$W_0F_0 = \omega^{1/4}F_0, \quad U_0^{p'}\Gamma_0F_1 = F_1, \quad U_0^{p'}W_0^2F_2 = i^{1/3}\lambda^{(1/6)(p'')^2}F_2.$$

Now consider the rank one projection $e_k^j := F_j \otimes E_k$ for j = 0, 1, 2 and k = 1, 2, 3, 4, 5, 6, where $E_k \in M_6(\mathbb{C})$ is the diagonal matrix that has 1 at the *k*-th diagonal entry and zeros elsewhere. It will be convenient to introduce the following notation. If e, f, g are matrix projections of equal rank, we denote by [e, f, g] a smooth projection-valued function on \mathbb{S}^2 such that

$$[e, f, g](s_0) = e, \quad [e, f, g](s_1) = f, \quad [e, f, g](s_2) = g$$

(Such a function clearly exists since the projections have equal rank.) So [e, f, g] defines a projection in S_{θ} , and hence a unique positive class in $K_0(S_{\theta})$. Now consider the following nine projections in S_{θ} :

(4.1)
$$[e_1^0, e_1^1, e_1^2], [e_4^0, e_4^1, e_4^2], [e_1^0, e_2^1, e_2^2], [e_2^0, e_2^1, e_2^2], [e_5^0, e_5^1, e_5^2], [e_1^0, e_2^1, e_3^2], [e_3^0, e_3^1, e_3^2], [e_6^0, e_6^1, e_6^2], [e_1^0, e_3^1, e_3^2].$$

We claim that these projections, together with one other class in the kernel of **T**', which is $\kappa_{p,q}$, form a basis for $K_0(S_\theta) \cong K_0(H_\theta)$.

Since $W_0 \otimes D^{-1}$ has order six, let n_k be the dimension of its eigenspace corresponding to the eigenvalue ω^k , k = 1, ..., 6. (So, $\sum_k n_k = 6q$.) Similarly, let k, 6q - k be the spectral dimensions of $\Gamma_0 W_1 \otimes D^3$ (which has order 2), and m_1, m_2, m_3 those of $W_0^2 W_1 \otimes D^{-2}$ (which has order 3). The commutant of $W_0 \otimes D^{-1}$ in $M_q \otimes M_6$ is isomorphic to $\bigoplus_{k=1}^6 M_{n_k}$. For $\Gamma_0 W_1 \otimes D^3$ the commutant algebra is isomorphic to $M_k \oplus M_{6q-k}$, and for $W_0^2 W_1 \otimes D^{-2}$ it is $\bigoplus_{k=1}^3 M_{m_j}$. (Although these dimensions are known from [8] and [1], their exact values will not be needed here.) Identifying each commutant in this way with its corresponding matrix algebra direct sum, one has the surjective map obtained by evaluations

(4.2)
$$\mathcal{E}: S_{\theta} \longrightarrow \mathbb{F} := \left(\bigoplus_{k=1}^{6} M_{n_{k}}\right) \oplus \left(\bigoplus_{j=1}^{3} M_{m_{j}}\right) \oplus \left(M_{k} \oplus M_{6q-k}\right)$$
$$\mathcal{E}(F) = (F(s_{0}); F(s_{2}); F(s_{1}))$$

where $F(s_1) \in M_k \oplus M_{6q-k}$. Letting *J* denote the kernel of \mathcal{E} , one has the short exact sequence

$$(4.3) 0 \longrightarrow J \xrightarrow{j} S_{\theta} \xrightarrow{\mathcal{E}} \mathbb{F} \longrightarrow 0$$

where $j : J \hookrightarrow S_{\theta}$ is inclusion. Under the induced map

$$\mathcal{E}_*: \ K_0(S_ heta) \ o \ K_0(\mathbb{F}) \ \cong \ \mathbb{Z}^6 \oplus \mathbb{Z}^3 \oplus \mathbb{Z}^2,$$

one gets (since F_i has rank one)

$$\begin{array}{ll} [e_1^0, e_1^1, e_1^2] &\mapsto (1, 0, 0, 0, 0); \ (1, 0, 0); \ (1, 0) \\ [e_2^0, e_2^1, e_2^2] &\mapsto (0, 1, 0, 0, 0, 0); \ (0, 1, 0); \ (0, 1) \\ [e_3^0, e_3^1, e_3^2] &\mapsto (0, 0, 1, 0, 0, 0); \ (0, 0, 1); \ (1, 0) \\ [e_4^0, e_4^1, e_4^2] &\mapsto (0, 0, 0, 1, 0, 0); \ (1, 0, 0); \ (0, 1) \\ [e_5^0, e_5^1, e_5^2] &\mapsto (0, 0, 0, 0, 1, 0); \ (0, 1, 0); \ (1, 0) \\ [e_6^0, e_6^1, e_6^2] &\mapsto (0, 0, 0, 0, 0, 1); \ (0, 0, 1); \ (0, 1) \\ [e_1^0, e_2^1, e_2^2] &\mapsto (1, 0, 0, 0, 0); \ (0, 1, 0); \ (1, 0) \\ [e_1^0, e_3^1, e_3^2] &\mapsto (1, 0, 0, 0, 0); \ (0, 0, 1); \ (1, 0) \\ [e_1^0, e_3^1, e_3^2] &\mapsto (1, 0, 0, 0, 0); \ (0, 0, 1); \ (1, 0) \end{array}$$

Since *J* is the ideal of all functions $\mathbb{S}^2 \to M_{6q}$ vanishing at the three singular points $s_{j'}$ it is isomorphic to $R_0 \otimes M_{6q}$ where

(4.5)
$$R_0 := \{ f \in C(\mathbb{S}^2, \mathbb{C}) : f(s_0) = f(s_1) = f(s_2) = 0 \}.$$

Hence $K_0(J) \cong K_0(R_0) \cong \mathbb{Z}$ and $K_1(J) \cong K_1(R_0) \cong \mathbb{Z}^2$. Now consider the following part of the six-term exact *K*-theory sequence associated with (4.3)

$$(4.6) \quad \mathbb{Z} \cong K_0(J) \xrightarrow{j_*} K_0(S_\theta) \xrightarrow{\mathcal{E}_*} K_0(\mathbb{F}) = \mathbb{Z}^{11} \xrightarrow{\delta_0} K_1(J) \cong \mathbb{Z}^2 \longrightarrow 0$$

where δ_0 , the connecting homomorphism, is surjective (as $K_1(S_\theta) = 0$, by Theorems 3 and 4 of [7]). Since $K_0(S_\theta) \cong \mathbb{Z}^{10}$, and since the nine elements in \mathbb{Z}^{11} given by the right sides of (4.4) together with

$$(4.7) \qquad (0,0,0,0,0,0); (0,0,0); (0,1) \quad \text{and} \quad (1,0,0,0,0,0); (0,0,0); (0,0)$$

constitute an 11 × 11 matrix whose determinant is ±1, it follows that $\mathcal{E}_*(K_0(S_\theta))$ is spanned by the images of the nine projections in (4.1). These, together with the image under j_* of a generator ξ of $K_0(J)$, constitute a basis for $K_0(S_\theta)$. The remaining basis element $j_*(\xi)$ will be shown to be $\pm \kappa_{p,q}$ (see Corollary 4.4).

REMARK 4.1. By showing that δ_0 maps the two K_0 -elements corresponding to (4.7) are mapped onto generators of $K_1(J)$ one obtains another proof that $K_0(S_{p/q}) \cong \mathbb{Z}^{10}$ and $K_1(S_{p/q}) = 0$.

Now let us calculate the traces T_{10} , T_{20} , T_{21} , T_{30} , T_{31} on these nine projections. In view of Proposition 3.1 (with $\theta = p/q \in \mathbb{P}$), for k = 1, ..., 6 one has (with "*" denoting any value)

$$3\sqrt{2}(1-i)T_{10}[e_k^0, e_*^1, e_*^2] = \tau_{01}[e_k^0, e_*^1, e_*^2] = \operatorname{Tr}(e_k^0(W_0 \otimes D)) = \operatorname{Tr}(F_0 W_0)\operatorname{Tr}(E_k D)$$

since $W_0 F_0 = \omega^{1/4} F_0$, $\text{Tr}(F_0 W_0) = \omega^{1/4}$, and $\text{Tr}(E_k D) = \omega^{k-1}$, one gets

$$T_{10}[e_k^0, e_*^1, e_*^2] = \frac{(1+1)}{6\sqrt{2}}\omega^{1/4}\omega^{k-1} = \frac{1}{6}\omega^k$$

(k = 1, ..., 6). This gives the values for T_{10} in Table 2. Similar calculations for the other traces yields the following equalities and the remaining values in the table,

$$\begin{split} T_{21}[e_k^0, e_*^1, e_*^2] &= -\frac{1}{6}\omega^{2k}, \quad T_{30}[e_k^0, e_*^1, e_*^2] = \frac{1}{12}(-1)^{k-1}, \\ T_{31}[e_k^0, e_\ell^1, e_*^2] &= \frac{1}{12}(-1)^{k-1} + \frac{1}{4}(-1)^{\ell-1}, \quad T_{20}[e_k^0, e_*^1, e_m^2] = -\frac{1}{9}\omega^{2(m-1)} - \frac{1}{18}\omega^{2k}, \\ \omega T_{21}[e_k^0, e_*^1, e_m^2] &= (1+\omega)T_{20}[e_k^0, e_*^1, e_m^2] + \frac{i}{6}\omega^{1/2}\omega^{2(k-1)}. \end{split}$$

(To facilitate the computations, one uses the equalities $1 + \omega = i\sqrt{3}\omega^{-1}$, $i\omega^{1/2} = \omega^2$, $\omega^2 = \omega - 1$.)

Table 2. Values of T ' for $p/q \in \mathbb{P}$											
K ₀ -class	τ	ϕ_0	ϕ_0'	ϕ_1	ϕ_1'	ϕ_2	ϕ_2'	T_{30}	T ₃₁		
$[e_1^0, e_1^1, e_1^2]$	$\frac{1}{6q}$	$\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$\frac{\sqrt{3}}{36}$	$\frac{1}{4}$	$\frac{\phi_2'}{\frac{\sqrt{3}}{12}}$	$\frac{1}{12}$	$\frac{1}{3}$		
$[e_2^0, e_2^1, e_2^2]$	$\frac{1}{6q}$	$-\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$\frac{\sqrt{3}}{36}$	$-\frac{1}{4}$	$\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$-\frac{1}{3}$		
$[e_3^0, e_3^1, e_3^2]$	$\frac{1}{6q}$	$-\frac{1}{6}$	0	0	$-\frac{\sqrt{3}}{18}$	0	$-\frac{\sqrt{3}}{6}$	$\frac{1}{12}$	$\frac{1}{3}$		
$[e_4^0, e_4^1, e_4^2]$	$\frac{1}{6q}$	$-\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$\frac{\sqrt{3}}{36}$	$\frac{1}{4}$	$\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$-\frac{1}{3}$		
$[e_5^0, e_5^1, e_5^2]$	$\frac{1}{6q}$	$\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$\frac{\sqrt{3}}{36}$	$-\frac{1}{4}$	$\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$\frac{1}{3}$		
$[e_6^0, e_6^1, e_6^2]$	$\frac{1}{6q}$	$\frac{1}{6}$	0	0	$-\frac{\sqrt{3}}{18}$	0	$-\frac{\sqrt{3}}{6}$	$-\frac{1}{12}$	$-\frac{1}{3}$		
$[e_1^0, e_2^1, e_2^2]$	$\frac{1}{6q}$	$\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{1}{12}$	$-\frac{\sqrt{3}}{36}$	$-\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$-\frac{1}{6}$		
$[e_1^0, e_2^1, e_3^2]$	$\frac{1}{6q}$	$\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$-\frac{1}{6}$		
$[e_1^0, e_3^1, e_3^2]$	$\frac{1}{6q}$	$\frac{1}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{1}{12}$	$\frac{1}{3}$		

(The canonical trace values are immediate from the expression for τ in (3.2).)

One is now in a position to check that each row of Table 2 is in the \mathbb{Z} -span of the rows of Table 1, and vice versa (a simple computer program can be used to verify this quickly). (Recall that in Table 1, ϕ_k , ϕ'_k are the real and imaginary components of T_{ij} .) In checking this, however, it is helpful to use the fact that $\frac{p}{q}$ is in \mathbb{P} , that $1 + 2^{2k+1}$ and $2^{2k} - 1$ are divisible by 3, and that q - 2 is divisible by 6.

We have therefore proved the following.

PROPOSITION 4.2. For any $\theta \in \mathbb{P}$, one has $\mathbf{T}'(K_0(H_\theta)) = \mathbf{T}'(\mathcal{R}_\theta)$.

By the same proof as in [14] (Section 5) one obtains, almost mutatis mutandis, the following result.

PROPOSITION 4.3. For any positive rational $\theta = \frac{p}{q} < 1$, the class $\kappa_{p,q} \in K_0(S_{\theta})$ is the image of a generator of $K_0(J) \cong \mathbb{Z}$ under the canonical map $j_* : K_0(J) \to K_0(S_{\theta})$.

Combining this with what we have just shown one obtains:

COROLLARY 4.4. For $\theta \in \mathbb{P}$, one has $\text{Ker}(\mathbf{T}') = \mathbb{Z}j_*(\xi) = \mathbb{Z}\kappa_{p,q}$.

5. CONCLUSIONS

PROPOSITION 5.1. For $\theta \in \mathbb{P}$, the classes [1], $[p_0]$, $[p_1]$, $[p_2]$, $[p_3]$, $[p_4]$, $[q_0]$, $[q_1]$, [r], $[\mathcal{M}_6]$ form a basis for the group $K_0(H_{\theta}) = \mathbb{Z}^{10}$.

Proof. In view of Theorem 2.1, these classes are already independent (for each θ), so it is enough to show that they generate. Pick any x in $K_0(S_\theta)$. From Proposition 4.2 (since $\theta \in \mathbb{P}$) one has $\mathbf{T}'(x) = \mathbf{T}'(y)$ for some $y \in \mathcal{R}_{\theta}$. Therefore, by the Corollary 4.4, $x - y = m\kappa_{p,q}$ for some integer m (where $\theta = \frac{p}{q}$). Since $\kappa_{p,q}$ is already in \mathcal{R}_{θ} , the result follows.

Using the exact same techniques of [14] one obtains the following result.

THEOREM 5.2. (Range of the Connes-Chern character.) For any $0 < \theta < 1$ one has the range of the Connes-Chern character: $\mathbf{T}(K_0(H_{\theta})) = \mathbf{T}(\mathcal{R}_{\theta})$, where \mathcal{R}_{θ} is the subgroup of $K_0(H_{\theta})$ generated by the ten classes in Table 1. More specifically, the range is spanned by the rows in Table 1.

THEOREM 5.3. For each $\theta > 0$ the ten canonical classes form a basis for the group $K_0(H_{\theta}) = \mathbb{Z}^{10}$.

Proof. We use the result of Polishchuk [10] that $K_0(H_\theta) \cong \mathbb{Z}^{10}$. Since **T** is injective on \mathcal{R}_{θ} , whose rank is equal to the rank of $K_0(H_{\theta})$, it follows that **T** is injective on all of $K_0(H_{\theta})$. Now the result follows from Theorem 5.2 since the ten classes are already known to be independent by Theorem 2.1.

The result for K_1 can be obtained at this point for a dense G_{δ} set of θ 's using essentially the same Baire category argument used in Theorem 7.2-B of [14]. One gets

THEOREM 5.4. There is a dense G_{δ} set of parameters θ in (0,1) (containing the rationals) for which $K_1(H_{\theta}) = 0$.

Of course, this result will follow from [6] for all θ since it is shown there that H_{θ} is an AF-algebra.

Acknowledgements. This research was partly supported by a grant from the Natural Science and Engineering Council of Canada, and an NSERC USRA grant. The authors thank the referee for making helpful comments.

REFERENCES

- [1] O. BRATTELI, G.A. ELLIOTT, D.E. EVANS, A. KISHIMOTO, Non-commutative spheres. II: rational rotations, *J. Operator Theory* 27(1992), 53–85.
- [2] O. BRATTELI, A. KISHIMOTO, Non-commutative spheres. III: Irrational rotations, Comm. Math. Phys. 147(1992), 605–624.
- [3] J. BUCK, S. WALTERS, Connes-Chern characters of hexic and cubic modules, J. Operator Theory 57(2007), 35–65.
- [4] A. CONNES, C*-algebre et geometrie differentielle, C. R. Acad. Sci. Paris Sér. A-B 290(1980), 599–604.
- [5] A. CONNES, Noncommutative Geometry, Academic Press, San Diego, CA 1994.
- [6] S. ECHTERHOFF, W. LÜCK, N.C. PHILLIPS, S. WALTERS, The structure of crossed products of irrational rotation algebras by finite subgroups of $SL_2(\mathbb{Z})$, preprint 2007.
- [7] C. FARSI, K-thoeretic index theorems for orbifolds, *Quart. J. Math. Oxford* 43(1992), 183–200.
- [8] C. FARSI, N. WATLING, Elliptic algebras, J. Funct. Anal. 118(1993), 1-21.
- [9] A. HATTORI, Rank element of a projective module, Nagoya J. Math. 25(1965), 113–120.
- [10] A. POLISHCHUK, Holomorphic bundles on 2-dimensional noncommutative toric orbifolds, preprint 2004.
- [11] J. ROSENBERG, Appendix to "Crossed products of UHF algebras by product type actions", Duke Math. J. 46(1979), 25–26.
- [12] J. STALLINGS, Centerless groups an algebraic formulation of Gottlieb's theorem, *Topology* 4(1965), 129–134.
- [13] S.G. WALTERS, Inductive limit automorphisms of the irrational rotation algebra, *Comm. Math. Phys.* **171**(1995), 365–381.
- [14] S.G. WALTERS, K-theory of non commutative spheres arising from the Fourier automorphism, *Canad. J. Math.* **53**(2001), 631–672.
- [15] S.G. WALTERS, Periodic integral transforms and C*-algebras, C. R. Math. Rep. Acad. Sci. Canada 26(2004), 55–61.
- [16] S.G. WALTERS, The AF structure of non commutative toroidal Z/4Z orbifolds, J. Reine Angew. Math. (Crelle's Journal) 568(2004), 139–196.

J. BUCK, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OR 97403-1222, USA

E-mail address: jbuck1@darkwing.uoregon.edu

S. WALTERS, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTHERN BRITISH COLUMBIA, PRINCE GEORGE, BC V2N 4Z9, CANADA

E-mail address: walters@hilbert.unbc.ca

Received September 20, 2005; revised December 28, 2005.