ON TOEPLITZ OPERATORS SIMILAR TO ISOMETRIES

MARIA F. GAMAL'

Communicated by Nikolai K. Nikolski

ABSTRACT. Let *T* be a Toeplitz operator on the Hardy space H^2 on the unit circle, and let the symbol of *T* be of the form $\frac{\varphi}{\psi}$, where φ is inner function, ψ is a finite Blaschke product, and deg $\psi \leq \deg \varphi$. D.N. Clark proved that such *T* is similar to an isometry. In this paper, we find this isometry.

KEYWORDS: Toeplitz operators, similarity.

MSC (2000): 47B35.

1. INTRODUCTION

Let $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ be the unit circle, $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ the unit disk, *m* the normalized Lebesgue measure on \mathbb{T} . Let $L^2 = L^2(\mathbb{T}, m)$ be the Lebesgue space, $H^2 = H^2(\mathbb{T})$ the Hardy space, and P_+ the orthogonal projection from L^2 onto H^2 . The Toeplitz operator T_{Φ} with the symbol $\Phi, \Phi \in L^{\infty}(\mathbb{T}, m)$, acts on H^2 by the formula $T_{\Phi}h = P_+\Phi h, h \in H^2$. For some classes of symbols Φ there exist results on T_{Φ} concerning their spectral theory. One of the first such results is a concrete spectral representation of selfadjoint Toeplitz operators T_{Φ} , that is, for real-valued symbols Φ , see [13]. Further, it was proved in [12] that T_{Φ} with $\Phi = \frac{f}{f}$, where $f, \frac{1}{f} \in H^{\infty}$, is similar to a unitary operator, and a concrete spectral representation of this unitary operator was given in [5], [6] for a large subclass of such symbols. There exist many results of the similarity of T_{Φ} with smooth symbols Φ to some simpler operators.

For example, in [16], [3], [2] it is proved that T_{Φ} is similar to the direct sum of a normal operator and analytic and antianalytic Toeplitz operators (that is, operators of the form T_f and $T_{\overline{f}}$, where $f \in H^{\infty}$) for some subclass of the class of smooth symbols Φ . In [17], [18] it is proved that T_{Φ} is similar to the operator of multiplication by the independent variable on a specially constructed functional space for some subclass of the class of smooth symbols Φ , and in [19] a linearly similar model for some class of operators is constructed and its application to the similarity of Toeplitz operators with smooth symbols is given. On the other hand, in [5] it is proved that if Φ has the form

(1.1)
$$\Phi = \frac{\omega f}{\overline{f}},$$

where ω is inner, $f, \frac{1}{f} \in H^{\infty}$, then T_{Φ} is similar to an isometry. Any isometry is equal to $U \oplus S$, where U is unitary and S is a unilateral shift, and if T_{Φ} with Φ from (1.1) is similar to $U \oplus S$, then U is absolutely continuous and the multiplicity of S is equal to the degree of ω . But nothing more about U is known in the general case.

In this paper we consider the Toeplitz operator T_{Φ} with $\Phi = \frac{\varphi}{\psi}$, where ψ is a finite Blaschke product, deg $\psi = N < \infty$, and φ is an inner function, deg $\varphi \ge N$ (the degree of an inner function φ is the number of Blaschke factors, if φ is a finite Blaschke product, and ∞ in any other case). It is easy to see (Lemma 2.1 below) that such Φ can be represented in the form (1.1), therefore T_{Φ} is similar to an isometry $U \oplus S$, where the multiplicity of a unilateral shift S is equal to deg $\varphi - N$. In this paper, we find the unitary summand U. But no intertwining operator that gives the similarity of T_{Φ} and an isometry $U \oplus S$ is constructed.

If deg $\varphi < \infty$, then T_{Φ} (with a little additional assumption on the symbol Φ) is a particular case of Toeplitz operator regarded in [3], [1]. The investigation of T_{Φ} with $\Phi = \frac{\varphi}{\psi}$, where φ is inner and ψ is a Blaschke factor (N = 1), was begun in [4]. In this paper, we follow [1], [4] where it is appropriated.

The main results of the paper are the following theorems.

THEOREM 1.1. Suppose ψ is a finite Blaschke product, $\deg \psi = N < \infty$, φ is inner, $N \leq \deg \varphi \leq \infty$, φ and ψ are relatively prime, and $\Phi = \frac{\varphi}{\psi}$. Let $T_{\Phi} : H^2 \to H^2$ be the Toeplitz operator with symbol Φ . We put $\mathcal{I}_n = \{\lambda \in \mathbb{T} : \Phi - \lambda \text{ has at least } n \text{ zeros in } \mathbb{D}\}$, and $\sigma_n = \mathbb{T} \setminus \mathcal{I}_n$, n = 1, ..., N. Then T_{Φ} is similar to $U \oplus S$, where S is a unilateral shift of multiplicity $\deg \varphi - N$ and U is the operator of multiplication by the independent variable in the space $\bigoplus_{n=1}^{N} L^2(\sigma_n, m)$.

THEOREM 1.2. Suppose ψ is a finite Blaschke product, $\deg \psi = N < \infty$, φ is inner, $N \leq \deg \varphi \leq \infty$, φ and ψ are relatively prime, and $\Phi = \frac{\varphi}{\psi}$. Then Φ has a meromorphic continuation to \mathbb{D} given by the formula $\Phi(z) = \frac{\varphi(z)}{\psi(z)}, z \in \mathbb{D}$. We put $\Omega_{\Phi} = \{z \in \mathbb{D} : |\Phi(z)| > 1\}$. Further, let $T_{\Phi} : H^2 \to H^2$ be the Toeplitz operator with symbol Φ . Then T_{Φ} is similar to a unilateral shift if and only if $m(\partial \Omega_{\Phi} \cap \mathbb{T}) = 0$.

The paper is organized as follows. In Section 2 we introduce the notation and collect simple facts concerning operators similar to isometries and functions Φ of the form $\Phi = \frac{\varphi}{\psi}$, where φ is inner and ψ is a finite Blaschke product. Also, in this section we deduce Theorem 1.2 from Theorem 1.1 and properties of Φ . In Section 3 we give a description of the subspace \mathcal{K} such that the restriction $T_{\Phi}|_{\mathcal{K}}$ is similar to a unitary summand U and construct a transformation Z from \mathcal{K} to $\bigoplus_{n=0}^{N-1} L^1$, which intertwines $(T_{\Phi}|_{\mathcal{K}})^{-1}$ with the multiplication by $\overline{\zeta}$ in $\bigoplus_{n=0}^{N-1} L^1$, where ζ is the independent variable. In the next section, we use this transformation Z to prove Theorem 1.1. Section 5 contains some examples and remarks, which illustrate Theorems 1.1 and 1.2 and show the difficulties that arise in the present approach to the subject.

2. PRELIMINARIES

LEMMA 2.1. Suppose φ is an inner function, ψ is a finite Blaschke product, deg $\psi = N < \infty$, and $N \leq \deg \varphi \leq \infty$. Then $\Phi = \frac{\varphi}{\psi}$ can be represented in the form (1.1) with deg $\omega = \deg \varphi - N$.

Proof. We take a number $a \in \mathbb{D}$ such that $B_a = \frac{\varphi - a}{1 - \overline{a}\varphi}$ is a Blaschke product (cf. Theorem II.6.4 in [10]), then we have deg $B_a = \deg \varphi \ge N$, therefore $B_a = B\psi_1$, where B, ψ_1 are Blaschke products, deg $\psi_1 = N$, and deg $B = \deg \varphi - N$. Let $\{\delta_i\}_{i=1}^N$ and $\{\gamma_i\}_{i=1}^N$ be zeros of ψ and ψ_1 , respectively, counted with multiplicities. We put $f_1(z) = \prod_{i=1}^N \frac{1 - \overline{\gamma}_i z}{1 - \overline{\delta}_i z}$, $z \in \mathbb{T}$. We have $\frac{\psi}{\psi_1} = \frac{f}{f_1}$ on \mathbb{T} and $\frac{\varphi}{B_a} = \frac{1 - \overline{a}\varphi}{1 - a\overline{\varphi}}$ on \mathbb{T} . Thus, $\Phi = \frac{\varphi}{\psi} = \frac{\varphi}{B_a} \frac{\psi_1}{\psi} B$ has the form (1.1) with $f = (1 - \overline{a}\varphi)f_1$ and $\omega = B$.

COROLLARY 2.2. If φ , ψ and Φ are as in Lemma 2.1, then T_{Φ} is similar to $U \oplus S$, where U is a unitary absolutely continuous operator, S is a unilateral shift, and the multiplicity of S is deg $\varphi - N$.

Proof. First, we note the following evident fact. Let *T* be a completely nonunitary contraction similar to an isometry. Then this isometry is equal to $U \oplus S$, where *U* is an absolutely continuous unitary operator, *S* is a unilateral shift, and the multiplicity of *S* is equal to dim ker *T*^{*}. Any Toeplitz operator that is a contraction is a completely nonunitary contraction [11]. Let ω be inner and $f, \frac{1}{f} \in H^{\infty}$, then $T_{\overline{f}/f}$ is similar to a unitary operator [5], [12], and, in particular, is invertible. Therefore $T^*_{\omega f/\overline{f}} = T_{\overline{\omega}\overline{f}/f} = T_{\overline{\omega}}T_{\overline{f}/f}$ and dim ker $T^*_{\omega f/\overline{f}} = \dim \ker T_{\overline{\omega}} = \deg \omega$. The corollary is a consequence of this facts.

LEMMA 2.3 ([4]). Let T be an operator on a Hilbert space \mathcal{H} , and let T be similar to an isometry $U \oplus S$, where U is a unitary operator and S is a unilateral shift. We put $\mathcal{K} = \bigcap_{\lambda \in \mathbb{D}} (T - \lambda I)\mathcal{H}$. Then $\mathcal{K} = \bigcap_{\lambda \in \Lambda} (T - \lambda I)\mathcal{H}$ for any $\Lambda \subset \mathbb{D}$ such that Λ has a cluster point in \mathbb{D} . Moreover, the restriction $T|_{\mathcal{K}}$ of the operator T on its invariant subspace \mathcal{K} is similar to U.

LEMMA 2.4 (see [5]). Let T be an operator on a Hilbert space \mathcal{K} , which is similar to an absolutely continuous unitary operator U. Then

(i) for $k, \ell \in \mathcal{K}$ the function $F_{k,\ell}(\lambda) = ((T - \lambda)^{-1}k, \ell), \lambda \in \widehat{\mathbb{C}} \setminus \mathbb{T}$, has the following representation, where $f_{k,\ell} \in L^1(\mathbb{T}, m)$:

$$F_{k,\ell}(\lambda) = \frac{1}{2\pi \mathrm{i}} \int_{\mathbb{T}} \frac{f_{k,\ell}(\zeta) \mathrm{d}\zeta}{\zeta - \lambda}, \quad \lambda \in \widehat{\mathbb{C}} \setminus \mathbb{T}.$$

(ii) for a fixed vector $\ell \in \mathcal{K}$ the mapping $k \to f_{k,\ell}$, $\mathcal{K} \to L^1(\mathbb{T}, m)$ is a linear bounded transformation.

Proof. Denote by \mathcal{H} the space in which U acts. By assumption, there exists a linear bounded invertible transformation $X: \mathcal{K} \to \mathcal{H}$ such that XT = UX. For any $k, \ell \in \mathcal{K}$ there exist $x, y \in \mathcal{H}$ such that $k = X^{-1}x, \ell = X^*y$, and we have $((T - \lambda)^{-1}k, \ell) = ((T - \lambda)^{-1}X^{-1}x, X^*y) = (X(T - \lambda)^{-1}X^{-1}x, y) = ((U - \lambda)^{-1}x, y)$. Therefore in the conclusion of the Lemma k, ℓ and T can be replaced by x, y and U. Now the result follows from the spectral representation of an absolutely continuous operator U.

LEMMA 2.5. Suppose φ is an inner function, ψ is a finite Blaschke product, and φ and ψ are relatively prime. We put $\Lambda = \{\lambda \in \mathbb{D} : \text{the inner factor of } \varphi - \lambda \psi \text{ is a Blaschke product with simple zeros}\}$. Then the logarithmic capacity of $\mathbb{D} \setminus \Lambda$ is zero.

Proof. We define the set Λ_1 in the same way as the set Λ , but without the assumption of simplicity of zeros. The proof of the fact that the logarithmic capacity of $\mathbb{D} \setminus \Lambda_1$ is zero is almost the same as the proof of the Frostman's theorem, see Theorem II.6.4 in [10]. The set { $\lambda \in \Lambda_1 : \varphi - \lambda \psi$ has a multiple zero} is no more than countable, and the result follows.

LEMMA 2.6. Suppose φ is an inner function, ψ is a finite Blaschke product, φ and ψ are relatively prime, and deg $\psi = N$. Then for any $\lambda \in \mathbb{C}$, $|\lambda| > 1$, the equation $\varphi - \lambda \psi = 0$ has exactly N zeros in \mathbb{D} (counted with multiplicities).

This lemma is a consequence of the Rouché theorem.

In the following theorem we collect properties of Φ that are needed to prove Theorem 1.2.

THEOREM 2.7 ([8]). Suppose ψ is a finite Blaschke product, $\deg \psi = N < \infty$, φ is inner, $N \leq \deg \varphi \leq \infty$, φ and ψ are relatively prime, and $\Phi = \frac{\varphi}{\psi}$. Then Φ has meromorphic continuation to \mathbb{D} given by the formula $\Phi(z) = \frac{\varphi(z)}{\psi(z)}, z \in \mathbb{D}$. We put $\Omega_{\Phi} = \{z \in \mathbb{D} : |\Phi(z)| > 1\}$ and $\mathcal{I}_N = \{\lambda \in \mathbb{T} : \Phi - \lambda \text{ has } N \text{ zeros in } \mathbb{D}\}$. Then Φ has angular boundary value at every point of $\partial \Omega_{\Phi} \cap \mathbb{T}$. We define Φ on $\partial \Omega_{\Phi} \cap \mathbb{T}$ by its angular boundary values. Then Φ is continuous on $\operatorname{clos} \Omega_{\Phi}, \mathcal{I}_N = \mathbb{T} \setminus \Phi(\partial \Omega_{\Phi} \cap \mathbb{T})$, and $m(\Phi(\partial \Omega_{\Phi} \cap \mathbb{T})) = 0$ if and only if $m(\partial \Omega_{\Phi} \cap \mathbb{T}) = 0$.

Proof of Theorem 1.2. By Theorem 1.1, T_{Φ} is similar to a unilateral shift if and only if $m(\sigma_N) = 0$, where $\sigma_N = \mathbb{T} \setminus \mathcal{I}_N$. By Theorem 2.7, $\sigma_N = \Phi(\partial \Omega_{\Phi} \cap \mathbb{T})$, and $m(\Phi(\partial \Omega_{\Phi} \cap \mathbb{T})) = 0$ if and only if $m(\partial \Omega_{\Phi} \cap \mathbb{T}) = 0$.

7

NOTATION. In the remaining part of the paper, we will use the following notation. *N* is a natural number, ψ is a finite Blaschke product, deg $\psi = N < \infty$, $\psi(z) = \prod_{i=1}^{N} \frac{z-\delta_i}{1-\overline{\delta}_i z}$, $\alpha(z) = \prod_{i=1}^{N} (z-\delta_i)$, $\beta(z) = \prod_{i=1}^{N} (1-\overline{\delta}_i z)$, $z \in \mathbb{D}$, $\{\delta_i\}_{i=1}^{N} \subset \mathbb{D}$. Further, φ is an inner function, $N \leq \deg \varphi \leq \infty$, φ and ψ are relatively prime, $\Phi = \frac{\varphi}{\psi}$ is a function meromorphic in \mathbb{D} , and $\Phi \in L^{\infty}(\mathbb{T}, m)$, T_{Φ} is the Toeplitz operator on H^2 with symbol Φ , $\mathcal{K} = \bigcap_{\lambda \in \mathbb{D}} (T_{\Phi} - \lambda I)H^2$, $T = T_{\Phi}|_{\mathcal{K}}$. By Corollary 2.2, T_{Φ} is similar to an isometry, we denote by U the unitary summand of this isometry. By Lemma 2.3 we have that T is similar to U.

3. THE SUBSPACE \mathcal{K}

In this section we give a description of the subspace $\mathcal{K} = \bigcap_{\lambda \in \mathbb{D}} (T_{\Phi} - \lambda I) H^2$. By Lemma 2.3 the restriction $T = T_{\Phi}|_{\mathcal{K}}$ is similar to the unitary summand U of the isometry to which T_{Φ} is similar. Then we construct a linear bounded transformation $Z \colon \mathcal{K} \to \bigoplus_{n=0}^{N-1} L^1$, such that ker $Z = \{0\}$ and Z intertwines T^{-1} and the multiplication by $\overline{\zeta}$ in $\bigoplus_{n=0}^{N-1} L^1$, where ζ is the independent variable. We shall use this transformation Z to find U in the next section.

LEMMA 3.1. Let $F_n: \widehat{\mathbb{C}} \setminus \mathbb{T} \to \mathbb{C}$, n = 0, ..., N - 1, be analytic functions such that $\sum_{n=0}^{N-1} (F_n \circ \Phi)(z) z^n = 0$ for all $z \in \mathbb{D}$ such that $|\Phi(z)| \neq 1$. Then $F_n \equiv 0, n = 0, ..., N - 1$.

Proof. Let $\lambda \in \widehat{\mathbb{C}} \setminus \operatorname{clos} \mathbb{D}$ be such that $\Phi - \lambda$ has N simple zeros z_1, \ldots, z_N in \mathbb{D} . We have $\sum_{n=0}^{N-1} F_n(\lambda) z_j^n = 0, j = 1, \ldots, N$, therefore $F_n(\lambda) = 0, n = 0, \ldots, N-1$. Since the set of points $\lambda \in \widehat{\mathbb{C}} \setminus \operatorname{clos} \mathbb{D}$ such that $\Phi - \lambda$ has N simple zeros in \mathbb{D} is dense in $\widehat{\mathbb{C}} \setminus \operatorname{clos} \mathbb{D}$ and F_n are analytic, we conclude that $F_n \equiv 0$ in $\widehat{\mathbb{C}} \setminus \operatorname{clos} \mathbb{D}$, $n = 0, \ldots, N-1$. Further, let $\lambda \in \Lambda$, where Λ is the set defined in Lemma 2.5. Then $\Phi - \lambda$ has infinite number of simple zeros. Taking N different zeros of $\Phi - \lambda$ and acting as above we obtain that $F_n \equiv 0$ in $\mathbb{D}, n = 0, \ldots, N-1$.

LEMMA 3.2 (see [4]). Let $k \in H^2$, and let $\lambda \in \mathbb{C}$. Then $k \in (T_{\Phi} - \lambda)H^2$ if and only if there exists $k_{\lambda} \in H^2$ such that $p_{\lambda,k} = \alpha k - \beta(\varphi - \lambda \psi)k_{\lambda}$ is a polynomial and deg $p_{\lambda,k} \leq N - 1$. If these conditions are fulfilled, then $k = (T_{\Phi} - \lambda)k_{\lambda}$.

Proof. The "only if" part. We have $k = (T_{\Phi} - \lambda)k_{\lambda} = P_+(\varphi\overline{\psi} - \lambda)k_{\lambda}$ for some $k_{\lambda} \in H^2$, therefore $(\varphi\overline{\psi} - \lambda)k_{\lambda} = k + \overline{zh_{\lambda}}$ for some $h_{\lambda} \in H^2$, and $(\varphi - \lambda\psi)k_{\lambda} = \psi k + \psi \overline{zh_{\lambda}}$. We see that $\psi \overline{zh_{\lambda}} \in H^2 \cap \psi \overline{zH^2} = H^2 \ominus \psi H^2$ and it is well-known that

 $H^2 \ominus \psi H^2 = \frac{1}{\beta} \mathcal{P}_{N-1}$, where \mathcal{P}_{N-1} is the set of polynomials of degree no more that N - 1. Therefore $\psi \overline{zh_{\lambda}} = -\frac{1}{\beta} p_{\lambda,k}$, where $p_{\lambda,k} \in \mathcal{P}_{N-1}$, and the result follows. To prove the "if" part the same reasons must be used in the inverse order.

THEOREM 3.3. Let k be a function in \mathbb{D} . The following are equivalent:

(i) $k \in \mathcal{K}$;

(ii) $k \in H^2$ and there exist vanishing at infinity functions F_n analytic on $\widehat{\mathbb{C}} \setminus \mathbb{T}$ and such that the next equality holds for all $z \in \mathbb{D}$ such that $|\Phi(z)| \neq 1$:

(3.1)
$$(\alpha k)(z) = \sum_{n=0}^{N-1} (F_n \circ \Phi)(z) z^n.$$

Moreover, if $k \in \mathcal{K}$ *and* F_n *are defined by* k *in* (3.1)*, then*

(3.2)
$$F_n(\lambda) = (\alpha k - \beta (\varphi - \lambda \psi) (T - \lambda)^{-1} k, z^n), \quad \lambda \notin \mathbb{T},$$

and F_n has the following representation, where $f_n \in L^1(\mathbb{T}, m)$, n = 0, ..., N - 1:

(3.3)
$$F_n(\lambda) = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{f_n(\zeta) d\zeta}{\zeta - \lambda}, \quad \lambda \in \mathbb{C} \setminus \mathbb{T}.$$

REMARK. By Lemma 3.1 we have that F_n are defined by k in the only possible way.

Proof. Let $k \in \mathcal{K}$. Then, since $T - \lambda$ is invertible for any $\lambda \in \mathbb{C} \setminus \mathbb{T}$, by Lemma 3.2 we have $p_{\lambda,k} = \alpha k - \beta (\varphi - \lambda \psi) (T - \lambda)^{-1} k$. We put $F_n(\lambda) = (p_{\lambda,k}, z^n)$. Then (3.2) is fulfilled and F_n are analytic functions on $\mathbb{C} \setminus \mathbb{T}$. The equality $\lim_{\lambda \to \infty} F_n(\lambda)$ = 0 easily follows from the representation $p_{\lambda,k} = (\alpha T - \beta \varphi) (T - \lambda)^{-1} k$. Now, let $z \in \mathbb{D}$, let $\lambda = \Phi(z)$, and let $\lambda \notin \mathbb{T}$. Then $(\alpha k)(z) = \sum_{n=0}^{N-1} F_n(\lambda) z^n + \beta(z) (\varphi - \lambda \psi)(z)((T - \lambda)^{-1}k)(z)$, but $\Phi = \frac{\varphi}{\psi}$, therefore $(\varphi - \lambda \psi)(z) = 0$ and (3.1) follows. The representation (3.3) is a consequence of (3.2), the fact that *T* is similar to *U* and the part (i) of Lemma 2.4.

Now let $k \in H^2$, and let k has a representation (3.1). We take $\lambda \in \Lambda$, where Λ is the set from Lemma 2.5, and we put $p_{\lambda,k}(z) = \sum_{n=0}^{N-1} F_n(\lambda) z^n$. We shall show that $k \in (T_{\Phi} - \lambda) H^2$, and by Lemma 3.2 it is sufficient to show that

(3.4)
$$\frac{\alpha k - p_{\lambda,k}}{\beta(\varphi - \lambda \psi)} \in H^2.$$

Let $\varphi - \lambda \psi = \omega_{\lambda} g_{\lambda}$ be the inner-outer factorization of $\varphi - \lambda \psi$, where ω_{λ} is inner, g_{λ} is outer. Since $|\lambda| < 1$ and φ , ψ are inner, we have $\frac{1}{g_{\lambda}} \in H^{\infty}$, and, evidently, $\frac{1}{\beta} \in H^{\infty}$. Therefore (3.4) can be rewritten as $\alpha k - p_{\lambda,k} \in \omega_{\lambda} H^2$. By assumption on λ , the function ω_{λ} is a Blaschke product with simple zeros, therefore $\alpha k - p_{\lambda,k} \in \omega_{\lambda} H^2$ if and only if $(\alpha k)(z) = p_{\lambda,k}(z)$ for any zero z of ω_{λ} . But z is a zero of ω_{λ}

if and only if $\Phi(z) = \lambda$, and the equality $(\alpha k)(z) = p_{\lambda,k}(z)$ is a consequence of (3.1). Thus, we proved that $k \in (T_{\Phi} - \lambda)H^2$ for any $\lambda \in \Lambda$. By Lemma 2.5, the set Λ has a cluster point in \mathbb{D} , and by Lemma 2.3, $\bigcap_{\lambda \in \Lambda} (T_{\Phi} - \lambda I)H^2 = \mathcal{K}$.

In Theorem 3.4 below we shall introduce and study the spaces $\mathcal{E}(K)$ for compact sets *K*, which turn out to be spectral subspaces of *T*. We shall see it in the next section. In Corollary 3.5 below we shall introduce and study the mapping *Z*. We shall use this mapping in the next section. It is convenient to formulate properties of $\mathcal{E}(K)$ and *Z* separately, but to prove them together.

THEOREM 3.4. Let $K \subset \mathbb{T}$ be a compact set. We put $\mathcal{E}(K) = \{k \in \mathcal{K} : \text{the functions } F_n \text{ defined by } k \text{ in (3.1) have analytic continuation to } \mathbb{C} \setminus K \text{ for all } n = 0, \ldots, N-1\}$. Then $\mathcal{E}(K)$ is an invariant subspace of T and $\sigma(T|_{\mathcal{E}(K)}) \subset K$. Moreover, let $\lambda_0 \in \mathbb{C} \setminus K$, let $k \in \mathcal{E}(K)$, and let $G_n(\lambda) = \frac{F_n(\lambda) - F_n(\lambda_0)}{\lambda - \lambda_0}$, where $\lambda \in \mathbb{C} \setminus K$, $n = 0, \ldots, N-1$. Then the equality (3.1) holds with k replaced by $(T|_{\mathcal{E}(K)} - \lambda_0)^{-1}k$ and F_n replaced by G_n .

COROLLARY 3.5. The mapping

$$Z: \mathcal{K} \to \bigoplus_{n=0}^{N-1} L^1(\mathbb{T}, m), \quad Zk = \{f_n\}_{n=0}^{N-1}.$$

where f_n are defined by k in (3.2) and (3.3), is a linear bounded transformation, ker $Z = \{0\}$, and $ZT^{-1} = VZ$. Here

$$V: \bigoplus_{n=0}^{N-1} L^1(\mathbb{T}, m) \to \bigoplus_{n=0}^{N-1} L^1(\mathbb{T}, m)$$

is an operator defined by the next formula, where $\{f_n\}_{n=0}^{N-1} \in \bigoplus_{n=0}^{N-1} L^1(\mathbb{T}, m), \zeta \in \mathbb{T}$:

$$(V\{f_n\}_{n=0}^{N-1})(\zeta) = \{\overline{\zeta}f_n(\zeta)\}_{n=0}^{N-1}.$$

Proof of Theorem 3.4 *and Corollary* 3.5. The boundedness and injectivity of *Z* is a consequence of Theorem 3.3 and the part (ii) of Lemma 2.4. Now, we shall prove Theorem 3.4. First, the linearity of $\mathcal{E}(K)$ follows from (3.2). Further, let $\{k_j\}_{j=1}^{\infty} \subset \mathcal{E}(K)$, and let $k_j \rightarrow_j k$, where $k \in \mathcal{K}$. We need to check that $k \in \mathcal{E}(K)$. We put $Zk_j = \{f_{nj}\}_{n=0}^{N-1}$ and $Zk = \{f_n\}_{n=0}^{N-1}$, by already proved part of Corollary 3.5 we have

(3.5)
$$f_{nj} \rightarrow_j^{L^1(\mathbb{T})} f_n, \quad n = 0, \dots, N-1.$$

By the assumption, the functions F_{nj} , defined by f_{nj} as in (3.3), are analytic on $\mathbb{C}\setminus K$. Therefore $f_{nj} = 0$ a.e. on $\mathbb{T}\setminus K$, and the same is true for f_n by the convergence (3.5). Now, from (3.3) we conclude that $k \in \mathcal{E}(K)$. We proved that $\mathcal{E}(K)$ is a closed set.

Further, let $\lambda_0 \notin K$, let $k \in \mathcal{E}(K)$, and let G_n be defined as above. We put $p(z) = \sum_{n=0}^{N-1} F_n(\lambda_0) z^n$, $z \in \mathbb{D}$, and

(3.6)
$$h = \frac{\alpha k - p}{\varphi - \lambda_0 \psi} = \frac{1}{\psi} \frac{\alpha k - p}{\Phi - \lambda_0}.$$

From (3.6) we conclude that *h* is analytic on $\mathbb{D} \setminus \Phi^{-1}(\lambda_0)$ and that

(3.7)
$$(\psi h)(z) = \sum_{n=0}^{N-1} (G_n \circ \Phi)(z) z^n$$

for all $z \in \mathbb{D}$ such that $\Phi(z) \notin K \cup \{\lambda_0\}$. But the right part of (3.7) is analytic on a neighbourhood of any point z such that $\Phi(z) = \lambda_0$. Thus, h is analytic on a neighbourhood of $\Phi^{-1}(\lambda_0)$, and we have that h is analytic on \mathbb{D} .

Now we shall prove that $h \in H^2$. Let $D(\lambda_0)$ be a closed disk centered at λ_0 and such that F_n are analytic on $D(\lambda_0)$, n = 0, ..., N - 1. Let $z \in \mathbb{D}$ and $\Phi(z) = \lambda$. If $\lambda \in D(\lambda_0)$, we use (3.7) to obtain that $|(\psi h)(z)| \leq \sum_{n=0}^{N-1} |G_n(\lambda)| |z|^n \leq \sup\{|G_n(w)|, w \in D(\lambda_0), n = 0, ..., N - 1\}$. If $\lambda \notin D(\lambda_0)$, we use (3.6) to obtain that $|(\psi h)(z)| \leq \frac{|(\alpha k)(z)| + ||p||_{\infty}}{|\lambda - \lambda_0|} \leq \frac{|(\alpha k)(z)| + ||p||_{\infty}}{\varepsilon}$, where ε is the radius of $D(\lambda_0)$. Now it is easy to see that $h \in H^2$.

We put $k_0 = \frac{h}{\beta}$, from (3.7) and (3.1) we conclude that $k_0 \in \mathcal{K}$, and from (3.7) we have $k_0 \in \mathcal{E}(K)$. By Lemma 3.2 and by (3.6) we have $(T_{\Phi} - \lambda_0)k_0 = k$.

Thus, for arbitrary $k \in \mathcal{E}(K)$ there exists $k_0 \in \mathcal{E}(K)$ such that $(T_{\Phi} - \lambda_0)k_0 = k$, that is, $(T - \lambda_0)\mathcal{E}(K) \supset \mathcal{E}(K)$ for $\lambda_0 \notin K$. In particular, $(T - \lambda)\mathcal{E}(K) \supset \mathcal{E}(K)$ for all $\lambda \in \mathbb{C} \setminus \operatorname{clos} \mathbb{D}$, in the other words, $\mathcal{E}(K) \supset (T - \lambda)^{-1}\mathcal{E}(K)$, therefore $T\mathcal{E}(K) \subset \mathcal{E}(K)$. Now, $(T - \lambda_0)\mathcal{E}(K) \subset \mathcal{E}(K)$, and we have $(T - \lambda_0)\mathcal{E}(K) = \mathcal{E}(K)$. Since ker $(T - \lambda_0) = \{0\}$, we conclude that $T|_{\mathcal{E}(K)} - \lambda_0$ is invertible.

Finally, the intertwining property of *Z* is a consequence of Theorem 3.4 (where $K = \mathbb{T}$).

4. PROOF OF THEOREM 1.1

In this section we shall find the unitary summand U of the isometry to which T_{Φ} is similar. Since U is absolutely continuous, it is sufficient to find a local spectral multiplicity function \mathbf{n}_U of U. To do it, we shall use the transformation Z, which was defined in Corollary 3.5, and the similarity of $T = T_{\Phi}|_{\mathcal{K}}$ and U. We can consider U as the operator of multiplication by ζ in the space $\bigoplus_{n=1}^{\infty} L^2(\tau_n, m)$, where τ_n are measurable subsets of \mathbb{T} such that $\mathbb{T} \supset \tau_1 \supset \cdots \supset \tau_n \supset \tau_{n+1} \supset \cdots$. Then $\mathbf{n}_U(\zeta) = \max\{n : \zeta \in \tau_n\}$ for a.e. $\zeta \in \mathbb{T}$. Let $X : \bigoplus_{n=1}^{\infty} L^2(\tau_n, m) \to \mathcal{K}$ be a

transformation which gives the similarity of *T* and *U*. Then the transformation

$$ZX:\bigoplus_{n=1}^{\infty}L^{2}(\tau_{n},m)\to\bigoplus_{n=0}^{N-1}L^{1}(\mathbb{T},m)$$

intertwines the operators U^{-1} and V, where V is the multiplication by $\overline{\zeta}$ in the space $\bigoplus_{n=0}^{N-1} L^1(\mathbb{T}, m)$, and ker $ZX = \{0\}$. The space $\operatorname{clos} ZX \bigoplus_{n=1}^{\infty} L^2(\tau_n, m)$ is an invariant subspace of V, therefore there exists a measurable family of spaces $\mathbf{S}(\zeta) \subset \mathbb{C}^N, \zeta \in \mathbb{T}$, such that

$$\operatorname{clos} ZX \bigoplus_{n=1}^{\infty} L^{2}(\tau_{n}, m) = \left\{ \mathbf{f} \in \bigoplus_{n=0}^{N-1} L^{1}(\mathbb{T}, m) = L^{1}(\mathbb{T}, m; \mathbb{C}^{N}) : \mathbf{f}(\zeta) \in \mathbf{S}(\zeta) \text{ for a.e. } \zeta \in \mathbb{T} \right\},$$

and $\mathbf{n}_{U}(\zeta) = \dim \mathbf{S}(\zeta)$ for a.e. $\zeta \in \mathbb{T}$. The conclusion of Theorem 1.1 concerning U can be rewritten as $\mathbf{n}_{U}(\zeta) = N + 1 - \min\{n : 1 \le n \le N, \zeta \in \sigma_n\}$ for a.e. $\zeta \in \mathbb{T}$. To prove Theorem 1.1 we shall show that $\dim \mathbf{S}(\zeta) \ge N + 1 - \min\{n : 1 \le n \le N, \zeta \in \sigma_n\}$ and $\dim \mathbf{S}(\zeta) \le N + 1 - \min\{n : 1 \le n \le N, \zeta \in \sigma_n\}$. Theorem 4.2 shows that $\dim \mathbf{S}(\zeta) \ge N - \nu$ for a.e. $\zeta \in \mathcal{I}_{\nu} \setminus \mathcal{I}_{\nu+1} = \sigma_{\nu+1} \setminus \sigma_{\nu}$. To prove the inverse inequality we will use Lemma 4.6.

Before formulating Theorem 4.2 we need to prove Lemma 4.1 and to introduce the notation.

LEMMA 4.1. Let \mathcal{I} be an open subset of \mathbb{T} . We put $\mathfrak{E}(\mathcal{I}) = \{E \subset \mathbb{T} \setminus \mathcal{I} : E$ is separated from $(\mathbb{T} \setminus \mathcal{I}) \setminus E\}$, $\mathfrak{E}_0(\mathcal{I}) = \{E \in \mathfrak{E}(\mathcal{I}) : m(E) = 0\}$, and $\mathfrak{J}(\mathcal{I}) = \mathcal{I} \cup \bigcup_{E \in \mathfrak{I}} E$. Then:

 $E \in \mathfrak{E}_0(\mathcal{I})$

(i) $\mathfrak{J}(\mathcal{I})$ is an open subset of \mathbb{T} ;

(ii) $m(\mathfrak{J}(\mathcal{I})) = m(\mathcal{I});$

(iii) $\mathbb{T} \setminus \mathfrak{J}(\mathcal{I})$ does not contain (nonempty) separated subsets of zero measure;

(iv) if $a_0, b_0 \in \mathbb{T}$, $a_0 \neq b_0$, $I = [a_0, b_0]$ is a closed subarc of \mathbb{T} and E is a subset of $I \setminus \mathfrak{J}(\mathcal{I})$ such that E is separated from $(I \setminus \mathfrak{J}(\mathcal{I})) \setminus E$ and m(E) = 0, then $E \subset \{a_0, b_0\}$; in particular, if $(a_0, b_0) \setminus \mathfrak{J}(\mathcal{I}) \neq \emptyset$, then $m(I \setminus \mathfrak{J}(\mathcal{I})) > 0$.

Proof. First, we will show that $\mathfrak{E}(\mathcal{I})$ is no more than countable. We denote by \mathfrak{O} the collection of finite unions of open subarcs of \mathbb{T} which have rational endpoints. We note that $E \in \mathfrak{E}(\mathcal{I})$ if and only if there exists $\mathcal{O} \in \mathfrak{O}$ such that $\operatorname{clos} E \subset \mathcal{O}$ and $\mathcal{O} \cap ((\mathbb{T} \setminus \mathcal{I}) \setminus E) = \emptyset$. From the inclusion $\operatorname{clos} E \subset \mathbb{T} \setminus \mathcal{I}$ we conclude that $\operatorname{clos} E = E$. We have that for every $E \in \mathfrak{E}(\mathcal{I})$ there exists $\mathcal{O}_E \in \mathfrak{O}$ such that $E \subset \mathcal{O}_E$ and $\mathcal{O}_E \cap ((\mathbb{T} \setminus \mathcal{I}) \setminus E) = \emptyset$. If $E_1, E_2 \in \mathfrak{E}(\mathcal{I})$ and $E_1 \neq E_2$, from the last equality we conclude that $\mathcal{O}_{E_1} \neq \mathcal{O}_{E_2}$. But \mathfrak{O} is countable, therefore $\mathfrak{E}(\mathcal{I})$ is no more than countable set. Now (ii) is proved and (i) follows from the representation $\mathfrak{J}(\mathcal{I}) = \mathcal{I} \cup \bigcup_{E \in \mathfrak{E}_0(\mathcal{I})} \mathcal{O}_E$.

Parts (iii) and (iv) of the lemma can be proved in a similar way, so their proofs are omitted.

Let us recall that Φ is a function meromorphic in \mathbb{D} , and $\Phi = \frac{\varphi}{\psi}$, where φ is inner, ψ is a finite Blaschke product, deg $\psi = N < \infty$, and $N \leq \deg \varphi \leq \infty$. For n = 1, ..., N we introduced the sets $\mathcal{I}_n = \{\lambda \in \mathbb{T} : \Phi - \lambda \text{ has at least } n \text{ zeros}$ in \mathbb{D} (counted with multiplicities)}. Also, we put $\mathcal{I}_0 = \mathbb{T}$ and $\mathcal{I}_{N+1} = \emptyset$. It is evident that \mathcal{I}_n is an open subset of \mathbb{T} . Now, we put $\mathcal{J}_n = \mathfrak{J}(\mathcal{I}_n)$, where $\mathfrak{J}(\mathcal{I})$ for an open subset \mathcal{I} of \mathbb{T} is defined in Lemma 4.1. Also, we put $A = \{\lambda \in \mathbb{T} :$ there exists $z \in \mathbb{D}$ such that $\Phi(z) = \lambda$ and $\Phi'(z) = 0\}$. Evidently, A is no more than countable. We recall that the subspace $\mathcal{E}(K)$ for a compact set $K \subset \mathbb{T}$ was defined in Theorem 3.4.

THEOREM 4.2. We use the notation introduced above. Let $0 \le \nu \le N - 1$, and let $\lambda_0 \in \mathcal{I}_{\nu} \setminus (A \cup \mathcal{J}_{\nu+1})$. Then there exists a compact set $K(\lambda_0) \subset \mathbb{T}$ such that $\lambda_0 \in K(\lambda_0)$, the set $K(\lambda_0)$ does not contain (nonempty) separated subsets of zero measure, and there exists a linear bounded transformation

$$Y: \mathcal{E}(K(\lambda_0)) \to \bigoplus_{n=\nu}^{N-1} L^1(K(\lambda_0), m)$$

such that ker $Y = \{0\}$, clos $Y\mathcal{E}(K(\lambda_0)) = \bigoplus_{n=\nu}^{N-1} L^1(K(\lambda_0), m)$ and $YT^{-1} = VY$, where V acts in $\bigoplus_{n=\nu}^{N-1} L^1(K(\lambda_0), m)$ by the formula

$$(V\{f_n\}_{n=\nu}^{N-1})(\zeta) = \{\overline{\zeta}f_n(\zeta)\}_{n=\nu}^{N-1}.$$

To prove Theorem 4.2 we need the following lemmas.

LEMMA 4.3. Let $K \subset \mathbb{T}$ be a compact set, let m(K) > 0, and let v be a number, $0 \leq v \leq N$. Let $\eta_j : K \to \mathbb{C}$ be continuous functions such that $\eta_j(K) \cap \eta_\ell(K) = \emptyset$ for $j \neq \ell, j, \ell = 1, ..., v$. Further, let

(4.1)
$$\mathcal{M} = \begin{pmatrix} 1 & \eta_1 & \dots & \eta_1^{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \eta_\nu & \dots & \eta_\nu^{N-1} \end{pmatrix}$$

be a matrix-function. We put

$$\mathcal{L} = \mathcal{L}(K, \mathcal{M}) = \left\{ \{f_n\}_{n=0}^{N-1} \in \bigoplus_{n=0}^{N-1} L^1(K, m) : \mathcal{M}\{f_n\}_{n=0}^{N-1} = \mathbb{O} \right\},\$$

and we define the mapping $W = W(K, \mathcal{M}) : \mathcal{L} \to \bigoplus_{n=\nu}^{N-1} L^1(K, m)$ by the formula $W\{f_n\}_{n=0}^{N-1} = \{f_n\}_{n=\nu}^{N-1}$.

Then W is a linear bounded invertible transformation, and for

$$\{f_n\}_{n=\nu}^{N-1} \in \bigoplus_{n=\nu}^{N-1} L^1(K,m)$$

the elements of $W^{-1}{f_n}_{n=\nu}^{N-1}$ with numbers $0, \ldots, \nu-1$ are given by the formula ${f_n}_{n=0}^{\nu-1} = -\mathcal{M}_1^{-1}\mathcal{M}_2{f_n}_{n=\nu}^{N-1}$, where the matrix-functions \mathcal{M}_1 and \mathcal{M}_2 consist of the columns of \mathcal{M} with numbers $1, \ldots, \nu$ and $\nu + 1, \ldots, N$, respectively. If $\nu = N$, then the claim of the lemma is that $\mathcal{L} = \{0\}$.

The proof of Lemma 4.3 consists in easy computations. We mention only that the determinant of \mathcal{M}_1 is a Wandermonde determinant, which is not zero because $\eta_i(K) \cap \eta_\ell(K) = \emptyset$, if $j \neq \ell$.

LEMMA 4.4. Let $0 \le v \le N-1$, let $K \subset \mathbb{T}$ be a compact set, and let η_j , j = 1, ..., v, be functions analytic in a neighbourhood \mathcal{D} of K and such that for K and η_j , j = 1, ..., v, the assumption of Lemma 4.3 holds. Further, let $v \le \kappa \le N-1$, and let f_{κ} be a function on K such that F_{κ} is bounded on $\widehat{\mathbb{C}} \setminus K$. We put $f_n = 0$, $n \ne \kappa$, n = v, ..., N-1, $\{f_n\}_{n=0}^{N-1} = W^{-1}\{f_n\}_{n=v}^{N-1}$, and $g_{\kappa j}(\lambda) = \sum_{n=0}^{N-1} F_n(\lambda)(\eta_j(\lambda))^n$, $\lambda \in \mathcal{D} \setminus K$, j = 1, ..., v, where F_n are defined by f_n in (3.3), n = 0, ..., N-1. Then $g_{\kappa j}$ can be extended to functions analytic in \mathcal{D} , j = 1, ..., v.

Proof. We shall use the notation from Lemma 4.3. The elements a_{jn} of the matrix $-\mathcal{M}_1^{-1}\mathcal{M}_2$ are functions analytic and bounded on some neighbourhood $\mathcal{D}_1 \subset \mathcal{D}$ of K, and $f_n = a_{n\kappa}f_{\kappa}$, $n = 0, \ldots, \nu - 1$. Further,

$$g_{\kappa j}(\lambda) = \frac{1}{2\pi i} \int_{K} \frac{\left(\sum_{n=0}^{\nu-1} a_{n\kappa}(\zeta) f_{\kappa}(\zeta)\right) \eta_{j}^{n}(\lambda) + f_{\kappa}(\zeta) \eta_{j}^{\kappa}(\lambda)}{\zeta - \lambda} d\zeta$$
$$= \frac{1}{2\pi i} \int_{K} \frac{f_{\kappa}(\zeta)}{\zeta - \lambda} \left(\sum_{n=0}^{\nu-1} a_{n\kappa}(\zeta) \eta_{j}^{n}(\lambda) + \eta_{j}^{\kappa}(\lambda)\right) d\zeta$$

for $\lambda \in \mathcal{D}_1 \setminus K$. Further, $\sum_{n=0}^{\nu-1} a_{n\kappa} \eta_j^n$ is the element of $\mathcal{M}_1(-\mathcal{M}_1^{-1}\mathcal{M}_2) = -\mathcal{M}_2$ on

the intersection of the *j*th row and κ th column, that is, $\sum_{n=0}^{\nu-1} a_{n\kappa} \eta_j^n = -\eta_j^{\kappa}$, and

$$\sum_{n=0}^{\nu-1} a_{n\kappa}(\zeta)\eta_j^n(\lambda) + \eta_j^\kappa(\lambda) = \sum_{n=0}^{\nu-1} a_{n\kappa}(\zeta)\eta_j^n(\lambda) - \sum_{n=0}^{\nu-1} a_{n\kappa}(\lambda)\eta_j^n(\lambda) = \sum_{n=0}^{\nu-1} (a_{n\kappa}(\zeta) - a_{n\kappa}(\lambda))\eta_j^n(\lambda),$$

therefore

$$g_{\kappa j}(\lambda) = \frac{1}{2\pi i} \sum_{n=0}^{\nu-1} \eta_j^n(\lambda) \int\limits_K \frac{a_{n\kappa}(\zeta) - a_{n\kappa}(\lambda)}{\zeta - \lambda} f_{\kappa}(\zeta) d\zeta.$$

We put

$$\xi_n(\lambda) = \int\limits_K \frac{a_{n\kappa}(\zeta) - a_{n\kappa}(\lambda)}{\zeta - \lambda} f_{\kappa}(\zeta) \mathrm{d}\zeta, \quad \lambda \in \mathcal{D}_1 \setminus K.$$

We recall that $f_{\kappa} \in L^{\infty}(K, m)$ and $a_{n\kappa}$ are analytic on \mathcal{D}_1 . It is well-known (and easy to see by using the Morera theorem) that ξ_n are analytic on \mathcal{D}_1 . We have $g_{\kappa j} = \frac{1}{2\pi i} \sum_{n=0}^{\nu-1} \eta_j^n \xi_n$ on \mathcal{D}_1 , therefore $g_{\kappa j}$ are analytic on \mathcal{D}_1 , and, consequently, on \mathcal{D} .

Before formulating next lemmas we introduce some more notation. Let $0 \leq v \leq N$, and let $\lambda_0 \in \mathcal{I}_v \setminus A$. Then all zeros of $\Phi - \lambda_0$ are simple, and $\Phi - \lambda_0$ has at least v zeros z_1, \ldots, z_v in \mathbb{D} . There exist a closed disk $D(\lambda_0)$ centered at λ_0 and open sets $\mathcal{V}_1, \ldots, \mathcal{V}_v$, such that $z_j \in \mathcal{V}_j, \mathcal{V}_j \cap \mathcal{V}_\ell = \emptyset, j \neq \ell, \Phi$ is univalent on \mathcal{V}_j and $D(\lambda_0) \subset \Phi(\mathcal{V}_j), j, \ell = 1, \ldots, v$. We put

$$\eta_j = \Phi^{-1}|_{D(\lambda_0)} : D(\lambda_0) \to \mathbb{D}, \quad j = 1, \dots, \nu.$$

Then, evidently, η_j are analytic functions, $\Phi(\eta_j(\lambda)) = \lambda, \lambda \in D(\lambda_0), \eta_j(\Phi(z)) = z, z \in \eta_j(D(\lambda_0))$, and $\eta_j(D(\lambda_0)) \subset \mathcal{V}_j$, therefore $\eta_j(D(\lambda_0)) \cap \eta_\ell(D(\lambda_0)) = \emptyset$ if $j \neq \ell, j, \ell = 1, ..., \nu$.

We shall say that *the local branches* η_j *of the inverse function to* Φ *are well-defined on* $D(\lambda_0)$. Of course, η_j depend on λ_0 , and, if $\Phi - \lambda_0$ has more than ν zeros, on the choice of zeros z_1, \ldots, z_{ν} .

In what follows, we shall substitute $z = \eta_j(\lambda)$, $j = 1, ..., \nu$, into (3.1) and study the linear relations that are obtained in this way. Also, Lemmas 4.3 and 4.4, which are formulated for arbitrary functions η_j , really will be applied to local branches of the inverse function to Φ .

LEMMA 4.5. Let $0 \leq v \leq N$, and let $\lambda_0 \in \mathcal{I}_v \setminus (A \cup \mathcal{J}_{v+1})$. Then there exist a closed arc $I(\lambda_0) \subset \mathbb{T}$ and a closed disk $D(\lambda_0)$ centered at λ_0 such that $\lambda_0 \in I(\lambda_0)$, $(I(\lambda_0) \setminus \mathcal{J}_{v+1}) \cap A = \emptyset$, $I(\lambda_0) \setminus \mathcal{J}_{v+1}$ does not contain (nonempty) separated subsets of zero measure, $I(\lambda_0) \subset \operatorname{int} D(\lambda_0)$, and local branches of the inverse function to Φ are well-defined on $D(\lambda_0)$.

Proof. By the assumption, $\Phi - \lambda_0$ has exactly ν simple zeros z_1, \ldots, z_{ν} in \mathbb{D} . We take closed disks $D_1(\lambda_0)$, $D(\lambda_0)$ centered at λ_0 such that local branches of the inverse function to Φ are well-defined on $D(\lambda_0)$, $D_1(\lambda_0) \subset D(\lambda_0)$, $D_1(\lambda_0) \neq D(\lambda_0)$, and we put $I(\lambda_0) = D_1(\lambda_0) \cap \mathbb{T}$. By the construction, $\Phi - \lambda$ has exactly ν simple zeros in \mathbb{D} for any $\lambda \in I(\lambda_0) \setminus \mathcal{J}_{\nu+1}$. In particular, $(I(\lambda_0) \setminus \mathcal{J}_{\nu+1}) \cap A = \emptyset$.

We denote by a_0 and b_0 the ends of the arc $I(\lambda_0)$. Let *E* be a set such that $E \subset I(\lambda_0) \setminus \mathcal{J}_{\nu+1}, m(E) = 0$, and *E* is separated from $(I(\lambda_0) \setminus \mathcal{J}_{\nu+1}) \setminus E$. Then, by the part (iv) of Lemma 4.1, $E \subset \{a_0, b_0\}$, that is, $E = \emptyset$, or $E = \{a_0\}$, or $E = \{b_0\}$, or $E = \{a_0, b_0\}$. For definiteness, let $E = \{a_0\}$. Since $\{a_0\}$ is separated from $(I(\lambda_0) \setminus \mathcal{J}_{\nu+1}) \setminus \{a_0\}$, there exists a point $\zeta_0 \in \mathbb{T}$ such that the arc $(a_0, \zeta_0]$ is a subset of $I(\lambda_0)$ and $(a_0, \zeta_0] \subset \mathcal{J}_{\nu+1}$. In this case we replace $I(\lambda_0) = [a_0, b_0]$ by $[\zeta_0, b_0]$. If $\{b_0\}$ is separated from $(I(\lambda_0) \setminus \mathcal{J}_{\nu+1}) \setminus \{b_0\}$, too, we change $I(\lambda_0)$ once again. Now, the endpoints of the new (changed) arc $I(\lambda_0)$ belong to $\mathcal{J}_{\nu+1}$. By the

part (iv) of Lemma 4.1 we conclude that $I(\lambda_0) \setminus \mathcal{J}_{\nu+1}$ does not contain separated subsets of zero measure.

LEMMA 4.6. Let $0 \leq \nu \leq N$, let $\lambda_0 \in \mathcal{I}_{\nu} \setminus A$, and let $D(\lambda_0)$ be a closed disk such that local branches η_j , $j = 1, ..., \nu$, of the inverse function to Φ are well-defined on $D(\lambda_0)$. Further, let $K \subset D(\lambda_0) \cap \mathbb{T}$ be a compact set such that m(K) > 0, and let \mathcal{M} be the matrix-function defined in (4.1) by $\eta_j|_K$, $j = 1, ..., \nu$. Then $Z\mathcal{E}(K) \subset \mathcal{L}(K, \mathcal{M})$.

We recall that *Z* is defined in Corollary 3.5, and $\mathcal{E}(K)$ for a compact set *K* is defined in Theorem 3.4.

Proof. Let $k \in \mathcal{E}(K)$, let F_n be defined by k in (3.1), and let $\{f_n\}_{n=0}^{N-1} = Zk$. Then for F_n and f_n (3.3) holds, therefore F_n has angular boundary values F_{n+} and F_{n-} from inside of \mathbb{D} and from outside of \mathbb{D} , respectively, and $f_n = F_{n+} - F_{n-}$, $n = 0, \ldots, N-1$. From the definition of $\mathcal{E}(K)$ we have $f_n = 0$ on $\mathbb{T} \setminus K$. Further, ak is analytic on \mathbb{D} and η_j are analytic in $D(\lambda_0)$, $j = 1, \ldots, \nu$, therefore $(ak) \circ \eta_j$ are analytic in $D(\lambda_0)$, $j = 1, \ldots, \nu$. From (3.1) we have $((ak) \circ \eta_j)(\lambda) = \sum_{n=0}^{N-1} (F_n \circ \Phi)(\eta_j(\lambda))(\eta_j(\lambda))^n$ for all $\lambda \in D(\lambda_0)$ such that $|\Phi(\eta_j(\lambda))| \neq 1$. By the definition of η_j we have $\Phi(\eta_j(\lambda)) = \lambda$, that is,

(4.2)
$$((\alpha k) \circ \eta_j)(\lambda) = \sum_{n=0}^{N-1} F_n(\lambda)(\eta_j(\lambda))^n$$

for all $\lambda \in D(\lambda_0) \setminus \mathbb{T}$. But from the analyticity of $(\alpha k) \circ \eta_j$ on $D(\lambda_0)$ we have that $\lim_{\lambda \to \zeta, |\lambda| < 1} ((\alpha k) \circ \eta_j)(\lambda) = \lim_{\lambda \to \zeta, |\lambda| > 1} ((\alpha k) \circ \eta_j)(\lambda) \text{ for all } \zeta \in K \subset D(\lambda_0) \cap \mathbb{T}, \text{ and}$ from the last equality and (4.2) we have

$$\sum_{n=0}^{N-1} F_{n+}(\zeta)(\eta_j(\zeta))^n = \sum_{n=0}^{N-1} F_{n-}(\zeta)(\eta_j(\zeta))^n$$

for $\zeta \in K$. Therefore, $\sum_{n=0}^{N-1} f_n \eta_j^n = 0$ on $K, j = 1, \dots, \nu$.

Proof of Theorem 4.2. We apply Lemma 4.5 to the number ν and the point λ_0 . We put $K(\lambda_0) = I(\lambda_0) \setminus \mathcal{J}_{\nu+1}$. We apply Lemma 4.3 to the set $K(\lambda_0)$ and to the local branches η_j of the inverse function to Φ . Thus, we have the matrix-function \mathcal{M} and the mapping \mathcal{W} . We put Y = WZ, where Z was defined in Corollary 3.5. By Lemma 4.6 we have $Z\mathcal{E}(K(\lambda_0)) \subset \mathcal{L}(K(\lambda_0), \mathcal{M})$. Now we shall use Lemma 4.4 to prove that $\operatorname{clos} WZ\mathcal{E}(K(\lambda_0)) = \bigoplus_{n=\nu}^{N-1} L^1(K(\lambda_0), m)$.

By Theorem VIII.2.2 in [9], for any compact set $K \subset \mathbb{T}$ such that m(K) > 0there exists a function F analytic and bounded on $\widehat{\mathbb{C}} \setminus K$ and such that $f \neq 0$ a.e. on K, where $F(\lambda) = \frac{1}{2\pi i} \int_{K} \frac{f(\zeta) d\zeta}{\zeta - \lambda}$, $\lambda \notin K$; evidently, $f \in L^{\infty}(K, m)$. For the compact set $K(\lambda_0)$ we denote these functions by F_* and f_* . We fix a number κ , $\nu \leq \kappa \leq N - 1$. We construct the functions F_n , n = 0, ..., N - 1, by Lemma 4.4 with $f_{\kappa} = f_*$. We define a function h by the formula

$$h(z) = \sum_{n=0}^{N-1} F_n(\Phi(z)) z^n$$

for all $z \in \mathbb{D}$ such that $\Phi(z) \notin K(\lambda_0)$. We shall show that h can be continued into \mathbb{D} so that this continuation will be from $H^{\infty}(\mathbb{D})$. By Lemma 4.5, we have $\Phi^{-1}(K(\lambda_0)) \subset \bigcup_{j=1}^{\nu} \eta_j(D(\lambda_0))$, and $\eta_j(D(\lambda_0)) \cap \eta_\ell(D(\lambda_0)) = \emptyset$, if $j \neq \ell$. We fix $j, 1 \leq j \leq \nu$, and we write $h = (h \circ \eta_j) \circ \Phi$ on $\eta_j(D(\lambda_0) \setminus K(\lambda_0))$, and we have $h \circ \eta_j = g_{\kappa j}$, where $g_{\kappa j}$ is a function from Lemma 4.4. The function $g_{\kappa j}$ has an analytic continuation to $D(\lambda_0)$, therefore h has an analytic continuation to $\eta_j(D(\lambda_0))$. Thus, h has an analytic continuation in \mathbb{D} . Now we will check that h is bounded on \mathbb{D} . Since F_n are bounded on $\widehat{\mathbb{C}} \setminus D(\lambda_0)$, we have that h is bounded on $\mathbb{D} \setminus \bigcup_{j=1}^{\nu} \eta_j(D(\lambda_0))$. The set $\bigcup_{j=1}^{\nu} \eta_j(D(\lambda_0))$ is a compact set $(D(\lambda_0) = 0, n = 0, \dots, N-1,$ therefore h can be represented in the form $h = \alpha k$, where $k \in H^{\infty} \subset H^2$. From (3.1) we conclude that $k \in \mathcal{K}$. By the construction, $k \in \mathcal{E}(K(\lambda_0))$ and

$$WZk = \begin{pmatrix} 0 \\ \vdots \\ f_* \\ \vdots \\ 0 \end{pmatrix},$$

where the number of f_* in this column, numerated from ν to N - 1, is κ .

Now we use the intertwining property of the transformations W and Z. We shall denote by the same letter V the multiplication by $\overline{\zeta}$ in the spaces $\bigoplus_{\ell=n}^{N-1} L^1(K, m)$ for all numbers $n, 0 \leq n \leq N-1$, and all (measurable) sets $K \subset \mathbb{T}$. The equality $ZT^{-1} = VZ$ was proved in Corollary 3.5, the equality WV = VW is evident from the definition of W, and the inclusion $T^{-1}\mathcal{E}(K) \subset \mathcal{E}(K)$ for a compact set K is proved in Theorem 3.4. Now we write

$$WZT^{-n}k = \begin{pmatrix} 0\\ \vdots\\ \overline{\zeta}^n f_*\\ \vdots\\ 0 \end{pmatrix}, \quad n = 0, 1, 2, \dots$$

Since $K(\lambda_0) \neq \mathbb{T}$ and $f_* \neq 0$ a.e. on $K(\lambda_0)$, we have $\bigvee_{n=0}^{\infty} \overline{\zeta}^n f_* = L^1(K(\lambda_0), m)$. Now we conclude that

$$\begin{pmatrix} 0\\ \vdots\\ L^{1}(K(\lambda_{0}), m)\\ \vdots\\ 0 \end{pmatrix} \subset \operatorname{clos} WZ\mathcal{E}(K(\lambda_{0})),$$

where the number of $L^1(K(\lambda_0), m)$ in this column, numerated from ν to N-1, is κ . Since κ was arbitrary number from ν to N-1, we can conclude that

$$\bigoplus_{n=\nu}^{N-1} L^1(K(\lambda_0), m) \subset \operatorname{clos} WZ\mathcal{E}(K(\lambda_0)).$$

Thus, we achieve the equality $\operatorname{clos} Y \mathcal{E}(K(\lambda_0)) = \bigoplus_{n=\nu}^{N-1} L^1(K(\lambda_0), m)$. The equalities ker $Y = \{0\}$ and $YT^{-1} = VY$ are evident consequences of the construction of Y.

Proof of Theorem 1.1. We recall that U is an absolutely continuous unitary operator which is similar to $T = T_{\Phi}|_{\mathcal{K}}$. We can consider U as the operator of multiplication by ζ in the space $\bigoplus_{n=1}^{\infty} L^2(\tau_n, m)$, where τ_n are measurable subsets of \mathbb{T} such that $\mathbb{T} \supset \tau_1 \supset \cdots \supset \tau_n \supset \tau_{n+1} \supset \cdots$. Further, there exists a linear bounded invertible transformation $X : \bigoplus_{n=1}^{\infty} L^2(\tau_n, m) \to \mathcal{K}$ such that XU = TX. From Corollary 3.5 we have that the linear bounded transformation $ZX : \bigoplus_{n=1}^{\infty} L^2(\tau_n, m) \to \bigoplus_{n=0}^{N-1} L^1(\mathbb{T}, m)$ intertwines U^{-1} and V and that ker $ZX = \{0\}$. From this facts we obtain that $m(\tau_n) = 0$ for n > N, that is, $\bigoplus_{n=1}^{\infty} L^2(\tau_n, m) = \bigoplus_{n=1}^{N} L^2(\tau_n, m)$.

Let ν and λ_0 be as in Theorem 4.2, and let $\mathcal{F}_0 = X^{-1}\mathcal{E}(K(\lambda_0))$. Then \mathcal{F}_0 is a subspace of $\bigoplus_{n=1}^{N} L^2(\tau_n, m)$ such that $U\mathcal{F}_0 \subset \mathcal{F}_0$ and $U^{-1}\mathcal{F}_0 \subset \mathcal{F}_0$. Therefore $U|_{\mathcal{F}_0}$ is a unitary operator which is unitarily equivalent to the multiplication by ζ in $\bigoplus_{n=1}^{N} L^2(\tau_{0n}, m)$, where $\mathbb{T} \supset \tau_{01} \supset \cdots \supset \tau_{0N}$, and, evidently, $\tau_{0n} \subset \tau_n, n = 1, \dots, N$. By Theorem 4.2, there exists a linear bounded transformation

$$Y_0: \bigoplus_{n=1}^N L^2(\tau_{0n}, m) \to \bigoplus_{n=\nu}^{N-1} L^1(K(\lambda_0), m)$$

such that

$$\ker Y_0 = \{0\}, \quad \operatorname{clos} Y_0\Big(\bigoplus_{n=1}^N L^2(\tau_{0n}, m)\Big) = \bigoplus_{n=\nu}^{N-1} L^1(K(\lambda_0), m), \quad Y_0\overline{\zeta} = \overline{\zeta}Y_0.$$

From this fact we conclude that $\tau_{0n} = K(\lambda_0)$, $n = 1, ..., N - \nu$, and $\tau_{0n} = \emptyset$, $n = N - \nu + 1, ..., N$. From the inclusions $\tau_{0n} \subset \tau_n$, n = 1, ..., N, we conclude that $K(\lambda_0) \subset \tau_{N-\nu}$. Since ν was an arbitrary number between 0 and N - 1 and λ_0 was an arbitrary point from $\mathcal{I}_{\nu} \setminus (A \cup \mathcal{J}_{\nu+1})$, we conclude that $\mathcal{I}_n \setminus \mathcal{J}_{n+1} \subset \tau_{N-n}$, n = 0, ..., N - 1. From the equalities $m(\mathcal{J}_{n+1}) = m(\mathcal{I}_{n+1})$ and $\sigma_n = \mathbb{T} \setminus \mathcal{I}_n$ we conclude that $\sigma_{n+1} \setminus \sigma_n \subset \tau_{N-n}$, and, using the inclusions $\sigma_n \subset \sigma_{n+1}$ and $\tau_{n+1} \subset \tau_n$, we obtain $\sigma_{n+1} \subset \tau_{N-n}$, n = 0, ..., N - 1.

Now let us suppose that for some ν , $1 \leq \nu \leq N$, the set $\tau_{N-\nu+1} \setminus \sigma_{\nu}$ has positive measure. Then there exists a compact set K_0 such that $K_0 \subset \tau_{N-\nu+1} \setminus \sigma_{\nu}$, $m(K_0) > 0$ and K_0 does not contain separated subsets of zero measure. We have $K_0 \subset \mathcal{I}_{\nu}$, therefore $(\mathcal{I}_{\nu} \setminus A) \cap K_0 \neq \emptyset$. Let $\lambda_0 \in (\mathcal{I}_{\nu} \setminus A) \cap K_0$, and let $D(\lambda_0)$ be a closed disk such that local branches η_i , $j = 1, \ldots, \nu$, of the inverse function to Φ are well-defined on $D(\lambda_0)$. We put $K = K_0 \cap D(\lambda_0)$. By the part (iv) of Lemma 4.1 applied to $\mathbb{T} \setminus K_0 = \mathfrak{J}(\mathbb{T} \setminus K_0)$, we have m(K) > 0. We put $\mathcal{F} =$ $N \! - \! \nu \! + \! 1$ $^{1}L^{2}(K,m)$ and $\mathcal{E} = X\mathcal{F}$. Then $\mathcal{E} \subset \mathcal{K}$, the subspace \mathcal{E} is invariant for T, and \oplus n=1 $\sigma(T|_{\mathcal{E}}) \subset K$. Let $k \in \mathcal{E}$, and let $\{F_n\}_{n=0}^{N-1}$ be the functions defined by k in (3.2). From the equality $(T - \lambda)^{-1}|_{\mathcal{E}} = (T|_{\mathcal{E}} - \lambda)^{-1}, \lambda \notin \mathbb{T}$, we conclude that F_n has an analytic continuation to $\widehat{\mathbb{C}} \setminus K$, n = 0, ..., N - 1, that is, $k \in \mathcal{E}(K)$. We have $\mathcal{E} \subset \mathcal{E}(K)$. By Lemma 4.6 $Z\mathcal{E}(K) \subset \mathcal{L}(K, \mathcal{M})$, where the matrix \mathcal{M} is constructed by the functions η_i , $j = 1, ..., \nu$, as in Lemma 4.3. Thus, by Lemmas 4.3 and 4.6 we have $WZ\mathcal{E}(K) \subset \bigoplus_{n=\nu}^{N-1} L^1(K,m)$. Consequently, $WZX\mathcal{F} \subset \bigoplus_{n=\nu}^{N-1} L^1(K,m)$. The linear bounded transformation WZX acts from $\bigoplus_{n=1}^{N-\nu+1} L^2(K,m)$ to $\bigoplus_{n=\nu}^{N-1} L^1(K,m)$, has zero kernel and intertwines the multiplications by $\overline{\zeta}$ in these spaces. From this fact we must conclude that the number of summands in $\bigoplus_{n=1}^{N-\nu+1} L^2(K, m)$ is no N-1more than the number of summands in $\bigoplus L^1(K, m)$, which is a contradiction. We obtain $\sigma_n = \tau_{N-n+1}$, $n = 1, \ldots, N$.

5. EXAMPLES AND REMARKS

Let us recall that we consider functions Φ of the form $\Phi = \frac{\varphi}{\psi}$, where φ is inner, ψ is a finite Blaschke product, deg $\psi = N < \infty$, $N \leq \deg \varphi \leq \infty$, φ and ψ are relatively prime, and we put $\Omega_{\Phi} = \{z \in \mathbb{D} : |\Phi(z)| > 1\}$.

5.1. Some technical lemmas.

LEMMA 5.1. Let μ be a positive atomic measure on \mathbb{T} with the weight (denoted by the same letter μ) at the point 1 only. Let $\varphi_{\mu}(z) = \exp\left(-\mu\frac{1+z}{1-z}\right)$, $\psi(z) = z, z \in \mathbb{D}$, and let $\Phi_{\mu} = \frac{\varphi_{\mu}}{\psi}$. Further, let $0 < \mu < 2$. Then $\arg \Phi_{\mu}(e^{it})$ increases on $(0, t(\mu)) \cup$ $(2\pi - t(\mu), 2\pi)$ and decreases on $(t(\mu), 2\pi - t(\mu))$, where $t(\mu) = \arccos(1 - \mu)$. Thus, $\partial \Omega_{\Phi_{\mu}} \cap \mathbb{T} = \{e^{it} : t \in [t(\mu), 2\pi - t(\mu)]\}$. Further, $m(\partial \Omega_{\Phi_{\mu}} \cap \mathbb{T})$ decreases from 1 to 0, when μ ranges over (0, 2). If $\mu = 2$, then $\partial \Omega_{\Phi_{\mu}} \cap \mathbb{T} = \{-1\}$, and if $\mu > 2$, then $\partial \Omega_{\Phi_{\mu}} \cap \mathbb{T} = \emptyset$.

The proof of Lemma 5.1 consists of a trivial computation and is omitted.

The following two lemmas describe some properties of functions that are compositions with Φ .

LEMMA 5.2. Let s_1, s_2 be numbers such that $-\pi < s_1 < s_2 < \pi$, let $J = \{e^{is} : s \in [s_1, s_2]\}$, and let $w(e^{is}) = ((s - s_1)(s_2 - s))^{-1/2}$, where $s_1 < s < s_2$. Further, let $\omega : \widehat{\mathbb{C}} \setminus J \to \mathbb{D}$ be a conformal mapping. Then there exist a constant C > 0 such that

(5.1)
$$||F \circ \omega^{-1}||_{H^2} \leq C ||f||_{L^2(J,wdm)}$$

for every $f \in L^2(J, wdm)$, where

(5.2)
$$F(\lambda) = \frac{1}{2\pi i} \int_{J} \frac{f(\zeta) d\zeta}{\zeta - \lambda}, \quad \lambda \in \widehat{\mathbb{C}} \setminus J.$$

Proof. First, we extend w on \mathbb{T} by the formula $w(e^{is}) = (|s-s_1| |s-s_2|)^{-1/2}$, where $-\pi < s < \pi$, and we show that w satisfies Helson–Szegö condition. The function $h(z) = \log(1 + e^{i(\pi-s_1)}z) + \log(1 + e^{i(\pi-s_2)}z), z \in \mathbb{D}$, is analytic in \mathbb{D} , and $-\frac{i}{2}h = v + i\tilde{v}$ on \mathbb{T} , where

$$v(\mathbf{e}^{\mathrm{i}s}) = \begin{cases} \frac{1}{2} \left(s - \frac{s_1 + s_2}{2} + \pi \right) & -\pi < s < s_1, \\ \frac{1}{2} \left(s - \frac{s_1 + s_2}{2} \right) & s_1 < s < s_2, \\ \frac{1}{2} \left(s - \frac{s_1 + s_2}{2} - \pi \right) & s_2 < s < \pi. \end{cases}$$

We put

$$u(e^{is}) = -\frac{1}{2}\log\frac{|s-s_1||s-s_2|}{4\sin\frac{|s-s_1|}{2}\sin\frac{|s-s_2|}{2}}$$

We have $\log w = u + \tilde{v}$, $u, v \in L^{\infty}(\mathbb{T}, m)$ and $||v||_{\infty} < \frac{\pi}{2}$. Thus, w satisfies Helson–Szegö condition. Therefore there exist a constant $C_1 > 0$ such that

$$||F_{\pm}||_{L^{2}(\mathbb{T},wdm)} \leq C_{1}||f||_{L^{2}(J,wdm)}$$

for every $f \in L^2(J, wdm)$, where *F* is defined by *f* in (5.2) and *F*₊, *F*₋ are angular boundary values of *F* from inside of \mathbb{D} and from outside of \mathbb{D} , respectively.

Further, it is sufficient to check the estimate (5.1) for functions f smooth on \mathbb{T} and vanishing on $\mathbb{T} \setminus J$ only. We have that $F \circ \omega^{-1} \in H^{\infty}$ for smooth f. By usual change of variables

$$\int_{\mathbb{T}} |F \circ \omega^{-1}|^2 \mathrm{d}m \asymp \int_{J} |F_+|^2 w \mathrm{d}m + \int_{J} |F_-|^2 w \mathrm{d}m \leqslant 2C_1^2 ||f||_{L^2(J,w \mathrm{d}m)}^2$$

(where $a \simeq b$ denotes, as usual, that there exist positive constants *c*, *C* such that $ca \leq b \leq Ca$). Lemma is proved.

COROLLARY 5.3. Suppose that the conditions of Lemma 5.2 are fulfilled, and $\Phi: \mathbb{D} \to \widehat{\mathbb{C}} \setminus J$ is a meromorphic function. Then there exist a constant C > 0 such that

$$\|F \circ \Phi\|_{H^2} \leqslant C \|f\|_{L^2(J,wdm)}$$

for every $f \in L^2(J, wdm)$, where F is defined by f in (5.2).

Proof. We apply the Littlewood subordination theorem (see, for example, Theorem 1.7 in [7]) to the analytic function $\omega \circ \Phi \colon \mathbb{D} \to \mathbb{D}$. We obtain that there exists a constant C_1 (which depends on $\omega \circ \Phi$) such that

$$\|h \circ (\omega \circ \Phi)\|_{H^2} \leqslant C_1 \|h\|_{H^2}$$

for any $h \in H^2$. We write $F \circ \Phi = (F \circ \omega^{-1}) \circ (\omega \circ \Phi)$. The estimate (5.3) follows from the last equality and the estimates (5.1) and (5.4).

LEMMA 5.4. Let $\mathcal{I} \subset \mathbb{T}$ be an open arc, and let $\mathcal{G} \subset \mathbb{D}$ be a simple Jordan domain such that $\partial \mathcal{G} \cap \mathbb{T} = \operatorname{clos} \mathcal{I}$. Further, let $\Phi \colon \mathbb{D} \to \widehat{\mathbb{C}}$ be a meromorphic function such that Φ has angular boundary values $\Phi(\zeta) \in \mathbb{T}$ at a.e. $\zeta \in \mathcal{I}$ and $\Phi(\operatorname{clos} \mathcal{G} \cap \mathbb{D}) \subset \mathbb{D}$. Finally, let \mathcal{I}_0 be a closed arc such that $\mathcal{I}_0 \subset \mathcal{I}$. Then there exists a constant C such that $\int_{\mathcal{I}_0} |F \circ \Phi| \mathrm{d}m \leq C \int_{\mathbb{T}} |F| \mathrm{d}m$ for any $F \in L^1(\mathbb{T}, m)$.

Proof. Let $\omega \colon \mathbb{D} \to \mathcal{G}$ be a conformal mapping. By well-known properties of conformal mappings, ω can be extended to a continuous function (denoted by the same letter) $\omega \colon \operatorname{clos} \mathbb{D} \to \operatorname{clos} \mathcal{G}$, and ω^{-1} is continuous, too. We put $\Gamma = \omega^{-1}(\mathcal{I})$ and $\Gamma_0 = \omega^{-1}(\mathcal{I}_0)$. We have that ω is analytic on Γ and $|\omega'| \simeq 1$ on Γ_0 .

Further, if $\zeta \in \mathcal{I}$ and Φ has angular boundary value $\Phi(\zeta)$ at ζ , then $\Phi \circ \omega$ has an angular boundary value $\Phi(\zeta)$ at $\omega^{-1}(\zeta)$. Let $\sigma \subset \mathbb{T}$ be a measurable set. We put $\Phi^{-1}(\sigma) = \{\zeta \in \mathcal{I}_0 : \Phi$ has angular boundary value $\Phi(\zeta)$ at ζ and $\Phi(\zeta) \in \sigma\}$ and $(\Phi \circ \omega)^{-1}(\sigma) = \{\zeta \in \Gamma_0 : \Phi \circ \omega$ has angular boundary value $(\Phi \circ \omega)(\zeta)$ at ζ and $(\Phi \circ \omega)(\zeta) \in \sigma\}$. We put $\mu(\sigma) = m(\Phi^{-1}(\sigma))$. We have $\omega((\Phi \circ \omega)^{-1}(\sigma)) = \Phi^{-1}(\sigma) \cup e$, where $e \subset \mathcal{I}_0$ and Φ has no angular boundary values on *e*. By assumption, m(e) = 0, hence, $\mu(\sigma) = m(\omega((\Phi \circ \omega)^{-1}(\sigma)))$. By usual change of variables,

$$m(\omega((\Phi \circ \omega)^{-1}(\sigma))) = \int_{(\Phi \circ \omega)^{-1}(\sigma)} |\omega'| \mathrm{d}m \leqslant C_1 m((\Phi \circ \omega)^{-1}(\sigma)),$$

where C_1 is from the estimate $|\omega'| \simeq 1$ on Γ_0 . Now we apply Theorem VIII.30 from [15] to the function $\Phi \circ \omega \colon \mathbb{D} \to \mathbb{D}$. We obtain that there exists a constant C_2 such that $m((\Phi \circ \omega)^{-1}(\sigma)) \leq C_2 m(\sigma)$ for any measurable set $\sigma \subset \mathbb{T}$. Thus, $\mu(\sigma) \leq C_1 C_2 m(\sigma)$, in particular, μ is a measure absolutely continuous with respect to m. By the Radon–Nikodym theorem, there exists a function $h \in L^{\infty}(\mathbb{T}, m)$, $h \ge 0$, such that $\mu(\sigma) = \int_{\sigma} h \, dm$ for any measurable set $\sigma \subset \mathbb{T}$. By the change of variable theorem, $\int_{\mathcal{I}_0} F \circ \Phi \, dm = \int_{\mathbb{T}} Fh \, dm$ for any measurable function F, and the lemma is proved.

5.2. SUBARCS OF $\partial \Omega_{\Phi} \cap \mathbb{T}$ AND ANALYTICITY OF Φ ON SUBARCS OF \mathbb{T} . Let $I \subset \mathbb{T}$ be an open arc, and suppose Φ has an analytic continuation throughout I. From well-known properties of analytic functions it is easy to see that $I \cap \partial \Omega_{\Phi}$ consists of no more than a countable union of mutually separated points and subarcs of I, closed as subsets of I. Moreover, if J is an open arc such that $J \subset I \cap \partial \Omega_{\Phi}$, then arg Φ decreases on J. On the other hand, if $I \subset \mathbb{T}$ is an open arc such that $I \subset \partial \Omega_{\Phi}$, then Φ has an analytic continuation throughout I [8].

However, there exist functions Φ such that $m(\partial \Omega_{\Phi} \cap \mathbb{T}) > 0$ and $\partial \Omega_{\Phi} \cap \mathbb{T}$ does not contain open arcs. An example of such Φ with $\psi(z) = z, z \in \mathbb{D}$, is given in [8].

5.3. THE CASE N = 1. In this subsection, we consider the functions Φ of the form $\Phi = \frac{\varphi}{\psi}$, where φ is inner and ψ is a Blaschke factor, that is, deg $\psi = 1$.

LEMMA 5.5 ([8]). Let $\Phi = \frac{\varphi}{\psi}$, where φ is inner, ψ is a Blaschke factor, and let $\Omega_{\Phi} = \{z \in \mathbb{D} : |\Phi(z)| > 1\}$. Then Ω_{Φ} is a simple Jordan domain and $\Phi|_{\Omega_{\Phi}}$ is a conformal mapping of Ω_{Φ} onto $\widehat{\mathbb{C}} \setminus \operatorname{clos} \mathbb{D}$, in particular, $\Phi|_{\partial\Omega_{\Phi}}$ is a homeomorphism of $\partial\Omega_{\Phi}$ and \mathbb{T} .

REMARK. As was mentioned in the previous subsection, there exists a function Φ such that $m(\partial \Omega_{\Phi} \cap \mathbb{T}) > 0$ and $\partial \Omega_{\Phi} \cap \mathbb{T}$ does not contain open arcs. By Theorems 1.1 and 2.7 T_{Φ} is similar to $U \oplus S$, where S is a unilateral shift of infinite multiplicity, and U is the operator of the multiplication by independent variable in the space $L^2(\Phi(\partial \Omega_{\Phi} \cap \mathbb{T}), m)$. By Theorem 2.7, $m(\Phi(\partial \Omega_{\Phi} \cap \mathbb{T})) > 0$, and by Lemma 5.5, $\Phi(\partial \Omega_{\Phi} \cap \mathbb{T})$ does not contain open arcs.

The following lemma shows that in the case N = 1 the space L^1 in Corollary 3.5 can be replaced by L^2 .

LEMMA 5.6. Let $\Phi = \frac{\varphi}{\psi}$, where φ is inner and ψ is a Blaschke factor. We recall that the space \mathcal{K} was defined in the end of Section 2, and the transformation $Z \colon \mathcal{K} \to L^1(\mathbb{T}, m)$ was defined in Corollary 3.5. We have that $Z\mathcal{K} \subset L^2(\mathbb{T}, m)$ and $Z \colon \mathcal{K} \to L^2(\mathbb{T}, m)$ is a linear bounded transformation.

Proof. We recall that $\alpha(z) = z - \delta$, where δ is the only zero of ψ . By Theorem 3.3, $\mathcal{K} = \{k \in H^2 : \text{there exists a vanishing at infinity function <math>F$ analytic on $\widehat{\mathbb{C}} \setminus \mathbb{T}$ such that $(\alpha k)(z) = (F \circ \Phi)(z)$ for all $z \in \mathbb{D}$ such that $|\Phi(z)| \neq 1\}$. But αk is analytic on \mathbb{D} , therefore F must be analytic on $\Phi(\mathbb{D})$. It is evident that $k \in H^2$ if and only if $F \circ \Phi \in H^2$. Further, if $F \circ \Phi \in H^2$, then, acting in the same way as in the proof of Proposition 3.3 of [14], we obtain that $F|_{\mathbb{D}} \in H^2(\mathbb{D})$ and $F|_{\widehat{\mathbb{C}}\setminus \operatorname{clos} \mathbb{D}} \in H^2(\widehat{\mathbb{C}} \setminus \operatorname{clos} \mathbb{D})$. Therefore angular boundary values F_+ , F_- of F from inside of \mathbb{D} and from outside of \mathbb{D} belong to $L^2(\mathbb{T}, m)$, hence, $f = F_+ - F_- \in L^2(\mathbb{T}, m)$. Thus, $Zk = f \in L^2(\mathbb{T}, m)$. By the closed graph theorem, $Z: \mathcal{K} \to L^2(\mathbb{T}, m)$ is bounded.

In the following lemma we consider a particular case of functions Φ , and we construct a linear bounded transformation which gives a similarity of $T = T_{\Phi}|_{\mathcal{K}}$ and the unitary summand U of isometry to which T_{Φ} is similar.

LEMMA 5.7. Let $\Phi = \frac{\varphi}{\psi}$, where φ is inner, ψ is a Blaschke factor, and let $\Omega_{\Phi} = \{z \in \mathbb{D} : |\Phi(z)| > 1\}$. Further, let $I \subset \mathbb{T}$ be a closed subarc such that $I \subset \partial \Omega_{\Phi}$ and there is no arc \mathcal{I} such that I is a proper subset of \mathcal{I} and $\mathcal{I} \subset \partial \Omega_{\Phi}$. We put $J = \Phi(I)$. We have that J is a closed arc and $J \neq \mathbb{T}$. For convenience, we suppose that $J = \{e^{is} : s \in [s_1, s_2]\}$, where $-\pi < s_1 < s_2 < \pi$. Further, let Φ be analytic on a neighbourhood of I. We put $w(e^{is}) = ((s - s_1)(s_2 - s))^{-1/2}$, where $s_1 < s < s_2$. Then $Z : \mathcal{E}(J) \to L^2(J, wdm)$ is a bounded invertible transformation, which gives the similarity of $T^{-1}|_{\mathcal{E}(J)}$ and the multiplication by $\overline{\zeta}$ on $L^2(J, wdm)$, where ζ is the independent variable.

We recall that $\mathcal{E}(K)$ for $K \subset \mathbb{T}$ was defined in Theorem 3.4, and the transformation *Z* was defined in Corollary 3.5.

Proof. We recall that $\alpha(z) = z - \delta$, where δ is the only zero of ψ . By Lemma 5.5 $\Phi(\mathbb{D}) \subset \widehat{\mathbb{C}} \setminus J$, therefore it is easy to see that $\mathcal{E}(J) = \{k \in H^2 : \text{there exists a vanishing at infinity function } F$ analytic on $\widehat{\mathbb{C}} \setminus J$ such that $\alpha k = F \circ \Phi\}$.

We define the mapping $\mathcal{Z}: L^2(J, wdm) \to H^2$ by the formula $\mathcal{Z}f = F \circ \Phi$, where *F* is defined by *f* in (5.2). By Corollary 5.3 \mathcal{Z} is bounded. We define the mapping $\mathcal{Z}_1: L^2(J, wdm) \to H^2$ by the formula $\mathcal{Z}_1f = \frac{1}{\alpha}F \circ \Phi$, where *F* is defined by *f* in (5.2). Since \mathcal{Z} is bounded, we have \mathcal{Z}_1 is bounded.

By Lemma 5.6 we have that $Z\mathcal{E}(J) \subset L^2(J,m)$, therefore to show that $Z\mathcal{E}(J) \subset L^2(J, wdm)$ we need to check only that $Z\mathcal{E}(J) \subset L^2(J_1 \cup J_2, wdm)$, where J_1 and J_2 are some closed arcs such that $J_1, J_2 \subset J, J_1 \cap J_2 = \emptyset$ and $e^{is_j} \in J_j, j = 1, 2$. We denote the ends of I by e^{it_j} , then $\Phi(e^{it_j}) = e^{is_j}, j = 1, 2$. By the assumption, we can choose closed arcs I_1, I_2 such that $I_j \cap I = e^{it_j}, j = 1, 2$, and Φ is analytic in a neighbourhood of $I \cup I_1 \cup I_2$. By the assumption, arg Φ decreases on I and increases on I_1 and on I_2 , therefore $\Phi'(e^{it_j}) = 0$, and $\Phi(I_j) \subset J$, if I_j is sufficiently small, j = 1, 2. We request that $\Phi(I_1) \cap \Phi(I_2) = \emptyset$, too. We put $J_j = \Phi(I_j), j = 1, 2$. From the form of Φ we conclude that $\Phi''(e^{it_j}) \neq 0, j = 1, 2$. Indeed, if $\Phi''(e^{it_j}) = 0$, it would imply that $\Phi - \lambda$ has two zeros in \mathbb{D} for λ from a neighbourhood of e^{is_j} , which contradicts to Lemma 2.6. Now let *F* be a function analytic on $\widehat{\mathbb{C}} \setminus J$ and such that $F \circ \Phi \in H^2$. Then

$$\int_{\mathbb{T}} |F \circ \Phi|^2 dm \ge \int_{I \cup I_1 \cup I_2} |F \circ \Phi|^2 dm$$

$$= \int_{J} |F_-|^2 \frac{dm}{|\Phi' \circ \Phi_I^{-1}|} + \int_{J_1} |F_+|^2 \frac{dm}{|\Phi' \circ \Phi_{I_1}^{-1}|} + \int_{J_2} |F_+|^2 \frac{dm}{|\Phi' \circ \Phi_{I_2}^{-1}|},$$

where $\Phi_{\mathcal{I}}^{-1}$ denote the branch of Φ^{-1} with values on \mathcal{I} . From analyticity of Φ on a neighbourhood of $I \cup I_1 \cup I_2$ we obtain that $w \simeq \frac{1}{|\Phi' \circ \Phi_{\mathcal{I}}^{-1}|}$ for $\mathcal{I} = I, I_1, I_2$. Thus, $F_{\pm} \in L^2(J_1 \cup J_2, wdm)$, and $f = F_+ - F_- \in L^2(J_1 \cup J_2, wdm)$. We proved that $Z\mathcal{E}(J) \subset L^2(J, wdm)$. Now we write $Z^{-1} = Z_1$, and Lemma 5.7 is proved.

5.4. ON THE SPACE $\mathcal{E}(K)$ FOR $K \subset \mathbb{T} \setminus \Phi(\mathbb{D})$. Let K be a compact set, let $K \subset \mathbb{T} \setminus \Phi(\mathbb{D})$, and let m(K) > 0. For n = 0, ..., N - 1 we put

$$\mathcal{E}_n(K) = \{k \in \mathcal{E}(K) : f_j = 0 \text{ for } j \neq n, j = 0, \dots, N-1\}.$$

It is easy to see from propositions proved in Sections 3 and 4 that $\mathcal{E}_n(K) \neq \{0\}$, $\mathcal{E}_n(K)$ is a linear closed subset of $\mathcal{E}(K)$, $T^{-1}\mathcal{E}_n(K) = \mathcal{E}_n(K)$ and $\bigvee_{n=0}^{N-1} Z\mathcal{E}_n(K) =$ $\operatorname{clos} Z\mathcal{E}(K) = \bigoplus_{n=0}^{N-1} L^1(K,m)$. From these equalities and the fact that $T|_{\mathcal{E}(K)}$ is similar to the multiplication by ζ on $\bigoplus_{n=0}^{N-1} L^2(K,m)$ one can obtain that

$$\bigvee_{n=0}^{N-1} \mathcal{E}_n(K) = \mathcal{E}(K).$$

Indeed, let $X: \bigoplus_{n=0}^{N-1} L^2(K,m) \to \mathcal{E}(K)$ be a linear bounded invertible transformation such that $X\overline{\zeta} = T^{-1}X$, let $\mathcal{F}_n = X^{-1}\mathcal{E}_n(K)$, and let $\mathcal{F} = \bigvee_{n=0}^{N-1}\mathcal{F}_n$. We have $ZX\mathcal{F} = \bigvee_{n=0}^{N-1} ZX\mathcal{F}_n = \bigvee_{n=0}^{N-1} Z\mathcal{E}_n(K) = \bigoplus_{n=0}^{N-1} L^1(K,m)$ and $ZX\overline{\zeta} = \overline{\zeta}ZX$, hence, $\mathcal{F} = \bigoplus_{n=0}^{N-1} L^2(K,m)$. Thus, $\bigvee_{n=0}^{N-1} \mathcal{E}_n(K) = \mathcal{E}(K)$.

In general, $\mathcal{E}_0(K) + \cdots + \mathcal{E}_{N-1}(K) \neq \mathcal{E}(K)$. To show this, we consider the following example.

EXAMPLE 5.8. Let Ψ be a function with the following properties: (i) $\Psi = \frac{\varphi}{\psi}$, where φ is inner and ψ is a Blaschke factor (deg $\psi = 1$); (ii) $I = \partial \Omega_{\Psi} \cap \mathbb{T}$ is a closed arc, and Ψ is analytic in sufficiently large neighbourhood of I;

(iii) $m(\Psi(I)) > \frac{1}{2}$ and, for convenience, the center of the arc $\Psi(I)$ is 1, that is, $\Psi(I) = \{e^{it} : |t| \leq \frac{\pi}{2} + s_0\}$, where $0 < s_0 < \frac{\pi}{2}$.

The example of such function Ψ is $\Psi(z) = -\frac{\exp(-\mu \frac{1+z}{1-z})}{z}$, $z \in \mathbb{D}$, with appropriate choice of μ , see Lemma 5.1.

We put $\Phi = \Psi^2$ and $K = \{e^{is} : \pi - 2s_0 \leq s \leq \pi\}$. We have $K \subset J = \{e^{is} : \pi - 2s_0 \leq s \leq \pi \text{ or } -\pi \leq s \leq 2s_0 - \pi\} = \mathbb{T} \setminus \Phi(\mathbb{D})$. We shall show that $\mathcal{E}_0(K) + \mathcal{E}_1(K) \neq \mathcal{E}(K)$.

First, we introduce the notation. $J_0 = \{e^{is} : |s| \le \pi - 2s_0\}$, e^{it_1} and e^{it_2} are the ends of I, the sets I_1 , I_2 , I_3 , I_4 are the closed subarcs of \mathbb{T} with the following properties: I_3 , $I_4 \subset I$, $e^{it_1} \in I_3$, $e^{it_2} \in I_4$, $I_j \cap I = e^{it_j}$, j = 1, 2, $\Psi(I_2) = \Psi(I_4) = \{e^{is} : |s - \frac{\pi}{2}| \le s_0\}$, $\Psi(I_1) = \Psi(I_3) = \{e^{is} : |s + \frac{\pi}{2}| \le s_0\}$, and Ψ is analytic on a neighbourhood of $I \cup I_1 \cup I_2$. Assumption (iii) allows us to choose such arcs I_1 , I_2 , I_3 , I_4 . We have $\Phi(I_j) = J$, j = 1, 2, 3, 4. We put $\eta_j = (\Phi|_{I_j})^{-1}$, $\eta_j \colon J \to I_j$, j = 1, 2, 3, 4, and $\eta_0 = (\Phi|_{I \setminus (I_3 \cup I_4)})^{-1}$, $\eta_0 \colon J_0 \to I \setminus (I_3 \cup I_4)$. Further, we put $w_1(e^{is}) = |s - (\pi - 2s_0)|^{-1/2}$, $w_2(e^{is}) = |s - (2s_0 - \pi)|^{-1/2}$, $s \in (-\pi, \pi)$, and $w = w_1w_2$. We have the following estimates:

(5.5)
$$\frac{1}{|\Phi' \circ \eta_j|} \asymp w_1, \quad j = 1, 3; \qquad \frac{1}{|\Phi' \circ \eta_j|} \asymp w_2, \quad j = 2, 4;$$

(5.6)
$$|\eta_j - e^{it_1}| \asymp \frac{1}{w_1}, \quad j = 1, 3; \qquad |\eta_j - e^{it_2}| \asymp \frac{1}{w_2}, \quad j = 2, 4.$$

Let $f_0, f_1 \in L^1(J, m)$, let F_0 and F_1 be defined by f_0 and f_1 as in (5.2), and let $g(z) = (F_0 \circ \Phi)(z) + z(F_1 \circ \Phi)(z), z \in \mathbb{D}$. Using the change of variables and (5.5) we have

$$\begin{split} \int_{I_1 \cup I_3} |g|^2 \mathrm{d}m &= \int_{I_1} |(F_{0+} \circ \Phi)(\zeta) + \zeta(F_{1+} \circ \Phi)(\zeta)|^2 \mathrm{d}m(\zeta) \\ &+ \int_{I_3} |(F_{0-} \circ \Phi)(\zeta) + \zeta(F_{1-} \circ \Phi)(\zeta)|^2 \mathrm{d}m(\zeta) \\ &= \int_{J} (|F_{0+} + \eta_1 F_{1+}|^2 \frac{1}{|\Phi' \circ \eta_1|} + |F_{0-} + \eta_3 F_{1-}|^2 \frac{1}{|\Phi' \circ \eta_3|} \mathrm{d}m \\ & \asymp \int_{J} (|F_{0+} + \eta_1 F_{1+}|^2 + |F_{0-} + \eta_3 F_{1-}|^2) w_1 \mathrm{d}m. \end{split}$$

Thus, we have the estimate

(5.7)
$$\int_{I_1\cup I_3} |g|^2 \mathrm{d}m \asymp \int_J (|F_{0+} + \eta_1 F_{1+}|^2 + |F_{0-} + \eta_3 F_{1-}|^2) w_1 \mathrm{d}m,$$

and, similarly, the estimate

(5.8)
$$\int_{I_2 \cup I_4} |g|^2 \mathrm{d}m \asymp \int_{J} (|F_{0+} + \eta_2 F_{1+}|^2 + |F_{0-} + \eta_4 F_{1-}|^2) w_2 \mathrm{d}m_J$$

where F_{n+} and F_{n-} are angular boundary values of F_n from inside of \mathbb{D} and from outside of \mathbb{D} , respectively, n = 0, 1.

Now we shall show that $Z\mathcal{E}(J) \subset L^{2}(J,m) \oplus L^{2}(J,m)$, and that for $k \in \mathcal{E}(J)$ $f_{0} + e^{it_{j}}f_{1} \in L^{2}(J, w_{j}dm), j = 1, 2$, where $\binom{f_{0}}{f_{1}} = Zk$. Let $k \in \mathcal{E}(J)$, we put $g(z) = (F_{0} \circ \Phi)(z) + z(F_{1} \circ \Phi)(z)$, where F_{0} , F_{1} are defined by k in (3.1). By (5.7) and (5.8) $\int_{\mathbb{T}} |g|^{2}dm \geq \int_{U_{j=1}^{4}I_{j}} |g|^{2}dm \approx \int_{U_{j=1}^{4}I_{j} |g|^{$

 $|F_{0-} + \eta_3 F_{1-}|^2 w_1 + |F_{0-} + \eta_4 F_{1-}|^2 w_2) dm$, where F_{n+} and F_{n-} are angular boundary values of F_n from inside of \mathbb{D} and from outside of \mathbb{D} , respectively, n = 0, 1. We obtain that $F_{0+} + \eta_j F_{1+} \in L^2(J,m)$, j = 1, 2, and $F_{0-} + \eta_j F_{1-} \in L^2(J,m)$, j = 3, 4. From these inclusions we have $(\eta_1 - \eta_2)F_{1+}, (\eta_3 - \eta_4)F_{1-} \in L^2(J,m)$. Further, $\frac{1}{\eta_1 - \eta_2}, \frac{1}{\eta_3 - \eta_4} \in L^{\infty}(J,m)$, thus, $F_{1+}, F_{1-} \in L^2(J,m)$, and we conclude that $f_1 = F_{1+} - F_{1-} \in L^2(J,m)$, $f_0 = F_{0+} - F_{0-} \in L^2(J,m)$. Also we have $f_0 + \eta_1 F_{1+} - \eta_3 F_{1-} \in L^2(J,w_1 dm)$, and $f_0 + \eta_1 F_{1+} - \eta_3 F_{1-} = f_0 + (\eta_1 - \eta_3)F_{1+} + \eta_3 f_1 = f_0 + ((\eta_1 - e^{it_1}) + (e^{it_1} - \eta_3))F_{1+} + (\eta_3 - e^{it_1})f_1 + e^{it_1}f_1$. By (5.6) we have $\int_{J} |(\eta_j - e^{it_1})h|^2 w_1 dm \leqslant C \int_{J} |h|^2 \frac{1}{w_1} dm \leqslant C_1 \int_{J} |h|^2 dm$ for $h \in L^2(J,m)$, j = 1, 3.

From the inclusion F_{1+} , $f_1 \in L^2(J, m)$ we conclude that $f_0 + e^{it_1}f_1 \in L^2(J, w_1dm)$. The inclusion $f_0 + e^{it_2}f_1 \in L^2(J, w_2dm)$ can be proved in a similar way.

Now let $k \in \mathcal{E}(K)$, then f_0 , f_1 vanish in the neighbourhood of $e^{i(2s_0-\pi)}$, therefore $f_0 + e^{it_1}f_1 \in L^2(K, wdm)$. By Corollary 5.3, $(F_0 + e^{it_1}F_1) \circ \Phi \in H^2(\mathbb{D})$, hence, $(e^{it_1} - z)(F_1 \circ \Phi)(z) \in H^2(\mathbb{D})$.

We define the mapping $\mathcal{Z} \colon L^2(K, m) \to H^2(\mathbb{D})$ by the formula

$$(\mathcal{Z}f)(z) = (\mathrm{e}^{\mathrm{i}t_1} - z)(F \circ \Phi)(z), \quad z \in \mathbb{D},$$

where *F* is defined by *f* as in (5.2), on functions *f* smooth on \mathbb{T} and vanishing on $\mathbb{T} \setminus K$. We shall prove that there exists a constant *C* such that $\|Zf\|_{H^2(\mathbb{D})} \leq C\|f\|_{L^2(K,m)}$ for smooth functions *f*. Let *f* be a such function. We put g = Zf. By *F*₊ and *F*₋ we denote angular boundary values of *F* from inside of \mathbb{D} and from outside of \mathbb{D} , respectively. By (5.7) and (5.6) we have

$$\int_{I_1 \cup I_3} |g|^2 dm \asymp \int_{J} (|\mathbf{e}^{it_1}F_+ - \eta_1F_+|^2 + |\mathbf{e}^{it_1}F_- - \eta_3F_-|^2)w_1 dm$$
$$= \int_{J} (|\mathbf{e}^{it_1} - \eta_1|^2|F_+|^2 + |\mathbf{e}^{it_1} - \eta_3|^2|F_-|^2)w_1 dm$$

$$\leq C_1 \int_J \frac{1}{w_1} (|F_+|^2 + |F_-|^2) \mathrm{d}m \leq C_2 ||f||^2_{L^2(K,m)},$$

and we obtain the estimate

(5.9)
$$\int_{I_1 \cup I_3} |g|^2 \mathrm{d}m \leqslant C_2 ||f||^2_{L^2(K,m)}.$$

Using (5.8), (5.6) and the fact that $|e^{it_1} - \eta_j|$, j = 2, 4, are bounded, we obtain that

$$\int_{I_2 \cup I_4} |g|^2 dm \asymp \int_J (|e^{it_1}F_+ - \eta_2 F_+|^2 + |e^{it_1}F_- - \eta_4 F_-|^2) w_2 dm$$

=
$$\int_J (|e^{it_1} - \eta_2|^2 |F_+|^2 + |e^{it_1} - \eta_4|^2 |F_-|^2) w_2 dm \leqslant C_3 \int_J (|F_+|^2 + |F_-|^2) w_2 dm.$$

Now we use that f = 0 in a neighbourhood \mathcal{W} of $e^{i(2s_0 - \pi)}$. We have $F_+(\lambda) = F_-(\lambda) = F(\lambda)$ for $\lambda \notin K$, and $|F(\lambda)| \leqslant \int_K \frac{|f(\zeta)|dm(\zeta)}{|\zeta-\lambda|} \leqslant \int_K \frac{|f(\zeta)|dm(\zeta)}{dist(\lambda,K)}$ for $\lambda \in \mathcal{W}$, therefore $|F(\lambda)| \leqslant C_4 \left(\int_K |f|^2 dm\right)^{1/2} = C_4 ||f||_{L^2(K,m)}$, where C_4 depends on \mathcal{W} . We have $\int_J (|F_+|^2 + |F_-|^2) w_2 dm \leqslant 2C_4^2 ||f||_{L^2(K,m)}^2 \int_J w_2 dm$. Thus, the estimate

(5.10)
$$\int_{I_2 \cup I_4} |g|^2 \mathrm{d}m \leqslant C_5 ||f||^2_{L^2(K,m)}$$

is proved. Further, $\int_{I \setminus (I_3 \cup I_4)} |g|^2 dm = \int_{J_0} |(e^{it_1} - \eta_0)F_-|^2 \frac{1}{|\Phi' \circ \eta_0|} dm \leq C_6 \int_{J_0} |F_-|^2 dm \leq C_6 \|f\|_{L^2(K,m)}^2$, and we have the estimate

(5.11)
$$\int_{I\setminus(I_3\cup I_4)} |g|^2 \mathrm{d}m \leqslant C_6 \|f\|_{L^2(K,m)}^2.$$

It remains to obtain the estimate

(5.12)
$$\int_{\mathbb{T}\setminus(I\cup I_1\cup I_2)} |g|^2 \mathrm{d}m \leqslant C_7 ||f||^2_{L^2(K,m)}$$

To do it, we apply Lemma 5.4. We put $\mathcal{I}_0 = \operatorname{clos}(\mathbb{T} \setminus (I \cup I_1 \cup I_2))$, and by \mathcal{I} we denote an open arc such that $\mathcal{I}_0 \subset \mathcal{I}$ and $\operatorname{clos} \mathcal{I} \subset \mathbb{T} \setminus I$. By the assumption, for every $\zeta \in \mathcal{I}$ there exists a disk $D(\zeta)$ centered at ζ and such that $\Phi(D(\zeta) \cap \mathbb{D}) \subset \mathbb{D}$ and $D(\zeta) \cap \mathbb{T} \subset \mathcal{I}$. Therefore there exists a sequence $\{\zeta_n\}_n$ such that $\zeta_n \in \mathcal{I}$ and $\bigcup_n D(\zeta_n) \supset \mathcal{I}$. We put $\mathcal{G} = \bigcup_n D(\zeta_n) \cap \mathbb{D}$. By Lemma 5.4, there exists a constant C_0

such that $\int_{\mathcal{I}_0} |G \circ \Phi| dm \leq C_0 \int_{\mathbb{T}} |G| dm$ for any $G \in L^1(\mathbb{T}, m)$. Thus,

$$\int_{\mathcal{I}_0} |g|^2 \mathrm{d}m = \int_{\mathcal{I}_0} |(\mathrm{e}^{\mathrm{i}t_1} - \zeta)(F_+ \circ \Phi)(\zeta)|^2 \mathrm{d}m \leqslant \sup_{\zeta \in \mathcal{I}_0} |\mathrm{e}^{\mathrm{i}t_1} - \zeta|^2 \int_{\mathcal{I}_0} |F_+ \circ \Phi|^2 \mathrm{d}m$$
$$\leqslant 4C_0 \int_{\mathbb{T}} |F_+|^2 \mathrm{d}m \leqslant C ||f||^2_{L^2(K,m)'}$$

and (5.12) is proved.

From (5.9), (5.10), (5.11), and (5.12) we conclude that there exists C > 0 such that

$$\int_{\mathbb{T}} |g|^2 \mathrm{d}m \leqslant C \|f\|_{L^2(K,m)}^2$$

for functions f smooth on \mathbb{T} and vanishing on $\mathbb{T} \setminus K$, where $g = \mathcal{Z}f$. Thus, \mathcal{Z} can be extended from smooth functions to the whole space $L^2(K,m)$. We recall that $\alpha(z) = (z - \delta)^2, z \in \mathbb{D}$, where δ is the only zero of ψ . We take $f \in L^2(K,m)$ such that $f \notin L^2(K, wdm)$, and we put $k = \frac{1}{\alpha} \mathcal{Z}f$. Then $k \in \mathcal{E}(K)$. We will show that $k \notin \mathcal{E}_0(K) + \mathcal{E}_1(K)$. Indeed, if we assume that $k \in \mathcal{E}_0(K) + \mathcal{E}_1(K)$, then we must have $F \circ \Phi \in H^2(\mathbb{D})$, and, by (5.7) (where $F_0 = F$ and $F_1 \equiv 0$)

$$\int_{\mathbb{T}} |F \circ \Phi|^2 \mathrm{d}m \ge \int_{I_1 \cup I_3} |F \circ \Phi|^2 \mathrm{d}m \asymp \int_J (|F_+|^2 + |F_-|^2) w_1 \mathrm{d}m,$$

hence, F_+ , $F_- \in L^2(J, w_1 dm)$ and $f = F_+ - F_- \in L^2(J, w_1 dm)$. But, by the assumption, f vanishes on $\mathbb{T} \setminus K$, therefore the last inclusion means that $f \in L^2(K, wdm)$, which is a contradiction. Thus, we proved that $\mathcal{E}_0(K) + \mathcal{E}_1(K) \neq \mathcal{E}(K)$.

Acknowledgements. The author expresses her sincere gratitude to D. V. Yakubovich for helpful discussions.

Partially supported by RFBR (grant no. 05-01-00925).

REFERENCES

- D.N. CLARK, Following functions of class H², in Harmonic Analysis in Euclidean Spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1, Proc. Sympos. Pure Math., vol. 35, Amer. Math. Soc., Providence, R.I. 1979, pp. 451–456.
- [2] D.N. CLARK, On Toeplitz operators with loops, J. Operator Theory 4(1980), 37–54.
- [3] D.N. CLARK, On a similarity theory for rational Toeplitz operators, J. Reine Angew. Math. 320(1980), 6–31.
- [4] D.N. CLARK, Sz.-Nagy–Foiaş theory and similarity for a class of Toeplitz operators, in *Spectral Theory (Warsaw, 1977)*, Banach Center Publ., vol. 8, PWN, Warsaw 1982, pp. 221–229.

- [5] D.N. CLARK, On Toeplitz operators with unimodular symbols, in *Operators in Indefinite Metric Spaces, Scattering Theory and other Topics (Bucharest, 1985)*, Oper. Theory Adv. Appl., vol. 24, Birkhäuser, Basel 1987, pp. 59–68.
- [6] D.N. CLARK, Perturbation and similarity of Toeplitz operators, in *Topics in Oper*ator Theory: Ernst D. Hellinger Memorial Volume, Oper. Theory Adv. Appl., vol. 48, Birkhäuser, Basel 1990, pp. 235–243.
- [7] P.L. DUREN, *Theory of H^p Spaces*, Pure Appl. Math., vol. 38., Academic Press, New York-London 1970.
- [8] M.F. GAMAL', On Toeplitz operators similar to unilateral shift, in Zap. Nauchn. Sem. St. Petersburg. Otdel. Mat. Inst. Steklov, vol. 345, POMI, 2007, pp. 85–104.
- [9] T.W. GAMELIN, Uniform Algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J. 1969.
- [10] J.B. GARNETT, Bounded Analytic Functions, Pure Appl. Math., vol. 96, Academic Press, Inc., New York-London 1981.
- [11] R. GOOR, On Toeplitz operators which are contractions, Proc. Amer. Math. Soc. 34(1972), 191–192.
- [12] V.V. PELLER, Spectrum, similarity, and invariant subspaces of Toeplitz operators [Russian], *Izv. Akad. Nauk SSSR Ser. Mat.* 50(1986), 776-787; English *Math. USSR Izv.* 29(1987), 133–141.
- [13] M. ROSENBLUM, J. ROVNYAK, Hardy Classes and Operator Theory, Oxford Math. Monographs, Oxford Sci. Publ., The Clarendon Press, Oxford Univ. Press, New York 1985.
- [14] K. STEPHENSON, Functions which follow inner functions, Illinois J. Math. 23(1979), 259–266.
- [15] M. TSUJI, Potential Theory in Modern Function Theory, Maruzen Co., Ltd., Tokyo 1959.
- [16] D. WANG, Similarity theory of smooth Toeplitz operators, J. Operator Theory 12(1984), 319–330.
- [17] D.V. YAKUBOVICH, Riemann surface models of Toeplitz operator, in *Toeplitz Operators and Spectral Function Theory*, Oper. Theory Adv. Appl., vol. 42, Birkhäuser, Basel 1989, pp. 305–415.
- [18] D.V. YAKUBOVICH, On the spectral theory of Toeplitz operators with a smooth symbol [Russian], *Algebra i Analiz* 3(1991), 208–226; English *St. Petersburg Math. J.* 3(1992), 903–921.
- [19] D.V. YAKUBOVICH, Dual piecewise analytic bundle shift models of linear operators, J. Funct. Anal. 136(1996), 294–330.

MARIA F. GAMAL', ST. PETERSBURG DIVISION OF THE STEKLOV MATHEMATI-CAL INSTITUTE, FONTANKA, 27, 191023 ST. PETERSBURG, RUSSIA *E-mail address*: gamal@pdmi.ras.ru

Received October 5, 2005.