
J. OPERATOR THEORY
59:1(2008), 29–51

© Copyright by THETA, 2008

A BEURLING THEOREM FOR NONCOMMUTATIVE Lp

DAVID P. BLECHER and LOUIS E. LABUSCHAGNE

Communicated by William B. Arveson

ABSTRACT. We extend Beurling’s invariant subspace theorem, by characteriz-
ing subspaces K of the noncommutative Lp spaces which are invariant with re-
spect to Arveson’s maximal subdiagonal algebras, sometimes known as non-
commutative H∞. We show that a certain subspace, and a certain quotient, of
K are Lp(D)-modules in the recent sense of Junge and Sherman, and therefore
have a nice decomposition into cyclic submodules. This is used, together with
earlier results of Nakazi and Watatani, to give our Beurling theorem. We also
give general inner-outer factorization formulae for elements in the noncom-
mutative Lp.
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1. INTRODUCTION

The starting point of this paper is Beurling’s invariant subspace theorem,
stating that a certain class of invariant subspaces of L2 may be characterized as
exactly those spaces of the form uH2, where u is a unimodular function, and H2

is the Hilbertian Hardy space. Many generalizations of this theorem have ap-
peared over the decades (e.g. [10], [11], [13], [23]), and our paper is concerned
with generalizations appropriate to Arveson’s noncommutative subdiagonal alge-
bra generalization of the Hardy spaces of the disk.

Throughout this paper, M is a finite von Neumann algebra possessing a
faithful normal tracial state τ, and A is a tracial subalgebra of M. That is, A is a
weak* closed unital subalgebra A of M for which the restriction to A of the unique

faithful normal conditional expectation Φ from M onto D def= A ∩ A∗ satisfying
τ = τ ◦Φ, is a homomorphism. Here A∗ denotes the set of adjoints of elements
in A. Two simple examples which may help the reader understand the setting,
are (1) the subalgebra of the n × n matrices consisting of the upper triangular
matrices, and (2) the classical H∞ space of bounded analytic functions on the
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disk D (here τ = Φ is just the Haar integral on L∞(T)). A tracial subalgebra
of M is called maximal subdiagonal if A + A∗ is weak* dense in M. This form
of the definition is due to Arveson [1] and Exel [6]. Sometimes such an A is
called a noncommutative H∞. (We remark that there are other, more recent, very
important operator algebraic generalizations of H∞ which are currently being
intensively studied by many prominent researchers. See e.g. [25] and references
therein. However these are only formally related to subdiagonal algebras.) If M
is commutative and D is one dimensional then A is a weak* Dirichlet algebra [28].
In an earlier paper we gave a list of many disparate looking conditions which a
tracial algebra A might satisfy, which turn out to be equivalent to each other, and
equivalent to A being maximal subdiagonal [3] (see also [4]).

We write Lp(M) for Lp(M, τ), the noncommutative Lp-space associated to
the pair (M, τ), in the sense of e.g. Nelson [22] as a certain space of operators affil-
iated to M. In the present paper we study the structure of (right) A-invariant sub-
spaces of Lp(M), and give general inner-outer factorization formulae of Beurling-
Nevanlinna type for elements of Lp(M). These results generalize important clas-
sical results (e.g. see references in [28]), and should be useful in the future de-
velopment of the noncommutative Hp theory. They also constitute a natural
occurrence of the “Lp-modules” and “Lp-column sums” due recently to Junge
and Sherman [14]. In addition, our results characterize maximal subdiagonal al-
gebras, allowing us to supplement the list given in our earlier paper of criteria
equivalent to maximal subdiagonality.

We will use the notation of [3], to which the reader is also referred for fur-
ther explanations and details. For any set S of operators, S∗ will denote the set
of adjoints of elements in S . We write [S ]p for the closure of S in Lp(M). If A is
a maximal subdiagonal algebra, then [A]p is often called a noncommutative Hardy
space, and written as Hp. We write A∞ for [A]2 ∩M (which equals A if A is max-
imal subdiagonal, as may be seen using a maximality argument ([1], Section 2)),
and A0 for A ∩Ker(Φ). We say that A satisfies L2-density, if A + A∗ is L2-dense
in L2(M). Clearly A satisfies L2-density if and only if the same is true of A∞. We
say that A has the unique normal state extension property if whenever g ∈ L1(M)+
with τ(gA0) = 0, then g ∈ L1(D). All maximal subdiagonal algebras have these
latter two properties. In fact, it is shown in [3] that maximal subdiagonal algebras
are exactly the tracial algebras possessing these two properties.

We recall that a (right) invariant subspace of Lp(M) is a closed subspace K
of Lp(M) such that KA ⊂ K. For consistency, we will not consider left invari-
ant subspaces at all, leaving the reader to verify that entirely symmetric results
pertain in the left invariant case. An invariant subspace is called simply invariant
if in addition the closure of KA0 is properly contained in K. It is the latter class
of subspaces to which the generalized Beurling theorem applies, e.g. for weak*
Dirichlet algebras. In the literature there are several invariant subspace theorems,
inspired by the Beurling result and its classical extensions, and associated factor-
ization results, for maximal subdiagonal algebras (see e.g. [16], [18], [19], [20],
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[21], [24], [26], [31], or in the work of Ji, Ohwada and Saito). We mention just two
which we shall use: Saito showed in [26] that any A-invariant subspace of Lp(M)
is the closure of the bounded elements which it contains. Nakazi and Watatani
showed in [21] that in the case that the center of M contains the center of D, ev-
ery “type 1” (defined below) invariant subspace of L2(M) is of the form u[A]2
for a partial isometry u. Compelling examples of invariant subspaces exhibiting
interesting structure may be found in [19], [31].

A (right-) wandering vector is a vector f ∈ L2(M) with f ⊥ [ f A0]2. Wander-
ing vectors for maximal subdiagonal algebras were characterized by Arveson in
[1] as the vectors f which have a factorization f = uh for h ∈ [D]2 and u a partial
isometry in [ f M]2 with u∗uh = h (in fact, one can also ensure that u∗u ∈ D).
These vectors play a significant role in that paper, and in later work. Arveson
was inspired in part here by some of the then emerging prediction theory and
operator function theory, where Beurling type decomposition theorems are re-
lated to wandering vectors and subspaces by the famous Wold decomposition. See
e.g. Chapter 1 of [23] for a succinct discussion of these relationships. For example,
and to motivate the definitions below, suppose that u is an isometry on a Hilbert
space H, and that K is a subspace of H such that uK ⊂ K. If A is the unital oper-
ator algebra generated by u, and A0 the nonunital operator algebra generated by
u, then K is A-invariant. (The reader may keep in mind the case where u is mul-
tiplication by the monomial z on the circle T; in this case A = H∞(D), and A0 is
the algebra of functions vanishing at 0.) The subspace W = K	 uK = K	 [A0K]
is wandering in the classical sense that unW ⊥ umW for unequal nonnegative
integers n, m. The Wold decomposition allows us to write K = K1 ⊕ K2, an or-
thogonal direct sum, where K1 is defined in terms of the wandering subspace W;
and u is unitary on K2 whereas the restriction of u to subspaces of K1 is never uni-
tary (see e.g. Lemma 1.5.1 of [23]). We have that uK2 = K2, which is equivalent
to [A0K2]2 = K2, a criterion which matches what is called “type 2” below. Also,
[AW]2 = K1, a condition which matches what is called “type 1” below. Indeed
the match with the definitions below is exact in the case where A = H∞(D).

The Wold decomposition plays a critical role in Helson and Lowdenslager’s
geometric approach to invariant subspaces, which is fundamental to the subject.
Not surprisingly, a variant of the “wandering” concept is key to our decomposi-
tion theorems. If K is a right A-invariant subspace of L2(M), we follow Nakazi
and Watatani’s decomposition results [21]. We define the right wandering subspace
of K to be the space W = K	 [KA0]2; and we say that K is type 1 if W generates K
as an A-module (that is, K = [WA]2). We will say that K is type 2 if W = (0). (The
last notation conflicts with that of [21], where instead of this class of subspaces
they have two further subclasses which they call type II and type III.) For any p,
one may define the wandering quotient to be K/[KA0]p, and say that K is type 2 if
this is trivial. In our paper if p = ∞, we take [·]p to be the weak* closure. It turns
out that the wandering quotient is an Lp(D)-module in the sense of [14], and it
is isometric to a canonically defined subspace of K which can be called the right
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wandering subspace of K. We say that K is type 1 if this subspace generates K as
an A-module. If 1 6 p < 2 (respectively p > 2) then we will show that K is type
1 if and only if K ∩ L2(M) (respectively [K]2) is type 1 in the sense of the L2 case
above.

In the classical case, or more generally whenever D is one dimensional,
there is a dichotomy: in this case type 1 is the same thing as being simply in-
variant, and any invariant subspace which is not type 1 is type 2. In the general
case, being type 2 is the same as being not simply invariant; and any nontrivial
type 1 subspace is simply invariant. However the “simply invariant” condition
no longer plays a very significant role for us. Moreover, there is no longer a di-
chotomy between types 1 and 2. Instead, there is a direct sum decomposition. We
use the column Lp-sum recently studied by Junge and Sherman [14] to investigate
this: If X is a subspace of Lp(M), and if {Xi : i ∈ I} is a collection of subspaces
of X, which together densely span X, with the property that X∗i Xj = {0} if i 6= j,
then we say that X is the internal column Lp-sum

⊕
i

col Xi. If p = ∞ we also assume

that X and Xi are weak* closed, and the word “densely” above is taken with re-
gard to the weak* topology. Our main result, which builds on earlier ideas and
results from [21], [19], is as follows:

THEOREM 1.1. If A is a maximal subdiagonal subalgebra of M, if 16 p6∞, and
if K is a closed (indeed weak* closed, if p=∞) right A-invariant subspace of Lp(M), then:

(i) K may be written uniquely as an (internal) Lp-column sum K1 ⊕col K2 of a type
1 and a type 2 invariant subspace of Lp(M), respectively.

(ii) If K 6= (0) then K is type 1 if and only if K =
⊕

i

col ui Hp, for ui partial isometries

with mutually orthogonal ranges and |ui| ∈ D.
(iii) The right wandering subspace W of K is an Lp(D)-module in the sense of Junge

and Sherman, and in particular W∗W ⊂ Lp/2(D).
Conversely, if A is a tracial subalgebra of M such that every A-invariant subspace of
L2(M) satisfies (i) and (ii) (respectively (ii) and (iii)), then A is maximal subdiagonal.

Note that this theorem immediately implies the classical Beurling theorem,
and its generalization to simply invariant subspaces of weak* Dirichlet algebras.
Indeed if D is one-dimensional, and if K is a simply invariant subspace of Lp,
then K is not type 2, and so K1 6= (0). Thus there is a nonzero partial isometry
u with |u| ∈ D = C 1. Hence u∗u = 1, and since M is finite u is a unitary in
M. Thus K1 = uHp. Since K∗1 K2 = (0), we have K2 = (0), and so K = uHp, as
desired.

EXAMPLE. To help the reader’s intuition, it may be worthwhile to take the
time to consider a very simple example. Suppose that A is the upper triangular
3× 3 matrices. Let K be the upper triangular 3× 3 matrices supported in the 1-3,
2-2, and 2-3 entries, and with the Lp(M3)-norm. Here D consists of the diagonal
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matrices, and A0 is the “strictly upper triangular matrices”. The wandering quo-
tient W = K/[KA0] may be identified with the subspace of K whose 2-3 entry is
also 0. If u1 = E13, u2 = E22 then the latter subspace is u1[D]p ⊕col u2[D]p. The
decomposition in Theorem 1.1 (1) becomes K = u1[A]p ⊕col u2[A]p. Of course the
uk[A]p piece is just the kth row of K. More generally, if z is any matrix then zA is
an invariant subspace for the upper triangular algebra A. If z is invertible, then
the wandering subspace here is just QD, where Q is the unitary occurring in the
well known “QR-factorization” (from matrix theory) of z.

An element ξ of a D-module is called separating if the map d 7→ ξd is one-
to-one on D; and cyclic if ξD is dense. If p = ∞ we mean dense in the weak*
topology.

COROLLARY 1.2. If A and K are as in Theorem 1.1, then K is of the form uHp

for a unitary u ∈ M, if and only if the right wandering subspace of K is a “standard”
representation of D, that is, it has a nonzero separating and cyclic vector for the right
action of D. This is equivalent to the right wandering quotient having a separating and
cyclic vector.

We say that f ∈ L2(M) is Beurling-Nevanlinna factorizable (or BN-factorizable),
if f = uh, for a unitary u in M and an h with [hA]2 = [A]2. An h with [hA]2 = [A]2
will be called outer, as in the classical theory. The content of the assertion in this
definition is that h ∈ [A]2, and 1 ∈ [hA]2. The unitary u here is called inner.
We will say that f ∈ L2(M) is partially BN-factorizable if f = uh, for a partial
isometry u in M with u∗u ∈ D, and an h with [hA]2 = (u∗u)[A]2. That is,
h = (u∗u)h ∈ [A]2, and u∗u ∈ [hA]2. We remark that the first noncommutative
BN-factorization of this type was Arveson’s characterization of right wandering
vectors mentioned above. Our invariant subspace theorem above leads immedi-
ately, as in the classical case, to Beurling-Nevanlinna factorization results, as we
shall see in Section 3. It will be clear in Section 4 that these results extend to Lp

for p 6= 2.
It is worth noting that if we assume that our tracial algebra is antisymmetric

(that is, D is one-dimensional, which forces Φ(·) = τ(·)1), then almost all of the
classical results about generalized Hardy spaces found in [27], [28], for example,
and their proofs, seem to transfer almost verbatim and without difficulty. To
illustrate this, we now discuss a special case of our main results. First we will
need a simple lemma:

LEMMA 1.3. Let A be a tracial subalgebra of M which satisfies [A]1 = {x ∈
L1(M) : τ(xA0) = 0}. Then A = A∞, and A = { f ∈ M : τ( f A0) = 0}.

Proof. This follows just as in lemma, p. 816 of [27]. Following that proof we
find an f ∈ L1(M) with τ( f A) = 0. By our hypothesis, f ∈ [A]1. For d ∈ D we
have

0 = τ( f d) = τ(Φ( f d)) = τ(Φ( f )d).
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It follows that Φ( f ) = 0, and so f ∈ [A0]1. As in the last cited reference we
conclude that [A]1 ∩M = A, which implies the last assertion of the lemma. Also,
A∞ = [A]2 ∩M ⊂ [A]1 ∩M = A, giving the other assertion.

PROPOSITION 1.4. Let A be a tracial subalgebra of M. Consider the conditions:
(i) every simply right invariant subspace of L2(M) is of the form u[A]2, for a unitary

u in M;
(ii) whenever f ∈ L2(M) with f /∈ [ f A0]2, then f is BN-factorizable;

(iii) A is maximal subdiagonal.
Then (i)⇒ (ii)⇒ (iii). If A is antisymmetric, then the conditions are all equivalent.

Proof. That (i) ⇒ (ii) follows just as in [28], for example, with only minor
modifications. One needs to use the fact that left invertibility implies invertibility
in a finite von Neumann algebra. Similarly for the implication (iii) ⇒ (i) in the
antisymmetric case (see also [16]), or note that this is proved in the paragraph
after Theorem 1.1. Similarly, supposing (ii), it also follows just as in [28], that
A∞ is maximal subdiagonal. We next claim that f ∈ L1(M) and τ( f A0) = 0, if
and only if f ∈ [A]1. This may be proved as in Corollary 2.3 of [27] (note that
Theorem 2 of [27] follows easily from condition (ii)). By Lemma 1.3, A∞ = A. So
A is maximal subdiagonal.

If A is not antisymmetric, then (iii) in this last proposition need not imply
(i) or (ii). This may be seen by considering the example of M a two-dimensional
von Neumann algebra, and A = M. Also, for the upper triangular matrices both
(i) and (ii) fail. In fact, it is not hard to see that if D is not a factor, then the con-
ditions cannot be equivalent. Below, we will find the appropriate generalizations
of the statements of the simply invariant subspace theorem, and the Beurling-
Nevanlinna factorization result, and we will show that the new statements are
each equivalent to maximal subdiagonality.

We will not say very much about the structure of type 2 invariant subspaces
in this paper. Indeed such structure is not well understood at the present time,
aside from the classical theorem of Wiener ([23], Theorem 1.2.1), and generaliza-
tions of this to relatively concrete function-operator theoretic settings. For exam-
ple not much seems to be known even in the commutative case of weak* Dirichlet
algebras. Certain noncommutative algebras, such as the upper triangular matrix
algebra, clearly have no type 2 invariant subspaces (see also (i) in Remarks after
Theorem 2.1). Nonetheless, the following examples may help the reader to pic-
ture type 2 invariant subspaces. We suppose that A is a maximal subdiagonal
algebra such that A0 contains an isometry. Simple examples where this happens
are H∞(D) or, more generally, algebras constructed from ordered groups as in
the work of Helson and Lowdenslager. Arveson already considered in Section 3
of [1] several interesting noncommutative examples of the latter. More specifi-
cally, let G be an ordered discrete countable group, and let M be the group von
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Neumann algebra (the second commutant of the image of the left regular rep-
resentation g 7→ Ug) with its usual trace. We take A to be the weak* closure of
the span of {Ug : g ∈ G, g > 0}; combining Arveson’s arguments from 3.2.2 of
[1] with Exel’s result [6] we see that A is an antisymmetric maximal subdiagonal
algebra. Let S = {Ug : g ∈ G, g > 0}. We claim that A0 equals E, the weak*
closure of the span of S . Since the trace annihilates S , clearly A0 contains E. Con-
versely, since E + C 1 is weak* closed, it equals A, the weak* closure of the span of
{Ug : g ∈ G, g > 0}. Thus E = A0. Hence A0 is actually generated by unitaries.

In any case, if A is a maximal subdiagonal algebra such that A0 contains
an isometry u, and if e is any projection in M, then the A-invariant subspace
K = eL2(M) is type 2, since K = Ku∗u ⊂ KA0. For a second example, suppose
that A0 is generated by a subset S with the property that S ⊂ S2 (e.g. the ordered
group example above in the case that the group is the rational numbers — this
example is actually weak* Dirichlet). Then A0 ⊂ [A0 A0]2, and so [A0]2 is a type 2
A-invariant subspace. Indeed it is then clear that [ f A0]2 is type 2 for any f ∈ M.

2. INVARIANT SUBSPACES OF L2(M)

We begin with some general observations about the structure of invariant
subspaces. There is a substantial overlap between (v) below, and results in [21]
(see particularly Lemma 2.4 and Theorem 2.14 there).

THEOREM 2.1. Let A be a tracial algebra.
(i) Suppose that X is a subspace of L2(M) of the form X = Z⊕col [YA]2 where Z, Y

are closed subspaces of X, with Z a type 2 invariant subspace, and {y∗x : y, x ∈ Y} =
Y∗Y ⊂ L1(D). Then X is simply right A-invariant if and only if Y 6= {0}.

(ii) If X is as in (i), then [YD]2 = X	 [XA0]2 (and X = [XA0]2 ⊕ [YD]2).
(iii) If X is as described in (i), then that description also holds if Y is replaced by [YD]2.

Thus (after making this replacement) we may assume that Y is a D-submodule of X.
(iv) The subspaces [YD]2 and Z in the decomposition in (i) are uniquely determined

by X. So is Y if we take it to be a D-submodule (see (iii)).
(v) If A is maximal subdiagonal, then any right A-invariant subspace X of L2(M) is

of the form described in (i), with Y the right wandering subspace of X.

Proof. (i) Let X be of the form described above. We show that Y ⊥ [XA0]2
from which it follows that X is simply right A-invariant if Y 6= {0}. To see this it
is enough to show that y ⊥ (z + xa) for any z ∈ Z, a ∈ A0, and x, y ∈ Y. From
the hypotheses Y∗Z = {0} and Y∗Y ⊂ L1(D), it now easily follows that

τ(y∗(z + xa)) = τ((y∗x)a) = τ(Φ((y∗x)a)) = τ((y∗x)Φ(a)) = 0

as required. The converse is obvious.
(ii) We saw in the proof of (i) that Y ⊥ [XA0]2. Since [XA0]2 = [XA0]2D,

we have [YD]2 ⊥ [XA0]2. Since A = D + A0, it therefore follows that [YA]2 =
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[YD]2 ⊕ [YA0]2. Now since Z = [ZA0]2, and

[YA0]2 ⊂ [XA0]2 = [(Z⊕ [YA]2)A0]2 ⊂ Z⊕ [YA0]2,

it is clear that [XA0]2 = Z⊕ [YA0]2. The result therefore follows, since

X = Z⊕ [YA]2 = Z⊕ ([YA0]2 ⊕ [YD]2) = [XA0]2 ⊕ [YD]2.

(iii) Since Y∗Z = {0} and Y∗Y ⊂ L1(D), we have D∗Y∗Z = {0} and
D∗Y∗YD ⊂ L1(D). Hence if Ỹ = [YD]2 then Ỹ∗Z = {0} and Ỹ∗Ỹ ⊂ L1(D).
Finally, notice that since DA = A and DA0 = A0, it is easy to see that [ỸA]2 =
[[YD]2 A]2 = [YA]2 and [ỸA0]2 = [[YD]2 A0]2 = [YA0]2.

(iv) This follows from (ii), and the fact that Z = X	 [YA]2.
(v) Assume that A is maximal subdiagonal and that X is right A-invariant.

Set Y = X 	 [XA0]2. The subspace Y will clearly be nontrivial if X is simply
right A-invariant. We show that Y∗Y ⊂ L1(D). Let y, x ∈ Y be given. Since
[xA0]2 ⊂ [XA0]2 we clearly have y ⊥ [xA0]2, and hence that

τ(y∗xa) = τ(y∗x(a−Φ(a))) + τ(y∗xΦ(a)) = τ(y∗xΦ(a)) = τ(Φ(y∗x)a)

for all a ∈ A. In the last line we have used several properties of Φ which are
obvious for Φ considered as a map on M, and which are easily verified for the
extension of Φ to L1(M). (See for example 3.10 of [18].) On swapping the roles of
x and y and noting that the extension of Φ preserves adjoints on L1(M), we get

τ(y∗xa∗) = τ(ax∗y) = τ(aΦ(x∗y)) = τ(Φ(y∗x)a∗)

for all a ∈ A. So y∗x−Φ(y∗x) ⊥ A + A∗ which forces y∗x = Φ(y∗x) ∈ L1(D).
Next let Z = X	 [YA]2 and let y ∈ Y and z ∈ Z be given. Now by construc-

tion z ⊥ [yA]2 and y ⊥ [zA0]2, whence

0 = τ((ya)∗z) = τ((y∗z)a∗) for all a ∈ A

and
0 = τ(y∗(za)) = τ((y∗z)a) for all a ∈ A0.

So y∗z ⊥ A + (A0)∗ = A + A∗, which forces y∗z = 0.
To see that ZA ⊂ Z, notice that for any z ∈ Z, y ∈ Y and a, b ∈ A it follows

from what we just proved that (yb)∗(za) = 0 and hence that

za ∈ ([XA]2 	 [YA]2) ⊂ (X	 [YA]2) = Z.

Finally, let V = Z	 [ZA0]2. Then since V ⊂ Z, we have Y∗V = {0}, which
ensures that V ⊥ [YA0]2. But by construction V ⊥ [ZA0]2, and so

V ⊥ [ZA0 + YA0]2 ⊃ [(Z⊕ [YA]2)A0]2 = [XA0]2.

But then V ⊂ Y = X	 [XA0]2 which by what we noted earlier, forces V∗V = {0}.
Clearly V = {0}, or in other words Z = [ZA0]2.
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REMARKS. (i) Let X be as in (i) of Theorem 2.1. Then Z = [ZA0]2 ⊂ [XA0]2.
Proceeding inductively we conclude that Z ⊂ ⋂

n>1
[XAn

0 ]2. From this last fact it

follows, for example, that Z = (0) if A is the upper triangular matrices.
Indeed, for certain maximal subdiagonal algebras, any type 2 invariant sub-

space is automatically (0), and thus every closed A-invariant subspace X is type 1.
(ii) There are well-known variants of Beurling’s theorem characterizing A-

invariant subspaces of H2. Some of these variants follow easily from the above
result. Consider for example Theorem 5.5 of [13], where Hoffman proves (in our
notation) that if K is an A-invariant subspaces of H2 such that τ is nontrivial
(i.e. nonzero) on K, then K = uH2 for a unitary u in A. In his case, D is one-
dimensional, so that the hypothesis here is saying that K is not perpendicular to
D. One may deduce this theorem from Theorem 2.1 in the case that A is maximal
subdiagonal and antisymmetric as follows: Under these hypotheses, the right
wandering space W is nontrivial, for otherwise K = [KA0]2 ⊂ [A0]2 ⊥ D = C 1.
As in the proof immediately after the statement of Theorem 1.1, this implies that
K = uH2 for a unitary u ∈ A. For non-antisymmetric algebras the situation ap-
pears to be quite complicated, but at least one can say for A-invariant subspaces
of H2 that in addition to the other conclusions of Theorem 2.1 we have that Z is
orthogonal toD. That is, Z ⊂ [A0]2. Indeed this is quite obvious since in this case
Z = [ZA0]2 ⊂ [A0]2 ⊥ D. Thus there can be no type 2 A-invariant subspaces
of H2 which are not contained in [A0]2. In the case of H∞(D), the type 2 invari-
ant subspaces were characterized by Wiener, and none of them are contained in
H2. However as we said in the introduction, there certainly do exist maximal
subdiagonal algebras with type 2 A-invariant subspaces of H2.

Combining these thoughts with (i) in Remarks suggests that one could iso-
late various classes of algebras with “shift-like structure” for which every A-
invariant subspace of H2 is type 1; in which n-fold products of terms in A0 “con-
verge to zero” in some sense. Perhaps the examples in [19], [31] might be helpful
here.

(iii) For maximal subdiagonal algebras, it is proved in [21] that an invariant
subspace X is of type 1 if and only if [XM]2 = [YM]2, where Y = X 	 [XA0]2.
The same result holds for spaces of the form in Theorem 2.1 (i).

(iv) It is interesting to note that if A is maximal subdiagonal, then given f , g ∈
L2(M) we have that f ∗g = 0 if and only if [ f A]2 ⊥ [gA]2. The “only if”’ part is
obvious, and hence suppose that [ f A]2 ⊥ [gA]2. It is an easy exercise to show that
this forces f ∗g ⊥ A + A∗. Since A is maximal subdiagonal, this yields f ∗g = 0.

PROPOSITION 2.2. Suppose that X is as in Theorem 2.1, and that W is the right
wandering subspace of X. Then W may be decomposed as an orthogonal direct sum
2⊕
i

ui[D]2, where ui are partial isometries in W ∩ M with u∗i ui ∈ D, and u∗j ui = 0 if



38 DAVID P. BLECHER AND LOUIS E. LABUSCHAGNE

i 6= j. If W has a cyclic vector for the D-action, then we need only one partial isometry
in the above.

Proof. By the theory of representations of a von Neumann algebra (see e.g.
the discussion at the start of Section 3 in [14]), any normal Hilbert D-module is
an L2 direct sum of cyclic Hilbert D-modules, and if K is a normal cyclic Hilbert
D-module, then K is spatially isomorphic to [eD]2, for an orthogonal projection
e ∈ D. Suppose that the latter isomorphism is implemented by a unitary D-
module map ϕ. If in addition K ⊂ W, let ϕ(e) = u ∈ W. Then τ(d∗u∗ud) =
‖ϕ(ed)‖2

2 = τ(d∗ed), for each d ∈ D. By Theorem 2.1, u∗u ∈ L1(D), and so
u∗u = e. Hence u is a partial isometry. Note that u[D]2 ⊂ [uD]2 clearly. However,
uD ⊂ u[D]2, and the latter space is easily seen to be closed, so that [uD]2 ⊂ u[D]2.
Thus [uD]2 = u[D]2. Putting these facts together, we see that W is of the desired
form. Note that u∗j ui = 0 if i 6= j, since u∗j ui ∈ D, but τ(u∗j uid) = 0 for any
d ∈ D.

COROLLARY 2.3. If X is an invariant subspace of the form described in Theo-
rem 2.1, then X is type 1 if and only if X =

⊕
i

col ui[A]2, for ui as in Proposition 2.2.

Proof. If X is type 1, then X = [WA]2 where W is the right wandering space,
and so one assertion follows from Proposition 2.2. If X =

⊕
i

col ui[A]2, for ui as

above, then [XA0]2 =
⊕

i

col ui[A0]2, and from this it is easy to argue that W =⊕
i

col ui[D]2. Thus X = [WA]2 =
⊕

i

col ui[A]2.

PROPOSITION 2.4. Let X be a closed A-invariant subspace of L2(M), where A is
a tracial subalgebra of M.

(i) If X = Z⊕ [YA]2 as in Theorem 2.1, then Z is type 2, and [YA]2 is type 1.
(ii) If A is maximal subdiagonal algebra, and if X = K1 ⊕col K2 where K1 and K2

are types 1 and 2 respectively, then K1 and K2 are respectively the unique spaces Z and
[YA]2 in Theorem 2.1.

(iii) If A and X are as in (ii), and if X is type 1 (respectively type 2), then the space Z
of Theorem 2.1 for X is (0) (respectively Z = X).

(iv) If X = K1 ⊕col K2 where K1 and K2 are types 1 and 2 respectively, then the right
wandering subspace for X equals the right wandering subspace for K1.

Proof. (i) Clearly in this case Z is type 2. To see that [YA]2 is type 1, note
that since Y ⊥ XA0, we must have Y ⊥ YA0. Thus Y ⊂ [YA]2 	 [YA0]2, and
consequently [YA]2 = [([YA]2 	 [YA0]2)A]2.

(ii) Suppose that X = K1 ⊕col K2 where K1 and K2 are types 1 and 2 re-
spectively. Let Y be the right wandering space for K1. By Theorem 2.1 we have
Y∗Y ⊂ L1(D). So X = [YA]2 ⊕col K2, and by the uniqueness assertion in Theo-
rem 2.1, K2 is the space Z in Theorem 2.1 for X, and K1 = K⊥2 = [YA]2.
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(iii) This is obvious from Theorem 2.1.
(iv) If K = K1 ⊕col K2 as above, then K2 = [K2 A0]2 ⊂ [KA0]2, and so

K 	 [KA0]2 ⊂ K 	 K2 = K1. Thus K 	 [KA0]2 ⊂ K1 	 [K1 A0]2. Conversely, if
η ∈ K1 	 [K1 A0]2, then η ⊥ KA0 since η∗K2 = (0). So η ∈ K	 [KA0]2.

In the case p = 2, items (i)–(iii) in Theorem 1.1 follow from the last results.

Proof of Corollary 1.2. If p = 2: if K = uH2 for a unitary u, then as in the
proof of Corollary 2.3, K 	 [KA0]2 = u[D]2, which has separating and cyclic
vector u. Conversely, if the right wandering subspace W has a separating and
cyclic vector v for D, then the proof of Proposition 2.2, with e = 1 in that proof,
shows that u∗u = 1. So u is unitary. Since K∗2 u = (0) we have K2 = (0). Thus
K = [WA]2 = uH2.

The equivalences in the next result generalize, and give as an immediate
consequence the equivalence of (i) and (iii) in Proposition 1.4, in the antisymmet-
ric case.

COROLLARY 2.5. Let A be a tracial algebra. The following are equivalent:
(i) A is maximal subdiagonal.

(ii) For every right A-invariant subspace X of L2(M), the right wandering subspace
W of X satisfies W∗W ⊂ L1(D), and W∗(X	 [WA]2) = (0).

(iii) Every right invariant subspace of L2(M) satisfies (i) and (iii) of Theorem 1.1.

Proof. The fact that (i) implies (ii) is proved in Theorem 2.1. The fact that (ii)
implies (i) may be proved via the later Beurling-Nevanlinna type factorization
Theorem 3.3, along the same lines as the proof of Proposition 1.4. We choose
to also give a direct proof. To see that (ii) implies (i), first set X = L2 	 [A∗0 ]2.
We will deduce that A satisfies L2-density. That is, L2(M) is the closure of A +
A∗ = A + A∗0 , or equivalently that X = [A]2. To this end, note that X is right
A-invariant. It is easy to see that 1 ∈ W, which forces X 	 [WA]2 = (0), and
W ⊂W∗W ⊂ L1(D). Thus W ⊂ L2(M)∩ L1(D) = L2(D). So X = [WA]2 ⊂ [A]2.
The converse inclusion [A]2 ⊂ X follows from the fact that [A]2 is orthogonal to
[A∗0 ]2.

We now prove that A possesses the unique normal state extension property;
so that A is maximal subdiagonal. To this end, let g ∈ L1(M)+ with τ(gA0) =
0. We may assume that g 6= 0. Let h = g1/2 ∈ L2(M), and set X = [hA]2.
Note that h ⊥ [hA0]2 since if an ∈ A0 with han → k in L2-norm, then τ(h∗k) =
lim

n
τ(h∗han) = 0. In particular, the fact that h ⊥ [hA0]2 ensures that h ∈ X 	

[XA0]2 = W. By hypothesis, h∗h = g ∈ L1(D).
We have seen already that (i) implies (iii). If (iii) holds then by Proposi-

tion 2.4 (iv) the wandering subspace W ⊂ K1, and K 	 [WA]2 = K 	 K1 = K2.
Thus W∗K2 ⊂ K∗1 K2 = (0), and W∗W ⊂ L1(D). This is (ii).
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REMARK. The conditions in the last result are also equivalent to: (iv) every
simply right A-invariant subspace X of L2(M) is of the form X = Z ⊕col [YA]2
where Y, Z are closed subspaces of X with Z type 2, and (0) 6= Y∗Y ⊂ L1(D);
and to: (v) every right A-invariant subspace of L2(M) satisfies (i) and (ii) of The-
orem 1.1. This is fairly obvious from the proof of Corollary 2.5.

3. NONCOMMUTATIVE BEURLING-NEVANLINNA FACTORIZATION

We now discuss several general inner-outer, or Beurling-Nevanlinna, fac-
torization theorems each of which turns out to characterize maximal subdiago-
nal algebras. One of these theorems (Theorem 3.3 (iv)), has the classical equiva-
lence with the Beurling-Nevanlinna factorization theorem as an immediate con-
sequence, or special case (namely that (ii) is equivalent to (iii) in Proposition 1.4
in the classical situation). This will be clear from an argument in the present
paragraph. Our other Beurling-Nevanlinna factorization theorems (namely The-
orem 3.3 (ii) or (iii)) have the advantage of having more attractive hypotheses,
which are perhaps easier to check. To understand the hypothesis of these theo-
rems, suppose for a moment that D is one dimensional as in the classical case,
and that f ∈ L2(M) is such that f /∈ [ f A0]2. Thus [ f A]2 is type 1. The right
wandering subspace [ f A]2 	 [ f A0]2 in this case is also one dimensional (since
f A ⊂ [ f A0]2 + fD ⊂ [ f A]2, and since [ f A0]2 + fD is closed, [ f A0]2 has codi-
mension one in [ f A]2). In particular the wandering subspace has a separating
and cyclic vector. In the general case, having such a vector is a necessary condi-
tion for BN-factorizability:

LEMMA 3.1. Suppose that A is a tracial algebra, and that f ∈ L2(M) is BN-
factorizable (respectively partially BN-factorizable). Then the right wandering subspace
of [ f A]2 has a separating and cyclic vector (respectively a cyclic vector) for the right D-
action. In fact, that vector may be taken to be a unitary (respectively partial isometry)
in M. Conversely, if A is maximal subdiagonal, and if the right wandering subspace of
[ f A]2 has a separating and cyclic vector, then f is BN-factorizable.

Proof. If f = uh is a BN-factorization, then [ f A]2 = [uhA]2 = u[hA]2 =
u[A]2. Similarly, [ f A0]2 = u[hA0]2 = u[A0]2, the latter since hA0 ⊂ [A]2 A0 ⊂
[A0]2 and

A0 = AA0 ⊂ [A]2 A0 ⊂ [hA]2 A0 ⊂ [hA0]2.

Thus [ f A]2 	 [ f A0]2 = u([A]2 	 [A0]2) = u[D]2. Similar, but slightly more cum-
bersome, arguments work in the partial isometry case.

Suppose that A is maximal subdiagonal and the right wandering subspace
of [ f A]2 has a separating and cyclic vector, then by Corollary 1.2, [ f A]2 = u[A]2
for a unitary u. We may write f = uh for h ∈ [A]2. Clearly u ∈ M ∩ [ f A]2, and

[hA]2 = u∗u[hA]2 = u∗[ f A]2 = [A]2.
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This completes the proof.

Recall that a wandering vector is a vector f ∈ L2(M) with f ⊥ [ f A0]2. Ex-
amples include the partial isometries ui in the previous section. Note that if f
is a wandering vector, then [ fD]2 ⊥ [ f A0]2, and so one easily sees that [ fD]2
is the right wandering subspace of [ f A]2. Moreover, [([ f A]2 	 [ f A0]2)A]2 =
[[ fD]2 A]2 = [ f A]2, so that [ f A]2 is type 1. In this case, to say that the right
wandering subspace of [ f A]2 has a cyclic separating vector is equivalent to say-
ing that [ fD]2 has such a vector. By Exercise 9.6.2 of [15], this is also equivalent
to saying that f is separating; that is, the map d 7→ f d on D is one-to-one.

PROPOSITION 3.2. Suppose that A is a tracial algebra. If 0 6= f ∈ L2(M),
consider the following conditions:

(i) f ∈ M−1;
(ii) f is a wandering vector, and the map d 7→ f d on D is one-to-one;

(iii) the right wandering subspace of [ f A]2 has a nonzero separating and cyclic vector
for the right action of D.
Then any one of conditions (i) or (ii) imply (iii).

Proof. Suppose that (ii) holds. In this case, [ fD]2 is the right wandering
subspace of [ f A]2, as remarked above, and so (iii) holds.

If (i) holds, then [ f A]2 = f [A]2 and [ f A0]2 = f [A0]2. Thus as purely alge-
braic D-modules,

[ f A]2 	 [ f A0]2 ∼=
[ f A]2
[ f A0]2

∼=
[A]2
[A0]2

∼= [D]2.

The latter module has a nonzero separating and cyclic vector. Since these isomor-
phisms are also continuous, so does [ f A]2 	 [ f A0]2. So (iii) holds.

THEOREM 3.3 (Beurling-Nevanlinna factorization for tracial algebras). For
a tracial subalgebra A of M, the following are equivalent:

(i) A is maximal subdiagonal.
(ii) Every nonzero f ∈ L2(M) satisfying either (i) or (ii) in 3.2 is BN-factorizable.

(iii) If f ∈ M−1∩M+, or if f is a wandering vector, then f is partially BN-factorizable.
(iv) Every f ∈ L2(M) satisfying (iii) in Proposition 3.2 is BN-factorizable.

Indeed, every f ∈ M−1 ∩ M+ is BN-factorizable, if and only if A∞ is maximal sub-
diagonal. Also, A has the unique normal state extension property if and only if every
wandering vector is partially BN-factorizable.

Proof. The proof of Lemma 2.4.3 in [27] demonstrates one direction of the
penultimate “if and only if”, and we leave the converse as an exercise.

For the equivalences between (i), (ii), and (iv), by Proposition 3.2 and Lem-
ma 3.1 it remains to show that (ii) implies (i). If (ii) holds, then by the last state-
ment A∞ is maximal subdiagonal. Hence A satisfies L2-density. If therefore we
can show that A also satisfies the unique normal state extension property we
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are done (as in the proof of Corollary 2.5). Suppose that g ∈ L1(M)+ satisfies
τ(gA0) = 0. We need to show that g ∈ L1(D)+. Since τ((g + 1)A0) = 0, we can
replace g with g + 1 if necessary. Let f = g1/2 ∈ L2(M). Then f ⊥ [ f A0]2. Obvi-
ously, f is a cyclic vector for [ fD]2. If f d = 0 then d = 0 since τ(d∗d) 6 τ(d∗ f ∗ f d).
So f is separating. By hypothesis, f = uh for an outer h ∈ [A]2 and some unitary
u in M. Since h = u∗ f ⊥ [hA0]2 = [A0]2, and h ∈ [A]2, it follows that h ∈ [D]2.
Thus g ∈ [D]1 = L1(D).

An easy modification of the last argument gives one direction of the last
assertion of the theorem. For the other direction, suppose that A has the unique
normal state extension property, and f ∈ L2(M)	 [ f A0]2. By the remarks preced-
ing Proposition 3.2, [ f A]2 is a type 1 invariant subspace. Following the first half of
the proof of Theorem 2.1 (v), we see that f ∗ f ⊂ L1(D), and so [ f A]2 has a decom-
position of the type considered in Theorem 2.1 (here Z = (0)). Since Y = [ fD]2
is cyclic, by Proposition 2.2 there is a partial isometry u with [ f A]2 = u[A]2 and
u∗u ∈ D. Clearly u ∈ [ f A]2 ∩ M. We may write f = uh with h ∈ (u∗u)[A]2 ⊂
[A]2. Also, u[hA]2 = [ f A]2 = u[A]2, so that [hA]2 = (u∗u)[hA]2 = (u∗u)[A]2.
Thus f is partially BN-factorizable.

The equivalence of (i) with (iii) follows from the last two if and only if’s
of our theorem’s statement, the fact that if A∞ is maximal subdiagonal then A
satisfies L2-density, and the fact that f ∈ M−1 is partially BN-factorizable if and
only if it is BN-factorizable. Indeed if f is invertible, with partial BN-factorization
f = uh, then h = u∗ f is bounded, and so both u and h are also invertible since we
are in a finite von Neumann algebra. Hence u is a unitary.

At the end of Section 4 we give a very general “inner-outer factorization”
result.

4. THE CASE OF Lp FOR p 6= 2

To discuss the Lp-version of some of the results above, we use the “col-
umn Lp-sum” from [14]. Suppose that 1 6 p < ∞ and that {Xi : i ∈ I} is
a collection of closed subspaces of Lp(M). We then define the external column
Lp-sum

⊕
i

col Xi to be the closure of the restricted algebraic sum in the norm

‖(xi)‖p
def= τ

((
∑
i

x∗i xi

)p/2)1/p
. That this is a norm for 1 6 p < ∞ is verified

in [14]. If X is a subspace of Lp(M), and if {Xi : i ∈ I} is a collection of subspaces
of X, which together densely span X, with the property that X∗i Xj = {0} if i 6= j,
then we say that X is the internal column Lp-sum

⊕
i

col Xi. Note that if J is a finite

subset of I, and if xi ∈ Xi for all i ∈ J, then we have that

τ
(∣∣∣∑

i∈J
xi

∣∣∣p)1/p
= τ

((∣∣∣∑
i∈J

xi

∣∣∣2)p/2)1/p
= τ

((
∑
i∈J

x∗i xi

)p/2)1/p
.
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This shows that X is then isometrically isomorphic to the external column Lp-
sum

⊕
i

col Xi. Since the projections onto the summands are clearly contractive, it

follows by routine arguments (or by Lemma 2.4 of [14]) that if (xi) ∈
⊕

i

col Xi, then

the net
(

∑
j∈J

xj

)
, indexed by the finite subsets J of I, converges in norm to (xi).

We will need a couple of technical results:

LEMMA 4.1. If 0 < p < ∞, and if e is a projection in M, then v ∈ Lp(M)+
satisfies τ((d∗vd)p) = τ((d∗ed)p) for all d ∈ M, if and only if v = e.

Proof. We regard v as an unbounded positive operator affiliated with M,
then vp ∈ L1(M)+. Choosing d = e⊥ shows that e⊥ve⊥ = 0. It is easy to see,
as in the bounded case, that these imply that ve⊥ = e⊥v = 0 too. So v = eve.
Replacing M by eMe, we can assume that e = 1. If E is a projection in the minimal
von Neumann algebra M0 generated by v (see e.g. p. 349 in [15]), then (EvE)p =
Evp, and so by hypothesis τ(E(vp − 1)) = 0. If E is the spectral projection for v
corresponding to [0, 1], then Evp 6 E and so we have E = Evp since τ is faithful.
On the other hand, E⊥vp > E⊥ so that E⊥ = E⊥vp. Thus vp = 1.

LEMMA 4.2. Let A be maximal subdiagonal and let K be an A-invariant subspace
of Lp(M), for 2 6 p 6 ∞. Then [K]1 ∩ Lp(M) = [K]2 ∩ Lp(M) = [K]p. (The last
symbol, if p = ∞, is always taken in this paper to mean the weak* closure.)

Proof. In this proof we will denote polars taken with respect to the dual pair
(L1(M), M) by ⊥, and polars taken with respect to the dual pair (Lp(M), Lq(M))
by ◦. Here 1/p + 1/q = 1. We assume that p < ∞, and leave the case p = ∞
to the reader. Note that if K is a right A-invariant subspace of Lp(M) then K◦ is
a closed right A∗-invariant subspace of Lq(M). To see this note that we clearly
have

0 = τ(y∗(xa)) = τ((ya∗)∗x), x ∈ K, a ∈ A, y ∈ K◦,
since xa ∈ K. But then ya∗ ∈ K◦ as required.

Since K◦ is a closed A∗-invariant subspace of Lq(M), by the result of Saito
mentioned in our introduction K◦ ∩ M is norm dense in K◦. Regarding K as a
subspace of L1(M) we have K⊥ = K◦ ∩M. Hence by the bipolar theorem (K◦ ∩
M)⊥ = [K]1. Clearly (K◦ ∩M)⊥ ∩ Lp(M) = (K◦ ∩M)◦. Hence

[K]1 ∩ Lp(M) = (K◦ ∩M)⊥ ∩ Lp(M) = (K◦ ∩M)◦ = (K◦)◦ = [K]p.

The other assertion now follows from the fact that K ⊂ [K]2 ∩ Lp(M) ⊂ [K]1 ∩
Lp(M). If p = ∞ it is easy to check that [K]2 ∩M is weak* closed. So in all cases,
[K]p ⊂ [K]2 ∩ Lp(M), which gives the result.

COROLLARY 4.3. If A is maximal subdiagonal then for any 1 6 p 6 q 6 ∞ there
is a lattice isomorphism between the closed (weak*-closed, if q = ∞) right A-invariant
subspaces of Lp(M) and Lq(M).



44 DAVID P. BLECHER AND LOUIS E. LABUSCHAGNE

Proof. We may take p or q to be 2. The isomorphism (respectively its in-
verse) of course is the map taking K to its closure (respectively intersection with
the appropriate Lp space). This follows easily from the aforementioned result of
Saito, and the lemma (or a tiny variant of it).

DEFINITION 4.4. We define the right wandering subspace of K, if 1 6 p 6
2 (respectively p > 2) to be the Lp-closure of the right wandering subspace of
K ∩ L2(M) (respectively to be the intersection of Lp(M) with the right wandering
subspace of [K]2).

THEOREM 4.5. Let A be a maximal subdiagonal subalgebra of M, and suppose
that K is a closed A-invariant subspace of Lp(M), for 1 6 p 6 ∞. (For p = ∞ we
assume that K is weak* closed.)

(i) K may be written as a column Lp-sum K = Z ⊕col
(⊕

i

col ui Hp
)

, where Z is a

closed (indeed weak* closed if p = ∞) type 2 subspace of Lp(M), and where ui are partial
isometries in M ∩ K with u∗j ui = 0 if i 6= j, and with u∗i ui ∈ D. Moreover, for each i,
u∗i Z = (0), left multiplication by the uiu∗i are contractive projections from K onto the
summands ui[A]p, and left multiplication by 1−∑

i
uiu∗i is a contractive projection from

K onto Z.
(ii) The wandering quotient K/[KA0]p is isometrically D-isomorphic to the right

wandering subspace of K; and the latter also equals
⊕

i

col ui[D]p, where ui are from (i).

(Here [·]∞ is the weak* closure as usual.)
(iii) K is type 1 if and only if K ∩ L2(M) (respectively [K]2) is type 1, and if and only

if Z = (0) in (i). If 1 6 p 6 2 (respectively p > 2), then K is type 2 if and only if
K ∩ L2(M) (respectively [K]2) is type 2, and if and only if K = Z.

Proof. (i) First suppose that p 6 2. By Saito’s theorem mentioned in the in-
troduction, K is the Lp-closure of K ∩ L2(M). Theorem 2.1 gives a decomposition
K ∩ L2(M) = Z′ ⊕ [YA]2, where Z′ is type 2, and Y is the right wandering sub-
space of K ∩ L2(M). Let Z be the Lp-closure of Z′. Note that Z is type 2. Indeed
[ZA0]p = [[Z′]p A0]p = [Z′A0]p, as is easy to check. Thus

[ZA0]p = [Z′A0]p = [[Z′A0]2]p = [Z′]p = Z.

We leave it as an exercise that Z ∩ L2(M) = Z′.
Since z∗y = 0 for y ∈ Z′, y ∈ YA, it follows using (4.8) in [14] that (0) =

Z∗[YA]p. From this it is easy to see that K = Z ⊕col K1 where K1 = [YA]p.
By Corollary 2.3, [YA]2 =

⊕
i

col ui[A]2, for ui as above. Thus the Lp-closure of

∑
i

ui A is all of K1. On the other hand, (uj[A]p)∗(ui[A]p) = (0) if i 6= j. So

K1 =
⊕

i

col ui[A]p.
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Now suppose that 2 6 p 6 ∞. We embed K into L2(M); by the L2 result

[K]2 = Z′ ⊕col
(⊕

i

col ui H2
)

as usual, where Z′ is type 2. We assume that p <

∞ in the arguments below, however the case p = ∞ is a simple variant. Let

K1 =
(⊕

i

col ui H2
)
∩ Lp(M). Note that

[⊕
i

col ui Hp
]

2
=
⊕

i

col ui H2, so that by

Lemma 4.2 we have K1 =
⊕

i

col ui Hp.

Define Z = Z′ ∩ Lp(M), which is also easily seen to be closed. Since Z′ is
A-invariant, by Saito’s result Z is an A-invariant subspace of Lp(M) which is L2-
dense in Z′. On setting X0 = Z⊕ K1, it follows that X0 is L2-dense in [K]2. Also,
X0 is an invariant subspace of Lp(M), which is easily seen to be closed. Clearly
Z∗K1 = (0). By Lemma 4.2 we have

K = [K]2 ∩ Lp(M) = [X0]2 ∩ Lp(M) = X0 = Z⊕col K1.

To see that Z is type 2, by Lemma 4.2, and the fact that [Z]2 = Z′, we have

Z = Z′ ∩ Lp(M) = [Z′A0]2 ∩ Lp(M) ⊂ [ZA0]2 ∩ Lp(M) = [ZA0]p.

Finally, suppose 1 6 p 6 ∞. Since left multiplication by uiu∗i annihilates
Z′ and uj[A]p if j 6= i, left multiplication by the uiu∗i are contractive projections
from K onto the summands ui[A]p, and left multiplication by 1 − ∑

i
uiu∗i is a

contractive projection onto Z.
(ii) The fact that the right wandering subspace equals

⊕
i

col ui[D]p follows

from a slight modification of the argument in (i) that K1 =
⊕

i

col ui Hp. We also

need the fact that Lp(M) ∩ [D]1 = [D]p.
By e.g. [18], Φ induces a contractive “expectation” on every Lp(M). Assume

p > 2. Then Φ(x)∗Φ(x) 6 Φ(x∗x) for x ∈ Lp(M), as may be seen by routine
continuity arguments. Again we assume p < ∞, and leave the variation of the
argument in the case p = ∞ to the reader. Define a map θ : K = K1 ⊕col K2 → K
by θ(w) = ∑

i
uiΦ(xi) if w = ∑

i
uixi + k2 for xi ∈ Hp and k2 ∈ K2. It is easy to

see that θ(w) equals ∑
i

uiΦ(u∗i w), which shows that θ is well defined (and weak*

continuous if p = ∞). Indeed since u∗i ui ∈ D, we have

τ
((

∑
i

Φ(xi)∗u∗i uiΦ(xi)
)p/2)

6τ
(

Φ
(

∑
i

x∗i u∗i uixi

)p/2)
6τ
((

∑
i

x∗i u∗i uixi

)p/2)
,

which shows that ‖θ(w)‖p
p 6 ‖w‖p

p. (In the first inequality here, we have used
the fact that for elements of the type that we are considering, 0 6 S 6 T implies
that ‖S‖r 6 ‖T‖r, which follows from e.g. Lemma 2.5 (iii), Corollary 2.8 of [7].
The second inequality follows from the Lp/2-contractivity of Φ, see e.g. 3.10 in
[18].) Thus θ is a contractive projection onto its range, and hence induces an
isometric D-module map from K/Ker(θ) onto

⊕
i

col ui[D]p. Since xi A0 ∈ [A0]p ⊂
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Ker(Φ) if xi ∈ Hp, it is clear that Ker(θ) contains KA0, and hence contains [KA0]p.

Conversely if θ
(

∑
i

uixi + k2

)
= 0 then u∗i uiΦ(xi) = 0 for every i. Thus u∗i uixi ∈

Ker(Φ) ∩ Hp = [A0]p. Hence uixi ∈ ui[A0]p, and so ∑
i

uixi + k2 ∈ [KA0]p. So

Ker(θ) = [KA0]p.
If 1 6 p < 2, we follow the same argument with the following modification.

Suppose that 1/p + 1/q = 1, and that F is a finite set of indices. Define θF on
Lq(M) taking w 7→ ∑

i∈F
uiΦ(u∗i w). Since ∑

F
uiu∗i is a projection, by the arguments

in the last paragraph it is easy to see that τ
((

∑
F

Φ(u∗i w)∗u∗i uiΦ(u∗i w)
)q/2)

is

dominated by

τ
(

Φ
(

w∗
(

∑
F

uiu∗i
)

w
)q/2)

6 τ(Φ(w∗w)q/2) 6 τ((w∗w)q/2) = τ(|w|q),

which shows that θF is a contraction. For g ∈ Lp(M), f ∈ Lq(M) we have that

τ(g∗θF( f )) = ∑
i∈F

τ(g∗uiΦ(u∗i f )) = ∑
i∈F

τ(Φ(g∗ui)u∗i f ) = τ
((

∑
i∈F

uiΦ(u∗i g)
)∗

f
)

,

where the middle equality follows by e.g. 3.10 of [18]. This shows that the con-
traction (θF)∗ ∈ B(Lp(M)) is precisely the map w 7→ ∑

i∈F
uiΦ(u∗i w) on Lp(M).

Since this holds for every finite subset F, this implies that the map θ above is a
densely defined contraction on K, and thus extends continuously to K. By conti-
nuity it follows that this extension has precisely the same formula as before, and
now the earlier argument works.

(iii) If K ∩ L2(M) (respectively [K]2) is type 1 then it is obvious from the
proof of (i) that Z′ = Z = (0). Similarly, if K ∩ L2(M) (respectively [K]2) is
type 2 then it is obvious that K = Z. It is trivial that if K = Z then K is type
2. Conversely, if K is type 2 then the wandering quotient is (0). Identifying this
with the subspace of K described in (ii), all the ui are zero. Thus K = Z. Also,
if p > 2 then [K]2 = [Z]2 = Z′ which is type 2; and a similar argument works if

p < 2. Since
[(⊕

i

col ui[D]p

)
A
]

p
=
⊕

i

col ui Hp, we have that Z = (0) if and only

if
⊕

i

col ui[D]p generates K. By (ii) this happens if and only if Z is type 1.

If 1 6 p 6 2, suppose that K =
⊕

i

col ui Hp for partial isometries ui sat-

isfying the relations in (i). Then
[⊕

i

col ui H2
]

p
= K, so by Lemma 4.2 we have

K ∩ L2(M) ⊂
[⊕

i

col ui H2
]

1
∩ L2(M) =

⊕
i

col ui H2. So
⊕

i

col ui[A]2 = K ∩ L2(M),

which is type 1 by Corollary 1.2.
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If 2 6 p 6 ∞ and K =
⊕

i

col ui Hp for partial isometries ui satisfying the

relations in (i), then it is easy to argue that
⊕

i

col ui[A]2 = [K]2. So [K]2 is type

1. (In the case p = ∞, note that ∑
i

ui A ⊂ [K]2 ∩ M = K by Lemma 4.2, so that[
∑
i

ui A
weak∗

]
2
⊂ [K]2.)

We have now proved the existence of the type decomposition in
Theorem 1.1 (i). The uniqueness of this type decomposition follows from the
following:

COROLLARY 4.6. If K is a subspace of Lp(M) of the form K = K1 ⊕col K2 where
K1 is type 1 and K2 is type 2, and if 16 p6 2, then K1 (respectively K2) is the Lp closure
of the type 1 (respectively type 2) part of K∩L2(M). If 2 6 p 6 ∞ then K1 (respectively
K2) is the intersection of Lp(M) with the type 1 (respectively type 2) part of [K]2.

Proof. If 1 6 p 6 2, then clearly (K1 ∩ L2(M)) + (K2 ∩ L2(M)) ⊂ K∩ L2(M).
On the other hand, if x ∈ K ∩ L2(M), we can write x = k1 + k2, for ki ∈ Ki.
Since K1 is type 1, we can write K1 =

⊕
i

col ui[A]p for some ui as above. So k1 =

∑
i

uiu∗i k1. Since ui ∈ K1 we have u∗i k2 = 0. Thus since x =
(

1− ∑
i

uiu∗i
)

x +

∑
i

uiu∗i x, we have k1 = ∑
i

uiu∗i x, and so k2 =
(

1− ∑
i

uiu∗i
)

x. This forces k1 ∈(
∑
i

uiu∗i
)

L2(M) ⊂ L2(M), similarly k2 ∈ L2(M). Thus we have K ∩ L2(M) =

(K1 ∩ L2(M))⊕col (K2 ∩ L2(M)). Since K1 ∩ L2(M) is type 1 and K2 ∩ L2(M) is
type 2, we have by the uniqueness of decomposition in the L2 case, that K1 ∩
L2(M) = [(K ∩ L2(M) 	 [(K ∩ L2(M))A0]2)A]2. By Saito’s theorem K1 is the
Lp closure of K1 ∩ L2(M). Since K2 = {z ∈ K : z∗K1 = (0)}, it is uniquely
determined, and so the assertion about K2 follows by the proof of the previous
theorem.

If 2 6 p, then K = K1 ⊕col K2 implies easily that [K]2 = [K1]2 ⊕col [K2]2.
Since [K1]2 and [K2]2 are types 1 and 2 respectively (by (iii) of the theorem), the
result follows from Lemma 4.2.

PROPOSITION 4.7. Suppose that K is a closed (indeed weak* closed, if p = ∞)
A-invariant subspace of Lp(M), and that A is maximal subdiagonal. The following
are equivalent:

(i) K = uHp for a unitary u ∈ M.
(ii) The right wandering subspace of K (or equivalently, the right wandering quotient)

has a cyclic and separating vector.
(iii) The right wandering subspace of K ∩ L2(M) (respectively [K]2) in L2(M) has a

cyclic and separating vector, when 1 6 p 6 2 (respectively 2 6 p 6 ∞).
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Proof. If K = u[A]p and p < 2, then K ∩ L2(M) = uH2 by an argument in
the proof of (iii) of the theorem. It follows that the right wandering subspace of
K ∩ L2(M) is u[D]2. From this it is clear that the right wandering subspace of K
is u[D]p. These both have separating cyclic vectors. If p > 2 then this argument
is easier (one also uses the simple fact that Lp(M) ∩ L2(D) = Lp(D)).

To prove that (iii) implies (i), note that by Corollary 1.2 in the case p = 2, we
have that K ∩ L2(M) (respectively [K]2) equals u[A]2 for a unitary u ∈ M. Thus
K = u[A]p (if p < 2 use Saito’s theorem mentioned in the introduction, whereas
if p > 2 use Lemma 4.2).

If (ii) holds, then by adapting of an argument from p. 13 in [14] there exists
an isometric D-module isomorphism ψ : Lp(D) → W. (This is a variant of the
well known fact that a W∗-module over D with a cyclic separating vector is uni-
tarily isomorphic to D; indeed the latter is the case p = ∞ of the assertion under
discussion.) Set ψ(1) = u and set v = u∗u ∈ Lp/2(D). If p < ∞ we have

τ((d∗d)p/2) = ‖ψ(d)‖p
p = ‖ud‖p

p = τ((d∗vd)p/2), d ∈ D.

By Lemma 4.1 with p replaced by p/2, the last identity forces v = 1, so that u is
unitary (since we are in a finite von Neumann algebra), and W = u[D]p. Since
K∗2W = (0), we have K2 = (0), and so K = uHp. A similar argument works
if p = ∞; here in place of Lemma 4.1 one may use the fact that an isometric
D-module isomorphism between C∗-modules is unitary (see e.g. 8.1.5 in [5]).

The following is the analogue of Beurling’s characterization of weak* closed
ideals of H∞(D). The last part uses also the main theorem from [21], which is
valid in L2, but which transfers easily to L∞ using results above.

COROLLARY 4.8. If A is maximal subdiagonal, then the type 1 weak* closed right
ideals of A are precisely those right ideals of the form

⊕
i

col ui A, for partial isometries

ui ∈ A with mutually orthogonal ranges and |ui| ∈ D. If the center of D is contained in
the center ofM, then one needs only one partial isometry here.

REMARK. As is proved in [21] in the case p = 2, a closed A-invariant sub-
space K of Lp(M) has type 1 if and only if [WM]p = [KM]p where W is the right
wandering subspace. The one direction of this is obvious. For the other note that
if K is not type 1 then by our main theorem there exists η ∈ K with η∗W = 0.
Thus η∗[WM]p = 0 by e.g. (4.8) in [14], which shows that [WM]p 6= [KM]p.

COROLLARY 4.9. Suppose that A is maximal subdiagonal, and f ∈ Lp(M), for
1 6 p < ∞. If [ f A]p is a type 1 invariant subspace, then f = ∑

i
uihi (a norm convergent

sum), where ui are partial isometries in [ f A]p ∩ M with u∗i ui ∈ D, and u∗j ui = 0 if
i 6= j, and hi ∈ [A]p with (u∗i ui)hi = hi and u∗i ui ∈ [hi A]p.

Proof. By the results above, [ f A]p =
⊕

i

col ui[A]p, where ui are partial isome-

tries in M∩ [ f A]p of the correct form. Moreover, left multiplication by the uiu∗i are
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contractive projections from [ f A]p onto the summands ui[A]p. Thus f = ∑
i

uihi

for hi ∈ (u∗i ui)[A]p. We have

u∗i ui ∈ (u∗i ui)[A]p = u∗i [ f A]p = (u∗i ui)[hi A]p = [hi A]p.

This completes the proof.

A similar result with almost identical proof holds if p = ∞, interpreting
closures and convergence in the weak* topology.

The last result is a generalized “inner-outer” factorization. The sum of
products can be replaced by a single product if the wandering subspace has a
cyclic vector. For example, if f ∈ Lp(M) and if K = [ f A]p has a wandering sub-
space which has a cyclic and separating vector, then by Proposition 4.7 we have
K = uHp for a unitary u ∈ M. Thus f = uh for h ∈ Hp, and as in the last lines
of the proof of Lemma 3.1, this implies that [hA]p = [A]p. We take the latter
condition as the definition of h being outer, as in the classical case.

CLOSING REMARK. In Sections 2 and 3, and in [3], we have been able to
generalize almost the entire circle of equivalent characterizations from [28] of (at
least weak* closed) weak* Dirichlet algebras. There are two items remaining in
that list. The first is known as the Gleason-Whitney theorem, and we have re-
cently been able to demonstrate the equivalence of this condition with the others,
at least under some restriction on D [4]. The second item is the condition that A∞
is maximal subdiagonal. Unfortunately we were unable to follow the proof given
in [28] for the latter equivalence, nor have we been able to find this equivalence
mentioned elsewhere in the literature (without additional hypotheses). One suf-
ficient condition under which A∞ being maximal subdiagonal implies that A is
maximal subdiagonal, is that the extension of Φ to L1(M) be continuous with re-
spect to the topology of convergence in measure (see [30], [7], [29], [22] for details).
However the latter does not hold for many interesting subdiagonal algebras.
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