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INTRODUCTION

If A, B are closed operators acting in a Banach space H and if there is z ∈
ρ(A) ∩ ρ(B) such that (A− z)−1 − (B− z)−1 is a compact operator, then we say
that B is a compact perturbation of A (see the end of this section for notations). If
this is the case, then the difference (A− z)−1 − (B− z)−1 is a compact operator
for all z ∈ ρ(A) ∩ ρ(B). In particular, if B is a compact perturbation of A, then A
and B have the same essential spectrum, the essential spectrum of a closed operator
S being the set of complex numbers λ such that S− λ is not Fredholm.

We are mainly interested in the case when A and B are differential operators
with complex measurable coefficients which are equal at infinity in a rather weak
sense. An important point then is that only a generalized version of the “qua-
dratic form domain” of the operator is explicitly known and one has not much
information about the domain of the operator.

To avoid this problem we shall work with operators constructed as follows.
Let G , H , K be reflexive Banach spaces such that G ⊂ H ⊂ K continuously
and densely and let A0, B0 be continuous maps G → K . We assume that there
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is a complex number z such that A0 − z and B0 − z are bijective maps G → K

and we define A and B as the restrictions of A0 and B0 to D(A) = A−1
0 H and

D(B) = B−1
0 H respectively, considered as operators on H . It is easy to see

that these are closed densely defined operators on H such that z ∈ ρ(A) ∩ ρ(B)
and our purpose is to find criteria such that (A− z)−1 − (B− z)−1 be a compact
operator.

We summarize now a standard way of proving such a fact. We assume,
without loss of generality, that z = 0. Then A−1

0 − B−1
0 = A−1

0 (B0 − A0)B−1
0

holds in B(K , G ) and we get A−1 − B−1 = A−1
0 (B0 − A0)B−1 in B(H ). Thus if

A0 − B0 : G → K is compact then B is a compact perturbation of A (but much
more is true, in fact A−1

0 − B−1
0 : K → G is also compact). Unfortunately this

assumption is never fulfilled if A0, B0 are differential operators with distinct prin-
cipal part (for the natural choices of G , K ). This also excludes singular lower or-
der perturbations, e.g. the important case of Dirac Hamiltonian’s with Coulomb
potentials.

If we require that A0 − B0 : D(B) → K be compact we get a more general
compactness criterion (D(B) is equipped with the graph topology and we have
D(B) ⊂ G continuously and densely). Now perturbations of the principal part of
a differential operator and singular lower order terms are not a priori excluded,
cf. [17] for the Dirac case. However, in order to be able to use this criterion one
must have some information about D(B) which is quite difficult to get if B is a
singular differential operator.

In this paper we develop a new method for proving compactness of the
difference A−1 − B−1 which is efficient in situations where we have really no
information concerning the domains of A and B (besides the fact that they are
subspaces of G ). The case when A, B are second order elliptic operators with mea-
surable complex coefficients acting in H = L2(Rn) has been studied by Ouhabaz
and Stollmann in [18] and, as far as we know, this is the only paper where the “un-
perturbed” operator is not smooth. Their approach consists in proving that the
difference A−k − B−k is compact for some k > 2 (which implies the compactness
of A−1 − B−1). In order to prove this, they take advantage of the fact that D(Ak)
is a subset of the Sobolev space W1,p for some p > 2, which means that we have a
certain gain of local regularity. Of course, Lp techniques from the theory of partial
differential equations are required for their methods to work.

Our approach to these questions is quite different, we explain here the main
idea in the case of uniformly elliptic operators of order 2m in divergence form
on Rn. Let H = L2 and let G and K be the Sobolev spaces H m and its ad-
joint H −m. We take A0 = D∗aD = ∑

|α|,|β|6m
PαaαβPβ (where Pk = −i∂k) and

B0 = D∗bD of a similar form. Assume for definiteness that aαβ are bounded mea-
surable functions and that Re 〈u, A0u〉 > µ‖u‖2

H m for some constant µ > 0 and
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similarly for B0. Then

R ≡ A−1 − B−1 = A−1
0 D∗(b− a)DB−1 ≡ S(b− a)DB−1.

If L =
⊕
|α|6m

H then DB−1 : H → L is bounded so it suffices to find a condition

which ensures that S(b − a) : L → H is compact. Now b − a is a bounded
operator on L and S cannot be compact unless b − a decays in some sense at
infinity. So assume that we can factorize b− a = ξ(Q)U where U ∈ B(L ) and
ξ(Q) is the operator of multiplication by a function ξ ∈ B0(Rn) (bounded Borel
functions which vanish at infinity in the usual sense; but we stress that a much
weaker sense is natural in this context, and this will be the case of main interest for
us). Since S : L → H m is bounded one can easily prove that Sξ(Q) : L → H
is compact if and only if one can write Sξ(Q) = ϕ(Q)T for some ϕ ∈ B0(Rn) and
T ∈ B(L , H ).

To conclude, R will be compact if the operator S ∈ B(L , H ) has the follow-
ing property: for each ξ ∈ B0(Rn) there are ϕ ∈ B0(R) and T ∈ B(L , H ) such
that Sξ(Q) = ϕ(Q)T. An operator S with this property will be called quasilocal,
or decay preserving, with respect to the notion of decay specified by the algebra B0.
Thus R is compact if S preserves decay. The main point of our approach is that
this property of S holds under very general assumptions on A and for notions of
decay at infinity more general than that specified by the algebra B0.

An abstract formulation of these ideas allows one to treat situations of a
very general nature: pseudo-differential operators on finite dimensional vector
spaces over a local field, Laplace operators on manifolds with locally L∞ Rie-
mannian metrics, operators acting on sections of vector bundles over locally com-
pact spaces. Sections 3, 4, 7 and 8 are devoted to such applications.

In Section 1 we present an algebraic formalism which allows us to treat in
a unified way operators acting on sections of vector fiber bundles over a locally
compact space. This framework allows one to study differential operators in Lp

or more general Banach spaces. Since these extensions are rather obvious and the
examples are not particularly interesting, we shall not consider explicitly such
situations. The class of decay improving (or vanishing at infinity) operators is
defined through an a priori given algebra of operators on a Banach space H , the
multiplier algebra of H , and this allows us to define the notion of decay preserving
operator in a natural and general context, that of Banach modules. Examples of
multiplier algebras are given in Sections 3, 6 and 8. Section 2 contains abstract
compactness criteria which formalize in the context of Banach modules the ideas
involved in the example discussed above.

In Section 3 we construct Banach modules associated to representations of
locally compact abelian groups and consider compact perturbations of a general
class of operators of arbitrary order, for example the Dirac operators on Rn. In
Section 4 we discuss operators in divergence form on Rn, hence of order 2m with
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m > 1 integer, with coefficients of a rather general form (e.g. they do not have to
be functions).

In Section 7 we present several results concerning the case when the coeffi-
cients of the operator A− B vanish at infinity in a generalized sense (this question
has been studied before, for example in [11], [14], [18], [21]). Theorem 7.4 is one
of the main applications of our formalism: we prove a compactness result for
irregular operators of order 2m in divergence form assuming that the difference
between their coefficients weakly vanishes at infinity. Such results were known
before only in the case m = 1, see especially Theorem 2.1 in [18]. We assume that
the coefficients of the higher order terms are bounded, thus their Theorem 3.1
is not covered unless we add an implicit assumption, as is done in [18] (or in
our Theorems 8.8 and 8.9). In fact, our main abstract compactness result (Theo-
rem 2.1) is stated such as to apply to situations when the coefficients of the prin-
cipal part of the operators are locally unbounded, as in [4], [5], but we have not
developed this idea here.

We present the notion of weakly vanishing at infinity functions in terms of
filters finer than the Fréchet filter, a natural idea in our context being to extend
the standard notion of neighborhood of infinity. If X is a locally compact space,
it is usual to define the filter of neighborhoods of infinity as the family of subsets
of X with relatively compact complement; this is the Fréchet filter. If F is a filter
on X finer than the Fréchet filter then a function ϕ : X → C such that lim

F
ϕ = 0

can naturally be thought as convergent to zero at infinity in a generalized sense
(recall that lim

F
ϕ = 0 means that for each ε > 0 the set of points x such that

|ϕ(x)| < ε belongs to F ). In Subsection 6 we consider several such filters and
describe corresponding classes of decay preserving operators, see for example
Theorem 6.1 and Theorem 6.5.

Theorem 6.5 is a consequence of a factorization theorem that we prove in
Section 5 and which involves tools from the modern theory of Banach spaces. In
fact, Theorem 5.6, the main result of Section 5, is a version of the “strong factoriza-
tion theorem” of B. Maurey (see Theorem 5.1) which does not seem to be covered
by the results existing in the literature. We also use Maurey’s theorem directly to
prove some of our main results, for example Theorems 8.8 and 8.9 which depend
on Theorem 6.1.

In Section 8 we study perturbations of the Laplace operator on a Riemann-
ian manifold with locally L∞ metric. We consider an abstract model of this sit-
uation which fits naturally in our algebraic framework and covers the case of
Lipschitz manifolds with measurable metrics. We consider in more detail the
case when the manifold is C1 (but the metric is only locally L∞) and establish
stability of the essential spectrum under certain perturbations of the metric, see
Theorems 8.5, 8.8 and 8.9.

We mention that the preprint version [10] of this paper contains an alterna-
tive, sometimes more detailed, presentation of the topics considered here.
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NOTATIONS. If G and H are Banach spaces then B(G , H ) is the space of
bounded linear operators G →H , the subspace of compact operators is denoted
K(G , H ), and we set B(H ) = B(H , H ) and K(H ) = K(H , H ). The domain
and the resolvent set of an operator S will be denoted by D(S) and ρ(S) respec-
tively. The norm of a Banach space G is denoted by ‖ · ‖G and we omit the index
if the space plays a central rôle. The adjoint space (space of antilinear continuous
forms) of a Banach space G is denoted G ∗ and if u ∈ G and v ∈ G ∗ then we set
v(u) = 〈u, v〉. The embedding G ⊂ G ∗∗ is realized by defining 〈v, u〉 = 〈u, v〉.

If G , H , K are Banach spaces such that G ⊂ H continuously and densely
and H ⊂ K continuously then we have an obvious continuous embedding
B(H ) ↪→ B(G , K ) which will be used without comment later on.

A Friedrichs couple (G , H ) is a pair of Hilbert spaces G , H together with
a continuous dense embedding G ⊂ H . The Gelfand triplet associated to it is
obtained by identifying H = H ∗ with the help of the Riesz isomorphism and
then taking the adjoint of the inclusion map G → H . Thus we get G ⊂ H ⊂ G ∗

with continuous and dense embeddings. Now if u ∈ G and v ∈ H ⊂ G ∗ then
〈u, v〉 is the scalar product in H of u and v and also the action of the functional v
on u.

If X is a locally compact topological space then B(X) is the C∗-algebra of
bounded Borel complex functions on X, with norm sup

x∈X
|ϕ(x)|, and B0(X) is the

subalgebra consisting of functions which tend to zero at infinity. Then C(X),
C0(X) and Cc(X) are the spaces of complex functions on X which are continu-
ous, continuous and convergent to zero at infinity, and continuous with compact
support respectively. We denote χS the characteristic function of a set S ⊂ X.

1. BANACH MODULES

We use the terminology of [9] but with some abbreviations, e.g. a morphism
is a linear multiplicative map between two algebras, and a ∗-morphism is a mor-
phism between two ∗-algebras which commutes with the involutions. An algebra
M of operators on a Banach space H is non-degenerate if {Mu : M ∈ M, u ∈H }
is a total set in H .

A Banach module is a couple (H ,M) consisting of a Banach space H and a
non-degenerate Banach subalgebraM of B(H ) which has an approximate unit
([9], p. 404) . If H is a Hilbert space andM is a C∗-algebra of operators on H ,
we say that H is a Hilbert module and we identify H ∗ = H . In general we just
say that H is a Banach module (overM). The distinguished subalgebraM is the
multiplier algebra of H and, when required by the clarity of the presentation, it is
denotedM(H ). The operators fromM are the prototype of decay improving,
or vanishing at infinity, operators (so only the case when M does not have a
unit is of interest). Often M is the norm closure of the range of a morphism
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Q : L → B(H ), where L is an algebra of complex bounded functions on a set;
then we use the notation Q(ϕ) = ϕ(Q).

If {Jα} is an approximate unit ofM, then the fact thatM is non-degenerate
is equivalent to lim

α
‖Jαu − u‖ = 0 for all u ∈ H . Due to the Cohen-Hewitt

theorem ([9], V-9.2) each u ∈ H can be written as u = Mv for some M ∈ M and
v ∈H .

A reflexive Banach module is a Banach module such that the Banach space H
is reflexive. Then H ∗ is a Banach module withM(H ∗) = {A∗ : A ∈ M(H )}.

Two classes of operators are naturally associated to the Banach module
structure: the operators which improve the decay and those which preserve the
decay, the notion of decay being defined by the multiplier algebra. Let H and K
be Banach spaces.

If K is a Banach module then we denote B l
0(H , K ) the norm closed linear

subspace generated by the operators MT, with T ∈ B(H , K ) and M ∈ M(K ).
We say that an operator in B l

0(H , K ) left vanishes at infinity (or is decay improv-
ing) with respect to M(K ), if this is not obvious from the context. If Jα is an
approximate unit forM(K ), then for an operator S ∈ B(H , K ) we have:

S ∈ B l
0(H , K ) ⇔ lim

α
‖JαS− S‖ = 0

⇔ S = MT for some M ∈ M(K ) and T ∈ B(H , K ).(1.1)

The second equivalence follows from the Cohen-Hewitt theorem ([9], V-9.2).
If H is a Banach module then the space B r

0 (H , K ) of right vanishing at in-
finity is similarly defined. If H and K are Banach modules then B l

0(H , K ) and
B r

0 (H , K ) are well defined and we set B0(H , K ) = B l
0(H , K ) ∩ B r

0 (H , K ).
The following facts are easy to prove. We have K(H , K ) ⊂ B l

0(H , K ). If
K is a reflexive Banach module and S ∈ B l

0(H , K ) then S∗ ∈ B r
0 (K ∗, H ∗). If

H is a reflexive Banach module, then K(H , K ) ⊂ B r
0 (H , K ).

If H , K are Banach modules then we set

B l
q(H , K ) = {S ∈ B(H , K ) : M ∈ M(H )⇒ SM ∈ B l

0(H , K )}.
This is the space of left quasilocal, or left decay preserving, operators. The space
B r

q (H , K ) of right quasilocal, or right decay preserving, operators is similarly de-
fined and we set Bq(H , K ) = B l

q(H , K ) ∩ B r
q (H , K ). We clearly have:

PROPOSITION 1.1. Let {Jα} be an approximate unit forM(H ) and let S be an
operator in B(H , K ). Then S is left decay preserving if and only if one of the following
conditions is satisfied:

(i) SJα ∈ B l
0(H , K ) for all α;

(ii) for each M ∈ M(H ) there are T ∈ B(H , K ) and N ∈ M(K ) such that
SM = NT.

PROPOSITION 1.2. The spaces B l
q have the following properties:

(i) if S ∈ B l
q(H , K ) and T ∈ B l

q(G , H ) then ST ∈ B l
q(G , K );
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(ii) if H , K are reflexive and S ∈ B l
q(H , K ), then S∗ ∈ B r

q (K ∗, H ∗);
(iii) if H is a Hilbert module then Bq(H ) is a unital C∗-subalgebra of B(H ).

2. COMPACT PERTURBATIONS IN BANACH MODULES

A Friedrichs module is a couple (G , H ) consisting of a Hilbert module H
and a Hilbert space G such that G ⊂ H continuously and densely. We say that
(G , H ) is a compact Friedrichs module ifM(H ) ⊂ K(G , H ). In such situations we
always identify H ∗ = H and thus get a Gelfand triplet G ⊂H ⊂ G ∗. If (G , H )
is a compact Friedrichs module then each M ∈ M(H ) extends to a compact
operator M : H → G ∗, hence we haveM(H ) ⊂ K(G , H ) ∩K(H , G ∗).

In this section we fix a compact Friedrichs module (G , H ) and we set ‖ · ‖ =
‖ · ‖H . The following easy to prove observation will be useful:

(2.1) R ∈ B l
0(H ) and RH ⊂ G ⇒ R ∈ K(H ).

We are interested in criteria which ensure that an operator B is a compact per-
turbation of an operator A, both operators being unbounded operators in H
obtained as restrictions of some bounded operators G → G ∗. The following is
a general assumption (suggested by the statement of Theorem 2.1 in [18]) which
will always be fulfilled:

(AB)


A, B are densely defined operators in H , ρ(A) ∩ ρ(B) 6= ∅ and:
(1) D(A) ⊂ G densely, D(A∗) ⊂ G , D(B) ⊂ G ;
(2) A, B extend to continuous operators Ã, B̃ ∈ B(G , G ∗).

THEOREM 2.1. Let A, B satisfy assumption (AB) and let us assume that there
are a Banach module K and operators S ∈ B(K , G ∗) and T ∈ B l

0(G , K ) such that
B̃ − Ã = ST and (A − z)−1S ∈ B l

q(K , H ) for some z ∈ ρ(A) ∩ ρ(B). Then the
operator B is a compact perturbation of the operator A and σess(B) = σess(A).

Proof. The rôle of the assumption (AB) is to allow us to give a rigorous
meaning to the formal relation, where z ∈ ρ(A) ∩ ρ(B),

(2.2) (A− z)−1 − (B− z)−1 = (A− z)−1(B− A)(B− z)−1.

Recall that z ∈ ρ(A) if and only if z ∈ ρ(A∗) and then (A∗ − z)−1 = (A− z)−1∗.
Thus we have (A− z)−1∗H ⊂ G by the assumption (AB) and this allows one to
deduce that (A− z)−1 extends to a unique continuous operator G ∗ →H , that we
shall denote for the moment by Rz. From Rz(A− z)u = u for u ∈ D(A) we get,
by density of D(A) in G and continuity, Rz(Ã− z)u = u for u ∈ G , in particular

(B− z)−1 = Rz(Ã− z)(B− z)−1.

On the other hand, the identity

(A− z)−1 = (A− z)−1(B− z)(B− z)−1 = Rz(B̃− z)(B− z)−1
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is trivial. Subtracting the last two relations we get

(A− z)−1 − (B− z)−1 = Rz(B̃− Ã)(B− z)−1

Since Rz is uniquely determined as extension of (A− z)−1 to a continuous map
G ∗ → H , we shall keep the notation (A− z)−1 for it. With this convention, the
rigorous version of (2.2) that we shall use is:

(2.3) (A− z)−1 − (B− z)−1 = (A− z)−1(B̃− Ã)(B− z)−1.

We show that R ≡ (A− z)−1 − (B− z)−1 ∈ B l
0(H ). This suffices to prove the

theorem because the domains of A and B are included in G , hence RH ⊂ G , and
we may use (2.1). Now due to (2.3) and to the factorization assumption, we can
write R as a product R = [(A − z)−1S][T(B − z)−1] where the first factor is in
B l

q(K , H ) and the second in B l
0(H , K ), so the product is in B l

0(H ).

REMARKS 2.2. (i) We could have stated the assumptions of Theorem 2.1 in

an apparently more general form, namely B− A =
n
∑

k=1
SkTk with operators Sk ∈

B(Kk, G ∗) and Tk ∈ B(G , Kk). But we are reduced to the stated version of the
assumption by considering the Hilbert module K =

⊕
Kk and S =

⊕
Sk, T =⊕

Tk.
(ii) If V ∈ K(G , G ∗) and if K is an infinite dimensional module, then there

are operators S ∈ B(K , G ∗) and T ∈ K(G , K ) such that V = ST (the proof is an
easy exercise). This and the preceding remark show that compact contributions
to B̃− Ã are trivially covered by the factorization assumption.

EXAMPLE 2.3. We construct operators with the properties required in (AB)
by the following method. Let Ga, Gb be Hilbert spaces with G ⊂ Ga ⊂ H and
G ⊂ Gb ⊂H continuously and densely. Thus we have two scales

G ⊂ Ga ⊂H ⊂ G ∗a ⊂ G ∗ and G ⊂ Gb ⊂H ⊂ G ∗b ⊂ G ∗.

Then let A0 ∈ B(Ga, G ∗a ) and B0 ∈ B(Gb, G ∗b ) such that A0 − z : Ga → G ∗a and
B0− z : Gb → G ∗b are bijective for some number z. By Lemma 2.4 we can associate
to A0, B0 closed densely defined operators A = Â0, B = B̂0 in H , such that D(A)
and D(A∗) are dense subspaces of Ga and D(B) and D(B∗) are dense subspaces
of Gb. If we also have D(A) ⊂ G densely, D(A∗) ⊂ G and D(B) ⊂ G , then all the
conditions of the assumption (AB) are fulfilled with Ã = A0|G and B̃ = B0|G .

The next results require some preliminary considerations on operators act-
ing in a Gelfand triplet. To an operator S ∈ B(G , G ∗) (which is the same as a
continuous sesquilinear form on G ) we associate an operator Ŝ acting in H ac-
cording to the rules: D(Ŝ) = S−1(H ), Ŝ = S|D(Ŝ). Due to the identification
G ∗∗ = G , the operator S∗ is an element of B(G , G ∗), so Ŝ∗ makes sense. On the

other hand, if Ŝ is densely defined in H then the adjoint Ŝ
∗

of Ŝ with respect to

H is also well defined and we clearly have Ŝ∗ ⊂ Ŝ
∗
.
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The proof of the next lemma is an easy exercise.

LEMMA 2.4. If S− z : G → G ∗ is bijective for some z ∈ C, then Ŝ is a closed
densely defined operator, we have Ŝ

∗
= Ŝ∗ and z ∈ ρ(Ŝ). Moreover, the domains D(Ŝ)

and D(Ŝ
∗
) are dense subspaces of G .

A standard example of operator satisfying the condition required in Lem-
ma 2.4 is a coercive operator, i.e. such that Re 〈u, Su〉 > µ‖u‖2

G − ν‖u‖2
H for some

strictly positive constants µ, ν and all u ∈ G . Indeed, replacing S by S + ν, we
may assume Re 〈u, Su〉 > µ‖u‖2

G . Since S∗ verifies the same estimate, this clearly
gives ‖Su‖G ∗ > µ‖u‖G and ‖S∗u‖G ∗ > µ‖u‖G for all u ∈ G . Thus S and S∗ are
injective operators with closed range, hence they are bijective.

If the operators A, B from Theorem 2.1 are self-adjoint then the condition
(AB) becomes quite explicit. Indeed, to each self-adjoint A one associates the
Gelfand triplet D(|A|1/2) ⊂H ⊂ D(|A|1/2)∗ and A extends to a continuous op-
erator A0 : D(|A|1/2) → D(|A|1/2)∗ which fulfills the conditions of Lemma 2.4,
one has Â0 = A, and we may ask D(A) ⊂ G ⊂ D(|A|1/2).

The next result is convenient for applications to differential operators in
divergence form. Recall that if (E , K ) is a Friedrichs module then we have a
natural embedding B(K ) ⊂ B(E , E ∗) so the space

(2.4) B l
00(E , E ∗) = norm closure of B l

0(K ) in B(E , E ∗)

is well defined. The operators D∗aD and D∗bD considered below belong to
B(G , G ∗) and we denote by ∆a and ∆b the operators on H associated to them as
explained above. These operators are closed and densely defined (Lemma 2.4).

THEOREM 2.5. Let (E , K ) be an arbitrary Friedrichs module and let us assume
that D ∈ B(G , E ), a, b ∈ B(E , E ∗), and z ∈ C are such that:

(i) the operators D∗aD− z and D∗bD− z are bijective maps G → G ∗;
(ii) a− b ∈ B l

00(E , E ∗);
(iii) D(∆∗a − z)−1 ∈ B r

q (H , K ).
Then ∆b is a compact perturbation of ∆a.

Proof. Clearly ∆a − z and ∆b − z extend to bijections G → G ∗ and

R := (∆a − z)−1 − (∆b − z)−1 = (∆a − z)−1D∗(b− a)D(∆b − z)−1

holds in B(G ∗, G ), hence in B(H ). Since the domains of ∆a and ∆b are included
in G , we have RH ⊂ G . Thus, according to (2.1), it suffices to show that R ∈
B l

0(H ). Since the space B l
0(H ) is norm closed and since by hypothesis we can

approach b− a in norm in B(E , E ∗) by operators in B l
0(K ), it suffices to show

(D(∆∗a − z)−1)∗cD(∆b − z)−1 ∈ B l
0(H )

if c ∈ B l
0(K ). But this is clear because cD(∆b − z)−1 belongs to B l

0(H , K ) and
(D(∆∗a − z)−1)∗ belongs to B l

q(K , H ) by Proposition 1.2.
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The spaces B r
00(E , E ∗) and B00(E , E ∗) are defined in an obvious way and

we have

(2.5) K(E , E ∗) ⊂ B00(E , E ∗)

because K(K ) is a dense subset of K(E , E ∗) and K(K ) ⊂ B0(K ). So we could
assume a − b ∈ K(E , E ∗), but this case is trivial in the context of this paper.
Although the space B l

00(E , E ∗) is much larger than K(E , E ∗), it is not satisfactory
in some applications, cf. Remark 4.5. However, we can allow still more general
perturbations and obtain more explicit results if we impose more structure on
the modules. In Section 3 we describe such improvements for a class of Banach
modules over abelian groups.

Condition (iii) of Theorem 2.5 is not easy to verify in the situations of interest
to us, so we describe now a perturbative method for checking it. For the rest of
this section we fix two Friedrichs modules (G , H ) and (E , K ) and a continuous
operator D :G → E . Let a∈B(E , E ∗) such that the operator D∗aD is coercive, i.e.

(2.6) Re 〈Du, aDu〉 > µ‖u‖2
G − ν‖u‖2

H

for some strictly positive constants µ, ν and all u ∈ G . Then, as explained before,
if Re z 6 −ν the operator D∗aD− z is a bijective map G → G ∗ and

(2.7) ‖(D∗aD− z)−1‖B(G ∗ ,G ) 6 µ−1.

Note that a∗ has all these properties too so the closed densely defined operators
∆a and ∆a∗ in H are well defined, their domains are dense subsets of G , and
we have ∆∗a = ∆a∗ . It is easy to check that ‖(∆a − z)−1‖B(H ) 6 |Re z + ν|−1 if
Re (z + ν) < 0. Since a and a∗ play a symmetric role, it will suffice to consider
∆a − z in place of ∆∗a − z in condition (iii) of Theorem 2.5.

Now let c be a second operator with the same properties as a. We assume,
without loss of generality, that it satisfies an estimate like (2.6) with the same
constants µ, ν.

PROPOSITION 2.6. Assume that

D(∆c − z)−1 ∈ B r
q (H , K ) and D(D∗cD− z)−1D∗ ∈ B r

q (K )

for some z with Re z 6 −ν. If a− c ∈ B r
q (K ) then

D(∆a − z)−1 ∈ B r
q (H , K ) and D(D∗aD− z)−1D∗ ∈ B r

q (K ).

A similar assertion holds for the spaces B l
q.

Proof. Let V = D∗(a− c)D and Lt = (1− t)D∗cD + tD∗aD = D∗cD + tV.
For z as in the statement of the proposition we have Re 〈u, (Lt − z)u〉 > µ‖u‖2

G if
0 6 t 6 1. Hence there is ε > 0 such that Re 〈u, (Lt− z)u〉 > µ/2‖u‖2

G if−ε 6 t 6
1 + ε, in particular ‖(Lt − z)−1‖B(G ∗ ,G ) 6 2/µ for all such t. If−ε 6 s 6 1 + ε and
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|t− s|‖V(Lt− z)−1‖B(G ∗ ,G ) < 1 we get a norm convergent expansion in B(G ∗, G )

(Lt − z)−1 = (Ls − z− (s− t)V)−1 = ∑
k>0

(s− t)k(Ls − z)−1[V(Ls − z)−1]k

so the map t 7→ (Lt − z)−1 ∈ B(G ∗, G ) is real analytic on the interval ]− ε, 1 + ε[.
Let us denote ∆t the operator in H associated to Lt then we see that the maps
t 7→ D(∆t − z)−1 ∈ B(H , K ) and t 7→ D(Lt − z)−1D∗ ∈ B(K ) are real analytic
on the same interval. The set of decay preserving operators is a closed subspace of
the Banach space B(H , K ) and an analytic function which on a nonempty open
set takes values in a closed subspace remains in that subspace for ever. Thus it
suffices to show that D(∆t − z)−1 ∈ B r

q (H , K ) for small positive values of t.
Similarly, we need to prove D(Lt − z)−1D∗ ∈ B(K ) only for small t. To prove
the first assertion for example, we take s = 0 above and get a norm convergent
series in B(H , K ):

D(Lt − z)−1 = ∑
k>0

(−t)kD(D∗cD− z)−1[D∗(a− c)D(D∗cD− z)−1]k.

It is clear that each term belongs to B r
q (H , K ).

3. BANACH MODULES OVER ABELIAN GROUPS

In this section we fix a locally compact non-compact abelian group X with
the group operation denoted additively and let X∗ be its dual group. For exam-
ple, X could be Rn, Zn, or a finite dimensional vector space over the field of p-adic
numbers. A Banach X-module over the group X is a Banach space H equipped
with a strongly continuous representation {Vk} of X∗ on H . If H is a Hilbert
space and the Vk are unitary operators we say that H is a Hilbert X-module. Note
that we shall use the same notation Vk for the representations of X∗ in different
spaces H whenever this does not lead to ambiguities.

Such a Banach X-module has a canonical structure of Banach module that we
now define. We choose Haar measures dx and dk on X and X∗ normalized by
the following condition: if the Fourier transform of a function ϕ on X is given
by (F ϕ)(k) ≡ ϕ̂(k) =

∫
X

k(x)ϕ(x)dx then ϕ(x) =
∫

X∗
k(x)ϕ̂(k)dk. Recall that

X∗∗ = X. Let C(a)(X) := FL1
c(X∗) be the set of Fourier transforms of inte-

grable functions with compact support on X∗. It is easy to see that C(a)(X) is
a ∗-algebra for the usual algebraic operations; more precisely, it is a dense subal-
gebra of C0(X) invariant under conjugation. For ϕ ∈ C(a)(X) we set

(3.1) ϕ(Q) =
∫

X∗

Vk ϕ̂(k)dk.
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This definition is determined by the formal requirement k(Q) = Vk. Then

(3.2) M := norm closure of {ϕ(Q) : ϕ ∈ C(a)(X)} in B(H )

is a Banach subalgebra of B(H ) which has an approximate unit consisting of
elements of the form eα(Q) with eα ∈ C(a)(X) (let α be a compact neighborhood
of the identity in X∗ and êα = χα/|α|, where |α| is the Haar measure). Thus the
couple (H ,M) is a Banach module, which gives us a canonical Banach module
structure on H .

The adjoint of a reflexive Banach X-module has a natural structure of Ba-
nach X-module. Indeed, a weakly continuous representation is strongly continu-
ous, so we can equip the adjoint space H ∗ with the Banach X-module structure
defined by k 7→ (Vk)

∗, where k = k−1 is the complex conjugate of k.
We show now that, in the case of Banach X-modules over groups, the decay

preserving property is related to regularity in the sense of the next definition. Let
H and K be Banach X-modules. We say that a continuous operator S : H → K

is of class Cu(Q), and we write S ∈ Cu(Q; H , K ), if the map k 7→ V−1
k SVk ∈

B(H , K ) is norm continuous. The class of regular operators is stable under
algebraic operations:

PROPOSITION 3.1. Let G , H , K be Banach X-modules.
(i) If S ∈ Cu(Q; H , K ) and T ∈ Cu(Q; G , H ) then ST ∈ Cu(Q; G , K ).

(ii) If S ∈ Cu(Q; H , K ) is bijective, then S−1 ∈ Cu(Q; K , H ).
(iii) If S ∈ Cu(Q; H , K ) and H , G are reflexive, then S∗ ∈ Cu(Q; K ∗, H ∗).

PROPOSITION 3.2. If T ∈ Cu(Q; H , K ) then T is decay preserving.

Proof. We show that ϕ(Q)T ∈ B r
0 (H , K ) if ϕ ∈ C(a)(X). A similar argu-

ment gives Tϕ(Q) ∈ B l
0(H , K ). Set Tk = VkTV−1

k , then

ϕ(Q)T =
∫

X∗

ϕ̂(k)VkTdk =
∫

X∗

Tk ϕ̂(k)Vkdk.

Since k 7→ Tk is norm continuous on the compact support of ϕ̂, for each ε > 0
we can construct, with the help of a partition of unity, functions θi ∈ Cc(X∗) and

operators Si ∈ B(H , K ), such that
∥∥∥Tk −

n
∑

i=1
θi(k)Si

∥∥∥ < ε if ϕ̂(k) 6= 0. Thus

∥∥∥ϕ(Q)T −
n

∑
i=1

∫
X∗

θi(k)Si ϕ̂(k)Vkdk
∥∥∥ 6 ε

n

∑
i=1

∫
X∗

|ϕ̂(k)|‖Vk‖B(H )dk.

Now, since B r
0 (H , K ) is a norm closed subspace, it suffices to show that the op-

erator
∫

X∗
θi(k)Si ϕ̂(k)Vkdk belongs to B r

0 (H , K ) for each i. But if ψi is the inverse

Fourier transform of θi ϕ̂ then this is Siψi(Q) and ψi ∈ C(a)(X).
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Note that one can develop a pseudo-differential calculus on X and Proposi-
tion 3.2 shows that many pseudo-differential operators on Lp(X) are decay pre-
serving.

Our next purpose is to improve the results of Section 2 in the present con-
text. A Friedrichs X-module over the group X is a Friedrichs couple (G , H ) such
that H is a Hilbert X-module with the following properties: VkG ⊂ G for all
k ∈ X∗ and if u ∈ G and K ⊂ X∗ is compact then sup

k∈K
‖Vku‖G < ∞. It is clear that

VkG ⊂ G implies Vk ∈ B(G ) and that the local boundedness condition implies
that the map k 7→ Vk ∈ B(G ) is a weakly, hence strongly, continuous represen-
tation of X∗ on G (not unitary in general). The local boundedness condition is
automatically satisfied if X∗ is second countable.

Thus, if (G , H ) is a Friedrichs X-module, then G is equipped with a canonical
Banach X-module structure. Then, by taking adjoints, we get a natural Banach X-
module structure on G ∗ too. Our definitions are such that after the identifications
G ⊂H ⊂ G ∗ the restriction to H of the operator Vk acting in G ∗ is just the initial
Vk. Indeed, we have V∗k = V−1

k = Vk in H . Thus there is no ambiguity in using
the same notation Vk for the representation of X∗ in the spaces G , H and G ∗.

PROPOSITION 3.3. If K is a Banach space then B l
0(K , G ) ⊂ B l

0(K , H ), and
if K is a Banach module then B l

q(K , G ) ⊂ B l
q(K , H ).

Proof. We start with some general remarks. Assume that A is a Banach al-
gebra with approximate unit and that a morphism Φ : A → M(H ) with dense
image is given. Then, by the Cohen-Hewitt theorem ([9], V-9.2) , each u ∈H can
be written as u = Av where A ∈ Φ(A) and v ∈ H . Many such algebras can be
constructed in the present context. Indeed, if ω is a sub-multiplicative function
on X∗, i.e. a Borel map X∗ → [1, ∞[ satisfying ω(k′k′′) 6 ω(k′)ω(k′′) (hence ω is
locally bounded), let C(ω)(X) be the set of functions ϕ whose Fourier transform
ϕ̂ satisfies

(3.3) ‖ϕ‖C(ω) :=
∫

X∗

|ϕ̂(k)|ω(k)dk < ∞.

Then C(ω)(X) is a subalgebra of C0(X) and is a Banach algebra for the norm (3.3).
Moreover, C(a)(X) ⊂ C(ω)(X) densely and the net {eα} defined after (3.2) is an
approximate unit of C(ω)(X). If ‖Vk‖B(H ) 6 cω(k) for some number c > 0 then
ϕ(Q) is well defined for each ϕ ∈ C(ω)(X) by the relation (3.1) and Φ(ϕ) = ϕ(Q)
is a continuous morphism with dense range of C(ω)(X) intoM(H ).

Now the proposition follows easily. If S ∈ B l
0(K , G ) then S = ϕ(Q)T for

some ϕ ∈ C(ω)(X) with ω(k) = sup(1, ‖Vk‖B(G )) and some T ∈ B(K , G ). But
clearly ϕ(Q) belongs to the multiplier algebra of H and T ∈ B(K , H ).

REMARK 3.4. Giving a Hilbert X-module structure on a Hilbert space H is
equivalent with giving a morphism with non-degenerate range ϕ 7→ ϕ(Q) from
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the set of all bounded Borel functions on X into B(H ). The relation between the
two structures is determined by the condition Vk = k(Q). The non-trivial part
of this assertion follows from the estimate ‖ϕ(Q)‖ 6 sup |ϕ| if ϕ(Q) is defined
as in (3.1), see [15]. Then it is easy to check that (G , H ) is a compact Friedrichs
module if and only if we have ϕ(Q) ∈ K(G , H ) for all ϕ ∈ C0(X).

The following is a corollary of Theorem 2.1 which covers interesting ex-
amples of differential operators of any order. Then we shall treat operators in
divergence form.

THEOREM 3.5. Let (G , H ) be a compact Friedrichs X-module such that condition
(AB) from page 121 is satisfied. Assume also that Ã− z : G → G ∗ is bijective for some
z ∈ ρ(A) ∩ ρ(B) and that Ã ∈ Cu(Q; G , G ∗). If B̃ − Ã ∈ B l

0(G , G ∗), then B is a
compact perturbation of A.

Proof. We apply Theorem 2.1 with K = G ∗, S the identity operator and
T = B̃ − Ã. Then (Ã − z)−1 is of class Cu(Q; G ∗, G ) by (ii) of Proposition 3.1,
hence (Ã − z)−1 ∈ Bq(G ∗, G ) by Proposition 3.2. But this is stronger than the
relation (Ã− z)−1 ∈ B l

q(G ∗, H ), as follows from Proposition 3.3.

LEMMA 3.6. Let (G , H ) and (E , K ) be Friedrichs X-modules over the group
X. Let D ∈ B(G , E ) and a ∈ B(E , E ∗) be of class Cu(Q) and such that the map
D∗aD − z : G → G ∗ is bijective for some number z. If ∆a is the operator on H
associated to D∗aD, then the operator D(∆a − z)−1 ∈ B(H , E ) is decay preserving.

Proof. The lemma is a consequence of Propositions 3.1 and 3.2. Indeed,
due to Proposition 3.2, it suffices to show that the operator D(∆a − z)−1 is of
class Cu(Q; H , E ). We shall prove more, namely that D(D∗aD− z)−1 is of class
Cu(Q; G ∗, E ). Since D is of class Cu(Q; G , E ), and due to (i) of Proposition 3.1, it
suffices to show that (D∗aD − z)−1 is of class Cu(Q; G ∗, G ). But D∗aD − z is of
class Cu(Q; G , G ∗) by (i) and (iii) of Proposition 3.1 and is a bijective map G → G ∗,
so the result follows from (ii) of Proposition 3.1.

THEOREM 3.7. Let (G , H ) be a compact Friedrichs X-module and (E , K ) a
Friedrichs X-module and let D ∈ B(G , E ) and a, b ∈ B(E , E ∗) be operators of class
Cu(Q) such that D∗aD − z and D∗bD − z are bijective maps G → G ∗ for some com-
plex number z. If a− b ∈ B l

0(E , E ∗) then ∆b is a compact perturbation of ∆a.

Proof. The proof is a repetition of that of Theorem 2.5. The only difference
is that we write directly

R = (D(∆∗a − z)−1)∗(b− a)D(∆b − z)−1

and observe that (b − a)D(∆b − z)−1 ∈ B l
0(H , E ∗) and that (D(∆∗a − z)−1)∗ as

an operator E ∗ → H is decay preserving by (ii) of Proposition 1.2 and because
the operator D(∆∗a − z)−1 : H → E is decay preserving by Lemma 3.6.
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Let E be a finite dimensional complex Hilbert space and H = L2(X; E)
with the Hilbert X-module structure defined by the multiplication operators Vk =
k(Q). We assume that X is not discrete, so X∗ is not compact. Let w : X∗ → [1, ∞[
be a continuous function with w(k) → ∞ as k → ∞ and such that w(k′k) 6
ω(k′)w(k) holds for some function ω and all k′, k. If ω is the smallest function
satisfying such an estimate, then ω(k + p) 6 ω(k)ω(p). From now on we as-
sume that ω is a Borel function X∗ → [1, ∞[ satisfying this submultiplicativity
condition.

Then w(P) = F−1MwF is a self-adjoint operator on H with w(P) > 1,
where Mw is the operator of multiplication by w in L2(X∗). We denote H w =
D(w(P)) and equip it with the Banach X-module structure given by the norm
‖u‖w = ‖w(P)u‖ and the representation Vk|H w. Obviously, this space is a gen-
eralization of the usual notion of Sobolev spaces (that such spaces are natural in
the context of hypoelliptic operators is shown in Section 10.1 from [12]).

LEMMA 3.8. (H w, H ) is a compact Friedrichs X-module.

Proof. If ϕ ∈ C0(X) then ϕ(Q)w(P)−1 is a compact operator because w−1

belongs to C0(X), hence ϕ(Q) ∈ K(H w, H ). Then observe that V−1
k w(P)Vk =

w(kP) and w(kP) 6 ω(k)w(P). Thus Vk leaves invariant H w and we have the
estimate ‖Vk‖B(H w) 6 ω(k).

Let us call uniformly hypoelliptic an operator A on H such that there are w
as above and an operator Ã ∈ B(H w, H w∗) such that Ã − z : H w → H w∗

is bijective for some complex z and such that A is the operator induced by Ã in
H (see the Section 2). For example, the constant coefficients case with E = C
corresponds to the choice A = h(P) with h : X∗ → C a Borel function such that
c′w2 6 1 + |h| 6 c′′w2 and such that the range of h is not dense in C. It is clear
that Theorem 3.5 allows one to show the stability of the essential spectrum of
such operators under perturbations which are small at infinity. We stress that the
differential operators covered by these results can be of any order and that in the usual
case when the coefficients are complex measurable functions a condition of the
type Ã ∈ Cu(Q; H w, H w∗) is very general. The only condition really relevant
in this context is B̃ − Ã ∈ B l

0(H
w, H w∗) and the main point is that it allows

perturbations of the higher order coefficients even in the non-smooth case.

EXAMPLE 3.9. We give an application of Theorem 3.5 to the case of Dirac
operators. Let X = Rn and let α0 ≡ β, α1, . . . , αn be symmetric operators on E

such that αjαk + αkαj = δjk. The free Dirac operator is D =
n
∑

k=1
αkPk + mβ for

some real number m. The natural compact Friedrichs X-module in this context
is (H 1/2, H ), where H 1/2 is the Sobolev space of order 1/2, cf. the next sec-
tion. Let V, W be measurable functions on X with values symmetric operators
on E and such that the operators of multiplication by V and W define continu-
ous maps H 1/2 → H −1/2. Assume that D + V + i and D + W + i are bijective
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maps H 1/2 → H −1/2 and denote A and B the self-adjoint operators in H in-
duced by D + V and D + W. If V −W ∈ B0(H 1/2, H −1/2) then B is a compact
perturbation of A, and σess(B) = σess(A).

We keep the notations and assumptions of the preceding example and we
denote U = W−V, so that formally B = A + U. Our result improves the existing
results concerning the stability of the essential spectrum of Dirac Hamiltonians in
two respects. First, there are no regularity assumptions on the “unperturbed” op-
erator A besides the fact that A + i extends to a bijective continuous map H 1/2 →
H −1/2; for example, this allows V to have local singularities of Coulomb type in
the optimal class for which self-adjointness results have been proved. Second,
the perturbation U can be as singular as V locally and it must decay at infinity
in a quite weak sense, namely we ask lim

r→∞
‖θ(Q/r)U‖H 1/2→H −1/2 = 0 where θ

is as in (4.1). As far as we know, in the previous results there is always an as-
sumption which implies D(A) ⊂ H s for some s > 1/2 (as we explained in the
introduction, this drastically simplifies the arguments) and the decay condition
is stronger. In fact, usually s = 1 because A is just the free Dirac operator, i.e.
V = 0. We refer to [17] for results which are typical for the later developments on
this question.

4. OPERATORS IN DIVERGENCE FORM ON EUCLIDEAN SPACES

The results of this section follow from Theorem 3.7. Here X is the addi-
tive group Rn and we identify X∗ with X by setting k(x) = exp(i〈x, k〉), where
〈x, k〉 is the scalar product in X. Let E be a finite dimensional Hilbert space
and H = L2(X; E) with the Hilbert X-module structure defined by (Vku)(x) =
exp(i〈x, k〉)u(x).

For each real number s let H s := H s(Rn; E) be the Hilbert space of E-
valued distributions u on Rn such that ‖u‖2

s :=
∫

(1 + |k|2)s|û(k)|2dk < ∞, where
û is the Fourier transform of u. This is the usual Sobolev space of order s on Rn.
Note that VkH

s ⊂ H s and ‖Vk‖ 6 C(1 + |k|)s if s > 0 from which we get a
canonical X-Banach module structure on H s for any real s.

This Banach module structure can also be defined as follows. The algebra
S of Schwartz test functions on Rn is naturally embedded in B(H s), a function
ϕ ∈ S being identified with the operator of multiplication by ϕ on H s. If we
denote by Ms the closure of S in B(H s), then clearly (H s,Ms) is a Banach
module and this Banach module is a Hilbert module if and only if s = 0. The
module adjoint to (H s,Ms) is identified with (H −s,M−s). Note thatMs can
be realized as a subalgebra ofM0 = C0(Rn), namelyMs is the completion of S
for the norm ‖ϕ‖Ms := sup

‖u‖s=1
‖ϕu‖s, and then we haveMs =M−s isometrically

andMs ⊂Mt if s > t > 0 (by interpolation).
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Thus for each s > 0 we get a compact Friedrichs X-module (H s, H ) the
associated Gelfand triplet being H s ⊂ H ⊂ H −s. In fact, if ϕ ∈ C0(Rn) then
the operator of multiplication by ϕ is a compact operator H s →H .

Let us describe the objects which appear in Theorem 3.7 in the present con-
text. We fix an integer m > 1 and take G = H m. Let K =

⊕
|α|6m

Hα, where

Hα ≡ H , with the natural direct sum Hilbert X-module structure. Here α are
multi-indices α ∈ Nn and |α| = α1 + · · ·+ αn. Then we define

E =
⊕
|α|6m

H m−|α| = {(uα)|α|6m ∈ K : uα ∈H m−|α|}

equipped with the Hilbert direct sum structure. It is obvious that (E , K ) is a
Friedrichs X-module (but not compact).

We set Pk = −i∂k, where ∂k is the derivative with respect to the k-th variable,
and Pα = Pα1

1 · · · P
αn
n if α ∈ Nn. Then for u ∈ G let Du = (Pαu)|α|6m ∈ K . Since

‖Du‖2 = ∑
|α|6m

‖Pαu‖2 = ‖u‖2
H m

we see that D : G → K is a linear isometry. Moreover, we have defined E so
as to have DG ⊂ E , hence D ∈ B(G , E ). We have D ∈ Cu(Q; G , E ) because
the components of the operator V−1

k DVk are the operators V−1
k PαVk = (P + k)α

which are polynomials in k with coefficients in B(G , H ) (because |α| 6 m).
We shall identify H ∗ = H and K ∗ = K , which implies G ∗ = H −m and

E ∗ =
⊕
|α|6m

H |α|−m.

Then D∗ ∈ B(E ∗, G ∗) acts as follows: D∗(uα)|α|6m = ∑
|α|6m

Pαuα.

An operator a ∈ B(E , E ∗) can be identified with a matrix a = (aαβ) of
operators aαβ ∈ B(H m−|β|, H |α|−m), where |α| 6 m and |β| 6 m, such that

a(uβ)|β|6m =
(

∑
|β|6m

aαβuβ

)
|α|6m

.

Then D∗aD = ∑
|α|,|β|6m

PαaαβPβ which is a general version of a differential op-

erator in divergence form. We must, however, emphasize that our aαβ are not
necessarily (B(E) valued) functions, they could be pseudo-differential or more
general operators.

In view of the statement of the next theorem we note that since the Sobolev
spaces are Banach X-modules the class of regularity Cu(Q; H s, H t) is well de-
fined for all real s, t. A bounded operator S : H s → H t belongs to this class if
and only if the map k 7→ V−kSVk ∈ B(H s, H t) is norm continuous. In partic-
ular, this condition is trivially satisfied if S is the operator of multiplication by a
function, because then Vk commutes with S. Since the coefficients aαβ of the differ-
ential expression D∗aD are usually assumed to be functions, this is a quite weak
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restriction in the setting of the next theorem. The condition S ∈ B l
0(H

s, H t) is
also well defined and it is easily seen that it is equivalent to

(4.1) lim
r→∞
‖θ(Q/r)S‖H s→H t = 0

where θ is a C∞ function on X equal to zero on a neighborhood of the origin
and equal to one on a neighborhood of infinity. Now we can state the following
immediate consequence of Theorem 3.7.

PROPOSITION 4.1. Let aαβ and bαβ be operators of class Cu(H m−|β|, H |α|−m)
and such that the operators D∗aD− z and D∗bD− z are bijective maps H m → H −m

for some complex z. Let ∆a and ∆b be the operators in H associated to D∗aD and D∗bD
respectively. Assume that

(4.2) lim
r→∞
‖θ(Q/r)(aαβ − bαβ)‖H m−|β|→H |α|−m = 0

for each α, β, where θ is a function as above. Then ∆b is a compact perturbation of ∆a and
the operators ∆a and ∆b have the same essential spectrum.

EXAMPLE 4.2. In the simplest case the coefficients aαβ and bαβ of the prin-
cipal parts (i.e. |α| = |β| = m) are functions. Then the conditions become: aαβ

and bαβ belong to L∞(X) and |aαβ(x)− bαβ(x)| → 0 as |x| → ∞. Of course, the
assumptions on the lowest order coefficients are much more general.

EXAMPLE 4.3. We show here that “highly oscillating potentials” leave in-
variant the essential spectrum. If m = 1 then the terms of order one of D∗aD are

of the form S =
n
∑

k=1
(Pkv′k + v′′k Pk), where v′k ∈ B(H 1, H ) and v′′k ∈ B(H , H −1).

Choose vk ∈ B(H 1, H ) symmetric in H and let v′k = ivk, v′′k = −ivk. Then
S = [iP, v] ≡ divv, with natural notations, can also be thought as a term of order
zero. Now assume that vk are bounded Borel functions and consider a similar
term T = [iP, w] for D∗bD. Then the condition |vk(x)− wk(x)| → 0 as |x| → ∞
suffices to ensure the stability of the essential spectrum. However, the difference
S − T could be a function which does not tend to zero at infinity in a simple
sense, being only “highly oscillating”. An explicit example in the case n = 1
is the following: a perturbation of the form exp(x)(1 + |x|)−1 cos(exp(x)) is al-
lowed because it is the derivative of (1 + |x|)−1 sin(exp(x)) plus a function which
tends to zero at infinity.

In order to apply Proposition 4.1 we need that D∗aD− z : H m → H −m be
bijective for some z ∈ C, and similarly for b. A standard way of checking this is
to require the following coercivity condition:

(C)

 there are µ, ν > 0 such that for all u ∈H m :
∑

|α|,|β|6m
Re 〈Pαu, aαβPβu〉 > µ‖u‖2

H m − ν‖u‖2
H .



STABILITY OF THE ESSENTIAL SPECTRUM 133

EXAMPLE 4.4. One often imposes a stronger ellipticity condition that we
describe below. Observe that the coefficients of the highest order part of D∗aD
defined by A0 = ∑

|α|=|β|=m
PαaαβPβ are operators aαβ ∈ B(H ). Then ellipticity

means:

(Ell)

 there is µ > 0 such that if uα ∈H for |α| = m then
∑

|α|=|β|=m
Re 〈uα, aαβuβ〉 > µ ∑

|α|=m
‖uα‖2

H .

Our conditions on the lower order terms being quite general (e.g. the aαβ could
be differential operators, so the terms of formally lower order could be of order
2m in fact) we have to supplement the ellipticity condition (Ell) with a condition
saying that the rest of the terms A1 = ∑

|α|+|β|<2m
PαaαβPβ is small with respect to

A0. For example, we may require the existence of some δ<µ and γ>0 such that

(4.3)
∣∣∣ ∑
|α|+|β|<2m

Re 〈Pαu, aαβPβu〉
∣∣∣ 6 δ‖u‖2

H m + γ‖u‖2
H .

This is satisfied if A1H
m ⊂H −m+θ for some θ > 0, because for each ε > 0 there

is c(ε) < ∞ such that ‖u‖H m−θ 6 ε‖u‖H m + c(ε)‖u‖H .

REMARK 4.5. If we use Theorem 2.5 in the context of this section then we
get the same conditions on the coefficients aαβ − bαβ of the principal part (i.e.
|α| = |β| = m) but those on the lower order coefficients are less general. In-
deed, if s + t > 0 the space B l

00(H
s, H −t) defined as the closure of B l

0(H ) in
B(H s, H −t) does not contain operators of order s + t, while B l

0(H
s, H −t) con-

tains such operators.

5. ON MAUREY’S FACTORIZATION THEOREM

The next is due to Bernard Maurey ([16], Theorems 2 and 8). The Lp spaces
refer to an arbitrary positive measure space (X, µ) and H is a Hilbert space.

THEOREM 5.1. Let 1 < p < 2 and T ∈ B(H , Lp). Then there is R ∈ B(H , L2)
and there is a function g ∈ Lq, where 1/p = 1/2 + 1/q, such that T = g(Q)R.

Before going on to our main purpose, we shall state an easy consequence
of this theorem which is needed in Sections 7 and 8. Let {K (x)}x∈X be a mea-
surable family of Hilbert spaces (see Chapter II of [7]) such that the dimension of
K (x) is 6 N for some finite N. Let K =

∫
X

⊕
K (x)dµ(x) be the corresponding

direct integral and for each p > 1 let Kp be the space of (µ-equivalence classes)
of measurable vector fields v such that

∫
X
‖v(x)‖p

K (x)dµ(x) < ∞. Thus Kp is

naturally a Banach space and K2 = K .
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COROLLARY 5.2. Let T ∈ B(H , Kp) where p satisfies 1 < p < 2. Then there
are R ∈ B(H , K ) and g ∈ Lq, with q = 2p/(2− p), such that T = g(Q)R.

Proof. For each n = 1, . . . , N let Xn be the set of x such that the dimen-
sion of K (x) is equal to n. Then X is the disjoint union of the measurable sets
Xn. For each x there is n such that x ∈ Xn and we can choose a unitary map
j(x) : K (x)→ Cn such that {jx} be a measurable family of operators. Let J be the
operator acting on vector fields according to the rule (Jv)(x) = j(x)v(x), let Πn
be the operator of multiplication by χXn , and let Tn ≡ Πn JT ∈ B(H , Lp(Xn; Cn)).
We can write Tn = (Tk

n)16k6n with Tk
n ∈ B(H , Lp(Xn)) and Maurey’s theo-

rem gives us a factorization Tk
n = gk

n(Q)Sk
n with Sk

n ∈ B(H , L2(Xn)) and gk
n ∈

Lq(Xn), and clearly we may assume gk
n > 0. Let gn = sup

k
gk

n ∈ Lq(Xn) and

Sn ∈ B(H , L2(Xn; Cn)) be the operator with components (gk
ng−1

n )(Q)Rk
n. Then

Tn = gn(Q)Sn and if we define Rn = J−1Sn we get

gn(Q)Rn = J−1gn(Q)Sn = J−1Tn = ΠnT.

Thus, if we define g = ∑
n

χXn gn and R = ∑ ΠnRn, we get T = g(Q)R.

Our purpose in the rest of this section is to extend Theorem 5.1 to spaces of
measurable functions which are more general then Lp and do not seem to be cov-
ered by the results existing in the literature [13]. Our proof follows closely that of
Maurey. The following general fact will be needed. Let (X, µ) be a σ-finite posi-
tive measure space and let L0(X) be the space of equivalence classes of complex
valued measurable functions on X with the topology of convergence in measure.
Let L be a Banach space with L ⊂ L0(X) linearly and continuously and such
that if f ∈ L0(X), g ∈ L and | f | 6 |g| (µ-a.e.) then f ∈ L and ‖ f ‖L 6 ‖g‖L .
The next result is a rather straightforward consequence of Khinchin’s inequality
1.10 in [8] (see also Section 8 of [19]).

PROPOSITION 5.3. There is a number C, independent of L , such that for any
Hilbert space H and any T ∈ B(H , L ) the following inequality holds

(5.1)
∥∥∥(∑

j
|Tuj|2

)1/2∥∥∥
L

6 C‖T‖B(H ,L )

(
∑
j
‖uj‖2

)1/2

for all finite families {uj} of vectors in H .

From now on we work in a setting adapted to our needs in Section 7, al-
though it is clear that we could treat by the same methods a general abstract
situation. Let X = Rn equipped with the Lebesgue measure, denote Z = Zn, and
for each a ∈ Z let Ka = a + K, where K =]− 1/2, 1/2]n, so that Ka is a unit cube
centered at a and we have X =

⋃
a∈Z

Ka disjoint union. Let χa be the characteristic

function of Ka and if f : X → C let fa = f |Ka. We fix a number 1 < p < 2 and a
family {λa}a∈Z of strictly positive numbers λa>0 and we define L≡`2

λ(Lp) as the
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Banach space of all (equivalence classes) of complex functions f on X such that

(5.2) ‖ f ‖L :=
(

∑
a∈Z
‖λaχa f ‖2

Lp

)1/2
< ∞.

Here Lp = Lp(X) but note that, by identifying χa f ≡ fa, we can also interpret L
as a conveniently normed direct sum of the spaces Lp(Ka), see page XIV in [8]. If
λa = 1 for all a we set `2

λ(Lp) = `2(Lp). Observe that `2(L2) = L2(X).
Let q be given by 1/p = 1/2 + 1/q, so that 1 < p < 2 < q < ∞. We also

need the space M ≡ `∞
λ (Lq) defined by the condition

(5.3) ‖g‖M := sup
a∈Z
‖λaχag‖Lq < ∞.

The definitions are chosen such that ‖gu‖L 6 ‖g‖M ‖u‖L2 where L2=L2(X). As
explained in page XV of [8], the space M is naturally identified with the dual
space of the Banach space M∗≡ `1

λ−1(Lq′), where 1/q+1/q′=1, defined by the
norm

‖h‖M∗ := ∑
a∈Z
‖λ−1

a χah‖Lq′ .

The σ(M , M∗)-topology on M will be called w∗-topology. Clearly

M +
1 = {g ∈M : g > 0, ‖g‖M 6 1}

is a convex compact subset of M for the w∗-topology.

LEMMA 5.4. For each f ∈ L there is g ∈M +
1 such that ‖ f ‖L = ‖g−1 f ‖L2 .

Proof. We can assume f > 0. Since 1 = p/2 + p/q, we have:

‖ fa‖Lp = ‖ fa‖p/2
Lp ‖ fa‖p/q

Lp = ‖ f p/2
a ‖L2‖ f p/q

a ‖Lq = ‖ f−p/q
a f ‖L2‖ f p/q

a ‖Lq

with the usual convention 0/0 = 0. Now we define ga on Ka as follows. If fa = 0
then we take any ga > 0 satisfying λa‖ga‖Lq = 1. If fa 6= 0 let

ga = λ−1
a
(

fa/‖ fa‖Lp
)p/q = λ−1

a ‖ f p/q
a ‖−1

Lq f p/q
a .

Thus we have λa‖ga‖Lq = 1 for all a, in particular ‖g‖M = 1. By the preceding
computations we also have ‖ fa‖Lp = ‖g−1

a fa‖L2‖ga‖Lq and so

‖ f ‖2
L = ∑ λ2

a‖ fa‖2
Lp = ∑ λ2

a‖ga‖2
Lq‖g−1

a fa‖2
L2 = ∑ ‖g−1

a fa‖2
L2

which is just ‖g−1 f ‖2
L2 .

The main technical result follows.

PROPOSITION 5.5. Let ( f u)u∈U be a family of functions in L such that, for each
α = (αu)u∈U with αu ∈ R, αu > 0 and αu 6= 0 for at most a finite number of u, the

function f α :=
(

∑
u
|αu f u|2

)1/2
satisfies ‖ f α‖L 6 ‖α‖`2(U). Then there is g ∈ M +

1

such that ‖g−1 f u‖L2 6 1 for all u ∈ U.
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Proof. We shall use the Ky Fan Lemma ([8], 9.10): Let K be a compact convex
subset of a Hausdorff topological vector space and let F be a convex set of functions
F : K →]−∞, +∞] such that each F ∈ F is convex and lower semicontinuous. If for
each F ∈ F there is g ∈ K such that F(g) 6 0, then there is g ∈ K such that F(g) 6 0
for all F ∈ F . For each α as above we define Fα : M +

1 →]−∞, +∞] by:

Fα(g) = ‖g−1 f α‖2
L2 − ‖α‖2

`2(U) = ∑
u

α2
u
(
‖g−1 f u‖2

L2 − 1
)
.

Then F will be the set of all functions Fα and K = M +
1 (with the w∗-topology)

which is a convex compact set as we saw before. From the second representation
of Fα given above it follows that F is a convex set. Each Fα is a convex function
because ‖g−1 f α‖2

L2 =
∫

g−2( f α)2dx and the map t 7→ t−2 is convex on [0, ∞[.
We shall prove in a moment that Fα is lower semicontinuous. From Lemma 5.4
it follows that there is gα ∈ K such that ‖ f α‖L = ‖g−1

α f α‖L2 . Our assumptions
imply Fα(gα) = ‖ f α‖2

L − ‖α‖
2
`2(U) 6 0. Then Ky Fan’s Lemma shows that one

can choose g ∈ K such that Fα(g) 6 0 for all α, which finishes the proof of the
proposition.

It remains to show the lower semicontinuity of Fα. For this it suffices to
prove that g7→‖g−1 f ‖2

L2∈[0, ∞] is lower semicontinuous on K if f∈L , f>0. But

‖g−1 f ‖2
L2 = ∑

a

∫
Ka

g−2
a f 2

a dx

and the set of lower semicontinuous functions K → [0, ∞] is stable under sums
and upper bounds of arbitrary families. So it suffices to show that each map
g 7→

∫
Ka

g−2
a f 2

a dx is lower semicontinuous. This map can be written as a com-

position φ ◦ Ja where Ja : M → Lq(Ka) is the restriction map Jag = ga and
φ : Lq(Ka) → [0, ∞] is defined by φ(θ) =

∫
Ka

θ−2 f 2
a dx. The map Ja is continu-

ous if we equip Lq(Ka) with the weak topology and M with the w∗-topology
because it is the adjoint of the norm continuous map Lq′(Ka)→M∗ which sends
u into the function equal to u on Ka and 0 elsewhere. Thus it suffices to show that
φ is lower semicontinuous on the positive part of Lq(Ka) equipped with the weak
topology and for this we can use exactly the same argument as Maurey. We must
prove that the set {θ ∈ Lq(Ka) : θ > 0, φ(θ) 6 r} is weakly closed for each real r.
Since φ is convex, this set is convex, so it suffices to show that it is norm closed.
But this is clear by the Fatou Lemma.

THEOREM 5.6. If H is a Hilbert space and T ∈ B(H , L ) then one can find an
operator R ∈ B(H , L2) and a positive function g ∈M such that T = g(Q)R.

Proof. Let U be the unit ball of H and for each u ∈ U let f u = Tu. From
Proposition 5.3 we get

‖ f α‖L =
∥∥∥(∑

u
|T(αuu)|2

)1/2∥∥∥
L

6 A
(

∑
u
‖αuu‖2

)1/2
6 A

(
∑
u
|αu|2

)1/2
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where A = C‖T‖B(H ,L ). Since there is no loss of generality in assuming A 6 1,
we see that the assumptions of Proposition 5.5 are satisfied. So there is g ∈ M +

1
such that ‖g−1Tu‖L2(X) 6 1 for all u ∈ U. Thus it suffices to define R by the rule
Ru = g−1Tu for all u ∈H .

6. WEAK DECAY PRESERVING OPERATORS

The purpose of the next two sections is to reconsider the examples from
Section 4 and to prove stability results for perturbations which decay in a weaker
sense. This section contains some preparatory material concerning several classes
of operators which preserve decay in some weak senses.

We first consider a measure space (X, µ) with µ(X) = ∞ and define the class
of functions which “vanish at infinity” as follows. Let us say that a set F ⊂ X is of
cofinite measure if its complement Fc is of finite (exterior) measure. The family Fµ

of sets of cofinite measure is clearly a filter. If ϕ is a function on X then lim
Fµ

ϕ = 0

means that for each ε > 0 the set where |ϕ(x)| > ε is of finite measure. We denote
Bµ(X) the C∗-subalgebra of L∞(X) consisting of functions such that lim

Fµ

ϕ = 0.

Let Nµ be the set of (equivalence classes of) Borel subsets of finite measure of X.
Then {χN}N∈Nµ

is an approximate unit of Bµ(X) because for each ϕ ∈ Bµ(X) and
each ε > 0 we have N = {x : |ϕ(x)| > ε} ∈ Nµ and ess-sup |ϕ− χN ϕ| 6 ε. Now
it is clear that L2(X) and, more generally, any direct integral of Hilbert spaces
over X, has a natural Hilbert module structure with Bµ(X) as multiplier algebra.
We shall speak of Fµ-decay preserving operators when we refer to this algebra.

Let {H (x)}x∈X and {K (x)}x∈X be measurable families of Hilbert spaces
with dimensions 6 N for some finite N. We shall use the notations introduced
before Corollary 5.2.

THEOREM 6.1. Let S ∈ B(H , K ) ∩ B(Hp, Kp) for some p 6= 2. If p < 2 then
S is left Fµ-decay preserving and if p > 2 then S is right Fµ-decay preserving.

Proof. We shall consider only the case p < 2, the assertion for p > 2 fol-
lows by observing that S∗ ∈ B(K , H ) ∩ B(Kp′ , Hp′) and then using Proposi-
tion 1.2. We prove that for each measurable set N of finite measure the operator
T = SχN(Q) has the property: if ε > 0 then there is a Borel set F ∈ Fµ such
that ‖χF(Q)T‖ 6 ε (then Proposition 1.1 implies that S is left Fµ-decay preserv-
ing). Since N is of finite measure, χN(Q) is a bounded operator H → Hp, hence
T ∈ B(H , Kp). The rest of the proof is a straightforward application of Corol-
lary 5.2. Let a > 0 real and let F be the set of points x such that |g(x)| 6 a. Since
g ∈ Lq with q < ∞, we have F ∈ Fµ and

‖χF(Q)T‖B(H ,K ) = ‖χF(Q)g(Q)R‖B(H ,K ) 6 a‖R‖H ,K ).
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Thus it suffices to choose a such that a‖R‖B(H ,K ) = ε.

Now let X be a locally compact non-compact abelian group and let H be a
Hilbert X-module. Then, due to Remark 3.4, the operator ϕ(Q) ∈ B(H ) is well
defined for all ϕ ∈ B(X). If F is a filter finer than the Fréchet filter on X then
BF (X) = {ϕ ∈ B(X) : lim

F
ϕ = 0} is a C∗-algebra and we can consider on H

the Hilbert module structure defined by the multiplier algebra MF = {ϕ(Q) :
ϕ ∈ BF (X)}. The corresponding classes of decay improving or decay preserving
operators will be called (left or right) F -vanishing at infinity or of (left or right)
F -decay preserving operators.

LEMMA 6.2. If H , K are Hilbert X-modules then an operator S ∈ B(H , K ) is
left F -decay preserving if and only if for each Borel set N with Nc = X \ N ∈ F and for
each ε > 0 there is a Borel set F ∈ F such that ‖χF(Q)SχN(Q)‖ 6 ε.

Proof. We note first that the family of operators χN(Q), where N runs over
the family of Borel sets with complement in F , is an approximate unit for BF (X).
Indeed, if ε > 0 and ϕ ∈ BF (X) then the set N = {x : |ϕ(x)| > ε} is Borel, its
complement is in F , and sup

x
|ϕ(x)(1− χN(x))| 6 ε. Thus, according to Proposi-

tion 1.1, S is left F -decay preserving if and only if SχN(Q) is left F -vanishing at
infinity for each N. Now the result follows from (1.1).

As a first example we may take F = Fµ the filter of sets of cofinite Haar
measure. A much more interesting filter Fw is defined as follows. Let |K| be the
exterior (Haar) measure of a set K ⊂ X and let Ka = a + K if a ∈ X. A subset N is
called w-small (at infinity) if lim

a→∞
|N ∩ Ka| = 0 for some compact neighborhood K

of the origin. The complement of a w-small set will be called w-large (at infinity).
The family Fw of all w-large sets is clearly a filter on X finer than the Fréchet
filter.

We give descriptions of the functions ϕ∈BFw(X) which explain the impor-
tance of the filter Fw. We say that ϕ∈B(X) is weakly vanishing (at infinity) if

(6.1) lim
a→∞

∫
a+K

|ϕ(x)|dx = 0 for each compact set K.

We shall denote by Bw(X) the set of functions ϕ satisfying (6.1). This is clearly a
C∗-algebra. Note that it suffices that the convergence condition in (6.1) be satis-
fied for only one compact set K with non-empty interior.

Observe that a Borel set is w-small if and only if its characteristic function
weakly vanishes at infinity. Denote f ∗ g the convolution of two functions on X.

PROPOSITION 6.3. For a ϕ∈B(X) the following conditions are equivalent:
(i) ϕ is weakly vanishing;

(ii) θ ∗ |ϕ| ∈ C0(X) if θ ∈ Cc(X);
(iii) lim

Fw
ϕ = 0;
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(iv) ϕ(Q)ψ(P) is a compact operator on L2(X) for all ψ ∈ C0(X).

Proof. The equivalence of (i) and (ii) is clear because
∫
Ka

|ϕ|dx=(χK ∗ |ϕ|)(a).

Then (iii) means that for each ε > 0 the Borel set N where |ϕ(x)| > ε is w-small.
Since χN 6 ϕ/ε, the implication (ii)⇒ (iii) is clear, while the reciprocal implica-
tion follows from χK ∗ |ϕ| 6 sup |ϕ|χK ∗ χN + ε|K|. If (iv) holds, let us choose ψ

such that its Fourier transform ψ̂ be a positive function in Cc(X) and let f ∈ Cc(X)
be positive and not zero. Since ψ(P) f is essentially the convolution of ψ̂ with f ,
there is a compact set K with non-empty interior such that ψ(P) f > cχK with a
number c > 0. Let Ua be the unitary operator of translation by a in L2(X), then
Ua f → 0 weakly when a → ∞, hence ‖ϕ(Q)Uaψ(P) f ‖ = ‖ϕ(Q)ψ(P)Ua f ‖ → 0.
Since U∗a ϕ(Q)Ua = ϕ(Q− a) we get ‖ϕ(Q− a)χK‖ → 0, hence (i) holds.

Finally, let us prove that (i) ⇒ (iv). It suffices to prove that ϕ(Q)ψ(P) is
compact if ψ̂ ∈ Cc(X) and for this it suffices that ψ(P)|ϕ|2(Q)ψ(P) be compact.
Since ξ := |ϕ|2 ∈ Bw(X) and since ψ(P) is the operator of convolution by a
function θ ∈ Cc(X), we are reduced to proving that the integral operator S with
kernel S(x, y) =

∫
θ(z− x)ξ(z)θ(z− y)dz is compact. If K = supp θ and Λ is the

compact set K− K, then clearly there is a number C such that

|S(x, y)| 6 C
∫

Kx

ξ(z)dzχ
Λ(x− y) ≡ φ(x)χ

Λ(x− y)

where φ ∈ C0(X). The last term here is a kernel which defines a compact operator
T. Thus η(Q)S is a Hilbert-Schmidt operator for each η ∈ Cc(X) and from the
preceding estimate we get ‖(S − η(Q)S)u‖ 6 ‖(1 − η(Q))T|u|‖ for each u ∈
L2(X). Thus ‖S− η(Q)S‖ 6 ‖(1− η(Q))T‖ and the right hand side tends to zero
if η ≡ ηα is an approximate unit for C0(X).

The main restriction we have to impose on F comes from the fact that the
Friedrichs couple (G , H ) which is involved in our abstract compactness criteria
must be such that ϕ(Q) ∈ K(G , H ) if ϕ ∈ BF (X). The preceding proposition
shows that Fw is the finest filter which satisfies this condition in the case of inter-
est for differential operators:

COROLLARY 6.4. Let X be an Euclidean space, H = L2(X), and let G = H s

be a Sobolev space of order s > 0. If ϕ ∈ B(X) then ϕ(Q) ∈ K(G , H ) if and only if

(6.2) lim
a→∞

∫
|x−a|61

|ϕ(x)|dx = 0.

We mention that the importance of such a condition in questions of stability
of the essential spectrum has been noticed in [11], [14], [18],[21].

For technical reasons it is convenient to consider the following class of filters
defined in terms of the metric and measure space structure of X. We shall assume
from now on in this section that X is an Euclidean space, although most of what
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we do extends to more general locally compact groups or metric spaces (in the
context of Section 8). We set Ba(r) = {x ∈ X : |x − a| < r}, Ba = Ba(1) and
B(r) = B0(r). To each function ν : X →]0, ∞[ such that lim inf

a→∞
ν(a) = 0 we

associate a set of subsets of X as follows:

(6.3) Nν =
{

N ⊂ X : lim sup
a→∞

ν(a)−1|N ∩ Ba| < ∞
}

.

Clearly Fν = {F ⊂ X : Fc ∈ Nν} is a filter on X finer than the Fréchet filter.

THEOREM 6.5. Let X = Rn and let ν : X →]0, ∞[ such that lim inf
a→∞

ν(a) = 0

and sup
|b−a|6r

ν(b)/ν(a) < ∞ for each real r. If S ∈ B(L2(X)) is of class Cu(Q) and if

S ∈ B(Lp(X)) for some p < 2, then S is left Fν-decay preserving.

Proof. We shall use the following terminology: an operator S : H → K
acting between two Hilbert X-modules is called of finite range if there is a com-
pact neighborhood Λ of the origin such that for any compact sets H, K ⊂ X with
(H − K) ∩Λ = ∅ we have χH(Q)SχK(Q) = 0. For θ ∈ L1(X∗) we define

(6.4) Sθ =
∫

X∗

V∗k SVkθ(k)dk.

In order to explain the main idea of the proof we note that a formal computation
involving the spectral measure E(A) = χA(Q) of the representation Vk gives

(6.5) ϕ(Q)Sθψ(Q) =
∫
X

∫
X

θ̂(x− y)ϕ(x)ψ(y)E(dx)SE(dy)

for all ϕ, ψ ∈ B(X). This clearly implies the following:

(∗)
{

If the support of θ̂ is a compact set Λ and if supp ϕ ∩ (Λ + supp ψ)
= ∅ then ϕ(Q)Sθψ(Q) = 0.

We shall not give a rigorous justification of (6.5) but we shall prove the preceding
assertion, which suffices for our purposes. Observe that if (∗) holds for a certain
set of operators S then it also holds for the strongly closed linear subspace of
B(H , K ) generated by it. So it suffices to prove (∗) for S an operator of rank
one S f = v〈u, f 〉 with some fixed u ∈ H and v ∈ K . Now the computation
giving (6.5) obviously makes sense in the weak topology and gives for f ∈ H
and g ∈ K :

〈g, ϕ(Q)Sθψ(Q) f 〉 =
∫
X

∫
X

θ̂(x− y)ϕ(x)ψ(y)〈g, E(dx)u〉〈u, E(dy) f 〉,

hence (∗) holds for such S.
Observe that if S ∈ Cu(Q) then S is norm limit of operators of the form

Sθ . For this it suffices to take θ = |K|−1χK where K runs over the set of open
relatively compact neighbourhoods of the neutral element of X∗, |K| being the
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Haar measure of K. Then, by approximating conveniently θ in L1 norm, one
shows that S is norm limit of operators Sθ such that θ̂ has compact support.

Now we start the proof of the theorem. We can approximate in norm in
B(L2(X)) the operator S by operators which are in B(L2(X)) ∩ B(Lp(X)) and
have finite range. Indeed, the approximation procedure (6.4) used above is such
that it leavesB(L2(X))∩B(Lp(X)) invariant (because Vk are isometries in Lp too).
Since the set of left Fν-decay preserving operators is norm closed in B(L2(X)),
we may assume in the rest of the proof that S is of finite range. According to
Lemma 6.2, it suffices to show that, for a given Borel set N ∈ Nν and for any
number ε > 0, there is a Borel set M ∈ Nν such that ‖χMc(Q)SχN(Q)‖ < ε.

In the rest of the proof we shall freely use the notations introduced in Sec-
tion 5. In particular, q is defined by 1/p = 1/2 + 1/q. If f ∈ L2(X) we have

‖χN f ‖Lp(Ka) 6 ‖χN‖Lq(Ka)‖ f ‖L2(Ka) 6 |N ∩ Ka|1/q‖ f ‖L2(Ka).

Since N ∈ Nν we can find a constant c such that |N ∩ Ka| 6 cν(a) (note that
the definition (6.3) does not involve the restriction of ν to bounded sets). Thus, if
we take λa = ν(a)−1/q for a ∈ Z ≡ Zn, we get χN f ∈ L with the notations of
Section 5. In other terms, we see that we have χN(Q) ∈ B(L2(X), L ). Let T =
SχN(Q) and let us assume that we also have S ∈ B(L ). Then T ∈ B(L2(X), L )
and we can apply the Maurey type factorization theorem Theorem 5.6, where
H = L2(X). Thus we can write T = g(Q)R for some R ∈ B(L2(X)) and some
function g ∈M , which means that G := sup

a∈Z
ν(a)−1/q‖g‖Lq(Ka) is a finite number.

If t > 0 and M = {x : g(x) > t} then we get for all a ∈ Z:

|M ∩ Ka| = ‖χM‖
q
Lq(Ka)

6 ‖g/t‖q
Lq(Ka)

6 (G/t)qν(a).

Note that the second condition imposed on ν in Theorem 6.5 can be stated
as follows: there is an increasing strictly positive function δ on [0, ∞[ such that
ν(b) 6 δ(|b− a|)ν(a) for all a, b; for we may take δ(r) = sup

|b−a|6r
ν(b)/ν(a). Now

let a ∈ X and let D(a) be the set of b ∈ Z such that Kb intersects Ba. Clearly D(a)
contains at most 2n points b all of them satisfying |b− a| 6

√
n + 1. Hence:

|M ∩ Ka| 6 ∑
b∈D(a)

|M ∩ Kb| 6 2n sup
b∈D(a)

(G/t)qν(b) 6 2n(G/t)qδ(
√

n + 1)ν(a),

which proves that M belongs to Nν. On the other hand, we have:

‖χMc(Q)T‖ = ‖χMc(Q)g(Q)R‖ 6 ‖χMc g‖L∞‖R‖ 6 t‖R‖.

To finish the proof of the theorem it suffices to take t = ε/‖R‖.
We still have to prove that S ∈ B(L ). Since S is of finite range, there is a

number r such that χa(Q)χb(Q) = 0 if |a− b| > r. Then for any f ∈ L :

∑
a

λ2
a‖χaS f ‖2

Lp = ∑
a

λ2
a

∥∥∥ ∑
|b−a|<r

χaSχb f
∥∥∥2

Lp
6 C ∑

|b−a|<r
λ2

a‖χaSχb f ‖2
Lp
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where C is a number depending only on r and n. Since S is bounded in Lp the
last term is less than CC′ ∑

|b−a|<r
λ2

a‖χb f ‖2
Lp for some constant C′. Finally, from

ν(b) 6 δ(|b− a|)ν(a) 6 δ(r)ν(a) we get

∑
|a−b|<r

λ2
a = ∑

|a−b|<r
ν(a)−2/q 6 L(r)δ(r)2/qλ2

b

where L(r) is the maximum number of points from Z inside a ball of radius r.
Thus we have ‖S‖2

B(L ) 6 CC′L(r)δ(r)2/q.

THEOREM 6.6. Let X = Rn and let S be a pseudo-differential operator of class S0.
Then S is Fw-decay preserving in L2(X), i.e. if ϕ ∈ Bw(X) then ϕ(Q)S = T1ψ1(Q)
and Sϕ(Q) = ψ2(Q)T2 for some ψ1, ψ2 ∈ Bw(X) and T1, T2 ∈ B(L2(X)).

Proof. Since the adjoint of S is also a pseudo-differential operator of class
S0, it suffices to show that S is left Fw-decay preserving. We have S ∈ B(Lp(X))
for all 1 < p < ∞ and S is of class Cu(Q) because the commutators [Qj, S] are
bounded operators for all 1 6 j 6 n. Thus we can apply Theorem 6.5 and deduce
that for any function ν as in the statement of the theorem, for any ε > 0, and for
any N ∈ Nν there is M ∈ Nν such that ‖χMc(Q)SχN(Q)‖ 6 ε. Now let N be a
Borel w-small set, i.e. such that |N∩ Ba| → 0 if a→ ∞. We shall prove that there is
a function ν with the properties required in Theorem 6.5 and with lim

a→∞
ν(a) = 0

such that N ∈ Nν. This finishes the proof of the corollary because the relation
M ∈ Nν implies now that M is w-small.

We construct ν as follows. The relation θ(r) = sup
|a|>r
|N ∩ Ba| defines a pos-

itive decreasing function on [0, ∞[ which tends to zero at infinity and such that
|N ∩ Ba| 6 θ(|a|) for all a ∈ X. We set ξ(t) = θ(0) if 0 6 t < 1 and for k > 0
integer and 2k 6 t < 2k+1 we define ξ(t) = max{ξ(2k−1)/2, θ(2k)}. So ξ is a
strictly positive decreasing function on [0, ∞[ which tends to zero at infinity and
such that θ 6 ξ. Moreover, if 2k 6 s < 2k+1 and 2k+p 6 t < 2k+p+1 then

ξ(t) = ξ(2k+p) > ξ(2k+p−1)/2 > · · · > 2−pξ(2k) = 2−pξ(s)

hence ξ(s) > ξ(t) > (s/2t)ξ(s) if 1 6 s 6 t. We take ν(a) = ξ(|a|), so ν is a
bounded strictly positive function on X with lim

a→∞
ν(a) = 0 and |N ∩ Ba| 6 ν(a)

for all a. If a, b are points with |a|, |b| > 1 and |a− b| 6 r then ν(b)/ν(a) 6 1 if
|a| 6 |b| and if |a| > |b| then

ν(b)/ν(a) = ξ(|b|)/ξ(|a|) 6 (2|a|)/|b| 6 2(1 + r).

Thus the second condition imposed on ν in Theorem 6.5 is also satisfied.

REMARK 6.7. The theorem remains true if Fw is replaced by Fµ. To prove
this it suffices to use Theorem 6.1 and to take into account the fact that a pseudo-
differential operator of class S0 belongs to B(Lp(X)) for all 1 < p < ∞ and that
the adjoint of such an operator is also pseudo-differential of class S0. In [10] we
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introduce a third class of filters (of a more topological nature) FL, which thus de-
fine new classes of weakly vanishing at infinity functions, for which Theorem 6.6
is still true.

7. WEAKLY VANISHING PERTURBATIONS

In this section we reconsider the framework of Section 4 and improve, but
with a stronger assumption a ∈ B(K ), the decay condition (4.2). We shall con-
sider on H the class of “vanishing at infinity” functions corresponding to the
algebra Bw(X), in other terms we equip H with the Hilbert module structure as-
sociated to the multiplier algebra {ϕ(Q)|ϕ ∈ Bw(X)}. By Corollary 6.4, (G , H )
remains a compact Friedrichs module. The space K inherits a natural direct sum
Hilbert module structure.

We keep the notations and terminology of Sections 4 and 6. We recall that
an operator D∗aD : H m→H −m is coercive if there are numbers µ, ν>0 such that

(7.1) Re 〈Du, aDu〉 > µ‖u‖2
H m − ν‖u‖2

H ∀u ∈H m.

Clearly the next lemma remains true if the filter Fw is replaced by Fµ.

LEMMA 7.1. Assume that a ∈ B(K ) is Fw-decay preserving and that the oper-
ator D∗aD : H m → H −m is coercive. Then D(∆a − z)−1 is Fw-decay preserving if
Re z 6 −ν, where ν is as in (7.1).

Proof. We shall use Proposition 2.6 with c the identity operator in K , so
∆ ≡ ∆c is the operator in H associated to D∗D = ∑

|α|6m
P2α, which is the canonical

positive isomorphism of G onto G ∗ and (7.1) means Re D∗aD > µD∗D − ν. We
have D(∆− z)−1 ∈ Bq(H , K ) and D(D∗D − z)−1D∗ ∈ Bq(K ) if Re z < 0
because these operators consist of matrices of pseudo-differential operators with
constant coefficients of class S0, so we can use Theorem 6.6.

We now consider two operators H m →H −m of the form

D∗aD = ∑
|α|,|β|6m

PαaαβPβ and D∗bD = ∑
|α|,|β|6m

PαbαβPβ

where the coefficients are continuous operators aαβ, bαβ : H m−|β| → H |α|−m

satisfying some other conditions stated below and denote as usual ∆a and ∆b the
operators in H associated to them.

THEOREM 7.2. Assume that the operators D∗aD and D∗bD are coercive and that
their coefficients satisfy the following conditions:

(i) aαβ ∈ B(H ) and are Fw-decay preserving operators;
(ii) if |α|+ |β| = 2m then aαβ − bαβ is left Fw-vanishing at infinity;

(iii) if |α|+ |β| < 2m then aαβ − bαβ ∈ K(H m−|β|, H |α|−m).
Then the operator ∆b is a compact perturbation of ∆a, in particular σess(∆a) = σess(∆b).
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Proof. We check the conditions of Theorem 2.5. Because of the coercivity
assumptions, condition (i) is fulfilled, and (iii) is satisfied by Lemma 7.1. The part
of condition (ii) involving the coefficients such that |α|+ |β| = 2m is satisfied by
definition, for the lower order coefficients it suffices to use (2.5).

REMARK 7.3. If aαβ and bαβ are bounded Borel functions and aαβ − bαβ ∈
Bw(X) for all α, β, then the conditions (i)–(iii) of the theorem are satisfied. Indeed,
in order to check the compactness conditions on the lower order coefficients note
that, by Corollary 6.4, if ϕ ∈ Bw(X) then the operator ϕ(Q) : H s → H −t is
compact if s, t > 0 and one of them is not zero.

The next result is a more general but less explicit version of Theorem 7.2.
This is an improvement of Theorem 2.1 in [18], thus it covers some subelliptic
operators.

THEOREM 7.4. Assume that D∗aD satisfies (7.1) and that ∆b is a closed densely
defined operator such that there is z ∈ ρ(∆b) with Re z 6 −ν. Moreover, assume that
a, b satisfy the conditions (i)–(iii) of Theorem 7.2. Then the operator ∆b is a compact
perturbation of ∆a.

Proof. We shall apply Theorem 2.1 with A = ∆a and B = ∆b. The assump-
tion (AB) is clearly satisfied and we take Ã = D∗aD and B̃ = D∗bD, hence
B̃− Ã = D∗(b− a)D. Then let S = D∗ and T = (b− a)D.

Finally, let us note that one should be able to use Theorem 2.1 to treat
situations when the coefficients aαβ and bαβ are unbounded operators even if
|α| = β| = m (as in Theorem 3.1 of [18] and [4], [5]), see the framework of Exam-
ple 2.3, but we shall not pursue this idea here.

8. RIEMANNIAN MANIFOLDS

8.1. In this section X will be at least a locally compact non-compact topological
space and we shall consider Hilbert modules associated to it according to the
following definition. A Hilbert space H is a Hilbert X-module if a ∗-morphism Q :
C0(X) → B(H ) with non-degenerate range is given. We shall use the notation
ϕ(Q) ≡ Q(ϕ). The Hilbert module structure on H is defined by the C∗-algebra of
operators on H given byM = {ϕ(Q) : ϕ ∈ C0(X)}. Hilbert X-modules appear
naturally in differential geometry as spaces of sections of vector fiber bundles
over X.

If H is a Hilbert X-module then the morphism Q canonically extends to
a ∗-morphism ϕ 7→ ϕ(Q) of B(X) into B(H ) such that: if {ϕn} is a bounded
sequence in B(X) and lim

n→∞
ϕn(x) = ϕ(x) for all x ∈ X, then s-lim

n
ϕn(Q) = ϕ(Q).

This follows from standard integration theory argument, see [15]. In particular, a
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separable Hilbert X-module is essentially a direct integral of Hilbert spaces over
X, see II.6.2 of [7].

The Cohen-Hewitt theorem ([9], V-9.2) shows that the classes of decay im-
proving and decay preserving operators associated to M and to the algebra of
operators ϕ(Q) with ϕ ∈ B(X) and lim

x→∞
ϕ(x) = 0 are identical.

Remark 3.4 implies that if X is a locally compact group then the notion of
Hilbert X-module introduced in Section 3 coincides with that considered here.

A Banach module structure defined by an algebraN on H is finer than that
defined byM ifM⊂ N . If F is a filter on X finer than the Fréchet filter then we
can associate to it a Hilbert structure on H finer than its initial X-module struc-
ture by taking

{
ϕ(Q) : lim

F
ϕ = 0

}
as multiplier algebra. The decay preserving

operators with respect to this new structure will be called F -decay preserving.
The decay preserving operators (with respect to the initial X-module structure)
are not, in general, F -decay preserving, and one of the main problems that we
shall consider later on will be to find F -decay preserving operators for some non-
trivial F .

The support supp u ⊂ X of an element u ∈H is the smallest closed set such
that its complement U has the property ϕ(Q)u = 0 if ϕ ∈ Cc(U). Clearly, the set
Hc of elements u ∈H such that supp u is compact is a dense subspace of H .

Let H , K be Hilbert X-modules, let S ∈ B(H , K ), and let ϕ, ψ ∈ C(X),
not necessarily bounded. We say that ϕ(Q)Sψ(Q) is a bounded operator if there
is a constant C such that ‖ξ(Q)ϕ(Q)Sψ(Q)η(Q)‖ 6 C sup |ξ| sup |η| for all ξ, η ∈
Cc(X). The greatest lower bound of the admissible constants C in this estimate is
denoted ‖ϕ(Q)Sψ(Q)‖. The product ϕ(Q)Sψ(Q) is well defined as sesquilinear
form on the dense subspace Kc×Hc of K ×H and the preceding boundedness
notion is equivalent to the continuity of this form for the topology induced by
K ×H . We similarly define the boundedness of the commutator [S, ϕ(Q)].

PROPOSITION 8.1. Assume that S ∈ B(H , K ) and let θ : X → [1, ∞[ be a
continuous function such that lim

x→∞
θ(x) = ∞. If θ(Q)Sθ−1(Q) is a bounded operator

then S is left decay preserving. If θ−1(Q)Sθ(Q) is a bounded operator then S is right
decay preserving.

Proof. Let K ⊂ X be compact, let U ⊂ X be a neighborhood of infinity in X,
and let ϕ, ψ ∈ C(X) such that supp ϕ ⊂ K, supp ψ ⊂ U and |ϕ| 6 1, |ψ| 6 1.
Then θϕ is a bounded function and ψθ−1 is bounded and can be made as small as
we wish by choosing U conveniently. If ε > 0 and U is sufficiently small we have

‖ψ(Q)Sϕ(Q)‖ 6 ‖ψθ−1‖ · ‖θ(Q)Sθ−1(Q)‖ · ‖θϕ‖ 6 ε.

Then the result follows from Proposition 1.1(i) and relation (1.1).

The boundedness of θ(Q)Sθ−1(Q) can be checked by estimating the com-
mutator [S, θ(Q)]; we give an example for the case of metric spaces. Note that
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on metric spaces one has a natural class of regular functions, namely the Lip-
schitz functions, for example the functions which give the distance to subsets:
ρK(x) = inf

y∈K
ρ(x, y) for K ⊂ X.

We say that a locally compact metric space (X, ρ) is proper if the metric ρ has
the property lim

y→∞
ρ(x, y) = ∞ for some (hence for all) points x ∈ X. Equivalently,

if X is not compact but the closed balls are compact.

COROLLARY 8.2. Let (X, ρ) be a proper locally compact metric space. If S belongs
to B(H , K ) and if [S, θ(Q)] is bounded for each positive Lipschitz function θ, then S is
decay preserving.

Proof. Indeed, by taking θ = 1 + ρK and by using the notations of the proof
of Proposition 8.1, we easily get the following estimate: there is C < ∞ depending
only on K such that

‖ϕ(Q)Sψ(Q)‖ 6 C(1 + ρ(K, U))−1

where ρ(K, U) is the distance from K to U. Since S∗ has the same properties as S,
this proves that S is decay preserving. Note that the boundedness of [S, ρx(Q)]
for some x ∈ X suffices in this argument.

8.2. Let H , K be two Hilbert spaces identified with their adjoints and d a closed
densely defined operator mapping H into K . Let G = D(d) equipped with the
graph norm, so G ⊂H continuously and densely and d ∈ B(G , K ).

Then the quadratic form ‖du‖2
K on H with domain G is positive densely

defined and closed. Let ∆ be the positive self-adjoint operator on H associated to
it. In fact ∆ = d∗d, where the adjoint d∗ of d is a closed densely defined operator
mapping K into H .

Now let λ ∈ B(H ) and Λ ∈ B(K ) be self-adjoint and such that λ > c and
Λ > c for some real c > 0. Then we can define new Hilbert spaces H̃ and K̃ as
follows:

(∗)
{

H̃ = H as vector space and 〈u : v〉
H̃

= 〈u : λv〉H ,
K̃ = K as vector space and 〈u : v〉

K̃
= 〈u : Λv〉K .

Since H = H̃ and K = K̃ as topological vector spaces, the operator
d : G ⊂ H̃ → K̃ is still a closed densely defined operator, hence the quadratic
form ‖du‖2

K̃
on H̃ with domain G is positive, densely defined and closed. We

shall denote by ∆̃ the positive self-adjoint operator on H̃ associated to it.
We can express ∆̃ in more explicit terms as follows. Denote by d̃ the operator

d when viewed as acting from H̃ to K̃ . Then ∆̃ = d̃∗d̃, where d̃∗ : D(d̃∗) ⊂
K̃ → H̃ is the adjoint of d̃ = d with respect to the new Hilbert space structures
(the spaces H̃ , K̃ being also identified with their adjoints). It is easy to check
that d̃∗ = λ−1d∗Λ. Thus ∆̃ = λ−1d∗Λd.
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From now on (X, ρ) is a proper locally compact metric space and H and
K are Hilbert X-modules. We set Lip ϕ = sup

x 6=y
|ϕ(x)− ϕ(y)|ρ(x, y)−1 for each

function ϕ on X. A closed densely defined map d : D(d) ⊂ H → K is a first
order operator if ∃C ∈ R such that for each bounded Lipschitz function ϕ on X

|〈d∗u, ϕ(Q)v〉H − 〈u, ϕ(Q)dv〉K | 6 CLip ϕ ‖u‖K ‖v‖H

for all (u, v) ∈ D(d∗)×D(d). Thus 〈d∗u, ϕ(Q)v〉 − 〈u, ϕ(Q)dv〉 is a sesquilinear
form on the dense subspace D(d∗)×D(d) of K ×H continuous for the topol-
ogy induced by K ×H , so there is a continuous operator [d, ϕ(Q)] : H → K
such that

〈d∗u, ϕ(Q)v〉H − 〈u, ϕ(Q)dv〉K = 〈u, [d, ϕ(Q)]v〉K
for all u ∈ D(d∗), v ∈ D(d). Moreover, we have ‖[d, ϕ(Q)]‖B(H ,K ) 6 CLip ϕ.

LEMMA 8.3. The operator d(∆ + 1)−1 is decay preserving.

Proof. We shall prove that S := d(∆ + 1)−1 is a decay preserving operator
with the help of Corollary 8.2, more precisely we show that [S, ϕ(Q)] is a bounded
operator if ϕ is a positive Lipschitz function. Let ε > 0 and ϕε = ϕ(1 + εϕ)−1.
Then ϕε is bounded with |ϕε| 6 ε−1 and |ϕε(x)− ϕε(y)| 6 |ϕ(x)− ϕ(y)| hence
Lip ϕε 6 Lip ϕ. If v ∈ D(d) we have for all u ∈ D(d∗):

|〈d∗u, ϕε(Q)v〉H | = |〈u, ϕε(Q)dv〉K + 〈u, [d, ϕε(Q)]v〉K |

6 ‖u‖K (ε−1‖dv‖K + C Lip ϕε ‖u‖H ).

Hence ϕε(Q)v ∈ D(d∗∗) = D(d) because d is closed. Thus ϕε(Q)D(d) ⊂ D(d)
and by the closed graph theorem we get ϕε(Q) ∈ B(G ), where G is the domain
of d equipped with the graph topology. This also implies that ϕε(Q) extends to
an operator in B(G ∗) (note that ϕε(Q) is symmetric in H ).

Now, if we think of d as a continuous operator G → K , then it has an
adjoint d∗ : K → G ∗ which is the unique continuous extension of the operator
d∗ : D(d∗) ⊂ K → H ⊂ G ∗. Thus the canonical extension of ∆ to an element of
B(G , G ∗) is the product of d : G → K with d∗ : K → G ∗ (note D(d) is the form
domain of ∆). Then it is trivial to justify that we have in B(G , G ∗):

[∆, ϕε(Q)] = [d∗, ϕε(Q)]d + d∗[d, ϕε(Q)].

Here [d∗, ϕε(Q)] = [ϕε(Q), d]∗ ∈ B(K , H ). Since ∆ + 1 : G → G ∗ is a linear
homeomorphism, we then have in B(G ∗, G ):

[ϕε(Q),(∆ + 1)−1]

= (∆ + 1)−1[∆, ϕε(Q)](∆ + 1)−1

= (∆ + 1)−1[ϕε(Q), d]∗d(∆ + 1)−1 + (∆ + 1)−1d∗[d, ϕε(Q)](∆ + 1)−1.
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Finally, taking again into account the fact that ϕε(Q) leaves G invariant, we have:

[ϕε(Q), d(∆ + 1)−1] = [ϕε(Q), d](∆ + 1)−1 + d(∆ + 1)−1[ϕε(Q), d]∗d(∆ + 1)−1

+ d(∆ + 1)−1d∗[d, ϕε(Q)](∆ + 1)−1.

Hence:

‖[ϕε(Q),d(∆ + 1)−1]‖B(H ,K )

6 ‖[ϕε(Q), d]‖B(H ,K )‖(∆ + 1)−1‖B(H )

+ ‖d(∆ + 1)−1‖B(H ,K )‖[ϕε(Q), d]∗‖B(K ,H )‖d(∆ + 1)−1‖B(H ,K )

+ ‖d(∆ + 1)−1d∗‖B(K ,K )‖[d, ϕε(Q)]‖B(H ,K )‖(∆ + 1)−1‖B(H ).

The most singular factor here is

‖d(∆ + 1)−1d∗‖B(K ,K ) 6 ‖d‖B(G ,K )‖(∆ + 1)−1‖B(G ∗ ,G )‖d∗‖B(K ,G ∗)

and this is finite. Thus we get for a finite constant C1:

‖[ϕε(Q), d(∆ + 1)−1]‖B(H ,K ) 6 C1‖[d, ϕε(Q)]‖B(H ,K ) 6 C1CLip ϕε

which is less than C1CLip ϕ. Now let u ∈ Kc and v ∈Hc. We get:

|〈ϕ(Q)u,d(∆ + 1)−1v〉 − 〈u, d(∆ + 1)−1 ϕ(Q)v〉|

= lim
ε→0
|〈ϕε(Q)u, d(∆ + 1)−1v〉 − 〈u, d(∆ + 1)−1 ϕε(Q)v〉| 6 C1 C Lip ϕ.

Thus [ϕ(Q), d(∆ + 1)−1] is a bounded operator.

THEOREM 8.4. Let (X, ρ) be a proper locally compact metric space. Assume that
(G , H ) is a compact Friedrichs X-module and that K is a Hilbert X-module. Let d, λ, Λ
be operators satisfying the following conditions:

(i) d is a closed first order operator from H to K with D(d) = G ;
(ii) λ is a bounded self-adjoint operator on H with inf λ > 0 and λ− 1 ∈ K(G , H );

(iii) Λ is a bounded self-adjoint operator on K with inf Λ > 0 and Λ− 1 ∈ B0(K ).
Then the self-adjoint operators ∆ and ∆̃ have the same essential spectrum.

Proof. In this proof, we shall consider ∆̃ as an operator acting on H . Since
H̃ = H as topological vector spaces and the notion of spectrum is purely topo-
logical, ∆̃ is a closed densely defined operator on H and it has the same spec-
trum as the self-adjoint operator ∆̃ on H̃ . Moreover, if we define the essential
spectrum σess(A) as the set of z ∈ C such that either ker(A− z) is infinite dimen-
sional or the range of A − z is not closed, we see that the essential spectrum is
a topological notion, so σess(∆̃) is the same, whether we think of ∆̃ as operator
on H or on H̃ . Finally, with this definition of σess we have σess(A) = σess(B) if
(A− z)−1 − (B− z)−1 is a compact operator for some z ∈ ρ(A) ∩ ρ(B).

Thus it suffices to prove that (∆ + 1)−1 − (∆̃ + 1)−1 ∈ K(H ). Now we ob-
serve that ∆̃+ 1 = λ−1d∗Λd + 1 = λ−1(d∗Λd + λ) and ∆Λ = d∗Λd is the positive
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self-adjoint operator on H associated to the closed quadratic form ‖du‖2
K̃

on H

with domain G . Thus (∆̃ + 1)−1 = (∆Λ + λ)−1λ and

(∆̃ + 1)−1 − (∆Λ + λ)−1 = (∆Λ + λ)−1(λ− 1) = [(λ− 1)(∆Λ + λ)−1]∗.

The range of (∆Λ + λ)−1 is included in the form domain of ∆Λ + λ, which is G .
The map (∆Λ + λ)−1 : H → G is continuous, by the closed graph theorem, and
λ− 1 : G →H is compact. Hence (∆̃+ 1)−1− (∆Λ + λ)−1 is compact. Similarly:

(∆ + 1)−1 − (∆Λ + λ)−1 = (d∗d + 1)−1 − (d∗Λd + 1)−1 ∈ K(H ).

To prove this we use Theorem 2.5 with: E = K , D = d, a = 1, b = Λ and
z = −1. Since d∗d and d∗Λd are positive self-adjoint operators on H with the
same form domain G , the first condition of Theorem 2.5 is satisfied. Then the
second condition holds because Λ− 1 ∈ B l

0(K ). Thus it remains to observe that
the operator d(∆ + 1)−1 is decay preserving by Lemma 8.3.

8.3. We shall consider now an application of Theorem 8.4 to concrete Riemann-
ian manifolds. It will be clear from what follows that we could treat Lipschitz
manifolds with measurable metrics (see [6], [20] for example), but the case of C1

manifolds with locally bounded metrics suffices as an example. Note also that
the proof of Theorem 8.5 covers without any modification the case when X is
not C1 but is a Lipschitz manifold and a countable atlas has been specified (then
the tangent space is well defined almost everywhere and the absolute continuity
notions we use make sense).

From now on in this section X is a non-compact differentiable manifold of class
C1. Then its cotangent manifold T∗X is a topological vector fiber bundle over
X whose fiber over x will be denoted T∗x X. If u : X → R is differentiable then
du(x) ∈ T∗x X is its differential at the point x and its differential du is a section of
T∗X. Thus for the moment d is a linear map defined on the space of real C1(X)
functions to the space of sections of T∗X.

A measurable locally bounded Riemannian structure on X will be called
an R-structure on X. To be precise, an R-structure is given on X if each T∗x X is
equipped with a quadratic (i.e. generated by scalar product) norm ‖ · ‖x such
that:

(R)


if v is a continuous section of T∗X over a compact set K such that
v(x) 6= 0 for x ∈ K, then x 7→ ‖v(x)‖x is a bounded Borel map on
K and ‖v(x)‖x > c for some number c > 0 and all x ∈ K.

Such a structure allows one to construct a metric compatible with the topology
on X, the distance between two points being the infimum of the length of the
Lipschitz curves connecting the points (see the references above). Since X was
assumed to be non-compact, the metric space X is proper if and only if it is com-
plete. If this is the case, we say that the R-structure is complete.
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It will also be convenient to complexify these structures (i.e. replace T∗x X by
T∗x X ⊗C and extend the scalar product as usual) and to keep the same notations
for the complexified objects.

We shall consider positive measures µ on X such that:

(M)
{

µ is absolutely continuous and its density is locally bounded
and locally bounded from below by strictly positive constants.

A couple consisting of an R-structure and a measure verifying (M) on X will be
called an RM-structure on X. To an R-structure we may canonically associate an
RM-structure by taking µ equal to the Riemannian volume element.

If an RM-structure is given on X then we may consider the two Hilbert
spaces H = L2(X, µ) and K defined as the completion of the space of continu-
ous sections with compact support of T∗X equipped with the norm

‖v‖2
K =

∫
X

‖v(x)‖2
xdµ(x).

In fact, K is the space of (suitably defined) square integrable sections of T∗X.
The operator of exterior differentiation d induces a linear map C1

c (X)→ K
which is easily seen to be closable as operator from H to K (this is a purely
local problem and the hypotheses we put on the metric and the measure allow
us to reduce ourselves to the Euclidean case). We shall keep the notation d for its
closure and we note that its domain G is the first order Sobolev space H 1 defined
in this context as the closure of C1

c (X) under the norm

‖u‖2
H 1 =

∫
X

(|u(x)|2 + ‖du(x)‖2
x)dµ(x).

The self-adjoint operator ∆ = d∗d in H associated to the quadratic form ‖ · ‖2
H 1

is the Laplace operator associated to the given RM-structure.
Two RM-structures ({‖ · ‖x}x∈X , µ) and ({‖ · ‖′x}x∈X , µ′) on X are called

equivalent if there are bounded Borel functions α, β, λ on X with α > c and λ > c
for some number c > 0 such that α(x)‖ · ‖x 6 ‖ · ‖′x 6 β(x)‖ · ‖x for all x
and µ′ = λµ. The distances ρ, ρ′ on X associated to these structures satisfy
aρ 6 ρ′ 6 bρ for some numbers b > a > 0, hence if one of the RM-structures
is complete, the second one is also complete. Notice that the spaces H , K asso-
ciated to equivalent RM-structures are identical as topological vector spaces.

Two equivalent RM-structures are strongly equivalent if the functions α, β, λ
can be chosen such that λ(x)→ 1, α(x)→ 1 and β(x)→ 1 as x → ∞.

THEOREM 8.5. The Laplace operators associated to strongly equivalent complete
RM-structures on X have the same essential spectrum.

Proof. We check that the assumptions of Theorem 8.4 are satisfied. We noted
above that X is a proper metric space for the metric associated to the initial Rie-
mann structure. The spaces H , K have obvious X-module structures and for



STABILITY OF THE ESSENTIAL SPECTRUM 151

each ϕ ∈ Cc(X) the operator ϕ(Q) : H 1 → H is compact. Indeed, by using
partitions of unity, we may assume that the support of ϕ is contained in the do-
main of a local chart and then we are reduced to a known fact in the Euclidean
case. Thus (G , H ) is a compact Friedrichs X-module. To see that d is a first order
operator we observe that if ϕ is Lipschitz then [d, ϕ] is the operator of multipli-
cation by the differential dϕ of ϕ and the estimate ess-sup ‖dϕ(x)‖x 6 Lip ϕ is
easy to obtain. The conditions on λ in Theorem 8.4 are trivially verified. So it
remains to consider the operator Λ. For each x ∈ X there is a unique operator
Λ0(x) on T∗x X such that 〈u|v〉′x = 〈u|Λ0(x)v〉x for all u, v ∈ T∗x X and we have
α(x)2 6 Λ0(x) 6 β(x)2 by hypothesis. Here the inequalities must be interpreted
with respect to the initial scalar product on T∗x X. Thus the operator Λ on K is
just the operator of multiplication by the function Λ(x) = λ(x)Λ0(x) and the
condition (iii) of Theorem 8.4 is clearly satisfied.

The (strong) equivalence of two R-structures is defined in an obvious way. If
µ, µ′ are the Riemannian measures associated to strongly equivalent R-structures
then the unique function λ such that µ′ = λµ satisfies λ(x)→ 1 as x → ∞.

COROLLARY 8.6. The Laplace operators associated to strongly equivalent com-
plete R-structures on X have the same essential spectrum.

We stress that if one of the Riemannian structures is locally Lipschitz then
this result is easy to prove by using local regularity estimates for elliptic equa-
tions.

An assumption of the form α(x)→ 1 as x → ∞ imposed in the definition of
strong equivalence means that the set where |α(x)− 1| > ε is relatively compact
for any ε > 0. We shall consider now a weaker notion of equivalence associated
to the filter Fµ introduced at the beginning of Section 6.

We first introduce two notions which clearly depend only on the equiva-
lence class of an RM-structure. We say that an RM-structure is of infinite volume if
µ(X) = ∞. We say that it has the F-embedding property if for each Borel set F ⊂ X
of finite measure the operator χF(Q) : H 1 →H is compact.

REMARK 8.7. The F-embedding property is satisfied under quite general
conditions. Indeed, the compactness of χF(Q) : H 1 → H is equivalent to
the compactness of the operator χF(Q)(∆ + 1)−1/2 in H . Or the set of func-
tions ϕ ∈ C([0, ∞[) such that χF(Q)ϕ(∆) is compact is a closed C∗-subalgebra of
C([0, ∞[) so it suffices to find one function ϕ which generates this algebra such
that χF(Q)ϕ(∆) be compact. But χF(Q)ϕ(∆) is compact if and only if the opera-
tor χF(Q)|ϕ(∆)|2χF(Q) is compact, so we see that it suffices to show that for each
Borel set F of finite measure there is t > 0 such that χF(Q)e−t∆χF(Q) be compact.
For example, it suffices that this operator be Hilbert-Schmidt, i.e. that the integral
kernel Pt of e−t∆ be such that

∫
F×F
|Pt(x, y)|2dµ(x)dµ(y) < ∞, which is true if Pt

satisfies a Gaussian upper estimate and the measure of a ball of radius t1/2 (for a
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fixed t) is bounded below by a strictly positive constant (see [2], [3] and references
there).

Two infinite volume RM-structures will be called µ-strongly equivalent if they
are equivalent and if the functions α, β, λ can be chosen such that for each ε > 0
the set where one of the inequalities |α(x)− 1| > ε, |β(x)− 1| > ε or |λ(x)− 1| > ε
holds is of finite measure.

We say that an RM-structure is regular if there is p > 2 such that d(∆ + 1)−1

induces a bounded operator in Lp. More precisely, this means that there is a
constant C such that if u ∈ L2(X) ∩ Lp(X) then d(∆ + 1)−1u, which is a section
of T∗X of finite L2 norm, has an Lp norm bounded by C‖u‖Lp . If the operator
d(∆ + 1)−1d∗ also induces a bounded operators in Lp (in an obvious sense), we
say that the RM-structure is strongly regular. From the relation d(∆ + 1)−1d∗ =
[d(∆ + 1)−1/2][d(∆ + 1)−1/2]∗ we see that strong regularity follows from: ∃ε > 0
such that d(∆ + 1)−1/2 induces a bounded operator in Lp for 2− ε < p < 2 + ε.

THEOREM 8.8. Let ∆ be the Laplace operator associated to an infinite volume com-
plete RM-structure on X which has the F-embedding property and is regular. Then the
Laplace operator associated to an RM-structure µ-strongly equivalent to the given struc-
ture has the same essential spectrum as ∆.

Proof. Let Λ(x) be as in the proof of Theorem 8.5. Clearly there is a number
C > 0 such that C−1 6 Λ(x) 6 C for all x and such that for each ε > 0 the
set where ‖Λ(x)− 1‖ > ε is of finite measure (the inequalities and the norm are
computed on T∗x X, which is equipped with the initial scalar product).

Now we proceed as in the proof of Theorem 8.4 but this time we equip
H and K with the Hilbert module structures described at the beginning of Sec-
tion 6. To avoid confusions, we denote Bµ(H ) and Bµ(K ) the space of decay im-
proving operators relatively to these new module structures. The F-embedding
property implies that (H 1, H ) is a compact Friedrichs module. Moreover, the
operator λ(Q)− 1 : H 1 → H is compact. Then, as in the proof of Theorem 8.4,
we see that it suffices to prove that

(d∗d + 1)−1 − (d∗Λ(Q)d + 1)−1 ∈ K(H ).

Clearly Λ(Q) − 1 ∈ Bµ(K ). Now we use Theorem 2.5 exactly as in the proof
of Theorem 8.4 and we see that the only condition which remains to be checked
is (iii) of Theorem 2.5, i.e. in our case d(∆ + 1)−1 ∈ B r

q (H , K ), where the de-
cay preserving property is relatively to the algebra Bµ(X). But this follows from
Theorem 6.1.

One may check the regularity property needed in Theorem 8.8 by using the
results from [2], [3] concerning the boundedness in Lp of the operator d∆−1/2. For
example, it suffices that X be complete, with the doubling volume property, and such that
the Poincaré inequality holds in L2 sense. Note, however, that these results are much
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stronger than necessary in our context and that the boundedness of d(∆ + 1)−1/2

should hold under less restrictive assumptions.
The next result does not require regularity assumptions on any of the RM-

structures that we want to compare but only on a third one in their equivalence
class. Observe that each equivalence class of RM-structures contains one of the
same degree of local smoothness as the manifold X (make local regularizations
and use a partition of unity).

THEOREM 8.9. Let ∆a, ∆b be the Laplace operators associated to µ-strongly equiv-
alent complete RM-structures of infinite volume and having the F-embedding property.
If these structures are equivalent to a strongly regular RM-structure, then ∆a and ∆b
have the same essential spectrum.

Proof. Let ∆c be the Laplace operator associated to the third structure. From
Theorem 6.1 it follows that d(∆c + 1)−1 and d(∆c + 1)−1D∗ are right Fµ-decay
preserving. Then from Proposition 2.6 we see that d(∆a + 1)−1 is right Fµ-decay
preserving and we may conclude as in the proof of Theorem 8.8.

It is natural to consider an analogue of the filter Fw introduced in Section 6
to get an optimal weak decay condition for the stability of the essential spectrum
in the present context. The techniques of Section 6 should be relevant for this
question.

REMARK 8.10. We shall describe here, without going into details, an ab-
stract framework for the study of the Laplace operator acting on forms. Let
H be a Hilbert space and d a closed densely defined operator in H such that
d2 = 0. For example, H could be the space of square integrable differential
forms over a C1 manifold equipped with a measurable locally bounded metric
and d the operator of exterior differentiation. We denote δ = d∗ and we as-
sume that G := D(d) ∩ D(δ) is dense in H (which is a rather strong condition
in the context of this paper, e.g. in the preceding example it is a differentiabil-
ity condition on the metric). Then let D = d + δ with domain G , observe that
‖Du‖2 = ‖du‖2 + ‖δu‖2 so D is a closed symmetric operator, assume that D is
self-adjoint, and define ∆ = D2 = dδ + δd (form sum). Then

(8.1) (∆ + 1)−1 = (D + i)−1(D− i)−1.

Now let a ∈ B(H ) with a > ε > 0 and such that a±1G ⊂ G and let Ha be
the Hilbert space which is equal to H as vector space but is equipped with the
new scalar product 〈u, v〉a = 〈u, av〉. Denote da the operator d viewed as oper-
ator acting in Ha with adjoint δa = a−1δa. We can define as above operators Da
(with domain Ga = G ) and ∆a = D2

a which are self-adjoint in Ha and satisfy a
relation similar to (8.1). Then ∆a is a compact perturbation of ∆ if the operators
(Da ± i)−1 − (D ± i)−1 are compact and this last condition is equivalent to the
compactness of the operator Da − D : G → G ∗. And this holds if (G , H ) is a
compact Hilbert X-module over a metric space X and a− 1 ∈ B0(H ).
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