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ABSTRACT. The paper is devoted to closed modular densely defined opera-
tors on a Hilbert C∗-module W over the C∗-algebra of compact operators on a
Hilbert space. A bijective operation preserving correspondence of the set of all
such operators and the set of all closed densely defined operators on a Hilbert
space is obtained. The polar decomposition of a closed operator is generalized
as well as some results concerning operators with compact resolvent, relative
compact operators and the generalized inverse.
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INTRODUCTION

A (left) Hilbert C∗-module over a C∗-algebraA is a leftA-module W equip-
ped with an A-valued inner product 〈·, ·〉 : W ×W → A which is A-linear in the
first and conjugate A-linear in the second variable such that W is a Banach space
with the norm ‖w‖ = ‖〈w|w〉‖1/2.

Throughout this paper we are basically interested in Hilbert modules over
the C∗-algebras A of compact operators on some complex Hilbert space. These
modules are characterized by the property that each closed submodule is orthog-
onally complemented or orthogonally closed (see [5] and [8]). They are generally
not self-dual, i.e. a generalization of Riesz representation theorem for bounded
modular (A-linear) functionals is not valid. Nevertheless, all bounded modular
operators are adjointable.

In the theory of unbounded modular operators densely defined on an arbi-
trary Hilbert C∗-module it is necessary to suppose the regularity condition (see
[4]) on closed operators in order to generalize some basic properties of closed op-
erators on Hilbert spaces. We point out that the regularity condition is fulfilled
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for all closed modular operators densely defined on Hilbert C∗-modules over C∗-
algebras of compact operators.

It is proved in [2] that the mapping Ψ : B(W) → B(We), Ψ(A) = A|We , is a
∗-isomorphism of the C∗-algebra of all bounded modular operators defined on a
Hilbert module W over the C∗-algebra of all compact operators on some Hilbert
space and the C∗-algebra of bounded operators defined on a Hilbert space We
contained in W. The main result in the present paper is the extension of this
mapping to the set of all modular operators densely defined on W. This extension
is an operations preserving bijection from the set of closed modular operators
densely defined in W onto the set of closed operators densely defined on We.
Also, it is a surjective mapping from the set of closable modular operators densely
defined on W onto the set of closable operators densely defined on We. This
mapping enables a natural procedure for lifting the results on densely defined
closed and closable modular operators from Hilbert space theory to Hilbert C∗-
modules over C∗-algebras of compact operators.

As application of our technique we prove the polar decomposition of a
closed modular operator as well as the existence of the unique generalized in-
verse of a closed modular operator. We also generalize some results on relative
compact operators and closed operators with resolvent in the algebra of compact
operators.

We also note that the technique used in the paper is applicable in Hilbert
H∗-modules. However, a related discussion on closed and closable operators on
Hilbert H∗-modules is omitted since the corresponding results are presented in
a similar, or even simpler way. For the results on bounded operators on Hilbert
H∗-modules we refer to [1] and references therein.

1. CLOSED AND CLOSABLE OPERATORS

Throughout this paper let K(H) = K be the fixed elementary C∗-algebra
of all compact operators on some complex Hilbert space H of arbitrary dimen-
sion. Let W be an arbitrary Hilbert C∗-module over K. We assume that K acts
nontrivially on W. Since K is simple, this implies that W is full. If W is a Hilbert
C∗-module over K the Cartesian product W ×W is a Hilbert C∗-module over K
with the inner product 〈(u, v)|(u′, v′)〉2 = 〈u|u′〉+ 〈v|v′〉.

In what follows we consider operators defined on a dense submodule of a
Hilbert C∗-module W over C∗-algebra K. Let DA ⊆ W be the domain of A. An
operator is a modular operator if it is linear and A(ax) = aAx for all x ∈ DA and
all a ∈ K. We denote the set of all such operators by LK(W).

The basic notions are analogous to those in the Hilbert spaces. Operators
A, B ∈ LK(W) are adjoint to each other if 〈Ax|y〉 = 〈x|By〉 for all x ∈ DA and
y ∈ DB. In terms of the graph G(A) = {(x, Ax) : x ∈ DA} of A and the in-
verse graph G′(A) = {(Ax, x) : x ∈ DA} this is equivalent to G(A)⊥G′(−B)
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or G′(−A)⊥G(B) in W ×W. A modular densely defined operator on a Hilbert
C∗-module W over K possesses the unique maximal operator A∗ adjoint to A
with the domain DA∗ = {x ∈ W : ∃v ∈ W, ∀y ∈ DA, 〈x|Ay〉 = 〈v|y〉} and
G(A∗) = G′(−A)⊥.

DEFINITION 1.1. An operator A ∈ LK(W) is a closed operator if its graph
G(A) is a closed submodule of the Hilbert C∗-module W ×W. Equivalently, DA
and the range of A are submodules of W and also, (xn)n in DA, xn → x and
Axn → y imply x ∈ DA and y = Ax. The set of all closed operators in LK(W) is
denoted by CK(W).

A ∈ LK(W) is a closable operator if the closure G(A) of the graph G(A) is an
operator graph itself, i.e. if (0, y) ∈ G(A) imply y = 0. Equivalently, (xn)n in DA,
xn → 0 and Axn → y imply y = 0. The set of all closable operators in LK(W) is
denoted by C`K(W). The operator B ∈ CK(W) such that G(B) = G(A) is called
the closure of A and denoted by B = A.

A dense submodule D ⊂ DA is a core of A ∈ CK(W) if A0 = A|D satisfies
A0 = A.

A v B denotes that B is an extension of A, i.e. G(A) ⊆ G(B).

Let us observe that for A ∈ C`K(W) and its closure A ∈ CK(W) the domain
DA is a dense submodule of DA. The operator A is the smallest closed extension
of A, i.e. every closed extension of A is the extension of A.

For A ∈ LK(W) and x, y ∈ DA we define the inner product 〈x|y〉A =

〈x|y〉+ 〈Ax|Ay〉 on DA. We denote ‖ · ‖A = ‖〈·|·〉A‖1/2 and by
A

we denote
the closure in this norm.

The following characterization of closed modular operators on Hilbert C∗-
modules over C∗-algebras is well known from the Hilbert space theory.

PROPOSITION 1.2. Let A ∈ LK(W). Then A belongs to CK(W) if and only if the
submodule DA is a Hilbert C∗-module over K with the inner product 〈·|·〉A. When this
is the case A : DA →W is a bounded operator with respect to the norm ‖ · ‖A on DA.

Proof. The statement follows from the inequality

(1.1) max{‖x‖, ‖Ax‖} 6 ‖x‖A 6 (‖x‖2 + ‖Ax‖2)1/2, ∀x ∈ DA,

as in Hilbert spaces.

Clearly, for A ∈ CK(W) the submodule KerA is closed in ‖ · ‖A and ‖ · ‖.
As defined in [4], an operator A ∈ CK(W) is regular if there exists a densely

defined adjoint operator A∗ such that the range of I + A∗A is dense in W. It
is proved by A. Pal [6] that in Hilbert C∗-modules over C∗-algebras of com-
pact operators the regularity condition is equivalent to a generally weaker semi-
regularity condition (i.e. that A and A∗ are densely defined). The direct conse-
quence of the property that every closed submodule in K-module W is comple-
mented is that any operator in CK(W) is regular.



182 BORIS GULJAŠ

PROPOSITION 1.3. Let A be in C`K(W). Then its adjoint A∗ is a densely defined
closed modular operator, i.e. A∗ ∈ CK(W). Moreover, if A ∈ CK(W) then Im (I +
A∗A) = W holds true.

Proof. If A ∈ C`K(W), as demonstrated above, then there exists the modular
adjoint operator A∗ with closed graph G(A∗) = G′(−A)⊥. Then G′(−A∗) =
G(A)⊥ and G(A)⊥⊥ = G(A) imply G(A)⊕ G′(−A∗) = W ×W.

It remains to prove that DA∗ is dense in W. Let y ∈ W be such that y⊥DA∗ .
Then (0, y) ∈ G′(−A∗)⊥ = G(A) and, because G(A) is a graph, we have y = 0.
This implies that A∗ is densely defined.

The regularity of A ∈ CK(W) follows analogously as in the case of Hilbert
spaces (see Teorem V.3.24 of [3]).

We end this introductory section with a remark on Hilbert C∗-modules over
arbitrary C∗-algebras of compact operators.

REMARK 1.4. Let W be a full Hilbert C∗-module over an arbitrary C∗ -
algebra A of compact operators. An arbitrary C∗-algebra of compact operators
is of the form A =

⊕
λ∈Λ

Kλ, i.e. A is a direct sum of elementary C∗-algebras

Kλ = K(Hλ). For each λ ∈ Λ consider the associated ideal submodule Wλ =
span{KλW}. Notice that Wλ, regarded as a Hilbert Kλ-module is full, hence
by the Hewitt-Cohen factorization theorem (see Proposition 2.31 of [10]) Wλ =
KλWλ. Consequently, we have Wλ = KλW. W admits the decomposition into
the orthogonal sum W =

⊕
λ∈Λ

Wλ as well as W ×W =
⊕

λ∈Λ
(Wλ ×Wλ). All opera-

tors in LA(W) are reduced by all Wλ, i.e. G(A) =
⊕
λ

G(Aλ) with Aλ = A|DA∩Wλ
,

G(Aλ) ⊂Wλ×Wλ , (λ ∈ Λ). Moreover, A ∈ CA(W) if and only if Aλ ∈ CKλ
(Wλ)

for all λ ∈ Λ. This enables us to reduce our attention to the case of a Hilbert C∗-
module over an elementary C∗-algebra K = K(H).

2. DESCRIPTION OF CK(W)

It is proved in [2] that each Hilbert C∗-module over the C∗-algebra of com-
pact operators possesses an orthonormal basis consisting of basic vectors (x ∈W
is a basic vector if 〈x|x〉 is a minimal projection). Orthonormal bases of that form
admit the unique Fourier expansion for any vector in W. For any minimal projec-
tion e in K we define a subspace We = eW which is also a Hilbert space (see [2]).
The scalar product (·|·) : We ×We → C is the restriction of the inner product 〈·|·〉
modulo projection e, i.e. (x|y)e = 〈x|y〉 for all x, y ∈ We. Any orthonormal basis
for the Hilbert space We is also an orthonormal basis for the Hilbert C∗-module
W and W = span{KWe}. Also, for any submodule Y ⊆ W (possibly non closed)
we have eY = eY. Moreover, if eY = {0} then Y = {0}. Namely, for y ∈ Y we
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have eay = 0 for all a ∈ K and, since span{KeK} = K, beay = 0 for all a, b ∈ K
imply y = 0.

For A ∈ C`K(W) we have eDA ⊆ We and eDA = We. In what follows by
the restriction A|We of an operator A ∈ CK(W) we mean the restriction of A onto
the subspace eDA. It is easy to see that a Hilbert space We reduces all operators
in LK(W). For any A ∈ CK(W) the induced operator Â = A|We : DÂ → We,
DÂ = eDA, is in the set C(We) of all closed operators densely defined on We.
Namely, G(Â) = eG(A) = eG(A) = eG(A), hence G(Â) is closed.

Our main goal is to connect the sets CK(W) and C(We). The basic technical
tools are contained in the following lemmas.

LEMMA 2.1. Let W be a Hilbert C∗-module over an elementary algebra K and
Â ∈ C(We). A closed submodule G = span{KG(Â)} ⊂ W ×W is an operator graph

and defines A ∈ CK(W) such that G(A) = G, eDA = DÂ. AlsoDA = span{KDÂ}
A

,

Ker A = span{KKer Â}
A

= span{KKerÂ} and Im A = span{KIm Â} hold true.
Moreover, A is a minimal extension of Â in CK(W), i.e. for any other B ∈ CK(W)

with the property eDB ⊇ DÂ and B|DÂ
= Â we have A v B.

Proof. Â ∈ C(We) implies that We×We = G(Â)⊕G′(−Â∗) is an orthogonal
sum of closed subspaces. From the properties of a minimal projection e we have
eG = G(Â). If (0, y) ∈ G then (0, ay) ∈ G for all a ∈ K. Now (0, eay) ∈ G(Â)
implies eay = 0 for all a ∈ K, hence y = 0. G is closed in W ×W by definition
and there is a unique A ∈ CK(W) such that G(A) = G. Clearly, eDA = DÂ and
A|DÂ

= Â.

The scalar product in We×We restricted to the subspace G(Â) is of the form
〈(u, Âu)|(v, Âv)〉2 = (u|v)e + (Âu|Âv)e = (u|v)Âe. Let ((vn, Âvn))n∈I be an
orthonormal basis in G(Â). Then (vn)n∈I is an orthonormal basis in the Hilbert
space (DÂ, (·|·)A). Because ((vn, Âvn))n∈I is also an orthonormal basis in G(A)
(see Remark 4 in [2]) any element (x, Ax) ∈ G(A) is of the form

x = ∑
n

(〈x|vn〉+ 〈Ax|Âvn〉)vn = ∑
n
〈x|vn〉Avn,(2.1)

Ax = ∑
n

(〈x|vn〉+ 〈Ax|Âvn〉)Âvn = ∑
n
〈x|vn〉A Âvn.(2.2)

We note that convergence in (2.1) is with respect to ‖ · ‖A (and ‖ · ‖), and in (2.2)

with respect to ‖ · ‖. From (2.1) we haveDA = span{KDÂ}
A

. The norms ‖ · ‖ and
‖ · ‖A coincide on KerA, hence KerÂ and KerA are closed with respect to both

norms. Clearly, span{KKerÂ} ⊆ KerA. But e((span{KKer Â})⊥ ∩ KerA) =
(KerÂ)⊥ ∩KerÂ = {0} implies KerA = span{KKerÂ}. Clearly, span{KImÂ} =
I ⊆ ImA. By (2.2), we have ImA ⊆ I , hence ImA = I .
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Let B ∈ CK(W) be such that B|DÂ
= Â and let x ∈ DA. After defin-

ing a net (xJ)J⊂I over all finite sets J ⊂ I, xJ = ∑
n∈J
〈x|vn〉Avn, we find BxJ =

∑
n∈J
〈x|vn〉A Âvn = AxJ . Because (2.1) and (2.2) imply xJ → x, BxJ → y = Ax

(since B is closed) we conclude x ∈ DB and Bx = Ax, i.e. A v B.

LEMMA 2.2. Let W be a Hilbert C∗-module over an elementary algebra K. If
A ∈ CK(W) and B ∈ C`K(W) are such that A v B and eDA = eDB then A = B.

Proof. Clearly, A v B implies G(A) ⊆ G(B) ⊆ G(B). Let us suppose
G(A) 6= G(B). Since G(A) and G(B) are closed submodules of the Hilbert C∗-
module W ×W, there exists G 6= {(0, 0)} such that G(B) = G(A) ⊕ G. If we
denote G0 = G ∩ G(B) then G(B) = G(A) ⊕ G0 . Clearly, G0 is a dense sub-
module in G while G(B) = G(B). The condition eDA = eDB and A v B im-
ply eG(B) = eG(A) and eG0 = {(0, 0)}. Because G0 is a submodule, we have
G0 = {(0, 0)}, i.e. G(A) = G(B) and A = B.

LEMMA 2.3. Let W be a Hilbert C∗-module over an elementary algebra K, A ∈
LK(W) and Â = A|eDA . Then A ∈ C`K(W) if and only if Â ∈ C`(We).

Proof. Let Â ∈ C`(W) and let (xn) be a sequence in DA such that xn → 0
and Axn → y for some y ∈ W. Then for any a ∈ K, we have eaxn → 0 and
A(eaxn)→ eay. Because Â = A|eDA is a closable operator we have eay = 0 for all
a ∈ K, hence y = 0. The opposite assertion is obvious.

Our next theorem gives a description of the set of all densely defined closed
modular operators on Hilbert C∗-modules over C∗-algebras of compact opera-
tors. It also shows that the natural ∗-isomorphism Ψ between BK(W) and B(We),
defined in [2], can be extended to the ∗-preserving bijection between CK(W) and
C(We).

THEOREM 2.4. Let W be a Hilbert C∗-module over K and let e ∈ K be any min-
imal projection. Then Ψ : CK(W) → C(We), Ψ(A) = A|We is a bijective operation
preserving mapping of CK(W) onto C(We).

Proof. Because G(Ψ(A)) = eG(A) is a closed subspace of eW × eW ⊂ W ×
W, we conclude Ψ(A) = A|We ∈ C(We). From Lemma 2.1 it follows that Ψ is
surjective.

Let us suppose that A, B ∈ CK(W) are such that Ψ(A) = Ψ(B) = Ĉ ∈
C(We) with DĈ = eDA = eDB. By Lemma 2.1, there exists a minimal operator
C ∈ CK(W), eDC = DĈ, such that C v A and C v B. The injectivity follows from
Lemma 2.2.

Let B = Ψ−1(Ψ(A)∗) be a closed operator. From Lemma 2.1 we have
G(B) = span{KG(Ψ(A)∗)}. We ×We = G′(−Ψ(A))⊕G(Ψ(A)∗) implies G′(−A)
⊥ G(B), hence 〈Ax|y〉 = 〈x|By〉 for all x ∈ DA and all y ∈ DB. This implies
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B ⊆ A∗ because A∗ is the maximal closed operator with this property. But
W ×W = G′(−A)⊕ G(A∗) (and hence We ×We = eG′(−A)⊕ eG(A∗)) implies
eG(A∗) = G′(−Ψ(A))⊥ = G(Ψ(A)∗), i.e. eDA∗ = DΨ(A)∗ = DΨ(B) = eDB. By
Lemma 2.2, this gives B = A∗. The equality Ψ(A∗) = Ψ(A)∗ follows from the
construction of B.

Let ImB ⊆ DA and A, B, AB ∈ CK(W) (then DAB = DB). Then eImB ⊆
eDA and Ψ(A)Ψ(B) is well defined on eDB = eDAB. Obviously, AB|eDAB =
Ψ(A)Ψ(B), hence the uniqueness from Lemma 2.2 implies Ψ(AB) = Ψ(A)Ψ(B).

If A, B ∈ CK(W), DA = DB and αA + βB ∈ CK(W) then Ψ(αA + βB) =
αΨ(A) + βΨ(B). Namely, αΨ(A) + βΨ(B) is a restriction of a closed operator
and DαA+βB = DA = DB, so by injectivity we have the equality above.

The next result extends the assertion from the above theorem.

COROLLARY 2.5. If A, B ∈ CK(W) such that Im B ⊆ DA and AB ∈ C`K(W),
then Ψ(AB) = Ψ(A)Ψ(B).

Proof. G(AB) = G(AB) implies G(Ψ(AB)) = eG(AB) = eG(AB) =
{(ex, ABex) : x ∈ DB} = {(y, Ψ(A)Ψ(B)y) : y ∈ eDB} = G(Ψ(A)Ψ(B)).

The function Ψ from Theorem 2.4 can be extended to the function Ψ̃ from
the set of all densely defined operators on Hilbert C∗-module over K, i.e. Ψ̃ :
LK(W) → L(We), Ψ̃(A) = A|eDA . It follows from Lemma 2.3 that the restriction
Ψ̂ = Ψ̃|C`K(W) is a function Ψ̂ : C`K(W)→ C`(We).

Ψ̂ is not injective. For any A ∈ CK(W) there exists a nonclosed B ∈ C`K(W)
such that B = A and eG(B) = eG(A). Let Â = A|eDA and eG(A) = G(Â). We
define a (nonclosed) submodule G = span{KeG(A)}. The set G ⊂ G(A) is a
graph and G = G(A).

That Ψ̂ is surjective, follows also from Lemma 2.3. Let A0 ∈ C`(We) and
define G as above. eG = G(A0) and G = G(A) is an operator graph for some
A ∈ LK(W). Namely, because DA0 is dense in We, DA is dense in W. Now,
eDA = DA0 implies by Lemma 2.3 that A ∈ C`K(W).

In what follows we assume the same meaning for the symbols Ψ̃, Ψ̂ and Ψ.

COROLLARY 2.6. If A ∈ C`K(W) then Ψ(A) = Ψ(A).

Proof. The subspace DΨ(A) = eDA ⊆ eDA = DΨ(A) is dense in DΨ(A) and

G(Ψ(A)) = eG(A) = eG(A) = eG(A) = G(Ψ(A)).

The next result gives a connection between closed and closable operators if
their restrictions coincide.

COROLLARY 2.7. If A ∈ CK(W) and B ∈ C`K(W) are such that Ψ(A) = Ψ(B)
then A = B.
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Proof. Clearly, eDA = eDB ⊆ eDB. If eDB 6= eDB then G(Ψ(B)) ⊂ G(Ψ(B))
and, because Ψ(B) = Ψ(A) is closed, we conclude G(Ψ(B)) ⊂ G(Ψ(B)), hence
Ψ(B) 6= Ψ(B) which is impossible by Corollary 2.6. Consequently, we have
eDA = eDB. By the injectivity of Ψ on closed operators, this implies A = B.

REMARK 2.8. In Corollary 2.7 we see the only, but crucial, disadvantage of
the fact that Ψ is not injection on the set of closable operators. One cannot deduce
that an operator in LK(W) is closed if its restriction on the fixed Hilbert space We
is in C(We). Using Lemma 2.2, we can only deduce A ∈ C`K(W). Moreover, one
cannot deduce that an operator is closed if its restriction on We is closed for each
minimal projection e ∈ K. We show this by the following example.

EXAMPLE 2.9. Let K be the elementary C∗-algebra of compact operators on
an infinite dimensional Hilbert space and let W be any infinite K-dimensional
Hilbert module over K. Let us take a bounded operator A ∈ BK(W) ⊂ CK(W)
(DA = W). Let F denotes the (nonclosed) ideal of operators of finite rank in K.
Any minimal projection e in K has rank one, i.e. e ∈ F , hence eK ⊆ F . This
gives eK = e(eK) ⊆ eF . The opposite inclusion is obvious, so we have eK = eF .
We denote by D0 = span{FW}. This is a submodule of W and D0 = W (F
contains an approximate unit for K). Clearly, A0 = A|D0 is not closed because a
bounded operator is closed if and only if its domain is closed. Further, G(A0) =
span{FG(A)}, hence A0 = A. Obviously, for any minimal projection e we have
eD0 = eW.

In the light of the preceding example, the next observation will be useful.

COROLLARY 2.10. Let W be a Hilbert C∗-module over an elementary algebra K,
A ∈ LK(W) and Â = A|eDA . Then A is bounded if and only if Â is bounded.

Proof. Clearly, if A is bounded then its restriction Â is bounded. Let us

suppose that Â is bounded. Then B̂ = Â ∈ B(We) and we have B ∈ BK(W)
such that Ψ(B) = B̂. By Lemma 2.3, A ∈ C`K(W) and Corollary 2.6 implies
Ψ(A) = Ψ(A) = B̂ = Ψ(B). Then, by Theorem 2.4, we have B = A.

3. LIFTING RESULTS FROM HILBERT SPACE THEORY

In this section we generalize some results on closed operators on Hilbert
spaces.

3.1. THE POLAR DECOMPOSITION IN CK(W). If A is a closed densely defined op-
erator on a Hilbert space then there exists a unique decomposition of the form
A = US where S = (A∗A)1/2, DS = DA, is a selfadjoint operator and U is a par-
tial isometry (see VI. Section 2.7 of [3]). As the first application of previous results
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we show that the same assertion is true for operators in Hilbert C∗-modules over
the C∗-algebra K.

THEOREM 3.1. Let A ∈ CK(W). Then there exists a unique selfadjoint operator
S = (A∗A)1/2, DS = DA, and a partial isometry U with the initial set ImS and the
final set ImA such that A = US.

Proof. We apply the corresponding Hilbert space result to Ψ(A) ∈ C(We),
thus Ψ(A) = ÛŜ with Ŝ = (Ψ(A)∗Ψ(A))1/2, DŜ = DΨ(A), where Û is a partial

isometry with the initial set ImŜ and the final set ImΨ(A). We have Ŝ = Û∗Ψ(A),
hence Ŝ ∈ C(We). Let S = Ψ−1(Ŝ) ∈ CK(W) and U = Ψ−1(Û) ∈ BK(W).
U is a partial isometry because Ψ is a ∗-isomorphism of BK(W) and B(We). By
Lemma 2.3 and Corollary 2.7, Ψ(U∗A) = Û∗Ψ(A) = Ŝ and Ψ(US) = ÛŜ = Ψ(A)
imply U∗A = S and US = A respectively. Now, DA = DU∗A ⊆ DS = DUS ⊆ DA
gives DA = DS, hence U∗A, US ∈ CK(W) and S = U∗A, A = US. Analogously,
Ψ(UU∗A) = ÛÛ∗Ψ(A) = Ψ(A) and Ψ(U∗US) = Û∗ÛŜ = Ŝ imply UU∗A = A
and U∗US = S respectively, hence U is a partial isometry with the initial set ImS
and the final set ImA. Obviously, A∗A = SU∗US = S2.

3.2. GENERALIZED INVERSES IN CK(W). Generalized inverses of closed densely
defined operators in Hilbert spaces are systematically investigated in [7]. We
recall that any operator A ∈ C(H), where H is a Hilbert space, possesses a
unique generalized inverse A− ∈ C(H) such that AA−A = A, A−AA− = A−,
(A−A)∗ = A−A, (AA−)∗ = AA−, DA− = ImA ⊕ KerA∗. Operator AA− is
the orthogonal projection onto the subspace ImA = (KerA∗)⊥, DAA− = DA− ,
ImA = {x ∈ DA− : AA−x = x}, and A−A is the orthogonal projection onto the
subspace ImA− = (KerA)⊥ = ImA∗, DA−A = DA, ImA− = {y ∈ DA : A−Ay =
y}. Also, we have KerA− = KerA∗ and DA = ImA− ⊕KerA.

From the topological point of view a Hilbert K-module W is a Banach space
with the norm which is not strictly convex in general. Nevertheless, we show that
the notion of generalized inverse for operator in CK(W) is well founded.

DEFINITION 3.2. Let W be a Hilbert C∗-module over the C∗-algebra K and
A ∈ CK(W). An operator A− ∈ CK(W) is called a generalized inverse of A ifDA− =
ImA ⊕ KerA∗, AA−A = A, A−AA− = A−, (A−A)∗ = A−A and (AA−)∗ =
AA−.

In Hilbert H∗-modules, which are Hilbert spaces as well, the existence of a
generalized inverse of a closed densely defined modular operator is not in ques-
tion. It is also easy to verify its modularity. The same conclusion in a Hilbert
C∗-module over the C∗-algebra K is not obvious.

THEOREM 3.3. If A ∈ CK(W) then there exist the unique generalized inverse
A− ∈ CK(W) and Ψ(A−) = Ψ(A)− with Ψ as in Theorem 2.4. Further, KerA− =
KerA∗ and DA = ImA− ⊕KerA hold true.
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Proof. If A ∈ CK(W) then, by Theorem 2.4, we have a uniquely defined
Ψ(A) ∈ C(We). By the Hilbert space theory there exists a generalized inverse
Ψ(A)− ∈ C(We) and DΨ(A)− = ImΨ(A) ⊕ KerΨ(A)∗. Let B ∈ CK(W) be the
unique operator such that B = Ψ−1(Ψ(A)−). We claim that B is the unique
operator in CK(W) which satisfies the conditions in Definition 3.2.

First we proveDB = Im A⊕KerA∗ andDA = Im B⊕KerA. By Lemma 2.1,

we haveDB=span{KDΨ(A)}
B

and KerB=span{KKerΨ(A)−}B=span{KKerΨ(A)∗}
= KerA∗. Subspaces ImΨ(A) and KerΨ(A)∗ = KerΨ(A)− are orthogonal sub-
spaces in the scalar product (·|·) as well as in (·|·)Ψ(A)− . Hence span{KImΨ(A)}
and KerA∗ = KerB are orthogonal submodules in the inner products 〈·|·〉 and
〈·|·〉B. Then DΨ(A)− = ImΨ(A)⊕ KerΨ(A)− by Proposition 1.2 and Lemma 2.1

impliesDB =span{KImΨ(A)}B⊕KerB. We have to prove ImA=span{KImΨ(A)}B
.

Let (un)n∈I be an orthonormal basis in the Hilbert space (Im Ψ(A), (·|·)Ψ(A)−)

(it is also an orthonormal basis for the Hilbert C∗-module (span{KIm Ψ(A)}B
,

〈·|·〉B)). For x ∈ span{KImΨ(A)}B ⊆ DB we have x = ∑
n∈I
〈x|un〉Bun and Bx =

∑
n∈I
〈x|un〉BΨ(A)−un. We define nets (xJ)J⊂I , xJ = ∑

j∈J
〈x|uj〉Buj, and (yJ)J⊂I , yJ =

BxJ = ∑
j∈J
〈x|uj〉BΨ(A)−uj, where J is a finite subset of I. We have AyJ = ∑

j∈J
〈x|uj〉B

Ψ(A)Ψ(A)−uj = ∑
j∈J
〈x|uj〉Buj = xj because Ψ(A)Ψ(A)−uj = uj, ∀j ∈ I. Hence

yj → y = Bx, Ayj → x and A ∈ CK(W) imply Bx ∈ DA and x = Ay ∈ ImA, i.e.

ImB ⊆ DA and span{KImΨ(A)}B ⊆ ImA. Analogously, exchanging the roles

of A and B, we have ImA ⊆ DB and span{KImΨ(A)−}A ⊆ ImB. Now, ImA ⊆
( Ker A∗)⊥B = span{KImΨ(A)}B

and ImB ⊆ (KerA)⊥A = span{KImΨ(A)−}A

give the equalities.
Previously proved facts on domains ensure that BA, ABA and AB, BAB are

well defined operators on DA and DB, respectively. The equalities ABA = A and
BAB = B follow by a direct calculation as above. Namely, the equation BAB = B
is trivial on KerB and for x ∈ ImA we have x = ABx as above. ABA = A is
proved analogously. Since by Corollary 2.5 Ψ(BA)=Ψ(A)−Ψ(A)=(Ψ(A)−Ψ(A))∗

= (Ψ(A)−Ψ(A))∗ = Ψ(BA)∗ = Ψ((BA)∗) = Ψ((BA)∗) and (BA)∗ ∈ CK(W),
we have BA = (BA)∗. AB = (AB)∗ can be seen in the same way.

The uniqueness of a generalized inverse follows from the bijectivity of Ψ
and the fact that any closed operator C with the domain ImA⊕KerA∗ satisfying
ACA = A, CAC = C, (CA)∗ = CA and (AC)∗ = AC must satisfy Ψ(C) =
Ψ(A)− (a generalized inverse of a closed operator on a Hilbert space is unique),
hence B = A−. Finally, Ψ(A−) = Ψ(A)− follows from the construction of B.

Let us briefly discuss the meaning of the existence of the generalized inverse
for the solution of the linear equation Ax = b with A ∈ CK(W) and b ∈ W. In
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Hilbert H∗-modules the norm is strictly convex and A−b is the unique solution
of the problem inf{‖Ax − b‖ : x ∈ DA} with the minimal norm. In Hilbert C∗-
modules over C∗-algebras of compact operators the norm is generally not strictly
convex. Let Pm denotes the set of all minimal projections in K. From the property
of generalized inverses in Hilbert spaces we have ‖AA−eb− eb‖ 6 ‖Aex − eb‖
for all x ∈ W and e ∈ Pm. By the formula ‖x‖ = sup{‖ex‖ : e ∈ Pm} (see
Proposition 2 in [2]) we conclude ‖AA−b− b‖ 6 ‖Ax− b‖ for all x ∈W. Also, for
any other solution y we have ‖A−eb‖ 6 ‖ey‖ for all e ∈ Pm, hence ‖A−b‖ 6 ‖y‖.
The uniqueness of such solution fails.

3.3. CLOSED OPERATORS WITH RESOLVENT IN KK(W). In the Hilbert space the-
ory the operators with compact resolvent are interesting because of their simple
spectral structure. This heavily depends on topological properties of their com-
pact resolvents. Although operators in KK(W) are not topologically compact, we
are able to prove analogous results for modular operators.

For an operator A ∈ CK(W) the resolvent set ρ(A) and the spectrum σ(A)
are defined assuming that A ∈ C(W) with W regarded as a Banach space.

LEMMA 3.4. For A ∈ CK(W) we have σ(A) = σ(Ψ(A)). Moreover, the same
equality holds for the point, the continuous and the residual spectrum, respectively.

Proof. For any injective modular operator A : DA → Im A and its inverse
A−1 : ImA → DA (with possibly non dense domains) we have G(A−1) =
G′(A). Assuming Ψ(A) = A|eDA , we have G(Ψ(A−1)) = eG(A−1) = eG′(A) =
G′(Ψ(A)) = G(Ψ(A)−1).

If A ∈ CK(W) then B = ξ I − A ∈ CK(W) for all ξ ∈ C. If ξ ∈ ρ(A)
then B is a bijection onto W and B−1 ∈ BK(W). Clearly, Ψ(B) is a bijection onto
We and (ξ I − Ψ(A))−1 = Ψ(B−1) = Ψ(B)−1 ∈ B(We), hence ξ ∈ ρ(Ψ(A)).
Suppose that ξ ∈ ρ(Ψ(A)), i.e. Ψ(B) is a bijection onto We and Ψ(B)−1 ∈ B(We).
From [2] we know that Ψ : BK(W) → B(We) is a ∗-isomorphism, so we have the
unique C = Ψ−1(Ψ(B)−1) ∈ BK(W) ⊆ CK(W). By Theorem 3.3, C = B− and,
by Lemma 2.1, KerB = span{KKerΨ(B)} = {0}, hence C = B−1. This implies
ξ ∈ ρ(A).

The above connection between kernels implies that B is injective if and only
if Ψ(B) is injective, hence σp(A) = σp(Ψ(A)) follows immediately.

The analog connection between kernels of B∗ and Ψ(B)∗ implies that ImB is
dense if and only if ImΨ(B) is dense.

For A ∈ CK(W), by the multiplicity of an eigenvalue α ∈ σp(A), we un-
derstand the K-dimension of the closed submodule spanned by all eigenvectors
x ∈W such that Ax = αx.

LEMMA 3.5. Let A ∈ CK(W) and α ∈ σp(A). Then the multiplicities of α ∈
σp(A) and α ∈ σp(Ψ(A)) are equal.
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Proof. Let us denote by Wα the submodule in W spanned by all x such that
Ax=αx and by W ′α the subspace in DΨ(A) spanned by all u such that Ψ(A)u=αu.

For any minimal projection e ∈ K we have eWα = W ′α. Namely, W ′α ⊆ Wα

and W ′α ⊆ We imply W ′α = eW ′α ⊆ eWα. On the other hand, eWα ⊆ We implies
eWα ⊆ W ′α by the definition of W ′α. Now, using any basis in W ′α, we have Wα =
span{KW ′α} i.e. K- dim Wα = dim W ′α.

For the set of generalized compact operators KK(W) ⊆ BK(W) we have
Ψ(KK(W)) = K(We) (see Theorem 6 in [2]). The next result is a generalization of
Theorem III.6.29. in [3].

THEOREM 3.6. Let A ∈ CK(W) and assume that there exists ξ0 ∈ ρ(A) such
that R(ξ0) = (ξ0 I − A)−1 ∈ KK(W). Then the spectrum of A consists entirely of
isolated eigenvalues with finite multiplicity, and R(ξ) = (ξ I − A)−1 ∈ KK(W) for all
ξ ∈ ρ(A).

Proof. By the properties of function Ψ, the operator Ψ(A) is a closed densely
defined operator on a Hilbert space We with compact resolvent Ψ(R(ξ0)) = (ξ0 I
−Ψ(A))−1 for some ξ0 ∈ C. From the Hilbert space theory the statement of the
theorem holds true for Ψ(A). From σ(A) = σ(Ψ(A)) = σp(Ψ(A)) = σp(A) we
conclude that σ(A) consists only of isolated eigenvalues and the associated sub-
spaces for Ψ(A) are finite dimensional. The statement on multiplicities follows
from Lemma 3.5.

3.4. GENERALIZED RELATIVE COMPACTNESS IN CK(W). Relative bounded and
relative compact operators are of interest in the theory of differential operators on
Hilbert spaces (see Chapter IV of [3]). We give some related results for operators
on Hilbert C∗-modules over K.

DEFINITION 3.7. Let T ∈ CK(W). An operator A ∈ LK(W) with DA ⊇ DT
is said to be T-bounded if Ã = A|DT is a bounded operator from the Hilbert C∗-
module (DT , 〈·|·〉T) into W (‖Ax‖ 6 ‖Ã‖T‖x‖T for all x ∈ DT).

A is said to be a generalized T-compact operator if Ã ∈ KK(DT , W).

If T ∈ CK(W) and A ∈ C`K(W) with DA ⊇ DT than A is T-bounded (see
Remark IV.1.5 of [3]).

LEMMA 3.8. Let A ∈ LK(W) and T ∈ CK(W) with DA ⊇ DT . Then A is a
generalized T-compact operator if and only if Ψ(A) is Ψ(T)-compact.

Proof. If A ∈ LK(W) is T-compact, by Corollary 2.6, Ψ(T) is a closed op-
erator and DΨ(A) ⊇ DΨ(T). Let ΨT : BK(DT , W) → B(eDT , We) be a bijection
assuming that (DT , 〈·|·〉T) is a Hilbert C∗-module over K and (eDT , (·|·)Ψ(T)) is
the associated Hilbert space. Applying ΨT(KK(DT , W)) = K(eDT , We) (see [2]),
we conclude that ΨT(Ã) is compact. Since ΨT(Ã) = Ψ(A)|DΨ(T)

, we have that
Ψ(A) is Ψ(T)-compact.
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Conversely, let us suppose that Ψ(A) is Ψ(T)-compact. Then Ψ(Ã) = Ψ(A)̃
is a compact operator on a Hilbert space (DΨ(T), (·|·)Ψ(T)). Thus Ã = Ψ−1

T (Ψ(A)̃ )
is a generalized compact operator on a Hilbert C∗-module (DT , 〈·|·〉T) and hence
A is generalized T-compact.

LEMMA 3.9. Let A ∈ LK(W) and T ∈ CK(W) with DA ⊇ DT . If A is general-
ized T-compact operator then A is T-bounded.

Proof. If A is generalized T-compact then Ã ∈ KK(DT , W). By Lemma 3.8,
this is true if and only if Ψ(A) is Ψ(T)-compact, i.e. ΨT(A) is compact on a Hilbert
space (DΨ(T), 〈·|·〉Ψ(T)). Hence, ΨT(A) is bounded. Therefore, A|DT is bounded
in (DT , 〈·|·〉T) because Ψ−1

T preserves boundedness. Hence, by definition, A is
T-bounded.

THEOREM 3.10. Let A ∈ LK(W) and T ∈ CK(W) with DA ⊇ DT . If A is
a generalized T-compact operator then S = T + Ã ∈ CK(W), DS = DT , and A is a
generalized S-compact operator.

Proof. In the case K = C the statement follows from Theorem IV.1.11 in [3].
By Corollary 2.6, we have Ψ(A) ∈ C`(We) and Ψ(T) ∈ C(We) with DΨ(A) ⊇
DΨ(T) and, by Lemma 3.8, Ψ(A) is Ψ(T)-compact. Then Ŝ = Ψ(T) + Ψ(Ã) ∈
C(We), DŜ = DΨ(T) and Ψ(A) is generalized Ŝ-compact. We know that Ψ(S) = Ŝ
and by Lemma 2.3 this ensures S ∈ C`K(W). If we can prove that S is closed
then, using Lemma 3.8, we can conclude that A is generalized S-compact. For
this purpose we prove that norms ‖ · ‖T and ‖ · ‖S are equivalent on DT = DS,
hence (DS, 〈·|·〉S) is a Hilbert C∗-module and S ∈ CK(W).

For any x ∈ DT , by the left hand side of (1.1) in Lemma 2.1, we have ‖x‖2
S =

‖〈x|x〉S‖ 6 ‖〈x|x〉T‖+ 2‖Tx‖‖Ãx‖+ ‖Ãx‖2 6 ‖x‖2
T + 2‖x‖T‖Ãx‖+ ‖Ãx‖2 6

(1 + ‖Ã‖T)2‖x‖2
T , i.e. ‖x‖S 6 K1‖x‖T with K1 = 1 + ‖Ã‖T .

For the opposite inequality let us observe that Ψ(Ã) is Ψ(S)-bounded, hence
by Corollary 2.10 Ã is S-bounded. Analogously as above, for T = S− Ã we have
‖x‖T 6 K2‖x‖S with K2 = 1 + ‖Ã‖S.

Apparently, it is possible to transfer in a similar way many other concepts
and results from the Hilbert space theory.
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