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ABSTRACT. This paper studies Lipschitz and commutator estimates in (non-
commutative) symmetric operator spaces E associated with a general semi-
finite von Neumann algebra M taken in its left regular representation. In
particular, we show that if f ′ is of bounded variation and E is a reflexive (non-
commutative) Lp-space onM, then the Lipschitz estimate

(*) ‖ f (a)− f (b)‖E 6 c f ‖a− b‖E,

holds for arbitrary self-adjoint operators a and b affiliated withM.
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1. INTRODUCTION

In the type I setting, whenM coincides with the algebra L(H) of all linear
bounded operators on a Hilbert space H (i.e. when symmetric operator spaces
(respectively, non-commutative Lp-spaces) are symmetrically normed ideals CE

of compact operators on H (respectively Schatten-von Neumann p-classes C p)
[18]), the result described in the Abstract was first obtained in [13] under the extra
assumption that a and b are bounded self-adjoint operators from L(H). For the
special case of the absolute value function, this result was later extended to the
type II setting in [15], where the assumption that a, b ∈ M was replaced with the
assumption that these operators are taken from the algebra M̃ of all τ-measurable
operators affiliated with M [17] (all the relevant terms and definitions are also
given in the next section). The methods from the (abstract) harmonic analysis
used in both [13] and [15] also allowed parallel commutator estimates of the type

(1.1) ‖[ f (x), a]‖E 6 c f ‖[x, a]‖E, ‖[x, f (a)]‖E 6 c f ‖[x, a]‖E, x = x∗ ∈ E
with similar restrictions on the operator a. Earlier, in the series of papers [2], [3],
[4], where the type I technique of double operator integrals had been developed,
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M. Birman and M. Solomyak were able to obtain Lipschitz estimates (*) for arbi-
trary ideals CE, in particular for the class of C1-functions f whose first derivative
is Hölder of order ε for arbitrary small ε > 0. Later, in [5], the same authors were
able to apply their technique also to commutator estimates (1.1) in ideals CE, and
strengthen the results of [13] for reflexive Schatten-von Neumann p-classes, by
removing the assumption that a and b are bounded.

The double operator integral technique has been recently extended to the
type II setting in [25], [23], [24], where the estimates (*) in Abstract and (1.1)
are obtained in the setting of general symmetric operator spaces E and general
semifinite von Neumann algebras M. However, in the case of reflexive non-
commutative Lp-spaces on M, the results obtained in those articles are weaker
than the corresponding result of [5] due to the restrictive τ-measurability assump-
tion imposed on the operators a and b in those papers. The fact that this assump-
tion is restrictive is clearly seen from the fact that in all interesting applications
of the estimates (*) in Abstract and (1.1) in quantum mechanics (see e.g. [6]) and
in non-commutative geometry (see e.g. [10]) it is not satisfied. In fact, even in
the simplest example of interest (see e.g. Example 7.1 and Remark 7.4 of [24]),
when the algebra M = L∞(R) acts on H = L2(R) via multiplication and the
operator a is given by the differentiation 1

i
d
dt , it is clear that a does not belong to

the algebra M̃ (furthermore, it is not even affiliated with M). The problem of
obtaining the estimates (*) in Abstract and (1.1) for general self-adjoint operators
a and b and not just for τ-measurable and for not necessarily continuously dif-
ferentiable functions f is non-trivial: the difference in the assumptions renders
many existing techniques inapplicable. For example, the fact that our functions
are not C1 prevents us from using the approach developed in [24] (based, in turn,
on an earlier idea from [1]), which ultimately views the first inequality in (1.1)
as a statement that f is an operator differentiable function and thus must be con-
tinuously differentiable. It is, perhaps, also instructive to refer to [7] where a
problem, arising in the type II quantized calculus similar to the estimates (*) and
(1.1), has obtained completely different resolution depending on whether opera-
tors in question were τ-measurable or just affiliated (see Theorem 0.3(i) and (ii)
of [7] and discussion on p. 144).

We now briefly explain the technical difficulties (and our strategy) arising
in the setting of commutator estimates. Suppose that the operator a is not τ-
measurable and that x ∈ M. Among various definitions of the symbol [a, x] in
the literature (allowing the treatment of the situation when all three operators, a, x
and [a, x] may be unbounded), we have chosen the least restrictive approach artic-
ulated in [6], allowing us to consider a wider class of operators than those in [24]
and [7]. We say that [a, x] ∈ E if and only if the subspace x−1(Dom a) ∩Dom a
contains a core of the operator a which is invariant under the unitary group
{eita}t∈R and the operator xa − ax, initially defined on that subspace, is clos-
able with closure [a, x] belonging to E. Assume (for brevity) that the core above
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coincides with Dom a (it is of interest to observe that the latter assumption is au-
tomatically satisfied in the type I setting and more generally, when E ⊆ M, see
Lemma 5.1 below). Then for a (τ-measurable) operator y := [a, x] ∈ E with a
τ-dense domain (see next section), we have Dom a ⊆ Dom y. Now, our general
strategy in proving the estimate (1.1) consists in linking with a given function f
a linear operator Tψ f , which is bounded on E (indeed, Tψ f is just the double op-
erator integral defined via the divided difference function ψ f , see Definition 2.3
below) and for which the relation

(1.2) [a, f (x)] = Tψ f ([a, x]),

holds. The double operator integral Tψ f is a bounded linear operator on E defined
via a complicated process of vector-valued integration with respect to a finitely
additive measure and the relationship between the domain of the image z :=
Tψ f ([x, a]) and that of a is not clear. On the other hand, if (1.2) were to hold,
we should have (at the very least) that Dom a ⊆ Dom z and ( f (x))−1(Dom a) ∩
Dom a 6= ∅. This is a serious obstacle, which is specific to the type II setting.
Indeed, ifM is a type I factor, then the operator z is necessarily bounded (due to
the obvious embedding CE ⊆ M) and so, the embedding Dom a ⊆ Dom z = H
is trivial.

We solve this problem and achieve a complete extension of the type I re-
sult of [5] to a general semifinite von Neumann algebraM under the additional
assumption that the latter algebra is acting on H in standard form. In many cir-
cumstances the latter assumption is automatically satisfied and in many cases our
results may be transferred to general von Neumann algebras. We illustrate this
in the final section of this paper suggesting a simple and straightforward vari-
ant of the proofs of corresponding type I results, yielding an additional insight
into methods used in [5]. In the following section, we present necessary prelim-
inaries from the theory of non-commutative integration and a revised version of
double operator integration theory from [25], [23] and [24]. We derive Lipschitz
estimates and the second commutator estimates from (1.1) in Section 3; the first
commutator estimates from (1.1) are obtained in Section 4.

2. PRELIMINARIES

Throughout the text M is a semi-finite von Neumann algebra acting on a
complex Hilbert spaceH equipped with a semi-finite faithful normal trace τ. The
unit element ofM is denoted by 1. A densely defined operator a is called affiliated
with the algebraM if and only if u∗au = a, for every u ∈ M′. We refer the reader
to [27] for the general theory of von Neumann algebras.

A closed and densely defined linear operator a : Dom a → H is called
τ-measurable if a is affiliated with M and the space Dom a is τ-dense, i.e. for
every ε > 0 there is an orthogonal projection p ∈ M such that p(H) ⊆ Dom a
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and τ(1− p) < ε. The collection of all τ-measurable operators will be denoted
by M̃. We denote the spectral measure of a self-adjoint operator a by Ea, so
Ea : B(R)→ L(H), where B(R) is the σ-algebra of all Borel subsets of R. Observe
that E|a|(B) ∈ M whenever a is affiliated with M for all B ∈ B(R). For every
a∈M̃ the generalised singular value function µ(a) : [0, ∞)→ [0, ∞] is defined by

µt(a) = inf{s > 0 : τ(E|a|(s, ∞)) 6 t}, t > 0.

The set of all a ∈ M̃ such that µt(a) → 0 as t → ∞ is denoted as M̃0. We will
say that the net of τ-measurable operators {xα} converge to an operator x with
respect to the measure topology if and only if µt(xα)→ µt(x) for every t > 0. M̃
is a complete topological algebra with respect to the measure topology. We refer
the reader to [22], [28], [17] for the theory of τ-measurable operators.

Throughout the text let E = E(0, ∞) be a symmetric Banach function space,
i.e. E = E(0, ∞) is a rearrangement invariant Banach function space on [0, ∞)
with the additional property that f , g ∈ E and g ≺≺ f imply that ‖g‖E 6 ‖ f ‖E.
Here g ≺≺ f denotes submajorization in the sense of Hardy, Littlewood and
Polya, i.e.

t∫
0

µs(g) ds 6

t∫
0

µs( f ) ds, t > 0.

The non-commutative symmetric space E = E(M, τ) is defined by

E = {a ∈ M̃ : µ(a) ∈ E} with ‖a‖E = ‖µ(a)‖E.

If E = Lp, 1 6 p 6 ∞, then Lp is the classical non-commutative Lp-space. We note
that the space L∞ coincides withM and L1 coincides with the predualM∗ of the
von Neumann algebraM, via duality given by 〈x, y〉 := τ(xy), x ∈ M, y ∈ L1.
We shall need the following generalised Hölder inequality for non-commutative
Lp-spaces, cf. Theorem 4.2.(i) of [17],

(2.1) ‖ξη‖Ls 6 ‖ξ‖Lp ‖η‖Lq ,
1
s

=
1
p

+
1
q

, 1 6 s, p, q 6 ∞.

The Köthe dual E× of a symmetric space E is the symmetric space given by

E×={a∈M̃ : ab∈L1, whenever b∈E and ‖a‖E×:= sup
b∈L1∩L∞ ,‖b‖E61

τ(ab)<∞},(2.2)

see, for example, [14]. It is a subspace of the dual space E∗ (the norms ‖ · ‖E× and
‖ · ‖E∗ coincide on E×) and E× = E∗ if and only if the space E is separable. We
say that E has the Fatou norm (respectively, the Fatou property) if and only if the
natural embedding E ⊆ E×× is isometrical (respectively, isometrical bijection).
We have (L1 ∩ L∞)× = L1 + L∞, (L1 + L∞)× = L1 ∩ L∞ and the continuous
embeddings

L1 ∩L∞ ⊆ E, E× ⊆ L1 + L∞
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hold for every symmetric operator space E. It follows from (2.2) that L1 ∩ L∞

separates points in L1 + L∞, i.e. if, for a ∈ L1 + L∞, τ(ab) = 0 whenever b ∈
L1 ∩ L∞, then a = 0. The following lemma relates the operator and the Banach
topological structures of the algebraM.

LEMMA 2.1 ([27], Lemma 1.2, Theorem 1.10). The weak operator (wo)-topology,
σ(L∞, L1 ∩ L∞)-topology and σ(L∞, L1)-topology coincide on the unit ballM1 of the
von Neumann algebraM.

LEMMA 2.2. If z ∈ L1 + L∞, D ⊆ H is a dense subspace affiliated withM and
z′ = z|D, then z′ = z.

Proof. Since D is affiliated with M, it follows that z′ is also affiliated with
M. Since D is dense and z′ ⊆ z, we have z∗ ⊆ z′∗. The operator z∗ is τ-
measurable, therefore, z′∗ is τ-measurable also and z′∗ = z∗, cf. Lemma 2.1 of
[19]. Passing to the second adjoints, we obtain z′ = z′∗∗ = z∗∗ = z.

Let us next recall several basic results of the theory of double operator inte-
grals developed recently in [25]. By L(E) we denote the algebra of all bounded
linear operators on E. Suppose a, b are self-adjoint operators affiliated withM.
Let Ea, Eb : B(R) → M be the corresponding spectral measures. For every
B ∈ B(R), we define the projections Pa

E(B), Qb
E(B) : E→ E by

Pa
E(B)x = Ea(B)x, Qb

E(B)x = xEb(B), x ∈ E.

Evidently, Pa
E, Qb

E : B(R) → L(E) are two commuting (countably additive) spec-
tral measures (in the sense of Chapter X in [16]) satisfying

‖Pa
E(B)‖L(E) 6 1 and ‖Qb

E(B)‖L(E) 6 1, B ∈ B(R).

We denote by A the algebra of subsets of R2 generated by all Borel rectan-
gles A× B with A, B ∈ B(R). Let Pa

E ⊗ Qb
E : A → L(E) be the product measure,

that is,
Pa

E ⊗Qb
E(A× B) = Pa

E(A)Qb
E(B)

for all A, B ∈ B(R). It is easily verified that Pa
E⊗Qb

E is a (finitely additive) spectral
measure on A.

If E = L2, then Pa
L2 and Qb

L2 take their values in orthogonal projections of
the Hilbert space L2. As is well known the product measure Pa

L2 ⊗ Qb
L2 extends

uniquely from A to a countably additive spectral measure on the Borel σ-algebra
of R2, B(R2), taking its values in orthogonal projections of L2. This extension is
denoted by Pa

L2 ⊗Qb
L2 as well, so

Pa
L2 ⊗Qb

L2 : B(R2)→ L(L2).

In particular, 〈Pa
L2 ⊗ Qb

L2 x, y〉 is a σ-additive complex-valued measure on R2 for
every x, y ∈ L2, where 〈x, y〉 := τ(xy) (see also Remark 3.1 of [25]).
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We denote by BC(R2) the algebra of all complex-valued bounded Borel
functions on R2. For every φ ∈ BC(R2), the spectral integral

Ta,b
φ,L2 =

∫
R2

φ d(Pa
L2 ⊗Qb

L2)

is a bounded linear operator on L2 and the mapping φ → Ta,b
φ,2 is an algebra

homomorphism from the algebra BC(R2) into L(L2).
The following definition is in fact a special case of Definition 2.9 in [25]. See

also Proposition 2.12 in [25] and the discussion there on pages 81–82.

DEFINITION 2.3. A function φ ∈ BC(R2) is integrable with respect to the mea-
sure Pa

E ⊗Qb
E if and only if there is a bounded linear operator

Ta,b
φ,E : E→ E

satisfying the following conditions:
(i) Ta,b

φ,E(L2 ∩E) ⊆ L2 ∩E and (Ta,b
φ,E)∗(L2 ∩E×) ⊆ L2 ∩E×;

(ii) for every x ∈ L2 ∩E and y ∈ L2 ∩E×

(2.3) 〈Ta,b
φ,Ex, y〉 =

∫
R2

φ(λ, µ) d〈Pa
E ⊗Qb

Ex, y〉.

If such an operator exists, then it is unique, see Definition 2.9 of [25].

The class of all functions φ ∈ BC(R2) integrable with respect to Pa
E ⊗Qb

E for
every a, b affiliated withM will be denoted by Φ(E). We also set

Φs(E) = {φ ∈ Φ(E) : φ(λ, µ) = φ(µ, λ), λ, µ ∈ R}.

It is known that Φs(Lq) ( Φs(Lp) when 2 6 p < q 6 ∞, cf. [20]. It is also known
that Φs(L1) = Φs(L∞). The next result extends the latter observation.

LEMMA 2.4. If E is a symmetric operator space with order continuous norm and
has Fatou property, then Φs(E) = Φs(E∗). Moreover, Ta,b

φ,E∗ = (Tb,a
φ,E)∗ and Ta,b

φ,E =

(Tb,a
φ,E∗)

∗|E, provided φ ∈ Φs(E) = Φs(E∗).

Proof. By the assumption, we have E× = E∗ and E×× = E. Fix φ ∈ Φs(E)
and set T := Tb,a

φ,E, for brevity. Let us first show that Φs(E) ⊆ Φs(E∗), to this end
it is sufficient to show that

(2.4) Ta,b
φ,E∗ = T∗.

Let us also fix x ∈ L2 ∩ E = L2 ∩ E××, y ∈ L2 ∩ E∗ = L2 ∩ E×. It follows
from Definition 2.3 that T(L2∩E)⊆ L2∩E, T∗(L2∩E×) ⊆ L2∩E× and 〈T(x), y〉
=
∫
R2

φ(λ, µ) d〈Pb
E ⊗ Qa

E(x), y〉. Consequently, passing to the adjoint operator T∗
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in the latter identity, we obtain

〈x, T∗(y)〉 =
∫
R2

φ(λ, µ) d〈x, Pa
E× ⊗Qb

E×(y)〉.

Thus, to finish the proof of (2.4), we only need to show that

T∗∗(L2 ∩E) ⊆ L2 ∩E.

The latter is apparent, since T ∈ L(E) and therefore T∗∗(z) = T(z), z ∈ E. Thus,
we have established that Φs(E) ⊆ Φs(E∗).

We now fix φ ∈ Φs(E∗) and set T := Tb,a
φ,E∗ ∈ L(E∗). To prove that Φs(E∗) ⊆

Φs(E) it is sufficient to show that

Ta,b
φ,E = T∗|E.

Let us again fix x ∈ L2 ∩E∗ = L2 ∩E×, y ∈ L2 ∩E = L2 ∩E××. According
to Definition 2.3,

(2.5) T(L2 ∩E×) ⊆ L2 ∩E×, T∗(L2 ∩E) ⊆ L2 ∩E

and

〈T(x), y〉 =
∫
R2

φ(λ, µ) d〈Pb
E ⊗Qa

E(x), y〉.

Taking the adjoint T∗, we obtain

〈x, T∗(y)〉 =
∫
R2

φ(λ, µ) d〈x, Pa
E ⊗Qb

E(y)〉.

Thus, we need only to show that T∗ ∈ L(E) and T∗∗(L2 ∩ E×) ⊆ L2 ∩ E×. For
the latter, it is sufficient to note that T ∈ L(E∗) and therefore T∗∗(x) = T(x), x ∈
E∗ = E×. For the former, we first show that T∗(E) ⊆ E. Indeed, suppose that
z ∈ E. Since E is separable, there exists a sequence {zk}∞

k=1 ⊆ L2 ∩ E, such that
lim
k→∞

zk = z, where the limit converges with respect to the norm topology in E.

Since T∗ ∈ L(E∗∗) and E ⊆ E∗∗ isometrically, we obtain that

(2.6) lim
k→0

T∗(zk) = T∗(z),

where the limit converges with respect to the norm topology in E∗∗. In particular,
{T∗(zk)}k>1 is a Cauchy sequence in E∗∗. On the other hand, it follows from (2.5)

{T∗(zk)}∞
k=1 ⊆ E.

Since, E ⊆ E∗∗ isometrically, the latter sequence is also Cauchy in E. Conse-
quently, from (2.6), T∗(z) ∈ E. Thus, we showed that T∗(E) ⊆ E. Let us recall
that T∗ ∈ L(E∗∗). Consequently, referring to the isometric embedding E ⊆ E∗∗
again, we obtain that T∗ ∈ L(E). The lemma is completely proved.
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The main interest is attached to the class F(E) which contains all Borel mea-
surable function f : R 7→ C such that ψ f ∈ Φs(E), where

(2.7) ψ f (λ, µ) :=
f (λ)− f (µ)

λ− µ
, (λ, µ) ∈ R, λ 6= µ, ψ f (λ, λ) = 0.

It is known that the class of all absolutely continuous functions f on R whose
(weak) derivative has a bounded variation is a proper subclass of F(Lp), 1 < p <
∞, [25]. In particular, f (λ) = |λ|, λ ∈ R belongs to F(Lp), 1 < p < ∞. On
the other hand, the latter function does not belong to F(L∞) = F(L1), [13]. It is
unknown whether F(Lp) 6= F(L2), when 1 < p < 2.

We start with the following lemma.

LEMMA 2.5 ([25], Lemma 7.1). Let a, b be self-adjoint affiliated withM and let

Ea
n = Ea([−n, n]), Eb

n = Eb([−n, n]), n > 1

be the corresponding spectral projections. If f ∈ F(E), then for every x ∈ E,

(2.8) Ta,b
ψ f ,E(aEa

nxEb
n − Ea

nxbEb
n) = f (a)Ea

nxEb
n − Ea

nx f (b)Eb
n, n > 1.

The following proposition complements the result of Lemma 2.5. We re-
place the assumption x ∈ E with the assumption ax − xb ∈ E. Recall that the
fundamental function of a rearrangement invariant space E is given by φE(t) :=
‖χ[0,t)‖E, t > 0.

PROPOSITION 2.6. Let E=(E∗)×, where E∗ is a symmetric operator space with an
order continuous norm and the Fatou property. If the fundamental function φE satisfies

(2.9) lim
t→∞

φE(t)
t

= 0,

then, for every complex-valued function f on R such that f ∈ F(E), we have

(2.10) Ta,b
ψ f ,E(ax− xb) = f (a)x− x f (b),

for all self-adjoint operators a, b ∈ M and all operators x ∈ M such that ax− xb ∈ E.

Proof. It readily follows from Proposition 6.6 in [25] that there is a net of
projections {pβ} ⊆ M such that pβ ↑ 1, τ(pβ) < ∞ and ‖bpβ − pβb‖E 6 1.
Since pβ ↑ 1 and b ∈ M, we have bpβ − pβb → 0 in the wo-topology. Moreover,
since the unit ball of E is compact in the σ(E, E∗)-topology, passing to a subnet, if
necessary, we may assume that bpβ− pβb converges in the σ(E, E∗)-topology. Let
us show that this limit is 0. We note that the σ(E, E∗)-topology is stronger than
the σ(E, L1 ∩ L∞)-topology, the operators bpβ − pβb are uniformly bounded in
L∞ and the σ(L∞, L1 ∩L∞)-topology coincides with the wo-topology on the unit
ball ofM = L∞, see Lemma 2.1. Hence, the operators bpβ − pβb tend to 0 in the
σ(E, E∗)-topology. For every operator y ∈ E∗, y(ax− xb) ∈ L1. Since pβ → 1 in
the σ(L∞, L1)-topology, cf. Lemma 2.1, we obtain that (ax − xb)pβ → (ax − xb)
in the σ(E, E∗)-topology.
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Since τ(pβ) < ∞, xpβ ∈ E, applying Lemma 2.5 to the operator xpβ yields

(2.11) Ta,b
ψ f ,E(axpβ − xpβb) = f (a)xpβ − xpβ f (b).

If follows from Lemma 2.4 that f ∈ F(E∗) and Ta,b
ψ f ,E = (Tb,a

ψ f ,E∗)
∗, in particular,

the operator Ta,b
ψ f ,E is σ(E, E∗)-continuous. Now it follows that the left hand side

of (2.11) converges to Ta,b
ψ f ,E(ax − xb) in the σ(E, E∗)-topology. Since pβ ↑ 1, the

right hand side converges to f (a)x− x f (b) in the wo-topology and since the right
hand side is uniformly bounded inM, these limits coincide.

COROLLARY 2.7. Let a, b be self-adjoint operators affiliated withM, Ea
n and Eb

n,
n > 1 be spectral projections as in Lemma 2.5 and let E satisfy the assumptions of
Proposition 2.6. If x ∈ M, aEa

nxEb
n − Ea

nxbEb
n ∈ E, n > 1 and f ∈ F(E), then

Ta,b
ψ f ,E(aEa

nxEb
n − Ea

nxbEb
n) = f (a)Ea

nxEb
n − Ea

nx f (b)Eb
n, n > 1.

Proof. Setting an = aEa
n, bn = bEb

n and xn = Ea
nxEb

n, n > 1, we have (by
assumption)

anxn − xnbn = aEa
nxEb

n − Ea
nxbEb

n ∈ E.

Applying Proposition 2.6 to the operators an, bn and xn we obtain Tan ,bn
ψ f ,E (anxn −

xnbn) = f (an)xn − xn f (bn). To finish the proof, we note that, according to Defini-
tion 2.3,

Tan ,bn
ψ f ,E (y) = Ta,b

ψ f ,E(Ea
nyEb

n), y ∈ E, n > 1.

The lemma below generalizes a fairly standard argument for groups of op-
erators on symmetric operator spaces and will be used in the sequel.

LEMMA 2.8. Let E and F be symmetric operator spaces, B be a closed ball in F
and γ := {γt}t∈R be a group of contractions in both E and F. If γ is a strongly (respec-
tively, weakly*) continuous group in E, Dom δ is the domain of the strong (respectively,
weak*) generator of γ in E, and the function t → ‖γt(ξ)‖F is Lebesgue measurable, for
every ξ ∈ B, then the set Dom δ ∩ B is invariant with respect to γ and norm (respec-
tively, weak*) dense in E ∩ B. In particular, if F is a symmetric operator space with the
Fatou norm such that E∩ F is norm (respectively, weak*) dense in E and γ is σ(F, F×)-
continuous in F, then the subspace Domδ∩F is norm (respectively, weak*) dense in E.

Proof. We prove the case when γ is strongly continuous and outline the
changes needed for weak* continuous group at the end of the proof.

Since the space Dom δ is invariant under γ, ([12], Lemma 1.1) , and the
hypothesis γt(B) ⊆ B, we have γt(Dom δ ∩ B) ⊆ Dom δ ∩ B, t ∈ R.

Let Rλ be the resolvent Rλ = (λ− δ)−1, then Rλ(ξ) ∈ Dom δ,

(2.12) Rλξ =
∞∫

0

e−λtγt(ξ) dt
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and
‖·‖E - lim

λ→∞
λRλ(ξ) = ξ,

for every ξ ∈ E, λ > 0, ([26], Lemma 1.3.2). If ξ ∈ E ∩ B, then λRλ(ξ) ∈ Dom δ
and λRλ(ξ) ∈ B. The last assertion follows from (2.12) and the elementary in-
equality

‖λRλ(ξ)‖F 6 λ

∞∫
0

E−tλ‖γt(ξ)‖F dt 6 ‖ξ‖F, λ > 0.

Therefore, for every ξ ∈ E ∩ B, the elements λRλ(ξ) belong to Dom δ ∩ B and
tend to ξ, as λ → ∞ with respect to the norm of E. This means that Dom δ ∩ B
is norm dense in E ∩ B. For the second part, we note that, since F has the Fatou
norm,

τ(ηξ) = lim
t→0

τ(ηγt(ξ)), η ∈ F×,

‖ξ‖F = sup
‖η‖F×61

|τ(ηξ)| 6 lim inf
t→0

‖γt(ξ)‖F, ξ ∈ F.

That means that the function t→ ‖γt(ξ)‖F, ξ ∈ F is semi-continuous and, hence,
measurable. The claim is proved.

For the weak* assertion, we have to apply Proposition 3.1.6 and Corol-
lary 3.1.7 in [6], which are weak* variants of the results used above.

Let us recall the notion of the left regular representationML of the algebra
M. That is,ML is the algebra of all operators x ∈ L(L2) given by the left multi-
plication x(ξ) = xξ for every ξ ∈ L2, whenever x ∈ M. The mapping L : x → x
is an ∗-isomorphism between the algebras M and ML. The trace τL is defined
by τL(x) = τ(x), x ∈ M. A symmetric operator space EL = E(ML, τL) consists
of all operators x where x ∈ E = E(M, τ). The mapping L has a natural exten-
sion E → EL which is an isometric isomorphism of Banach spaces E and EL, cf.
Proposition 2.6 of [25].

3. LIPSCHITZ ESTIMATES

Throughout the section a and b are self-adjoint operators affiliated with
ML, and x ∈ ML. Let us note that the subspace

Da = Dom a ∩L1 ∩L∞

is a core of the operator a for every a affiliated withML, see Lemma 3.6 below.
Since the operator a is affiliated with the algebraML so is the domain Dom a, i.e.
for every unitary u ∈ ML

′, u(Dom a) ⊆ Dom a. Consequently, the core Da is
also affiliated withM.

We shall write ax− xb ∈ EL for every a, b affiliated withML and x ∈ ML
provided x(Db) ⊆ Dom a and the operator ax− xb, initially defined on Db, is
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closable with closure, again denoted ax− xb, in EL. We may now formulate the
main result of the section.

THEOREM 3.1. Let a, b be self-adjoint operators affiliated withML, and x ∈ ML.
If ax− xb ∈ Lp

L and f ∈ F(Lp
L), for some 2 6 p 6 ∞, then f (a)x− x f (b) ∈ Lp

L and

f (a)x− x f (b) = Ta,b
ψ f ,Lp

L
(ax− xb).

In particular
‖ f (a)x− x f (b)‖Lp

L
6 c f ,p ‖ax− xb‖Lp

L
.

Applying the theorem for more general symmetric operator spaces, we have

COROLLARY 3.2. Let a, b and x be as in Theorem 3.1 and let E be a symmetric
function space which is separable or dual to a separable symmetric function space with
the Fatou property. If ax−xb ∈EL∩Lp

L and f ∈ F(EL)∩F(Lp
L), for some 2 6 p 6 ∞,

then
f (a)x− x f (b) = Ta,b

ψ f ,EL
(ax− xb).

In particular,
‖ f (a)x− x f (b)‖EL 6 c f ,E ‖ax− xb‖EL .

REMARK 3.3. Suppose that E is a separable r.i. function space with non-
trivial Boyd indices (see, e.g. [21]). It follows from [15] and [25] that the assump-
tions above are satisfied for the absolute value function.

Proof of Corollary 3.2. We only need to show that Ta,b
ψ f ,EL

(y) = Ta,b
ψ f ,Lp

L
(y) for

every y ∈ Lp
L ∩EL. First, it immediately follows from Definition 2.3, that, for any

two symmetric spaces EL and FL, and f ∈ F(EL) ∩ F(FL), we have

(3.1) Ta,b
ψ f ,EL

(y) = Ta,b
ψ f ,FL

(y), y ∈ L1
L ∩L∞

L ⊆ EL ∩ FL ∩L2
L.

Let us now note that, according to Lemma 2.4, applied to the spaces EL and FL,

together with (3.1), f ∈ F(EL) ∩ F(Lp
L) = F(E×L ) ∩ F(Lp′

L ), where p′ is the conju-

gate exponent, and there exist bounded operators T1 : Lp′
L → Lp′

L , T2 : E×L → E×L
such that

Ta,b
ψ f ,EL

(y) = T∗1 (y), y ∈ EL; Ta,b
ψ f ,Lp

L
(y) = T∗2 (y), y ∈ Lp

L;

T1(y) = T2(y), y ∈ L1
L ∩L∞

L .

Hence, for every y ∈ Lp
L ∩EL and z ∈ L1

L ∩L∞
L , we obtain

τ(zTa,b
ψ f ,EL

(y)) = τ(yT1(z)) = τ(yT2(z)) = τ(zTa,b
ψ f ,Lp

L
(y)).

Since L1
L ∩L∞

L separates points in L1
L + L∞

L , it follows that

Ta,b
ψ f ,EL

(y) = Ta,b
ψ f ,Lp

L
(y), y ∈ Lp

L ∩EL.
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If we take into account that Φ(EL) ⊆ Φ(L2
L) = BC(R2), we obtain the result

for Lp-spaces with 1 6 p < 2, namely

COROLLARY 3.4. Let a, b and x be as in Theorem 3.1. If ax− xb ∈ Lp
L ∩ L2

L,
and f ∈ F(Lp

L), 1 6 p < 2, then

f (a)x− x f (b) = Ta,b
ψ f ,Lp

L
(ax− xb).

In particular,
‖ f (a)x− x f (b)‖Lp

L
6 c f ,p ‖ax− xb‖Lp

L
.

REMARKS 3.5. (i) In the special case when x = 1, Corollaries 3.2, 3.4 and
Theorem 3.1 are reduced to inequalities

‖ f (a)− f (b)‖Lp
L

6 c f ,p ‖a− b‖Lp
L
, 1 < p < ∞,

provided a− b ∈ Lp
L ∩ L2

L, and f ∈ F(Lp
L), where a, b are arbitrary self-adjoint

operators affiliated with ML, and c f ,p is a constant depending of f and p only.
This result extends Corollary 7.5 of [25] and Corollary 3.5 of [15].

(ii) If a = b are as in Remark 3.5(i) above and x ∈ ML, then

‖[|a|, x]‖Lp
L

6 cp ‖[a, x]‖Lp
L
, 1 < p < ∞,

provided [a, x] ∈ Lp
L ∩ L2

L, where cp is a constant depending on p only. This
complements the result of Theorem 2.2 in [15] and provides a type II extension of
(6.6) in [5].

(iii) If, in addition, a = b has a bounded inverse, then for every symmetric
operator space EL, we have

‖[|a|r, x]‖EL 6 cE,a,r ‖[a, x]‖EL , 0 < r 6 1,

whenever [a, x] ∈ EL ∩ Lp
L, for some 2 6 p 6 ∞, where the constant cE,a,r does

not depend on x. This result extends similar inequalities for the case E = L∞,
obtained earlier in Lemma 1.4 of [9] (see also [11], [29]) by different methods.

LEMMA 3.6. If a is affiliated withML, then the subspace Da = Dom a ∩ L1 ∩
L∞ is a core of a.

Proof. Since a is affiliated withML, it follows that eita ∈ ML and the latter
means that the group {eita}t∈R may be extended from L2 to a group of contrac-
tions in every symmetric operator space E. In particular, {eita}t∈R is a group of
contractions in L1 ∩ L∞. Applying Lemma 2.8 to the group {eita}t∈R, E = L2

and F = L1 ∩ L∞, we obtain that Da is dense in L2. On the other hand, Da is
invariant with respect to eita, t ∈ R. Thus, it follows from Theorem 1.9 of [12] that
Da is a core of a.

Proof of Theorem 3.1. Let Ea
n and Eb

n , n > 1 be the spectral projections of the
operators a, b as in Lemma 2.5. Since Eb

n (L2) ⊆ Dom b, we have that Eb
n (L1 ∩
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L∞) ⊆ Db, for every n > 1. Hence, according to definition of ax− xb ∈ Lp
L, we

have

Ea
n(ax− xb)Eb

n (ξ) = Ea
naxEb

n (ξ)− Ea
nxbEb

n (ξ), ξ ∈ L1 ∩L∞, n > 1.

The operator on the right is bounded. Since L1 ∩L∞ is dense in L2, we have that
the operator on the left is also bounded and

(3.2) Ea
n(ax− xb)Eb

n = Ea
naxEb

n − Ea
nxbEb

n , n > 1.

We claim that

σ(Lp
L, Lp′

L )− lim
n→∞

Ea
n(ax− xb)Eb

n = ax− xb ∈ Lp
L,

where p′ is the conjugate exponent. Indeed, if p < ∞, then the space Lp is sep-
arable and this follows from Corollary 2.3 in [8]; if p = ∞ then this follows from

Lemma 2.1. Since the operator Ta,b
ψ f ,Lp

L
is σ(Lp

L, Lp′
L )-continuous (this follows from

Lemma 2.4) we may write that

(3.3) σ(Lp
L, Lp′

L )− lim
n→∞

zn = z, z ∈ Lp
L ,

where
zn := Ta,b

ψ f ,Lp
L
(Ea

n(ax− xb)Eb
n ), z := Ta,b

ψ f ,Lp
L
(ax− xb).

On the other hand, according to Corollary 2.7 and (3.2) we obtain

zn = Ea
n f (a)xEb

n − Ea
nx f (b)Eb

n ∈ ML, n > 1.

We next consider the bilinear form

〈zn(ξ), η〉 = 〈xEb
n (ξ), Ea

n f (a)(η)〉 − 〈Eb
n f (b)(ξ), x∗Ea

n(η)〉,

for every ξ ∈ D f (b), η ∈ D f (a), n > 1. By the definition of the sets D f (b)
and D f (a), we have ξη∗ ∈ L1

L ∩ L∞
L ⊆ Lp′ for every ξ ∈ D f (b), η ∈ D f (a).

Therefore, it follows from (3.3) that

〈zn(ξ), η〉 = τL(znL(ξη∗))→ τL(zL(ξη∗)) = 〈z(ξ), η〉, t→ ∞.

Hence, passing to the limit on the right, we obtain

(3.4) 〈z(ξ), η〉 = 〈x(ξ), f (a)(η)〉 − 〈 f (b)(ξ), x∗(η)〉, ξ ∈ D f (b), η ∈ D f (a).

For a fixed ξ ∈ D f (b), the linear form 〈 f (b)(ξ), x∗(η)〉 is continuous with respect
to η ∈ L2. Furthermore, the linear form 〈z(ξ), η〉 is also continuous with respect
to η ∈ L2, since 2 6 p 6 ∞ and (2.1) yield

|〈z(ξ), η〉| = |τ(zξη∗)| 6 ‖zξ‖L2 ‖η‖L2 6 ‖z‖Lp‖ξ‖L1∩L∞‖η‖L2

and so
‖z‖Lp‖ξ‖L1∩L∞ < ∞.
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Consequently, the linear form 〈x(ξ), f (a)(η)〉 is continuous with respect to η ∈
D f (a). Since D f (a) is a core of f (a), this implies that x(ξ) ∈ Dom f (a) and
therefore x(D f (b)) ⊆ Dom f (a). Now (3.4) becomes

z(ξ) = f (a)x(ξ)− x f (b)(ξ), ξ ∈ D f (b).

Since D f (b) is affiliated withM, the closure of the operator on the right is z, see
Lemma 2.2. The proof is finished.

4. COMMUTATOR ESTIMATES

In this section we consider the commutators [A, x] and [A, f (x)] when x =
x∗ ∈ ML and A = A∗ is a densely defined operator on L2 such that:

(i) eitAxe−itA ∈ ML and τL(eitAxe−itA) = τL(x), for all x ∈ ML.

If A is affiliated with ML, then this assumption is satisfied automatically.
Note that, according to the assumption, the group of isometries x → eitAxe−itA,
x ∈ ML induces naturally a group γ : x → γt(x) := L−1(eitAL(x)e−itA), x ∈ M
of isometries of the original algebra M, such that τ(γt(x)) = τ(x), t ∈ R. The
group {γt}t∈R is an R-flow, i.e. an ultra-weakly continuous representation of R
onM by trace preserving ∗-automorphisms ofM. This group extends uniquely
to a group of ∗-automorphisms of any symmetric operator space, [24]. We also
require that

(ii) eitA(ξ) = γt(ξ), for every ξ ∈ L1 ∩L∞.

The condition (ii) is used in the proof of Lemma 4.4 below; if A is affiliated
withML, then the assertion of that lemma is covered by that of Lemma 3.6. We
note that (ii) implies that the group {eitA}t∈R induces a group of contractions on
every symmetric operator space. The latter is the only fact used in the proof of
Lemma 4.4.

Following Proposition 3.2.55 in [6], we will write [A, x] ∈ E for x ∈ ML if
and only if

(iii) There is a core D ⊆ L1 ∩ L∞ of A which is invariant under eitA for every
t ∈ R, i.e. eitA(D) ⊆ D.

(iv) The operator x sends D into Dom A, i.e. x(D) ⊆ Dom A and the operator
Ax− xA is closable up to an operator in EL.

In the case when [A, x] happens to be bounded, the operator x preserves the
whole domain Dom A, i.e. x(Dom A) ⊆ Dom A. We give a short proof of this
fact in Lemma 5.1 below.

The main result of the section is

THEOREM 4.1. Let EL be a symmetric operator space with the Fatou norm. If
x ∈ ML is a self-adjoint operator such that [A, x] ∈ Lp

L ∩ EL, for some 2 6 p 6 ∞,
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then for every complex-valued function f on R such that f ∈ F(Lp
L) ∩ F(EL), we have

[A, f (x)] ∈ Lp
L ∩EL and

‖[A, f (x)]‖EL 6 c f ,E ‖[A, x]‖EL ,

where

c f ,E = sup
x,x′
‖Tx,x′

ψ f ,E‖EL→EL

and the latter maximum runs over all operators x and x′ affiliated withML.

Applying this result for the spaces EL = Lp
L, 1 6 p 6 ∞ and taking into account

that Φ(E) ⊆ Φ(L2
L) = BC(R2), we obtain

COROLLARY 4.2. If 2 6 p 6 ∞ (respectively 1 6 p < 2), f ∈ F(Lp
L) and

x ∈ ML such that [A, x] ∈ Lp
L (respectively [A, x] ∈ L2

L ∩Lp
L), then

‖[A, f (x)]‖Lp
L

6 c f ,p ‖[A, x]‖Lp
L
.

REMARK 4.3. Corollary 4.2 extends Corollaries 6.9 and 7.5 of [24].

Before we proceed with Theorem 4.1, we prove two auxiliary lemmas. We
firstly show that the assumptions (i) and (ii) guarantee that Dom A ∩ L1 ∩ L∞ is
a core of A. This is similar to the assertion of Lemma 3.6 of the previous section.
Moreover, although the operator A may not be affiliated withML, the closure of
DA in an appropriate weak topology is affiliated withML. The exact statement
follows.

LEMMA 4.4. The subspace DA := Dom A ∩ L1 ∩ L∞ ⊆ L2 is a core of the
operator A. Furthermore, DA ∩ B2 is σ(L1 ∩ L∞, L2 + Lp)-dense in L1 ∩ L∞ ∩ B2,
for every 1 6 p 6 2, where B2 is the closed unit ball in L2. In particular, for every
η ∈ L1 ∩ L∞ and every 1 6 p 6 2, there is a net {ηα} ⊆ DA such that ηα → η in the
σ(L1 ∩L∞, Lp)-topology and sup

α
‖ηα‖L2 6 ‖η‖L2 .

Proof. The first part is similar to the proof of Lemma 3.6, we leave details to
the reader.

For the second part, we consider the group γ in the space E = L2 ∩ Lp′ ,
where p′ is the conjugate exponent. If E∗ = L2 + Lp, then E = (E∗)∗ and E× =
E∗. According to Proposition 4.2 of [24], γ is weak* (= σ(E, E×)) continuous. Let
δ be the generator of γ. According to Corollary 1.3.8 of [6], the set Dom A may be
considered as a domain of generator of the weakly continuous group ξ → eitA(ξ)
in the space L2. Hence, from (ii) and L2 ⊆ E∗, Dom δ ∩ B(r) ⊆ Dom A ∩ B(r),
where B(r) = B2 ∩ B(r)

L1∩L∞ and B(r)
L1∩L∞ is the ball of radius r in L1 ∩L∞. Applying

Lemma 2.8 to the space E and the set B(r), we obtain that the set Dom δ ∩ B(r) ⊆
Dom A ∩ B(r) is σ(E, E∗)-dense in E ∩ B(r). Taking the union over all r > 0, we
obtain that DA ∩ B2 is σ(E, E∗)-dense in L1 ∩L∞ ∩ B2.
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The following lemma extends Theorem 7.3 of [24], where it is assumed that
[A, x] ∈ M∩ E. We assume below only that [A, x] ∈ EL and this relaxation is
possible because the underlying Hilbert space L2 for the algebra ML possesses
an additional Banach structure of symmetric operator spaces, in particular L1 ∩
L∞ ⊆ L2. We also use the assumption (iii) in a crucial way.

LEMMA 4.5. Let E be a separable symmetric function space or E = (E∗)∗ where
E∗ is a separable symmetric function space with the Fatou property. If x ∈ ML and
[A, x] ∈ EL, then for every t ∈ R,

(4.1) eitAxe−itA − x = σ(EL, E×L )− i
t∫

0

eisA[A, x]e−isA ds.

In particular, ∥∥∥eitAxe−itA − x
it

∥∥∥
EL

6 ‖[A, x]‖EL , t ∈ R

and

σ(EL, E×L )− lim
t→0

eitAxe−itA − x
it

= [A, x].

If the space E is separable, the integral in (4.1) and the limit above may be taken in the
norm of EL.

Proof. The proof is similar to that of Theorem 7.3 of [24]. Since [A, x] ∈ EL,
according to (iii)–(iv), there is a core D ⊆ L1 ∩L∞ of A such that eitA(D) ⊆ D, t ∈
R and x(D) ⊆ Dom A. Fix ξ ∈ D and consider the function u(t) = eitAxe−itA(ξ),
t ∈ R with values in L2. We have

u(t + s)− u(t)
s

= ei(t+s)Ax
e−isA(e−itA(ξ))− e−itA(ξ)

s

+ eitA eisAxe−itA(ξ)− xe−itA(ξ)
s

, t ∈ R, s 6= 0.

Since ξ ∈ D, we have e−itA(ξ) ∈ D and xe−itA(ξ) ∈ Dom A. Hence,

u′(t) = lim
s→0

u(t + s)− u(t)
s

= eitAx(−iAe−itA(ξ)) + eitA(iA)(xe−itA(ξ))

=i eitA[A, x]e−itA(ξ), t ∈ R, ξ ∈ D.

Since [A, x] ∈ EL, the function

(4.2) t→ eitA[A, x]e−itA

is continuous with respect to the σ(EL, E×L )-topology (cf. Proposition 4.2 of [24]).
In particular, for any fixed ξ ∈ D and η ∈ L1 ∩ L∞, the scalar function t →
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〈eitA[A, x]e−itA(ξ), η〉 is continuous. Now, it follows from the Fundamental The-
orem of Calculus that, for every fixed t ∈ R,

〈eitAxe−itA(ξ), η〉 − 〈x(ξ), η〉(4.3)

= 〈u(t), η〉−〈u(0), η〉= i
t∫

0

〈eisA[A, x]e−isA(ξ), η〉ds, ξ ∈ D, η∈L1∩L∞.

If the Riemannian sums are given by

Sn =
i
n

n

∑
k=1

ei kt
n A[A, x]e−i kt

n A ∈ EL,

then 〈Sn(ξ), η〉 converges to the integral in (4.3). If E is dual to a separable sym-
metric space with the Fatou property, then, since the function given in (4.2) is
σ(EL, E×L )-continuous and the unit ball of E is σ(EL, E×L )-complete (this ball is ac-
tually σ(EL, E×L )-compact according to Banach-Alaoglu theorem), the Riemann-
ian sums Sn converge to

(4.4) S = σ(EL, E×L )− i
t∫

0

eisA[A, x]e−isA ds ∈ EL

in the σ(EL, E×L )-topology. If E is separable, then the function (4.2) is continuous
in the norm of EL, see Corollary 4.3 of [24]. Therefore, the Riemannian sums Sn
converge to the integral (4.4) in the norm of EL and the integral itself may be
understood as a Bochner integral of the function (4.2) in EL. In either case, it
follows that

〈S(ξ), η〉 = i
t∫

0

〈eisA[A, x]e−isA(ξ), η〉ds, ξ ∈ D ⊆ L1 ∩L∞, η ∈ L1 ∩L∞.

Combining this with (4.3), we have

〈S(ξ), η〉 = 〈(eitAxe−itA − x)(ξ), η〉, ξ ∈ D, η ∈ L1 ∩L∞.

Since L1 ∩L∞ separates points in L1 + L∞, this implies

S(ξ) = eitAxe−itA(ξ)− x(ξ), ξ ∈ D.

The operator on the right is bounded, and since S is closed, we obtain that S is
also bounded and S coincides with eitAxe−itA − x. This establishes (4.1). The
function (4.2) is σ(EL, E×L )-continuous, therefore it follows from (4.1) that

1
it

τ((eitAxe−itA−x−it[A, x])x′)=
1
it

t∫
0

τ((eisA[A, x]e−isA−[A, x])x′)ds→0 as t→0

for every x′ ∈ E×L . We see that (it)−1(eitAxe−itA − x) converges to [A, x] with re-
spect to the σ(EL, E×L )-topology. When E is separable, a similar argument shows
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that (it)−1(eitAxe−itA − x) converges to [A, x] in the norm of EL. Further, for ev-
ery x′ ∈ E×L ,

|τ((eitAxe−itA − x)x′)| =
∣∣∣ t∫

0

τ(eisA[A, x]e−isAx′) ds
∣∣∣ 6 |t| ‖[A, x]‖EL ‖x

′‖E×L .

The norm estimate in the lemma follows.

Proof of Theorem 4.1. If follows from Lemma 4.5 that the operators

yt =
eitAxe−itA − x

it
, t ∈ R

are uniformly bounded in the norms of Lp
L and EL, namely

‖yt‖Lp
L

6 ‖[A, x]‖Lp
L
, ‖yt‖EL 6 ‖[A, x]‖EL , t ∈ R.

Applying Proposition 2.6 to xt = eitAxe−itA, x and 1, we have

zt =
eitA f (x)e−itA − f (x)

it
= Txt ,x

ψ f

(eitAxe−itA − x
it

)
are also uniformly bounded in Lp

L and EL and

‖zt‖Lp
L

6 c f ,p ‖[A, x]‖Lp
L
, ‖zt‖EL 6 c f ,E ‖[A, x]‖EL , t ∈ R.

Since the unit ball of Lp
L is σ(Lp

L, Lp′
L )-compact, one can assume that there exists

z ∈ Lp
L such that

‖z‖Lp
L

6 c f ,p ‖[A, x]‖Lp
L
, σ(Lp

L, Lp′
L )− lim

t→0
zt = z.

Since the space EL has Fatou norm, we have that ‖x‖EL = ‖x‖EL
×× , for every

x ∈ EL. It follows from (2.2) that

‖z‖EL = sup
w∈L1

L∩L∞
L ,‖w‖E×L

61
τL(zw).

Since zt is uniformly bounded in EL, we have that

τL(zw) = lim
t→0

τL(ztw) 6 max
t∈R
‖zt‖EL , w ∈ L1

L ∩L∞
L , ‖w‖E×L 6 1.

Hence, we obtain that z ∈ EL and

‖z‖Lp
L

6 c f ,p ‖[A, x]‖Lp
L
, ‖z‖EL 6 c f ,E ‖[A, x]‖EL .

If now 〈·, ·〉 is the inner product in L2, then simple computation shows that〈e−itA(η)− η

−it
, f (x)(ξ)

〉
=
〈

η,
eitA f (x)(ξ)− f (x)(ξ)

it

〉
=〈η, zt(ξ)〉 −

〈
η, eitA f (x)

e−itA(ξ)− ξ

it

〉
, ξ, η ∈ DA.
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Since (it)−1(eitA(ξ)− ξ) converges to A(ξ) in L2 and 〈η, zt(ξ)〉 = τ(ztξη∗) con-
verges to 〈η, z(ξ)〉 = τ(zξη∗) whenever ξ, η ∈ DA ⊆ Dom A ⊆ L1 ∩ L∞

(ξη∗ ∈ Lp′ ), passing to the limit gives

(4.5) 〈A(η), f (x)(ξ)〉 = 〈η, z(ξ)〉+ 〈η, f (x)A(ξ)〉, ξ, η ∈ DA.

For every fixed ξ ∈ DA, the right hand side is a bounded linear functional with
respect to η ∈ L2. Indeed, since f (x)A(ξ) ∈ L2, it is obvious that the last term on
the right is continuous with respect to η ∈ L2 whereas the continuity of the first
term on the right with respect to η ∈ L2 follows from the inequalities (see (2.1)),

|〈η, z(ξ)〉| = |τ(η(zξ)∗)| 6 ‖η‖L2‖zξ‖L2 6 ‖η‖L2‖z‖Lp‖ξ‖L1∩L∞ , η ∈ L2

and
‖z‖Lp

L
‖ξ‖L1∩L∞ < ∞.

Hence the right hand side in (4.5) is continuous with respect to η ∈ L2. This
implies that the form 〈A(η), f (x)(ξ)〉 is continuous with respect to η ∈ DA and
so, since DA is a core of A, f (x)(ξ) ∈ Dom A∗ = Dom A. Moreover, it now
follows from (4.5)

( f (x)A−A f (x))(ξ) = z(ξ), ξ ∈ DA.

Consider the operator z′ = f (x)A−A f (x) with the domain Dom z′ = DA. Let
us show that z′∗ = z∗. This will finish the proof of the theorem, because then
we would have z′ = z′∗∗ = z∗∗ = z. Since z′ ⊆ z, it is sufficient to show
that Dom z′∗ ⊆ Dom z∗. It follows from the definition of adjoint operator that
ξ ∈ Dom z′∗ if and only if there is a constant c(ξ) such that

|τ((z∗ξ)η∗)| = |τ(ξ(zη)∗)| = |〈ξ, z′(η)〉| 6 c(ξ) ‖η‖L2 , η ∈ DA.

Since z∗ ∈ Lp and ξ ∈ L2, it follows that z∗ξ ∈ Lq, where q−1 = 2−1 + p−1 and
1 6 q 6 2, see (2.1). On the other hand, it follows from Lemma 4.4 that for every
η ∈ L1 ∩ L∞ there is a net {ηα} ⊆ DA such that ηα → η in the σ(L1 ∩ L∞, Lq)-
topology and sup

α
‖ηα‖L2 6 ‖η‖L2 . Hence, we obtain that

|τ((z∗ξ)η∗) 6 c(ξ) ‖η‖L2 , η ∈ L1 ∩L∞.

The latter means that z∗ξ ∈ L2 and, in particular, ξ ∈ Dom z∗.

5. APPLICATION TO L(H).

Let us now go back to the original algebraM. Consider a densely defined
self-adjoint operator A which may be neither bounded nor affiliated with M,
such that eitAxe−itA ∈ M and τ(eitAxe−itA) = τ(x) whenever x ∈ M and t ∈ R.

We show via the Stone theorem that we may construct an operator A which
satisfies the assumptions (i)–(ii). Moreover, we will obtain that [A, x] ∈ ML
whenever [A, x] ∈ M and x ∈ M. We will also show using the technique of
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one-dimensional operators that, in the setting ofM = L(H), the converse to the
last statement is valid, i.e. [A, x] ∈ E provided [A, x] ∈ EL.

We recall that if x ∈ M, then the symbol [A, x] means that there is a core
D of the operator A such that eitA(D) ⊆ D for every t ∈ R and x(D) ⊆ Dom A.
The symbol [A, x] stands for the closure of Ax − xA. As we mentioned earlier
as soon as [A, x] is bounded, the operator x preserves the whole domain Dom A.
The argument follows

LEMMA 5.1. If [A, x] is bounded, then x(Dom A) ⊆ Dom A.

Proof. One has

〈[A, x]ξ, η〉 = 〈Axξ, η〉 − 〈xAξ, η〉, ξ, η ∈ D.

For every fixed ξ ∈ D, both sides are bounded linear functionals with respect to
η ∈ H which coincide for every η ∈ D and so they coincide for every η ∈ H, in
particular,

〈[A, x]ξ, η〉 = 〈xξ, Aη〉 − 〈Aξ, x∗η〉, ξ ∈ D, η ∈ Dom A.

Now, for every fixed η ∈ Dom A, it follows that 〈Aξ, x∗η〉 is a bounded linear
functional with respect to ξ ∈ D. The latter means that x∗η ∈ Dom A′∗ where
A′ = A|D is the restriction of A onto D. Since D is a core of A, A′∗ = A′∗ = A∗ =
A, hence x∗η ∈ Dom A. We obtain that x∗(Dom A) ⊆ Dom A and [A, x∗] =
−[A, x]∗ is bounded. Applying the above argument again to the operator x∗ gives
the claim of the lemma.

Consider the subspace

Dom A :=
{

ξ ∈ L2 : ‖ ◦ ‖L2 − lim
t→0

eitAξe−itA − ξ

it
exists

}
⊆ L2

and define the operator A : Dom A→ L2 by

A(ξ) := ‖ ◦ ‖L2 − lim
t→0

eitAξe−itA − ξ

it
, ξ ∈ Dom A.

According to the Stone theorem, A is a self-adjoint operator.

LEMMA 5.2. If the operator A is as above, then eitA(ξ) = γt(ξ), where γ(t) :=
L−1(eitAL(ξ)e−itA), for every ξ ∈ L1 ∩ L∞. If x ∈ ML, then eitAxe−itA ∈ ML and
τL(eitAxe−itA) = τL(x). If x ∈ M and [A, x] ∈ M, then [A, x] ∈ ML and [A, x] is a
multiplication operator by [A, x].

Proof. According to the Stone theorem, the unitary group eitA of the opera-
tor A is given by eitA(ξ)=eitAξe−itA, ξ∈L2. Now, for every ξ∈L2, one has

eitAxe−itA(ξ) = eitA(xe−itAξeitA)e−itA = eitAxe−itAξ.
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The latter means that the operator eitAxe−itA is a left multiplication by eitAxe−itA

and so it belongs toML; moreover γt(x) = eitAxe−itA whenever x ∈ M and

τL(eitAxe−itA) = τ(eitAxe−itA) = τ(x) = τL(x), x ∈ ML.

Let now x ∈ M and [A, x] ∈ M. Take ξ ∈ D, where

D = {ξ ∈ L2 ∩L∞ : ξ(Dom A) ⊆ Dom A, [A, ξ] ∈ L2 ∩L∞}.

It follows from Theorem 7.3 of [24], that D is a core of A and A(ξ) = i[A, ξ],
ξ ∈ D. We show that xξ ∈ D. Indeed, from Lemma 5.1, x(Dom A) ⊆ Dom A, so
xξ(Dom A) ⊆ Dom A. Furthermore, one has that

Axξ(η)− xξ A(η) = (Ax− xA)ξ(η) + x(Aξ − ξ A)(η), η ∈ Dom A.

Hence, the operator Axξ − xξ A is closable and for the closure one has

Ax(ξ) = [A, xξ] = [A, x]ξ + x([A, ξ]) = [A, x]ξ + xA(ξ) ∈ L2 ∩L∞.

This means that the operator x(ξ) ∈ D and [A, x](ξ) = [A, x]ξ for every ξ ∈ D.
The lemma is completely proved.

We shall now demonstrate how our results from the preceding section yield
commutator estimates for the special caseM = L(H). In this special case, non-
commutative symmetric spaces are symmetric ideals of compact operators [18];
in particular, the space Lp, 1 6 p 6 ∞ is the Schatten-von Neumann ideal C p.
We believe that the proof of the following theorem provides an additional insight
into results of [5] and explains the additional technical obstacles in the type II
setting.

THEOREM 5.3. If x ∈ L(H) is self-adjoint and A is a self-adjoint operator on H
such that [A, x] ∈ C p, 1 6 p 6 ∞, then for every function f such that f ∈ F(C p),

(5.1) ‖[A, f (x)]‖C p 6 c f ,p ‖[A, x]‖C p .

Proof. Since C p
L ∩ C2

L = C p
L whenever 1 6 p 6 2, it follows from Corollary 4.2

and Lemma 5.1 that

(5.2) ‖[A, f (x)]‖C p
L

6 c f ,p ‖[A, x]‖C p
L

= c f ,p ‖[A, x]‖C p .

It remains to show that (5.2) implies (5.1). To this end, we exploit the technique
of one-dimensional operators. Note that Dom A ⊗ Dom A ⊆ Dom A where
Dom A⊗Dom A is the algebraic tensor product consisting of all finite linear com-
binations of one dimensional operators ξ ⊗ η, ξ, η ∈ Dom A, given by

ξ ⊗ η(ζ) = 〈ζ, η〉ξ, ζ ∈ H.
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Indeed, since ‖ξ ⊗ η‖C2 = ‖ξ‖H ‖η‖H, we have, for every ξ, η ∈ Dom A,

eitAξ ⊗ ηe−itA − ξ ⊗ η

it

=
eitAξ − ξ

it
⊗ eitAη + xi⊗ eitAη − η

it
→ Aξ ⊗ η + ξ ⊗ Aη, as t→ 0.

This means that ξ ⊗ η ∈ Dom A. Moreover,

(5.3) A(ξ ⊗ η) = Aξ ⊗ η + ξ ⊗ Aη, ξ, η ∈ Dom A.

It follows from (5.2) and Lemma 5.1 that f (x)(Dom A) ⊆ Dom A. We show that
f (x)(Dom A) ⊆ Dom A. To this end let us fix ξ, η ∈ Dom A. We obtain that
f (x)(ξ ⊗ η) = f (x)(ξ ⊗ η) = ( f (x)ξ)⊗ η ∈ Dom A, that is

‖ ◦ ‖C2 − lim
t→0

eitA( f (x)ξ)⊗ ηe−itA − ( f (x)ξ)⊗ η

it
exists.

Repeating the argument above gives

(5.4)
eitA f (x)ξ − f (x)ξ

it
⊗ eitAη + ( f (x)ξ)⊗ eitAη − η

it

=
eitA( f (x)ξ)⊗ ηe−itA − ( f (x)ξ)⊗ η

it
→ A f (x)(ξ ⊗ η), as t→ 0.

On the other hand, since η ∈ Dom A, we have that

( f (x)ξ)⊗ eitAη − η

it
→ ( f (x)ξ)⊗ Aη, as t→ 0.

According to (5.3) and (5.4), this means that (it)−1(eitA f (x)ξ − f (x)ξ) converges,
which in its turn implies that f (x)ξ ∈ Dom A. Moreover, passing to the limit in
(5.4) gives

(A f (x)ξ)⊗ η + ( f (x)ξ)⊗ Aη = A f (x)(ξ ⊗ η).

Combining the last identity with (5.3) we obtain that

[A, f (x)](ξ ⊗ η)

=A f (x)(ξ ⊗ η)− f (x)A(ξ ⊗ η)

=(A f (x)ξ)⊗η+( f (x)ξ)⊗Aη−( f (x)Aξ)⊗η−( f (x)ξ)⊗ Aη =([A, f (x)]ξ)⊗η.

Consequently, the operator [A, f (x)] coincides with that which yields [A, f (x)] ∈
C p

L as a left multiplication. The theorem is proved.
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[18] I.C. GOHBERG, M.G. KREĬN, Vvedenie v teoriyu lineinykh nesamosopryazhennykh opera-
torov v gilbertovom prostranstve, Izdat. “Nauka”, Moscow 1965.

[19] S. GOLDSTEIN, Conditional expectation and stochastic integrals in noncommutative
Lp-spaces, Math. Proc. Cambridge Philos. Soc. 110(1991), 365–383.



234 DENIS POTAPOV AND FYODOR SUKOCHEV

[20] A. HARCHARRAS, Fourier analysis, Schur multipliers on Sp and non-commutative
Λ(p)-sets, Studia Math. 137(1999), 203–260.
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