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ABSTRACT. In this paper we prove some factorization and reflexivity results
for polynomially bounded operators; in particular, we obtain the following
theorem: Every polynomially bounded operator acting on a reflexive Banach
space such that its spectrum contains the unit circle either has a non trivial
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INTRODUCTION

In 2003, Ambrozie and Müller have shown the following result: if T is a
polynomially bounded operator on a Banach space such that its spectrum con-
tains the unit circle, then T∗ has a nontrivial invariant subspace (see [1]).

Invariant subspace results which, as this one, use ideas and tools related to
the Brown technique or the theory of dual algebras, are often followed by results
of factorization and reflexivity (these notions will be defined later). We recall
some classical results illustrating this fact.

In [7], which is the beginning of the dual algebra theory, Brown proves the
existence of nontrivial invariant subspaces for subnormal operators and some
years later Olin and Thompson in [17] show the reflexivity of these operators.

Another important result in this field (see [10]), gives the existence of in-
variant subspaces for contractions on a Hilbert space with dominating spectrum.
Then [5] shows the reflexivity for contractions under some similar hypothesis of
dominating spectrum. Finally, in the article [11], it is proved that every contrac-
tion on a Hilbert space with its spectrum containing the unit circle has a nontrivial
invariant subspace. An “associated” result of reflexivity is obtained in [12] where,
among others, the reflexivity for contractions is proved under some factorization
hypothesis (of type (A1,ℵ0), see Section 1 for definition).
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In fact, generally, the understanding and the improvement of the proofs of
the results of invariant subspaces (in particular the results of factorization) lead
to reflexivity theorems.

The aim of this paper is to give factorization and reflexivity results for poly-
nomially bounded operators of Banach spaces (thus the result of [1] is no excep-
tion to the above rule). In particular, we prove that every polynomially bounded
operator acting on a reflexive Banach space such that its spectrum contains the
unit circle has a nontrivial hyperinvariant subspace or is reflexive (this is a gen-
eralization of a result from [12]).

Now, we recall some basic definitions. The next sections give the tools for
the proof: some approximation sets (Section 1), a functional calculus (Section 2),
the Ambrozie and Müller innovations (Section 3) and the notion of analytic in-
variant subspace and its use (Sections 4 and 5). The last section contains the proof
of the theorem.

In all this paper X will be a complex Banach space. For T ∈ L(X) we
say that a closed subspace M ⊂ X is a nontrivial invariant subspace for T (re-
spectively a nontrivial hyperinvariant subspace for T) if M is nontrivial and if
TM ⊂ M (respectively M is invariant for each operator commuting with T). We
denote Lat(T) the lattice of invariant subspaces for T.

First, we define the notion of polynomially bounded operator.

DEFINITION 0.1. T ∈ L(X) is polynomially bounded if there exists M >
0 such that for all polynomials p we have ‖p(T) 6 M‖p‖∞ (where ‖p‖∞ :=
{sup |p(z)| : z ∈ D}).

We denote by PBM(X) (or PBM) the set of operators verifying this inequality
and PB(X) = PB :=

⋃
M>0

PBM.

We will need the following class of operators:

DEFINITION 0.2. T ∈ L(X) is in the class C·0 (or T ∈ C·0) if for all x∗ ∈
X∗, T∗nx∗ → 0.

H∞(D) (or H∞) is the space of bounded holomorphic functions in the unit
disc D, or, equivalently, the functions in L∞(T) (T denotes the unit circle) with
negative Fourier coefficients equal to zero.

A(D) is the space of functions holomorphic in D and continuous on T.
These two spaces are Banach spaces for the supremum norm (‖ f ‖∞ :=

{sup | f (z)| : z ∈ D}).
We recall that H∞ is the dual of a quotient space of L1(T), L1/H1

0 ( f ∈ H1
0 if

f ∈ L1 and f̂ (n) = 0 for n 6 0) and the duality is given by the formula:

〈[ f ], h〉 =
1

2π

2π∫
0

f (eiθ)h(eiθ)dθ f ∈ L1, h ∈ H∞.

This duality will be used in the definition of the functional calculus in Section 2.
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The following definition is related to a result of Apostol.

DEFINITION 0.3. A subset Λ ⊂ D is called an Apostol set if the θ ∈ (−π, π]
such that sup{r ∈ [0, 1) : reiθ ∈ Λ} < 1 is at most countable.

For ε > 0, k > 1 an integer and T ∈ L(X), we denote

Λε,k(T) = Λε,k = {λ ∈ D/∃u ∈ X with ‖u‖ = 1 and ‖(T − λ)u‖ < ε(1− |λ)k}.
The result of Apostol which will be used in Section 6 is the following (see

[3], [13] or [4] for the proof).

THEOREM 0.4. Let T ∈ PB(X) such that σ(T) ⊃ T. If there exist ε and k such
that Λε,k is not an Apostol set, then T possesses a nontrivial hyperinvariant subspace.

The last notion we define in this introduction is the reflexivity of an operator.
It seems that Sarason was the first one to consider this notion in [19] where was
proved the reflexivity of normal operators (the word reflexivity was introduced
later by Halmos). Roughly speaking, it gives an idea of the richness of the lattice
of invariant subspaces. To define it more precisely, we need some notations: given
T ∈ L(X) we denote by AlgLat(T) the set of operators A ∈ L(X) such that
Lat(T) ⊂ Lat(A) and by WT the closure for the weak operator topology of the
algebra generated by T.

We always have WT ⊂ AlgLat(T) and we say that T is reflexive if WT =
AlgLat(T).

1. APPROXIMATION SETS AND FACTORIZATION

In this section, B will denote a continuous bilinear application from X × Y
to Z where X, Y, Z are complex Banach spaces.

The purpose of this section is to prove that under approximation assump-
tion we have in fact a factorization result. The approximation sets defined below
were introduced for a particular bilinear application on Hilbert space in [14]. This
generalisation follows the ideas of [6] where some other approximation sets are
defined (see also [18] where the proofs are given in the Banach space context).

DEFINITION 1.1. We say that B has the El
C property if there exist C ∈ (0, 1),

and two positive constants M and M′ such that, for all L ∈ Z, all z ∈ X, all finite
family w1, . . . , wp ∈ Y and all δ > 0, we can find u ∈ X and v ∈ Y verifying

‖B(u + z, v)− L‖ 6 C‖L‖,(1.1)

‖B(u, wj)‖ < δ,(1.2)

‖u‖ 6 M‖L‖1/2,(1.3)

‖v‖ 6 M′‖L‖1/2.(1.4)
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REMARK 1.2. (i) If necessary, to avoid ambiguity, we will of course write
El

C,M,M′ for El
C.

(ii) We can also define some Er
C property, changing the first two inequalities to

‖B(u, v + y)− L‖ 6 C‖L‖,(1.5)

‖B(xj, v)‖ < δ,(1.6)

where y ∈ Y and x1, . . . , xp are vectors in X.

The first proposition shows that, in fact, the approximation property ex-
pressed by the definition extends to a finite family of vectors, at the expense of
increasing the constant C.

PROPOSITION 1.3. Suppose that B possesses the El
C property, and let c ∈ (C, 1).

Then, given w1, . . . , wp ∈ Y, z ∈ X, δ > 0 and L1, . . . , LN , N elements in Z, we can
find u ∈ X and v1, . . . , vN ∈ Y such that, for M and M′ as in the definition,

‖B(u + z, vj)− Lj‖ 6 c‖Lj‖ j = 1, . . . , N ,(1.7)

‖B(u, wj)‖ < δ j = 1, . . . , p ,(1.8)

‖u‖ 6 M
N

∑
k=1

(‖Lk‖)1/2, ‖vj‖ 6 M′‖Lj‖1/2.(1.9)

Proof. We take w1, . . . , wp ∈ Y, z ∈ X, δ > 0 and L1, . . . , LN ∈ Z. We fix
δj > 0 (j = 1, . . . , N) such that, for all j, δj 6 δ/N and C‖Lj‖+ ∑

k
δk 6 c‖Lj‖. We

will show by induction that, for all j ∈ {1, . . . , N} there exists uj ∈ X and vj ∈ Y
such that:

‖B(uj + uj−1 + · · ·+ u1 + z), vj − Lj‖ 6 C‖Lj‖,
‖B(uj, wl)‖ < δ for l = 1, . . . , p ,

‖B(uj, vl)‖ < δj for l < p,

‖uj‖ 6 M‖Lj‖1/2 and ‖vj‖ 6 M′‖Lj‖1/2.

For j = 1 we only use the definition of the El
C property. From the rank

j− 1 to the rank j, we apply once more the El
C property to w1, . . . , wp, v1, . . . , vj−1

(instead of w1, . . . , wp), uj−1 + · · ·+ u1 + z (instead of z), min(δj, δ) (instead of δ)
and Lj. It is simple to check the four conditions needed. We denote u = uN +
· · ·+ u1. Then, for all j ∈ {1, . . . , N}:

‖B(u + z, vj)− Lj‖ 6 ‖B(uj + · · ·+ u1 + z, vj)− Lj‖+ ∑
k>j
‖B(uk, vj)‖

6 C‖Lj‖+ ∑
k>j

δk 6 c‖Lj‖.

Besides, for all j ∈ {1, . . . , p}
‖B(u, wj)‖ 6∑

k
‖B(uk, wj)‖ 6∑

k
δk 6 δ.
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Finally, we have

‖u‖ 6 M
N

∑
k=1

(‖Lk‖)1/2.

Now, we are going to define the factorization properties.

DEFINITION 1.4. Let n, m 6 ℵ0. We say that B possesses the (An, m) property
if for every n×m matrix (Li,j)i6n,j6m, there exist x1, . . . , xn ∈ X and y1, . . . , ym ∈
Y such that:

Li,j = B(xi, yj), 1 6 j 6 n, 1 6 j 6 m.

We will write (An) instead of (An,n). We say that B possesses the (An(r))
property for r > 0 if for all s > r and every matrix (Li,j)i6n,j6m, there exist
x1, . . . , xn ∈ X and y1, . . . , ym ∈ Y such that:

Li,j = B(xi, yj), 1 6 j 6 n, 1 6 j 6 m.

and

‖xi‖ 6
(

s
n

∑
j=1
‖Li,j‖

)1/2
, i = 1, . . . , n; ‖yj‖ 6

(
s

n

∑
i=1
‖Li,j‖

)1/2
, j = 1, . . . , n.

In [6] or [18] it is shown that, under some stronger approximation property
than the El

C one, B has the (Aℵ0) property. Here, we will see that “El
C implies

(A1,ℵ0)”, and even more.
We begin with a fundamental lemma which initializes the process. We take

γ ∈ (c, 1) (where c is given in the previous proposition).

LEMMA 1.5. We suppose that B verifies the El
C property. Let L1, . . . , LN ∈ Z, x ∈

X, y1, . . . , yN ∈ Y, and ρj > 0 (for j = 1, . . . , N) such that

‖B(x, yj)− Lj‖ < ρj, j = 1, . . . , N.

Then there exists ξ ∈ X and η, . . . , ηN ∈ Y such that

‖B(ξ, ηj)− Lj‖ < γρj, j = 1, . . . , N

and for all j ∈ 1, . . . , N:

‖ξ − x‖ 6 M
N

∑
k=1

√
ρk, ‖ηj − yj‖ 6 M′

√
ρj.

Proof. We denote Aj = Lj − B(x, yj). We choose δ > 0 such that c‖Aj‖ +
ρ < γρj for all j and we use the previous proposition with x, y1, . . . , yN , δ and
A1, . . . , AN : there exist u ∈ X, v1, . . . , vN ∈ Y such that:

‖Lj − B(x, yj))− B(u + x, vj)‖ 6 c‖Aj‖, j = 1, . . . , N ,

‖B(u, yj))‖ < δ for j = 1, . . . , p ,

‖vj‖ 6 M′‖Aj‖1/2 and ‖u‖ 6 M
N

∑
k=1

(‖ak‖)1/2.
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We denote ξ = u + x and ηj = yj + vj. Then we have ‖ξ − x‖6M
N
∑

k=1

√
ρk,

‖ηj − yj‖6M′√ρj and

‖B(ξ, ηj)−Lj‖6‖Lj − B(x, yj)−B(u + x, vj)‖+‖B(u, yj)‖< c‖Aj‖+δ<γρj.

The following result gives an (A1,N) property (starting with arbitrary data).

PROPOSITION 1.6. We suppose that B verifies the El
C property. Let L1, . . . , LN ∈

Z, x ∈ X, y1, . . . , yN ∈ Y, and ρj > 0 (for j = 1, . . . , N) such that

‖B(x, yj))− Lj‖ < ρj, j = 1, . . . , N.

Then there exist i ∈ X, v1, . . . , vn ∈ Y such that for all j ∈ {1, . . . , N}:

‖u− x‖ 6
M ∑N

k=1
√

ρk

1−√γ
, ‖yj − vj‖ 6

M′√ρj

1−√γ
and B(u, vj) = Lj.

Proof. We will prove the proposition by induction. By the lemma, there exist

x0 in X and y0,j ∈ Y (j = 1, . . . , N) such that ‖x0 − x‖ 6 M
N
∑

p=1

√
ρp, ‖y0,j − yj‖ 6

M′√ρj and ‖B(x0, y0,j − Lj‖ < γρj, for all j. We suppose that, for an integer
k, we have xl in X and yl,j ∈ Y(j = 1, . . . , N and l = k − 1, k) such that ‖xk −

xk−1‖ 6 M
N
∑

p=1

√
ρpγ(k−1)/2, ‖yk,j − yk−1,j‖ 6 M′√ρjγ

(k−1)/2 and ‖B(xk, yk,j) −

Lj‖ < γkρj. Then we apply the lemma (to xk and yk,j instead of x and yj), and
there exist xk+1 in X and yk+1,j ∈ Y(j = 1, . . . , N) such that

‖B(xk+1, yk+1,j)− Lj‖ < γk+1ρj j = 1, . . . , N ,

and for all j

‖xk+1 − xk‖ 6 M
N

∑
p=1

√
ρpγk/2, ‖yk+1,j − yk,j‖ 6 M′

√
ρjγ

k/2.

The last two inequalities imply that (xk)k and (yk,j)k (for j = 1, . . . , N) are
Cauchy sequences, so they converge. We denote respectively u and vj their limits
and we verify all the properties we want.

The following result is a generalisation of the (A1,ℵ0) property; it is inspired
by a similar result obtained for contractions on Hilbert space in [12]. We introduce
a dense set which will be useful for a concrete subset later.

PROPOSITION 1.7. We suppose that B verifies the El
C property. Let N be a dense

subset of Z, x ∈ X, (yn)n>1 a sequence in Y, some real numbers δn > 0 such that
∑

n>1
n
√

δn < ∞, a sequence (εn)n>1 of real numbers strictly decreasing to 0 and a se-

quence (Ln)n>1 in Z such that, for all n, ‖Ln‖ < δn.
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Then there exist u ∈ X, two sequences in Y, (vn) and (zn) and three constants C1, C2, C3
such that, for all n:

Ln = B(u, vn), ‖vn‖ 6 C1 ∑
n>1

√
δn, ‖u− x‖ 6 C2 ∑

n>1
n
√

δn,

B(u, zn) ∈ N , ‖zn − yn‖ 6 C3εn.

Proof. We take a sequence of positive numbers (an)n>1 such that
∞
∑

n=1
an 6 1

and for all n, we put αn = min{δn, anε1, . . . , anεn}. Using the density ofN , we can
find K1 ∈ N such that ‖B(x, y1)− K1‖ < α1; furthermore, ‖B(x, 0)− K1‖ < δ1.
By the previous proposition, there exist x1 ∈ X, v1,1, z1,1 ∈ Y such that:

B(x1, v1,1) = L1, B(x1, z1,1) = K1, ‖x1 − x‖ 6 M
√

δ1

1−√γ
,

‖y1 − z1,1‖ 6
M′
√

ε1a1

1−√γ
, ‖v1,1‖ 6

M′
√

δ1

1−√γ
.

By induction, we will prove that for all n > 1 there exist K1, . . . , Kn ∈
N , xn−1, xn in X and vj,k, zj,k in Y (for j = n− 1, n and k = 1, . . . , j) such that:

(An) B(xj, vj,k) = Lk j = n− 1, n, k = 1, . . . , j;

(Bn) B(xj, zj,k) = Kk j = n− 1, n, k = 1, . . . , j;

(Cn) ‖xn − xn−1‖ 6
nM
√

δn

1−√γ
;

(Dn) ‖zn,k − zn−1,k‖ 6
M′
√

εkan

1−√γ
, k = 1, . . . , n− 1;

(En) ‖yn − zn,n‖ 6
M′
√

εnan

1−√γ
;

(Fn) ‖vn,k − vn−1,k‖ 6
M′
√

δn

1−√γ
, k = 1, . . . , n− 1;

(Gn) ‖v∗n,n‖ 6
M′
√

δn

1−√γ
.

In the beginning of the proof, we have seen that all these properties are true
for n = 1 (if we note x0 := x and see that (D1), (F1) are empty). Let us suppose
the properties are true for n. Since N is dense, there exists Kn+1 ∈ N such that

‖B(xn, zn,n)− Kn+1‖ 6 αn+1.

Furthermore,
‖B(xn, 0)− Ln+1 6 δn+1

and using (An) and (Bn), we have:

‖B(xn, vn,k − Lk‖ 6 αn+1, ‖B(xn, zn,k − Kk‖ 6 αn+1 k = 1, . . . , n.
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We apply the previous proposition and we obtain immediately the proper-
ties (An+1), . . . , (Gn+1). Since ∑ n

√
δn converges, using (Cn+p), . . . , (Cn+1), we

verify that (xn)n>1 is a Cauchy sequence. Similarly, for any k 6 1, (vn,k)n>k and
(zn,k)n>k are Cauchy sequences. So, we note respectively u, vk and zk their limits.
Then u, (vk) and (zk) verify all the required properties.

REMARK 1.8. In all the proofs, we can see that everything remains true un-
der the weaker assumption that B is closed.

2. FUNCTIONAL CALCULUS

The functional calculus (on H∞) will be very useful in the next sections, but
right now we will already see the link between Section 1 and operator theory.

We take T ∈ PB(X). It is easy to see that it means that the morphism f 7→
f (T) is continuous from A(D) to L(X). In the beginning of this paragraph, we
give conditions to extend this functional calculus (for T∗) to H∞.

DEFINITION 2.1. Let T ∈ PB(X). We say that T∗ has a weak* (of w∗) H∞

functional calculus if there exists ΦT∗ : H∞(D)→ L(X∗) a continuous morphism
with the following property: If ( fn)n tends to f in H∞ for the weak* topology (of
H∞), then, for all x∗ ∈ X∗, ΦT∗( fn)x∗ tends to ΦT∗( fn)x∗ for the weak* topology
(in X∗).

REMARK 2.2. L(X∗) has a predual (see for example [20] page 125) and one
can see that the above definition is equivalent to say that ΦT∗ is w*-continuous.

In the following, we will note f (T∗) instead of ΦT∗( f ).
If T∗ has a w*-functional calculus, we consider, for x ∈ X and x∗ ∈ X∗, the

linear form on H∞x�x (or, if necessary, x
T∗
�x) defined by h 7→ 〈x, h(T∗)x∗〉. Ob-

viously, it is w*-continuous, so it can be identified with an element of the predual
of H∞, L1/H1

0 (also denoted by x�x∗). Then we have the identity:

〈x�x∗, h〉 = 〈x, h(T∗)x∗〉, x ∈ X, x∗ ∈ X∗, h ∈ H∞.

One sees that the map (x, x∗) 7→ x�x∗ is bilinear, and we have the following
definition:

DEFINITION 2.3. Let T ∈ PB(X) such that T∗ has a w∗-functional calculus.
Let n, m 6 ℵ0. We say that T∗ possesses the (An,m) property if the bilinear map
� defined above has the same property, in the sense of the Definition 1.4.

By the definition of the functional calculus, it is obvious (but quite useful
for the next lemmas) to see that if T∗ has a w∗-functional calculus and if ( fn)n is
a sequence in A(D) tending weak* to 0, then, for all x ∈ X and x∗ ∈ X∗, we have
〈 fn(T)x, x∗〉 → 0. In fact, by a result of Eschmeier (in [16]), we have the following
theorem:
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THEOREM 2.4. Let T ∈ PB(X). The operator T∗ has a w∗-functional calculus if
and only if we have the following property: if ( fn)n is a sequence in A(D) tending weak*
to 0, then, for all x ∈ X and x∗ ∈ X∗, we have 〈 fn(T)x, x∗〉 → 0.

Proof. It is easy to adapt the proof of Lemma 1.1 from [16] in our context.
The Riesz representation on a Hilbert space is replaced by this simple result: if φ
is a continuous bilinear form on X × X∗ then there exists A ∈ L(X∗) such that,
for x ∈ X, x∗ ∈ X∗

φ(x, x∗) = 〈x, Ax∗〉.

The next corollary is very important in our context. It is a particular case of
the previous theorem.

COROLLARY 2.5. If T ∈ PBM(X) ∩ C·0 then T∗ has a w∗-functional calculus.

Proof. We take x ∈ X, x∗ ∈ X∗ and ( fn)n a sequence in A(D) tending weak*
to 0. We can assume that ‖ f ‖∞ 6 1, ‖x‖ 6 1 and ‖x∗‖ 6 1. Let ε > 0. We assume
that ε 6 2M. We take an integer k such that ‖T∗kx∗‖ 6 ε/4M. Using the Cauchy
formula, and since ( fn)n converges pointwise to 0 and is bounded, we see that,
for all j > 0, the sequence ( f (j)

n (0))n tends to 0. We write fn(z) = gn(z) + zkhn(z)
where gn(z) = ∑

j<k
( f (j)

n (0)/j!)zj. Since ( f (j)
n (0))n tends to 0 there exists N ∈ N

such that, for all n > N and all z ∈ D, |gn(z)| 6 ε/2M. So, ‖hn‖∞ 6 ‖ fn‖∞ +
‖gn‖∞ 6 2. Then, for all n > N,

|〈 fn(T)x, x∗〉| 6 |〈gn(T)x, x∗〉|+ |〈hn(T)x, T∗kx∗〉|

6 M‖gn‖∞ + M‖hn‖∞‖T∗kx∗‖ 6 ε.

We end this section with three technical lemmas which will be useful when
we will see the link between analytic invariant subspaces and reflexivity (Sec-
tion 5). The notations and assumptions are the following:

(i) T ∈ PB(X) such that T∗ has a w∗-functional calculus;
(ii) A ∈ L(X);

(iii)M ∈ Lat(T);
(iv) N ∈ Lat(A);
(v) we note S := T|M and B := A|N .

LEMMA 2.6. S∗ has a w∗-functional calculus.

Proof. Taking f ∈ h∞, x∗ ∈ M∗ and fn ∈ A(D) such that fn
w∗→ f , we define

the functional calculus by:

f (S∗)x∗ = lim
w∗

fn(S∗)x∗.

fn(S∗) is well defined because T is polynomially bounded, so S ∈ PB(M). First

we see that the definition is correct: if gn ∈ A(D) verifies gn
w∗→ f , then hn :=
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fn − gn tends weak* to 0. We take x ∈ M and x∗ ∈ M∗. By the Hahn–Banach
theorem, there exists φ ∈ X∗ such that φ|M∗ = x∗ and ‖φ‖ = ‖x∗‖. Then

〈x, hn(T∗)x∗〉 = 〈hn(T)x, φ〉 = 〈x, hn(T∗)φ〉

where the right term tends to 0 since T∗ has a w∗-functional calculus. To verify
all the properties of this functional calculus, we use again the equality:

〈x, f (S∗)x∗〉 = 〈x, f (T∗)φ〉 and ‖φ‖ = ‖x∗‖

(with x, x∗, f and φ as above).

If x∗∗ belongs toM∗∗ we denote by x∗̃∗ the element of X∗∗ defined by

〈x∗, x∗̃∗〉 = 〈x∗|M, x∗∗〉, x∗ ∈ X∗.

Using the Hahn–Banach theorem, one can see that the application x∗∗ 7→
x∗̃∗ is a linear isometry. Then, except in some particular cases, we will assume
thatM∗∗ ⊂ X∗∗ and we will forget the notation ˜.

LEMMA 2.7. For h ∈ H∞, x∗ ∈ X∗ and x∗∗ ∈ M∗∗ we have h(S∗)(x∗|M) =
(h(T∗)x∗)|M and h(S∗)∗x∗∗ = h(T∗)∗x∗∗. We have also B∗(x∗|N ) = (A∗x∗)|N .

Proof. Let x ∈ M and hn ∈ A(D) such that hn tends to h for the weak*
topology. Then we have the following equalities:

〈x, h(S∗)(x∗|M)〉 = lim
n
〈hn(S)x, x∗|M〉 = lim

n
〈hn(S)x, x∗〉 = lim

n
〈x, hn(T∗)x∗〉

= 〈x, h(T∗)x∗〉 = 〈x, (h(T∗)x∗)|M〉.

Then, for x∗∈X∗ and x∗∗∈M∗∗ we have 〈x∗|M, h(S∗)∗x∗∗〉=〈h(T∗)x∗, x∗̃∗〉.
Forgetting the ˜ this is exactly the equality h(S∗)∗x∗∗=h(T∗)∗x∗∗. The last equal-
ity is obtained in the same way.

LEMMA 2.8. For x ∈ M and x∗ ∈ X∗ we have

x
T∗
�x∗ = x

S∗
�(x∗|M).

Proof. Using the previous lemma, for h ∈ H∞, we have:

〈x
T∗
�x∗, h〉=〈x, h(T∗)x∗〉=〈x, (h(T∗)x∗)|M〉=〈x, h(S∗)(x∗|M)〉=〈x

S∗
�(x∗|M), h〉.

3. THE TOOLS OF THE AMBROZIE–MÜLLER THEOREM

We recall quickly some important results from the paper of Ambrozie and
Müller which will be used in Section 6.
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3.1. ZENGER LEMMA. We recall a new Zenger lemma proved in [1]; but before,
we need the following definition:

DEFINITION 3.1. Let (X, ‖ · ‖) be a complex Banach space and u1, . . . , un ∈
X. Let L > 0. We say that the vectors are L-unconditional if we have∥∥∥ n

∑
j=1

β juj

∥∥∥ 6 L
∥∥∥ n

∑
j=1

γjuj

∥∥∥
whenever β j, γj are complex numbers with |β j| 6 |γj| (j = 1, . . . , n).

REMARK 3.2. Using the equivalence of the norms in finite dimensional
spaces, one sees easily that every finite family of linearly independent vectors
are L-unconditional for some L.

PROPOSITION 3.3. Let ‖ · ‖ be a norm on C∗, α1, . . . , αn some positive numbers

such that
n
∑

j=1
αj = 1, let e1, . . . , en be a basis Cn, L > 0 such that the basis is L-

unconditional, and let s = ∑ sjej ∈ Cn. Then there exists w = ∑ wjej ∈ Cn and ψ

a linear form such that ‖ψ‖ 6 L
√

2, ‖w− s‖ 6 1 and ψ(wjej) = αj, j = 1, . . . , n.

We give now a dual version of this result.

PROPOSITION 3.4. Let X be a complex Banach space, s ∈ X, φ1, . . . , φn ∈ X∗

L-unconditional and α1, . . . , αn some positive numbers such that
n
∑

j=1
αj = 1. Then there

exist β1, . . . , βn n complex numbers and w ∈ X such that ‖w− s‖ 6 2,
∥∥∥∑

j
β jφj

∥∥∥ 6
L
√

2 and 〈w, β jφj〉 = αj for all j.

Proof. We note E = vect{φ1, . . . , φn}, E is isometric toQ∗ whereQ = X/⊥E.
The dimension of Q is finite. So, there exist ẽ1, . . . , ẽn ∈ Q such that 〈ẽj, φk〉 = δjk,
where δjk is the Kronecker symbol. We can verify (see [1] for the proof) that since
φ1, . . . , φn ∈ X∗ are L-unconditional, then ẽ1, . . . , ẽn are also L-unconditional. If
we denote π the canonical surjection from X to Q, then we can apply the Propo-
sition 3.3: There exist w̃ = ∑ wj ẽj ∈ Q and ψ = ∑ β jφj ∈ E linear forms
such that ‖ψ‖ 6 L

√
2, ‖w̃ − π(s)‖ 6 1 and 〈wj ẽj, ψ〉 = αj, (j = 1, . . . , n). But,

〈wj ẽj, ψ〉 = 〈w̃, β jφj〉. We can find w ∈ X such that π(w) = w̃ and ‖w− s‖ 6 2.
By the definition of Q, we have:

〈w, β jφj〉 = 〈π(w), β jφj〉 = αj.

3.2. APPROXIMATION IN L1 . Another innovation of [1] is the approximation of
positive L1 functions by some particular linear combination of Poisson kernels.

DEFINITION 3.5. For λ = reiθ we denote Iλ = {eit : |t− θ| < 2(1− r)}. A
subset F of D is called a-separated if for all λ, µ ∈ F (λ 6= µ), we have Iλ ∩ Iµ = ∅.
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PROPOSITION 3.6. There exist C ∈ (0, 1) and b > 0 with the following property:
if f is a positive function in L1 and if Λ is an Apostol set, then for n large enough, there
exist a finite and a-separated subset F ⊂ Λ and positive numbers αλ (λ ∈ F) such that:

(i) |λn − 1| < 1/9 and |λ| > 3/4 for λ ∈ F;
(ii) ∑

λ∈F
6 ‖ f ‖1;

(iii)
π∫
−π

∣∣∣ ∑
λ∈F

αλλnPλ(t)− f (t)
∣∣∣dt 6 c2

π∫
−π

f (t)dt.

Furthermore, if Λ = Λε,2(T), with 0 < ε < 1/2Mbπ, for T ∈ PBM(X), then there
exist vectors uλ ∈ X, 2Mb-unconditional such that ‖uλ‖ 6 1 and ‖(T − λ)uλ‖ <
ε(1− |λ|)2 (λ ∈ F).

4. ANALYTIC INVARIANT SUBSPACES

The notion of analytic invariant subspace is used in operator theory since
[17]. In [8], Brown gives a definition of this notion in a general context; our def-
inition is not exactly the same; in fact, we are trying to generalize to the Banach
space case the definition of invariant analytic subspaces given in [12].

DEFINITION 4.1. Let T ∈ L(X) and M ∈ Lat(T). We say that M is an
analytic invariant subspace of T if there exists a non zero analytic function from D
intoM∗, e : λ 7→ eλ such that

(T|M − λ)∗eλ = 0, λ ∈ D.

Furthermore if e satisfies ∨
λ∈D

eλ =M∗

thenM is called a full analytic invariant subspace for T.

REMARK 4.2. In the Hilbert space context we suppose that eλ is a conjugate
analytic function, since the duality is replaced by the inner product.

The following proposition is obvious.

PROPOSITION 4.3. Let T ∈ L(X) andM be an analytic invariant subspace for
T, with the associated map e, then there exists ( fn)n∈N a sequence of linear forms inM∗

such that e has an absolutely convergent power series expansion:

(4.1) eλ =
∞

∑
n=0

λn fn λ ∈ D.

Furthermore, the fn satisfy:

fn =
1
n!

dne
dλn

∣∣∣
λ=0

;(4.2)

T∗ f0 = 0, T∗ fn = fn−1 n > 1;(4.3)
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lim sup ‖ fn‖1/n 6 1;(4.4) ∨
λ∈D

eλ =
∨

n∈N
fn.(4.5)

REMARK 4.4. (i) If there exists ( fn)n∈N inM∗, whereM ∈ Lat(T), satisfy-
ing (4.3) and (4.4) we can define by (4.1) a map e which turnsM into an analytic
invariant subspace for T.

(ii) (4.3) implies that fn 6= 0 for n large enough.

We denote by H(D) the space of holomorphic functions on D and by Mλ the
operator of multiplication by λ, acting on H(D) : f (λ) 7→ λ f (λ).

PROPOSITION 4.5. Let T ∈ L(X) andM be an analytic invariant subspace for
T, with the associated map e. We define the linear map F :M→ H(D) such that:

(F(x))(λ) = 〈x, eλ〉.

This application satisfies
F ◦ (T|M) =Mλ ◦ F.

Furthermore, ifM is full analytic, then F is one-to-one.

Now, we are going to show the reflexivity of polynomially bounded opera-
tors in some particular cases (it was shown in the Hilbert space context in [12]).
We begin with a remark, which is a particular case of Lemma 2.7.

REMARK 4.6. Let T ∈ PB(X) with a w*-functional calculus. We takeM ∈
Lat(T), λ ∈ D and x∗ ∈ M such that (T|M)∗x∗ = λx∗. If φ ∈ X∗ satisfies
φ|M = x∗, then, for all h ∈ H∞ we have

(h(T∗)φ)|M = (h(λ)φ)|M.

PROPOSITION 4.7. Let T ∈ PB(X) such that X is full analytic for T. Then T is
reflexive.

Proof. Let e : λ 7→ eλ be an analytic map such that X∗ =
∨

eλ. Since
T∗eλ = λeλ, we have T ∈ C·0, then T∗ possesses a w*-functional calculus. Let
A ∈ AlgLat(T). If M∗ ∈ Lat(T∗) then ⊥M∗ ∈ Lat(T) and if x ∈ ⊥M∗ and
x∗ ∈ M∗, then:

〈x, A∗x∗〉 = 〈Ax, x∗〉 = 0.

It means that A∗x∗ ∈ (⊥M∗)⊥ = Mw∗
∗ . Since Ceλ is weak* closed (it is a finite

dimensional space), A∗eλ ∈ Ceλ, for λ ∈ D \Λ, where Λ denotes the set of λ such
that eλ = 0. So we can write,

A∗eλ = h(λ)eλ,

where h is some function defined pointwise for λ ∈ D \Λ. Clearly, |h(λ)| 6 ‖A‖
for λ ∈ D \Λ. Furthermore,

(4.6) (F(Ay))(λ) = h(λ)(F(y))(λ), λ ∈ D \Λ,
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for y ∈ X \ {0}. Since F(y) 6= 0 for any such y, Λ∩Λ′ is a countable set with no
point of accumulation in D, where Λ′ denotes the zeros of F(y). Furthermore (4.6)
shows that h is a bounded holomorphic function on D \Λ∩Λ′, so we can extend
h on a function in H∞. Since T∗ has a w*-functional calculus, one can verify that,
for λ ∈ D \Λ∩Λ′,

h(T∗)eλ = h(λ)eλ = A∗eλ.
So, A∗ = h(T∗) on

∨
λ∈D\Λ∩Λ′

eλ. But,

∨
λ∈D

eλ =
∨

λ∈D\Λ∩Λ′
eλ.

Indeed, if φ ∈ X∗∗ satisfies 〈eλ, φ〉 = 0 for λ ∈ D \Λ∩Λ′ then the holomorphic
function λ 7→ 〈eλ, φ〉 is the zero function; and since X is full analytic, we have
φ = 0. Finally, we have shown that A∗ = h(T∗). Then, for x ∈ X, x∗ ∈ X∗ and
(hn) a sequence in A(D) tending weakly* to h, we have:

〈Ax, x∗〉 = 〈x, h(T∗)x∗〉 = lim
n
〈x, hn(T∗)x∗〉 = lim

n
〈hn(T)x, x∗〉.

We conclude that A ∈ WT .

We denote by CF(T) the set of all x∈X such that
∨

n>0
Tnx is full analytic for T.

PROPOSITION 4.8. Let T be a polynomially bounded operator such that T∗ has a
w*-functional calculus. We suppose that CF(T) is dense in X. Then T is reflexive.

Proof. Let A∈AlgLat(T) and x1 and x2 in CF(T); we denoteMi =
∨

n>0
Tnxi,

i = 1, 2. We apply the previous proposition to Ti := T|Mi and we can find h1 and
h2 in H∞ such that hi(T∗i ) = A∗i , where Ai := A|Mi (i = 1, 2).

In the first part of the proof, we will see that h1 = h2.
As it was said in Section 2, we assume thatM∗∗

i is a subset of X∗∗; in partic-
ular, for x∗ ∈ X∗ and φi ∈ M∗∗

i , we have (forgetting the ˜ defined in Section 2):

〈x∗, φi〉 = 〈x∗|Mi , φi〉.
If M∗∗

1 ∩M∗∗
2 6= {0}, we take y∗∗ 6= 0 in this intersection and we denote by e

the analytic map associated to M1. Using the Hahn–Banach theorem, for each
λ ∈ D, we extend eλ in ελ ∈ X∗. Then, using the Lemma 2.7 and the previous
remark, we have:

h1(λ)〈eλ, y∗∗〉 = 〈h1(λ)eλ, y∗∗〉 = 〈h1(T∗1 )eλ, y∗∗〉
= 〈A∗1eλ, y∗∗〉 = 〈A∗ελ, y∗∗〉
= 〈A∗2(ελ|M2), y∗∗〉 = 〈h2(T∗2 )(ελ|M2), y∗∗〉
= 〈(h2(T∗)ελ)|M2 , y∗∗〉 = h2(λ)〈ελ|M2 , y∗∗〉
= h2(λ)〈ελ, y∗∗〉 = h2(λ)〈eλ, y∗∗〉.

Since λ 7→ 〈y, eλ〉 is a nonzero analytic function, it follows that h1 = h2.
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If M∗∗
1 ∩M∗∗

2 = {0}, we choose (un)n>3 a sequence in CF(T) such that
un → x1 + x2 (we take n > 3 to avoid confusion with the notation corresponding
to x1 and x2). Using the previous proposition, we deduce that for each n > 3
there exists gn ∈ H∞ such that A∗n = gn(T∗n ) whereMn :=

∨
k>0

Tkun, Tn := T|Mn

and An := A|Mn ; the proposition also gives ‖gn‖∞ 6 ‖A∗n‖ 6 ‖A‖. By dropping
down to a subsequence, we can suppose that (gn) is weakly* convergent to a
function g ∈ H∞. Since T∗ has a w*-functional calculus, (gn(T∗)) converges to
g(T∗) for the weak operator topology; furthermore, (un) converges to x1 + x2;
then we have, for each x∗ ∈ X∗,

lim〈x∗, gn(T∗)∗un〉 = 〈x∗, g(T∗)∗(x1 + x2)〉.
In other words,

〈x∗, g(T∗)∗(x1 + x2)〉 = lim〈un, gn(T∗)x∗〉 = lim〈un, (gn(T∗)x∗)|Mn〉
= lim〈un, gn(T∗n )(x∗|Mn)〉 = lim〈un, A∗n(x∗|Mn)〉
= lim〈un, A∗x∗〉 = 〈x1 + x2, A∗x∗〉
= 〈x1, A∗1(x∗|M1)〉+ 〈x2, A∗2(x∗|M2)〉
= 〈x1, h1(T∗)x∗〉+ 〈x2, h2(T∗)x∗〉.

SinceM1 ∩M2 = {0}, we have hi(T∗)∗xi = g(T∗)∗xi, i = 1, 2; using as previ-
ously the notation eλ and ελ, we deduce that

h1(λ)〈x1, eλ〉 = 〈x1, h1(T∗1 )eλ〉 = 〈x1, h1(T∗)ελ〉 = 〈x1, g(T∗1 )eλ〉 = g(λ)〈x1, eλ〉.
So h1 = g; we prove in the same way that h2 = g. We have shown that there exists
a function h ∈ H∞ such that, if x1, x2 are in CF(T), then A∗i = h(T∗i ), i = 1, 2. If
we take x ∈ X and x∗ ∈ X∗, there exists xn ∈ CF(T) such that xn → x and we
can verify that

〈Ax, x∗〉 = lim〈Axn, x∗〉 = lim〈xn, h(T∗)x∗〉 = 〈x, h(T∗)x∗〉.
Then A∗ = h(T∗) and A ∈ WT .

REMARK 4.9. In the two previous propositions, we can verify that T∗ is also
reflexive.

5. FACTORIZATION IN L1/H1
0 AND ANALYTIC INVARIANT SUBSPACES

In this section we will see that, under some assumptions of factorization
in the quotient space L1/H1

0 , polynomially bounded operators are reflexive. We
denote by [e−int] the class in L1/H1

0 of the function t 7→ e−int (n ∈ N).
For h ∈ H∞, it follows that:

〈h, [e−int]〉 = ĥ(n)

where ĥ(n) is the nth Fourier coefficient of h.
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We denote by NT the linear space algebraically spanned by the elements
[e−int], for n ∈ N; then NT is dense in L1/H1

0 .

PROPOSITION 5.1. Let T be a polynomially bounded operator such that T∗ has a
w*-functional calculus. We suppose that there exist vectors x ∈ X and (x∗j )j>0 ∈ X∗

such that:

x�x∗j = [e−ijt], j > 0; lim sup
j→∞

‖x∗j ‖1/j 6 1.

Then
∨

n>0
Tnx is an analytic invariant subspace for T.

Proof. In this proof, we will write � for
T∗
� and ♦ for

(T|M)∗

� . We denote
M =

∨
n>0

Tnx. SinceM ∈ Lat(T), we have by the Lemma 2.8

x�x∗ = x♦(x∗|M), x∗ ∈ X∗.

But x∗ 7→ x♦x∗ is one-to-one fromM∗ to L1/H1
0 .

Indeed, suppose that x♦x∗ = 0 with x∗ ∈ M∗. Let y ∈ M, then there exist
polynomials (pn) with y = lim pn(T)x. Then,

〈y, x∗〉 = lim〈x, pn((T|M)∗)x∗〉 = 〈pn, x♦x∗〉 = 0.

We deduce that x∗ = 0.
Since x♦(x∗0 |M) 6= 0, then x∗0 |M 6= 0 and we obtain:

Tx�x∗0 = 0; Tx�x∗j = [e−i(j−1)t] = x�x∗j−1, j > 1.

Besides,

Tx�x∗j = Tx♦x∗j |M = x♦(T|M)∗x∗j |M.

It follows that (x∗j |M) is nonzero and verifies (4.3) from Proposition 4.3.

Furthermore, ‖x∗|M‖ 6 ‖x∗‖, so lim sup ‖x∗j |M‖1/j 6 1 and by the Re-
mark 4.4,M is an analytic invariant subspace.

PROPOSITION 5.2. Let T be a polynomially bounded operator such that T∗ has a
w*-functional calculus. We suppose that there exist a vector x ∈ X and sequences (x∗j )
and (y∗j ) in X∗ such that:

x�x∗j = [e−ijt], j > 0; lim sup ‖x∗j ‖1/j 6 1;

x�y∗j ∈ NT , j > 0;
∨
j>0

y∗j = X∗.

Then the cyclic subspace generated by x,
∨

n>0
Tnx is a full analytic invariant subspace for T.
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Proof. As in the previous proof, we use the notations � and ♦. It follows
from the previous proposition thatM :=

∨
Tnx is an analytic invariant subspace

for T. Furthermore, for all j, x�y∗j can be written:

x�y∗j =
nj

∑
k=0

α
j
k[e
−ikt] = x�

( nj

∑
k=0

α
j
kx∗k
)

.

Thus, since x∗ 7→ x♦x∗ is one-to-one fromM∗ to L1/H1
0 ,

y∗j |M =
( nk

∑
k=0

α
j
kx∗k
)
|M, j > 0.

It follows that
∨

j>0
y∗j |M ⊂

∨
j>0

x∗j |M, and then
∨

j>0
x∗j |M =M∗.

As in the previous proof, we show that (x∗j |M) verifies (4.3) from Proposi-
tion 4.3; we deduce thatM is full analytic.

6. THE MAIN RESULT

We begin this section with factorization and reflexivity results for some par-
ticular polynomially bounded operators; more precisely, we will suppose that
T ∈ C·0 and that Λε,2(T∗) are Apostol sets for ε small enough. It will imply that
T∗ has a w*-functional calculus.

We start with a simple lemma.

LEMMA 6.1. Let (λ1, . . . , λn) ∈ Cn and X be a complex Banach space with
Dim(X) > n and φ1, . . . , φn in X∗ and linearly independent. Then there exists x ∈ X
such that for j ∈ {1, . . . , n},

φj(x) = λj.

Proof. We will see that the following map is onto:

X → Cn

y 7→ (φ1(y), . . . , φn(y)).

Assuming the contrary, there would exist α1, . . . , αn ∈ C such that for all

y ∈ X,
n
∑

j=1
αjφj(y) = 0. So, the linear forms would not be independent.

Using the previous lemma and the Proposition 3.4, we can adapt easily the
proofs of Theorems 12, 13 and 14 of [2] (or their equivalent in [1]) to obtain the
next two results.

THEOREM 6.2. We suppose that T ∈ PBM(X)∩C·0 and that Λε,2(T∗) are Apos-
tol sets for all ε small enough. Let y ∈ X and f > 0 in L1 with ‖ f ‖1 6 1. Then for n
large enough, there exist x ∈ X and x∗ ∈ X∗ such that ‖x‖ 6 2, ‖x∗‖ 6 2Mb

√
2 and
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‖(Tnx + y)�x∗− [ f ]‖ < c, where b is a universal constant and c ∈ (C, 1) (C is defined
in Proposition 3.6).

REMARK 6.3. We see in the proof of Theorem 12 in [2], that ε depends on y
in the following way: ε‖y‖ 6 1; so, as we want a property for all y (or all z, in the
notation of the next proposition), we need to ask that Λε,2(T∗) are Apostol sets
for all ε small enough.

We fix an integer m such that c + πm−1 < 1 and a constant c′ < 1 with
1−m−1(1− c− πm−1) < c′.

PROPOSITION 6.4. We suppose that T ∈ PBM(X) ∩ C·0 and that Λε,2(T∗) are
Apostol sets for all ε small enough. Let w∗1 , . . . , w∗p be vectors in X, z ∈ X, δ > 0 and
f ∈ L1. Then there exist u ∈ X and u∗ ∈ X∗ which verify:

(i) ‖(u + z)�u∗ − [ f ]‖ 6 c′‖ f ‖1;
(ii) ‖u�w∗j ‖ < δ pour j = 1, . . . , p;

(iii) ‖u‖ 6 2M‖ f ‖1/2
1 and ‖u∗‖ 6 2Mb

√
2‖ f ‖1/2

1 .

The previous proposition gives that the bilinear application � verifies a
property El

c′ . Applying the results of Section 1 we have the following theorem:

THEOREM 6.5. We suppose that T ∈ PBM(X) ∩ C·0, that Λε,2(T∗) are Apostol
sets for all ε small enough and that X∗ is separable. Then T has the property (A1,ℵ0) and
T is reflexive.

Proof. Take x ∈ X, δ > 0, a sequence (εn)n>1 of reals strictly decreasing to 0
and a sequence (x∗n)n>1 such that X∗ = {x∗n}. For n > 1, we note

[hn] =
[e−i(n−1)t]δ2

n6 .

Then we apply the Proposition 1.7 (with δn = δ2/n6) and deduce the existence
of y ∈ X, two sequences in X∗, (y∗n) and (z∗n) and three constants C, C′, C′′ such
that, for all n:

[hn] = y�y∗n, ‖y∗n‖ 6 Cδ, ‖y− x‖ 6 C′δ, y�z∗n ∈ NT , ‖z∗n − x∗n‖ 6 C′′εn,

(where NT is defined in the beginning of the previous section).
Denoting t∗n = n6 y∗n/δ2, we see that y, t∗n, z∗n verify the hypothesis of the

Proposition 5.2. Thus, the space
∨

Tny is full analytic for T. Since ‖y− x‖ 6 C′δ,
such y are dense in X. Then, by Proposition 4.8, T is reflexive.

Now we can demonstrate the main result of this paper:

THEOREM 6.6. Every polynomially bounded operator acting on a reflexive Banach
space such that its spectrum contains the unit circle either has a nontrivial hyperinvariant
subspace or is reflexive.
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Proof. First, suppose that X is separable. We use the following notations

X1 = {x ∈ X, Tnx → 0}, Y1 = {x∗ ∈ X∗, T∗nx → 0}.

Then we have one of the following cases:

(i) If X1 (respectively Y1) is non trivial, then X1 (respectively ⊥Y1) is a nontriv-
ial hyperinvariant subspace for T.

(ii) If X1 = Y1 = {0} then (Theorem 17 of [15]), T possesses a nontrivial hy-
perinvariant subspace or T = λ I and thus is reflexive.

(iii) If Y1 = X∗ et Λε,2(T∗) is not an Apostol set for one ε, then T possesses a
nontrivial hyperinvariant subspace (this is the Apostol theorem).

(iv) If Y1 = X∗ and Λε,2(T∗) are Apostol sets for all ε small enough, then we
can apply the previous theorem and T is reflexive.

(v) If X1 = X we can apply one of the two previous points to U = T∗.
If X is not separable, we can suppose that Ker T = {0} and that T 6= λ I.

Taking x ∈ X we denoteMx :=
∨

n>0
Tnx; it is a non trivial invariant subspace for

x 6= 0.
If for all x 6= 0 we have T|Mx ∈ C·0 and Λε,2(T|Mx

∗) is an Apostol set, then,
following the proof of Proposition 6.5, CF(T|Mx ) is dense. Thus CF(T) is also
dense and using the Proposition 4.8, we can say that T is reflexive. In the other
case, there exists x 6= 0 such that T|Mx /∈ C·0 or Λε,2(T|∗Mx

) is not an Apostol
set; then, we can use the points (i), (ii), or (iii) given in the first part of the proof.
In the case (ii), we can have T|Mx = λ IMx and then Ker (T − λ) is a nontrivial
hyperinvariant subspace.

Following the results of [11], Brown and Chevreau had proven in [9] that
every contraction on a Hilbert space with an isometric functional calculus on H∞

is reflexive. The corresponding result in our context would be: every polyno-
mially bounded operator with a functional calculus bounded below is reflexive.
However, it seems difficult to adapt the proof of [9], even with the innovations of
Ambrozie and Müller.
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