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ABSTRACT. Let β ≡ {βi}i∈Zd
+ ,|i|62n be a real d-dimensional multisequence of

degree 2n, with moment matrix M(n), and let V ≡ V(M(n)) denote the
associated algebraic variety. For the case v ≡ cardV < +∞, we prove that
β has a representing measure if and only if r ≡ rankM(n) 6 v and there
exists a positive moment matrix extensionM ≡ M(n + v− r + 1) satisfying
rankM 6 cardV(M). For the class of recursively determinate moment matrices
M(n), we present a computational algorithm for establishing the existence
(or nonexistence) of an extension M as above and, in the positive case, for
computing a minimal representing measure for β. We also show that for the
case r < v < +∞, it is possible for β to admit a representing measure µ with
card supp µ < v; equivalently, in this case supp µ may be a proper subset of
V(M(n)).
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1. INTRODUCTION

Let β ≡ β(2n) = {βi}i∈Zd
+ ,|i|62n denote a real d-dimensional multisequence

of degree 2n. The truncated moment problem for β concerns necessary and suffi-
cient conditions for the existence of a positive Borel measure µ on Rd such that
βi =

∫
Rd

xidµ, |i| 6 2n (here, for x ≡ (x1, . . . , xd) ∈ Rd and i ≡ (i1, . . . , id) ∈ Zd
+,

we set xi := xi1
1 · · · x

id
d and |i| = i1 + · · ·+ id ). Conditions for such a representing

measure µ are usually expressed in terms of positivity and extension properties
of the moment matrix M(n) ≡ M(n)(β) corresponding to β, or conditions on
the algebraic variety V ≡ V(M(n)) associated to β (cf. Theorems 1.1 and 3.1).
Positivity, extension, and variety are also prominent themes in the classical full
moment problem ([1], [27], [29], [28], [31], [33]); a result of Stochel [32] shows
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that a full moment sequence β(∞) admits a representing measure supported in
a closed set K ⊂ Rd if and only if each truncation β(2n) admits such a measure.
In the present note, we solve certain cases of the truncated moment problem al-
gorithmically. For these cases, we do not have a set of necessary and sufficient
conditions in the traditional sense, but we can nevertheless test an individual se-
quence β to determine whether or not it admits a representing measure and, if
so, we can explicitly compute a finitely atomic representing measure having the
fewest atoms possible.

As we discuss in Section 2, a sequence β ≡ β(2n) has a representing measure
if and only if there is some integer k > 1 such thatM(n) admits a positive mo-
ment matrix extensionM(n + k) satisfying rankM(n + k) = rankM(n + k− 1).
The crux of the truncated moment problem is to predict the existence and esti-
mate the minimal value of such an integer k. Linear dependence relations in the
columns of M(n) determine both its rank and its variety V ≡ V(M(n)), and
in the sequel we study interrelationships between the column structure ofM(n)
and the variety. For the case when v ≡ cardV < +∞, in Theorem 2.1 we show
that β has a representing measure if and only if r ≡ rankM(n) 6 v andM(n)
admits successive positive moment matrix extensionsM(n + 1), . . . ,M(n + v−
r + 1) such that rankM(n + v− r + 1) 6 cardV(M(n + v− r + 1)); in this case,
we can take k (as above) with k 6 v− r + 1. For the class of recursively determinate
moment matrices with finite variety, we show that the existence (or nonexistence)
of a convergent extension sequence and a representing measure (as above) can be
completely determined from the dependence relations in the columns of M(n)
in at most v− r + 1 extension steps (Theorem 4.3 and Algorithm 4.10). In these
results, it is not necessary to explicitly compute the points of V ; it is sufficient to
know that the variety is finite. Further, a version of the algorithm applies to an
arbitrary recursively determinate M(n), and the algorithm can also be used to
decide whether an arbitraryM(n) is recursively determinate (cf. Remark 4.11).

Representing measures µ always satisfy card supp µ > rankM(n) (cf. (1.2)
below). Theorem 3.2 provides a test for the existence of rankM(n)-atomic (mini-
mal) representing measures in cases where β has finite variety. This allows us to
exhibit for the first time a sequence β, with finite variety V , having a represent-
ing measure whose support is a proper subset of V (Example 3.3); equivalently,
this example shows that it is possible to have a rankM(n)-atomic representing
measure in a case where r < v < +∞. More generally, Theorem 3.10 implies the
existence of rankM(n)-atomic representing measures in cases in which v < +∞
and v− r is arbitrarily large, and in all of these cases we can take k (as above) with
k = 1. The truncated moment problem has applications in multivariable cubature
([17], [21]) and polynomial optimization ([22], [23], [24], [25], [26]). With a view
toward such applications, we provide several numerical examples which illus-
trate how to implement our methods with concrete moment data (cf. Examples
3.3, 3.9, 3.11, 4.15, 4.17, 4.18).
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Let P ≡ R[x1, . . . , xd] denote the algebra of real valued d-variable polyno-
mials, and for m > 1, let Pm denote the subspace of polynomials p with deg p 6
m; we note for future reference that dimPm =

(
d+m

m
)
. For p(x) ≡ ∑

|i|6m
aixi ∈ Pm,

let p̂ ≡ (ai) denote the coefficient (column) vector of p relative to the basis for Pm
consisting of the monomials in Pm in degree-lexicographic order. Correspond-
ing to β we have the Riesz functional Λ ≡ Λβ : P2n 7−→ R, which assigns to
p(x) ≡ ∑

|i|62n
aixi the value Λ(p) := ∑

|i|62n
aiβi; if µ is a representing measure for

β, then clearly Λ(p) =
∫

pdµ. Following [8], [13], we associate to β the moment
matrixM(n) ≡ M(n)(β), with rows and columns Xi indexed by the monomials
of Pn in degree-lexicographic order; for example, with d = 3, n = 2, the columns
ofM(2) are 1, X1, X2, X3, X2

1 , X1X2, X1X3, X2
2 , X2X3, X2

3 . The entry in row Xi,
column X j of M(n) is βi+j, so M(n) is a real symmetric matrix characterized
by 〈M(n) p̂, q̂〉 = Λ(pq) (p, q ∈ Pn). If µ is a representing measure for β, then
〈M(n) p̂, p̂〉 = Λ(p2) =

∫
p2dµ > 0, and sinceM(n) is real symmetric, it follows

thatM(n) is positive semidefinite (M(n) � 0).
Let CM(n) denote the column space of M(n). Corresponding to p(x) ≡

∑
|i|6n

aixi ∈ Pn is the element p(X) of CM(n) defined by p(X) := ∑
|i|6n

aiXi; thus,

p(X) = M(n) p̂. If β admits a representing measure µ, then (by Proposition 3.1
of [8], and Proposition 2.1 of [13])

(1.1) p|supp µ ≡ 0⇔ p(X) = 0 p ∈ Pn,

and (by Corollary 3.7 of [8], and Corollary 2.12 of [13])

(1.2) r ≡ rankM(n) 6 card supp µ.

We say that a representing measure µ is minimal if card supp µ 6 card supp ν for
every representing measure ν; (1.2) shows that a rankM(n)-atomic representing
measure is minimal. The following result of [8] is our basic tool for constructing
rankM(n)-atomic minimal representing measures.

THEOREM 1.1 (Flat Extension Theorem, Part 1 ([8], Theorem 7.10), ([13], The-
orem 2.19)). β ≡ β(2n) admits a rankM(n)-atomic representing measure if and only
ifM(n) � 0 andM(n) admits an extension to a moment matrixM(n + 1) satisfying
rankM(n + 1) = rankM(n).

In the sequel, we refer to a rank-preserving extension M(n + 1) as a flat
extension ofM(n) (cf. [8], [13])).

Following [8], we define the algebraic variety of β (or ofM(n)) by V(M(n))
:=

⋂
p∈Pn ,p(X)=0

Z(p), where Z(p) := {w ∈ Rd : p(w) = 0}. It is straightforward

to check that if {qi}s
i=1 is a linear basis for Nn ≡ {p ∈ Pn : p(X) = 0}, then

V(M(n)) =
⋂

16i6s
Z(qi). In view of (1.1), it is clear that if µ is a representing
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measure for β, then

(1.3) supp µ ⊂ V(M(n)),

whence

(1.4) r 6 card supp µ 6 v ≡ cardV(M(n)).

The extremal case of the truncated moment problem, when r = v, has been solved
in [15]; in this case, β(2n) has a representing measure if and only ifM(n) is pos-
itive and β is consistent (cf. Section 3). In the present note we focus primarily on
the more general case whenM(n) has finite variety, i.e., v < +∞. The following
result provides the main tool for explicitly computing a representing measure
associated with a flat extension.

THEOREM 1.2 (Flat Extension Theorem, Part 2 ([13], Theorem 1.2)). Suppose
M(n) is positive semidefinite and admits a flat extensionM(n + 1). Then cardV(M(n
+1)) = r ≡ rankM(n), and suppose V(M(n + 1)) ≡ {wj}r

j=1 ⊂ Rd. Suppose

B ≡ {Xi1 , . . . , Xir} is a basis for CM(n) and let UB denote the r × r matrix whose

element in row k, column j is wik
j . Then UB is invertible, and the unique representing

measure forM(n + 1) is of the form µ ≡
r
∑

j=1
ρjδwj , where ρ ≡ (ρ1, . . . , ρr) is uniquely

determined from UBρT = (βi1 , . . . , βir )
T.

2. REPRESENTING MEASURES IN THE FINITE VARIETY CASE

In this section we characterize the existence of representing measures for
β ≡ β(2n) in terms of moment matrix extensions. Theorem 1.1 shows that ifM(n)
(� 0) admits a flat extensionM(n + 1), then β certainly has a representing mea-
sure. In cases where M(n) does not have a flat extension, β may nevertheless
admit a representing measure, and in the sequel we study this phenomenon. In
Theorem 1.5 in [9] we proved that β has a finitely atomic representing measure if
and only ifM(n) has a positive extensionM(n + k − 1) (for some k > 1) such
thatM(n + k− 1) admits a flat extensionM(n + k). A recent result of Bayer and
Teichmann concerning multivariable cubature [2] readily implies that if β admits
a representing measure, then β actually has a finitely atomic representing mea-
sure (cf. [26]). Thus, the above extension criterion is both necessary and sufficient
for the existence of representing measures for β(2n).

Let k > 1 and suppose thatM(n + 1), . . . ,M(n + k) is a sequence of suc-
cessive positive extensions ofM(n) such thatM(n + i) is a rank-increasing ex-
tension of M(n + i − 1) if k > 1 and 1 6 i 6 k − 1, and M(n + k) is a flat
extension of M(n + k − 1). We refer to such a sequence as a convergent exten-
sion sequence of length k, which we denote by M(n) −→ · · · −→ M(n + k).
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[13] implies that in this case M(n + k) admits unique successive positive ex-
tensions M(n + k + 1),M(n + k + 2), . . ., all of which are flat extensions. Fur-
ther, Theorem 1.2 implies thatM(n + k) admits a unique representing measure
ν, which is clearly a representing measure for β, and which is characterized by
supp ν = V(M(n + k)) and card supp ν = rankM(n + k)).

We begin with the following characterization of the existence of represent-
ing measures in the finite variety case.

THEOREM 2.1. Suppose v < +∞. β ≡ β(2n) admits a representing measure if
and only if r 6 v andM(n)(β) has a positive moment matrix extensionM(n + v−
r + 1) satisfying rankM(n + v− r + 1) 6 cardV(M(n + v− r + 1)). In this case,
M(n) has a convergent extension sequence with length at most v− r + 1.

As a practical matter, the extensionM(n + v− r + 1) is determined via succes-
sive intermediate extensions M(n + 1), . . . ,M(n + v − r). Thus, v − r, which
we refer to as the gap inM(n)(β), provides a measure of the complexity of de-
termining the existence of a representing measure in the finite variety case. Let
β be an arbitrary sequence, possibly with infinite variety. A modification of the
proof of Theorem 2.1 shows that if β has a representing measure, then it has a
convergent extension sequence with length at most dimP2n − r + 1 (cf. Propo-
sition 2.3). Part of our motivation for focusing on the finite variety case can be
seen from examples. In Example 4.15 we have a planar M(5) with v − r = 6
and dimP10 − r = 47, and in Example 4.17 we have a 3-dimensionalM(4) with
v− r = 7 and dimP8 − r = 138.

The upper estimate v − r + 1 for the length of some convergent extension
sequence forM(n) is sharp in the following sense. IfM(n)(β) is extremal, i.e.,
v = r, and β admits a representing measure (cf. Theorem 3.4), then (1.3) and The-
orem 1.1 imply thatM(n) admits a flat extensionM(n + 1), so in this case the
minimal length of a convergent extension sequence is precisely v − r + 1 (= 1).
Further, [14] illustrates cases of the truncated moment problem for measures sup-
ported in an hyperbola, with v− r = 1 and where the minimal length convergent
extension sequence has length 2 (= v− r + 1). On the other hand, in Example 4.15
we have v − r + 1 = 7, with a convergent extension sequence of length 3. The
most dramatic divergence of v− r + 1 from the minimal length of a convergent
extension sequence is described by Theorem 3.10 and the remarks immediately
preceding it.

For the proof of Theorem 2.1 we require certain facts about positive exten-
sions of moment matrices. Consider a moment matrix extension

M(n + 1) ≡
(
M(n) B(n + 1)

B(n + 1)T C(n + 1)

)
.

A result of Smul’jan [30] implies thatM(n + 1) � 0 if and only ifM(n) � 0, there
exists a matrix W such that B(n + 1) = M(n)W (equivalently, RanB(n + 1) ⊆
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RanM(n) [16]), and C(n + 1) � WTM(n)W. In this case,M(n + 1) is a flat ex-
tension, i.e., rankM(n + 1) = rankM(n), if and only if C(n + 1) = WTM(n)W.
Suppose M(n + 1) � 0 and let p ∈ Pn; the Extension Principle of [18] shows
that if p(X) = 0 in CM(n), then p(X) = 0 in CM(n+1), i.e., column dependence
relations in M(n) extend to M(n + 1). It follows that if M(n + 1) � 0, then
V(M(n + 1)) ⊆ V(M(n)). In this case, we note for future reference that in com-
puting V(M(n + 1)), we may ignore any dependence relation in CM(n+1) of the
form (pq)(X) = 0, where p ∈ Pn, pq ∈ Pn+1, and p(X) = 0 in CM(n). Indeed, it
is clear that V(M(n)) ⊆ Z(pq), so the relation (pq)(X) = 0 in CM(n+1) cannot
subtract from V(M(n)) in computing V(M(n + 1)) .

Proof of Theorem 2.1. Suppose r 6 v andM(n)(β) has a positive extension
M(n + v− r + 1) satisfying rankM(n + v− r + 1) 6 cardV(M(n + v− r + 1)).
We have r ≡ rankM(n) 6 rankM(n + 1) 6 · · · 6 rankM(n + v− r + 1). Since
M(n + v − r + 1) > 0, the Extension Principle implies that cardV(M(n + v −
r + 1)) 6 · · · 6 cardV(M(n + 1)) 6 cardV(M(n)) ≡ v. Since rankM(n +
v − r + 1) 6 cardV(M(n + v − r + 1)), if each extension M(n + i) (1 6 i 6
v− r + 1) is strictly rank increasing, then it follows that v > cardV(M(n + v−
r + 1)) > rankM(n + v− r + 1) > r + (v− r + 1) = v + 1, a contradiction. Thus,
there exists i, 1 6 i 6 v − r + 1, such that rankM(n + i − 1) = rankM(n + i),
whence the existence of a rankM(n + i)-atomic representing measure follows
from Theorem 1.1.

Conversely, suppose β admits a representing measure ν. (1.4) shows that
r 6 v. Since supp ν ⊂ V(M(n)) (cf. (1.3)) and v < +∞, ν is finitely atomic,
and thus has finite moments of all orders. Now M(n) ≡ M(n)[ν] (computed
using βi :=

∫
xidν) admits positive extensions M(n + i)[ν] for every i > 1. In

particular, sinceM(n + v− r + 1)[ν] admits a representing measure (namely, ν),
(1.4) implies that rankM(n + v− r + 1)[ν] 6 cardV(M(n + v− r + 1)[ν]).

In Section 4 we show how to verify the existence of the extensions in Theo-
rem 2.1 forM(n) recursively determinate. Theorem 2.1 shows that in the finite
variety case, v− r + 1 is an upper bound on the minimal length of a convergent
extension sequence. For this reason, it would be desirable if v− r were bounded,
but the following result shows that this is not the case.

PROPOSITION 2.2. Let d = 2. For n > 0, there existsM(n) (having a represent-
ing measure) with v < +∞ and v− r > (n−1)(n−2)

2 .

Proof. Recall from Bezout’s Theorem [7] that ifM(n) has finite variety, then
v 6 n2. Let p(x, y) and q(x, y) denote polynomials of degree n having exactly n2

common zeros in the plane. For example, let p(x, y) = y− (x − x1) · · · (x − xn)
for distinct x1, . . . , xn and let q(x, y) = (y− y1) · · · (y− yn) for distinct y1, . . . , yn
sufficiently close to 0. Let V = Z(p) ∩ Z(q) and let µ be a positive measure
with supp µ = V . Consider M = M(n)[µ]. (1.1) implies that p(X, Y) = 0 and
q(X, Y) = 0 in CM, so n2 = cardZ(p) ∩ Z(q) > v > card supp µ = n2, whence
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v = n2. Further, p(X, Y) = q(X, Y) = 0 implies r ≡ rankM 6 dimPn − 2 =
(n+1)(n+2)

2 − 2, and the result follows.

We conclude this section with a partial analogue of Theorem 2.1 for an arbi-
trary sequence β(2n), which may have infinite variety.

PROPOSITION 2.3. If β ≡ β(2n) has a representing measure, then there is a con-
vergent extension sequenceM(n)(β)−→ · · · −→M(n + k) with k6dimP2n−r+1.

Proof. Since β has a representing measure, [2] implies that there is a repre-
senting measure ν with card supp ν 6 dimP2n. If, for some j, we have a strictly
rank increasing extension sequenceM(n)(β) ≡M(n)[ν], . . . ,M(n + j)[ν], then,
with r = rankM(n), we have r + j 6 rankM(n + j)[ν] 6 card supp ν 6 dimP2n.
Thus, j 6 dimP2n − r, and if j = dimP2n − r, then M(n + j + 1)[ν] is a flat
extension ofM(n + j)[ν].

REMARK 2.4. (i) For the case of the plane (d = 2), Proposition 2.3 implies
a convergent extension sequence with length at most dimP2n − r + 1, where
dimP2n = (2n + 1)(n + 1). For planar moment matrices with finite variety, The-
orem 2.1 gives the improved estimate v − r + 1, since in this case v 6 n2 (by
Bezout’s Theorem).

(ii) In Theorem 1.5 in [9], for the truncated complex moment problem in the
plane, the existence of a finitely atomic representing measure for a complex se-
quence γ(2n) is shown to be equivalent to the existence of a convergent extension
sequence of complex moment matrices of length at most 2n2 + 7n + 7.

3. FLAT EXTENSIONS IN THE CASE r 6 v < +∞.

In this section we study the existence of flat extensions in the finite variety
case. Our motivation comes from the following solution to the truncated moment
problem on planar curves of degree 1 or 2.

THEOREM 3.1 ([20], [10], [12], [14]). Let d = 2 and suppose deg p(x, y) 6
2. β(2n) has a representing measure supported in the curve p(x, y) = 0 if and only if
M(n) has a column dependence relation p(X, Y) = 0 andM(n) is positive semidefinite,
recursively generated, and satisfies r 6 v.

Under the conditions of Theorem 3.1, whenever v = +∞, M(n) admits a
flat extension. By contrast, in every case in which r < v < +∞, it transpires that
v = r + 1 and a minimal representing measure corresponds to a positive, rank-
increasing extension M(n + 1) followed by a flat extension M(n + 2). Thus,
in the finite variety case of Theorem 3.1, each representing measure µ satisfies
supp µ = V(M(n)). In the sequel we examine whether such rigidity is a general
feature of the truncated moment problem in the finite variety case.
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We begin with a computational test for the existence of flat extensionsM(n
+1) in the case when M(n) ≡ M(n)(β) has finite variety and the elements
of V(M(n)) are known exactly. Let V ≡ {w1, . . . , ws} be a finite subset of Rd.
Following [15], we define the matrix Wm[V ] with s rows and with columns X j

indexed by the monomials in Pm in degree-lexicographic order. The entry of
Wm[V ] in row i (1 6 i 6 s), column X j (j ∈ Zd

+, |j| 6 m) is wj
i ; we further set

Um[V ] = Wm[V ]T (the transpose). In the sequel we set τ(m) := dimPm =
(

m+d
m
)

and we let p1, . . . , pτ denote the list of monomials in Pm in degree-lexicographic
order. Given M(n)(β), let τ ≡ τ(2n), r = rankM(n), v = cardV(M(n)), and
set Lβ := (Λβ(p1), . . . , Λβ(pτ))T ∈ Rτ . Let B ≡ {Xi1 , . . . , Xir} denote a basis for
CM(n), the column space of M(n). For the case when V (as above) is a subset
of V(M(n)), let WB [V ] denote the compression of Wn[V ] to columns X i1 , . . . ,X ir

and let UB [V ] = WB [V ]T.

THEOREM 3.2. For β ≡ β(2n), suppose M(n) ≡ M(n)(β) > 0 and let r =
rankM(n). β admits an r-atomic representing measure µ (equivalently, M(n) ad-
mits a flat extension M(n + 1)) if and only if there exists an r-element subset V of
V(M(n)) for which Lβ ∈ RanU2n[V ]. In this case, if V ≡ {w1, . . . , wr} and if

B ≡ {Xi1 , . . . , Xir} is a basis for CM(n), then we can take µ :=
r
∑

i=1
ρiδwi , where the

densities ρ ≡ (ρ1, . . . , ρr) are uniquely determined by UB [V ]ρT = (βi1 , . . . , βir )
T; a flat

extension ofM(n) is thenM(n + 1)[µ].

There is no requirement in Theorem 3.2 that V(M(n)) be finite, and exam-
ples of [12], [14] illustrate flat extensions in cases where the variety is infinite.
However, since Theorem 3.2 entails testing the r-element subsets of V(M(n)), it
is of practical interest primarily in the case when v < +∞ and v is close to r. We
illustrate Theorem 3.2 with an example in which v = r + 1. This appears to be
the first example in the literature of a flat extension in a case with r < v < +∞. It
also provides the first example in the finite variety case of a representing measure
whose support is a proper subset of V(M(n)).

EXAMPLE 3.3. ConsiderM(3)(β) defined asM(3) :=
(M(2) B(3)

B(3)T C(3)

)
, where

M(2) :=

 8 0 0 78 1446 32838
0 78 1446 0 0 0
0 1446 32838 0 0 0

78 0 0 1446 32838 794886
1446 0 0 32838 794886 19651398

32838 0 0 794886 19651398 489352326

 ,

B(3) :=

 0 0 0 0
1446 32838 794886 19651398

32838 794886 19651398 489352326
0 0 0 0
0 0 0 0
0 0 0 0

 ,

C(3) :=
( 32838 794886 19651398 489352326

794886 19651398 489352326 12216629958
19651398 489352326 12216629958 305262005766

489352326 12216629958 305262005766 7630169896518

)
.
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A calculation using nested determinants reveals thatM(3) is positive semi-
definite, with rank 8 and column dependence relations f (X, Y) = 0 and g(X, Y) =
0, where f (x, y) := y− x3 and g(x, y) := 900x− 361x3− 900y + 399x2y− 39xy2 +
y3. It follows that V(M(3)) = Z( f ) ∩ Z(g) ≡ {wi}9

i=1, where w1 = (0, 0),
w2 = (−3,−27), w3 = (−2,−8), w4 = (−1,−1), w5 = (−5,−125), w6 =
(1, 1), w7 = (2, 8), w8 = (3, 27), w9 = (5, 125). Let Vi := V(M(3)) \ {wi}
(1 6 i 6 9). For 2 6 i 6 9, calculations show that Lβ 6∈ RanU2n[Vi], so
there is no 8-atomic representing measure for β with support Vi. However, for
V1(= {wi}9

i=2), we see that Lβ ∈ RanU2n[V1]. With the column basis B :=
{1, X, Y, X2, XY, Y2, X2Y, XY2}, Theorem 3.2 implies that β has a minimal repre-

senting measure of the form µ :=
8
∑

i=1
ρiδwi+1 , where the densities ρ ≡ (ρ1, . . . , ρ8)

are uniquely determined by UB [V1]ρT = (8, 0, 0, 78, 1446, 32838, 0, 0)T. A calcula-
tion yields ρi = 1 (1 6 i 6 8). Theorem 3.2 now shows that M(4)[µ] is a flat
extension ofM(3), where

B(4)[µ] =


1446 32838 794886 19651398 489352326

0 0 0 0 0
0 0 0 0 0

32838 794886 19651398 489352326 12216629958
794886 19651398 489352326 12216629958 305262005766

19651398 489352326 12216629958 305262005766 7630169896518
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

C(4)[µ]=

( 794886 19651398 489352326 12216629958 305262005766
19651398 489352326 12216629958 305262005766 7630169896518

489352326 12216629958 305262005766 7630169896518 190741838947206
12216629958 305262005766 7630169896518 190741838947206 4768434352539078

305262005766 7630169896518 190741838947206 4768434352539078 119209854443408646

)
.

Note also that the column relations f (X, Y) = 0 and g(X, Y) = 0 show thatM(3)
is recursively determinate (cf. Section 4), so the existence of a representing mea-
sure can also be approached through Algorithm 4.10. Indeed, in the language of
Section 4, one can construct a recursively determined extensionM(4) by imposing
(x f )(X, Y) = 0 and (yg)(X, Y) = 0. A calculation shows that rankM(4) = 8,
so M(4) is a flat (hence positive) extension, with a corresponding representing
measure which coincides with µ.

For the proof of Theorem 3.2, we require some preliminary results and no-
tation. Recall from [15] that β ≡ β(2n) is consistent if

(3.1) p ∈ P2n, p|V(M(n)) ≡ 0 =⇒ Λβ(p) = 0.

Consistency is clearly a necessary condition for representing measures. Con-
sistency plays an essential role in the extremal truncated moment problem, the
case when r = v. In this case, if B ≡ {Xi1 , . . . , Xir} is a basis for CM(n) and
V ≡ V(M(n)) = {w1, . . . , wr}, let UB [V ] denote the r× r matrix whose element
in row k, column j is wik

j .
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THEOREM 3.4 ([15], Theorem 4.2). Suppose r = v. β ≡ β(2n) has a repre-
senting measure if and only if M(n) is positive semidefinite and β is consistent. In
this case, UB [V ] is invertible, and the unique representing measure for β is of the form

µ ≡
r
∑

j=1
ρjδwj , where ρ ≡ (ρ1, . . . , ρr) is determined from UB [V ]ρT = (βi1 , . . . , βir )

T.

The following basic problem of [15] remains unsolved:

QUESTION 3.5. If M(n) � 0, r 6 v, and β is consistent, does β have a repre-
senting measure?

Let us compare Theorem 3.4 to the case of Theorem 2.1 when r = v. For this
case, Theorem 2.1 shows that β has a representing measure if and only ifM(n)
admits a positive extensionM(n + 1) satisfying rankM(n + 1) 6 cardV(M(n +
1)). SinceM(n+1)� 0, we have r = rankM(n) 6 rankM(n+1) 6 cardV(M(n
+1)) 6 cardV(M(n)) = v = r, so M(n + 1) must be a flat extension. Thus,
Theorem 2.1 entails a flat extension, whereas Theorem 3.4 entails consistency. (Of
course, if β in Theorem 3.4 is consistent, then the unique representing measure
for β also corresponds to a flat extensionM(n + 1).) Depending on the specific
column dependence relations in a given problem, either consistency or the ex-
istence of a flat extension may be easier to check. In the case when v < +∞
and the points of V(M(n)) are known exactly, our next result provides a simple
computational test for consistency.

Let V ⊆ V(M(n)). We say that β is V-consistent if p ∈ P2n, p|V ≡ 0 =⇒
Λβ(p) = 0. In particular, β is consistent if and only if β is V-consistent for V =
V(M(n)). Clearly, if β admits a representing measure µ with suppµ ⊆ V ⊆
V(M(n)), then β is V-consistent. We note that when β is V-consistent, we can
always take V to be finite. Indeed, let τ ≡ τ(2n) and for w ∈ V , let π(w) =
(p1(w), . . . , pτ(w)) ∈ Rτ (where, as above, p1, . . . , pτ is a listing of the monomials
in P2n in degree-lexicographic order). Let {π(w1), . . . , π(ws)} (1 6 s 6 τ) denote
a maximal independent subset of {π(w) : w ∈ V}, and let V ′ = {w1, . . . , ws}. If
p ∈ P2n and p|V ′ ≡ 0, then 〈 p̂, π(wi)〉 = 0 (1 6 i 6 s), whence 〈 p̂, π(w)〉 = 0
for w ∈ V , i.e., p|V ≡ 0. Now, p|V ≡ 0 =⇒ Λβ(p) = 0, so β is V ′-consistent.
The following reformulation of V-consistency shows that in the case when V is
finite, to establish V-consistency, we need not verify the defining property, but
can instead rely on a simpler test.

PROPOSITION 3.6. Let V ≡ {w1, . . . , ws} ⊆ V(M(n))(β). β is V-consistent
if and only if Lβ ∈ RanU2n[V ]. In particular, if v < +∞, β is consistent if and only if
Lβ ∈ RanU2n[V(M(n))].

Proof. Let τ ≡ τ(2n); for S ⊆ Rτ , let S⊥ = {t ∈ Rτ : 〈t, s〉 = 0, ∀s ∈
S}. β is V-consistent if and only if p ∈ P2n, p|V ≡ 0 =⇒ Λβ(p) = 0. Now
p|V ≡ 0 ⇐⇒ W2n[V ] p̂ = 0, and Λβ(p) = 0 ⇐⇒ 〈 p̂, Lβ〉 = 0. Thus, β is V-
consistent if and only if kerW2n[V ] ⊆ {Lβ}⊥ (relative to Rτ). Since kerW2n[V ] =
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(RanU2n[V ])⊥, it follows that β is V-consistent if and only if (RanU2n[V ])⊥ ⊆
{Lβ}⊥, or, equivalently (since the underlying spaces are finite dimensional), Lβ ∈
RanU2n[V ].

REMARK 3.7. For the case r = v and V = V(M(n)), the condition of The-
orem 3.2 that Lβ ∈ RanU2n[V ] is equivalent to the condition that β be consistent.
Thus, in this case, Theorem 3.2 is equivalent to Theorem 4.2 in [15], although the
condition Lβ ∈ RanU2n[V ] in Theorem 3.2 is apparently easier to verify than is
the original consistency condition in [15]. The idea of using duality to reformu-
late consistency is due to H.M. Möller and is used in the proofs of Lemmas 2.2–2.3
in [15].

Proof of Theorem 3.2. Suppose first that V ≡ {w1, . . . , wr} ⊆ V(M(n)(β))
satisfies Lβ ∈ RanU2n[V ]. Proposition 3.6 shows that β is V-consistent. Let

ρ ≡ (ρ1, . . . , ρr) satisfy U2n[V ]ρT = Lβ, so that Λβ(pi) =
r
∑

j=1
ρj pi(wj) (where,

as above, p1, . . . , pτ is a listing of the monomials in P2n). If we define the r-atomic

measure µ by µ :=
r
∑

j=1
ρjδwj , then clearly µ interpolates all of the moments of β,

i.e., βi =
∫

xidµ(x) (|i| 6 2n). To complete the proof it suffices to show that
µ > 0, i.e., ρj > 0 (1 6 j 6 r). To this end, let B ≡ {Xi1 , . . . , Xir} denote a maxi-
mal independent set of columns ofM(n). Let WB [V ] denote the compression of
Wn[V ] to the columns, X i1 , . . . ,X ir , indexed by the same monomials which index
B. We claim that WB [V ] is invertible. Indeed, for p ≡ a1xi1 + · · ·+ arxir (∈ Pn),
WB [V ] p̂ = 0 ⇐⇒ p|V ≡ 0. In this case, for each q ∈ Pn, we have pq ∈ P2n
and pq|V ≡ 0, so V-consistency implies that Λβ(pq) = 0. Now, 〈M(n) p̂, q̂〉 =

Λβ(pq) = 0 (q ∈ Pn), so
r
∑

j=1
ajX

ij =M(n) p̂ = 0, whence p̂ = 0 (since B is a basis

for CM(n)).
Consider U ≡ UB [V ] = WB [V ]T. Since U2n[V ]ρT = Lβ, then UρT =

(βi1 , . . . , βir )
T, and since U is invertible, this relation uniquely determines ρ. For

1 6 k 6 r, let Uk ≡ Uk(x) denote the matrix obtained from U by replacing wk
(in column k) by the variable x ∈ Rd, and define gk ∈ Pn by gk(x) := detUk(x).
Now, gk(wj) = δkjdetU (1 6 k, j 6 r). Since g2

k ∈ P2n and µ interpolates all of the

moments of β, we have 0 6 〈M(n)ĝk, ĝk〉 = Λβ(g2
k) =

∫
g2

kdµ =
r
∑

j=1
ρjg2

k(wj) =

ρk(detU)2. Since detU 6= 0, it follows that ρk > 0, and since card supp µ > r (by
(1.2)), then ρk > 0. Now µ is a representing measure for β with supp µ = V , so
(1.2) implies that r ≡ rankM(n) 6 rankM(n + 1)[µ] 6 card supp µ = cardV =
r, whenceM(n + 1)[µ] is a flat extension ofM(n).

Conversely, let µ denote an r-atomic representing measure for β. Let V =
supp µ(⊆ V(M(n))). For p ∈ P2n, if p|V ≡ 0, then Λβ(p) =

∫
pdµ = 0. Thus β
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is V-consistent, so the conclusion that Lβ ∈ RanU2n[V ] now follows from Propo-
sition 3.6.

In the sequel we will establish a general framework for constructing exam-
ples ofM(n) satisfying r 6 v < +∞ and having flat extensionsM(n + 1) . To
motivate this, we recall from [15] that β is weakly consistent if p ∈ Pn, p|V(M(n))
≡ 0 =⇒ p(X) = 0 in CM(n); (1.1) shows that weak consistency is a necessary
condition for representing measures, and Proposition 2.1 in [15] shows that β
consistent =⇒ β weakly consistent =⇒M(n) recursively generated (cf. Section 4).
In Theorem 5.2 in [15] we presented the first example of a positive, weakly con-
sistent moment matrix satisfying r 6 v but having no representing measure (cf.
Theorem 3.1). In this example, M(3) is weakly consistent and extremal, and
the choice of data is motivated by considerations from algebraic geometry. The
proofs of weak consistency and of the nonexistence of a representing measure are
also established using techniques from algebraic geometry. In Example 3.9 (be-
low) we provide a numerical instance of this example, with a new proof based
entirely on moment matrix methods. For this, we require the following reformu-
lation of weak consistency in the finite variety case.

PROPOSITION 3.8. Suppose V ≡ V(M(n)) is finite. β ≡ β(2n) is weakly con-
sistent if and only if RanM(n) ⊂ RanUn[V ]; equivalently, there exists a matrix Z such
thatM(n) = Un[V ]Z.

Proof. Recall that β is weakly consistent if and only if p ∈ Pn, p|V ≡ 0 =⇒
p(X) = 0 in CM(n). Now for p ∈ Pn, p|V ≡ 0 ⇐⇒ Wn[V ] p̂ = 0, and p(X) =
0 ⇐⇒ M(n) p̂ = 0. Thus, β is weakly consistent if and only if kerWn[V ] ⊆
kerM(n), or equivalently (since the underlying spaces are finite dimensional),
[kerM(n)]⊥ ⊂ [kerWn[V ]]⊥. Since the underlying spaces are finite dimensional
and M(n) is real-symmetric, the latter inclusion is equivalent to RanM(n) ⊆
RanUn[V ], which in turn is equivalent to the existence of a factorizationM(n) =
Un[V ]Z (cf. [16]).

EXAMPLE 3.9. We use moment matrix methods to discuss a numerical in-
stance of the example of Section 5 of [15]. ConsiderM(3)(β) defined asM(3) :=(
M(2) B(3)
B(3)T C(3)

)
, where

M(2) :=



14 7
2

−67
8

79
4

1055
16

18195
64

7
2

79
4

1055
16

−67
8

−1935
32

−43115
128

−67
8

1055
16

18195
64

−1935
32

−43115
128

−926695
512

79
4

−67
8

−1935
32

1055
16

18195
64

336151
256

1055
16

−1935
32

−43115
128

18195
64

336151
256

6407195
1024

18195
64

−43115
128

−926695
512

336151
256

6407195
1024

124731423
4096


,
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B(3) :=



−67
8

−1935
32

−43115
128

−926695
512

1055
16

1895
64

336151
256

6407195
1024

18195
64

336151
256

6407195
1024

124731423
4096

−1935
32

−43115
128

−926695
512

−19736547
2048

−43115
128

−926695
512

−19736547
2048

−419176415
8192

−926695
512

−19736547
2048

−419176415
8192

−8894873563
32768


,

C(3) :=


18195

64
336151

256
6407195

1024
124731423

4096
336151

256
6407195

1024
124731423

4096
2469281827

16384
6407195

1024
124731423

4096
2469281827

16384
49568350247

65536
124731423

4096
2469281827

16384
49568350247

65536
1006568996907

262144

 .

Calculations with nested determinants show thatM(3) is positive semidefinite,
with a column basis B ≡ {1, X, Y, X2, XY, Y2, X2Y, XY2} and column dependence
relations

X3 = Y,(3.2)

Y3 = 3X +
45
4

Y− 13X2 +
65
4

XY− 13
4

Y2 − 22X2Y +
35
4

XY2.(3.3)

Thus V ≡ V(M(3)) = Z( f ) ∩ Z(g), where f (x, y) = y − x3 and g(x, y) =
y3 − (3x + 45

4 y− 13x2 + 65
4 xy− 13

4 y2 − 22x2y + 35
4 xy2). A calculation shows that

V consists of the following 8 points wi ≡ (xi, yi) (1 6 i 6 8): w1 = (0, 0), w2 =
(−1,−1), w3 = (−2,−8), w4 = ( 1

2 (−1 +
√

13),−5 + 2
√

13), w5 = (1, 1), w6 =
(2, 8), w7 = ( 1

2 (−1−
√

13),−5− 2
√

13), w8 = ( 1
2 , 1

8 ). Thus,M(3) is positive and
extremal, with r = v = 8.

A calculation (for example, in Mathematica, using Z = LinearSolve[Un[V ],
M(3)]) shows that there is a factorizationM(3) = Un[V ]Z, so Proposition 3.8 im-
plies that β is weakly consistent. A further calculation shows that Lβ /∈RanU2n[V ],
so Proposition 3.6 implies that β is not consistent, and thus admits no represent-
ing measure. In particular,M(3) admits no flat extensionM(4).

Note that (3.2) and (3.3) imply that M(3) is recursively determinate (cf.
Proposition 4.2). In Section 4 we will use Algorithm 4.10 to provide an alter-
nate proof that β admits no representing measure, by showing thatM(3) admits
no positive, recursively generated extensionM(4) and, in particular, no flat mo-
ment matrix extension (cf. Example 4.18). We next provide a general result which
implies that in this example, if µ is a positive measure with supp µ = V , then
M(3)[µ] has the same rank and variety as M(3), but does admit a flat exten-
sionM(4). More generally, the next result, when combined with Proposition 2.2,
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shows that flat extensions can occur with moment matrices having arbitrarily
large gaps v− r.

THEOREM 3.10. Let M̃ = M(n)(β̃) and suppose that r 6 v < +∞ and β̃ is
weakly consistent. There exists an r-element subset V of Ṽ ≡ V(M̃), such that if µ is
a positive measure with supp µ = V , thenM ≡ M(n)[µ] satisfies rankM = r and
V(M) = Ṽ , soM and M̃ have the same gap, andM has a flat extensionM(n + 1).

Proof. Let w1, . . . , wv denote the distinct points of Ṽ . Let B ≡ {Xi1 , . . . , Xir}
be a maximal independent set of columns of M̃. Let WB ≡ WB [Ṽ ] denote the
compression of Wn[Ṽ ] to the columns X i1 , . . . ,X ir (indexed by the same mono-
mials which index B). We assert that the columns of WB are independent. For

otherwise there is a nonzero polynomial p(x) =
r
∑

j=1
ajx

ij ∈ Pn such that WB p̂ = 0,

i.e., p|Ṽ ≡ 0. Since β̃ is weakly consistent, it follows that p(X) = 0 in CM̃,

whence
r
∑

j=1
ajX

ij = 0, contradicting the independence of the elements of B. Now,

row rank WB = column rank WB = r; it follows that there exists an r-element sub-
set of Ṽ , say V ≡ {wj1 , . . . , wjr}, such that WB [V ], the compression of WB to rows
indexed by wj1 , . . . , wjr , is invertible.

Let µ be a positive measure with supp µ = V , i.e., µ is of the form µ =
r
∑

i=1
aiδwji

with each ai > 0. Let β ≡ β(2n)[µ] be the corresponding moment

sequence of degree 2n, and consider M ≡ M(n)(β) (= M(n)[µ] � 0). We
will show that rankM = r and V(M) = Ṽ . Let D = diag(a1, . . . , ar). Since
supp µ = V , a calculation (cf. Lemma 2.4 of [24], Lemma 2.5 of [15] shows that

(3.4) M = Wn[V ]TDWn[V ].

NowM = WTW , whereW = D1/2Wn[V ], so it follows that rankM = rankW
= rankWn[V ] = rankWB [V ] = r. Note also that if p ∈ Pn and M̃ p̂ = 0, then
p|Ṽ ≡ 0, so it follows from (3.4) that p|V ≡ 0 =⇒ Wn[V ] p̂ = 0 =⇒ M p̂ = 0.
Thus, kerM̃ ⊆ kerM. Since rankM = rankM̃, we have kerM = kerM̃, whence
V(M) = V(M̃). Finally,M(n + 1)[µ] is a flat extension ofM(n)[µ], since, using
(1.2), we have r = rankM(n)[µ] 6 rankM(n + 1)[µ] 6 card supp µ = r.

EXAMPLE 3.11. We illustrate Theorem 3.10 with a continuation of Exam-
ple 3.9. Recall thatM(3)(β) is positive and extremal, with r = v = 8, and β is
weakly consistent, but β has no representing measure. Since r = v, the content
of Theorem 3.10 in this case is that if µ is a positive measure with supp µ = V ≡
V(M(3)), then M ≡ M(3)[µ] satisfies rankM = 8, V(M) = V , and M has

a flat extension M(4). With {wi}8
i=1 as in Example 3.9, let µ =

8
∑

i=1
ρiδwi , where
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ρi = i except that ρ4 = ρ7 = 1. We haveM(3)[µ] :=
(M(2) B(3)

B(3)T C(3)

)
, where

M(2) :=



36 12 18 52 365
2

5897
8

12 52 365
2 18 153

4
801
16

18 365
2

5897
8

153
4

801
16

−17343
64

52 18 153
4

365
2

5897
8

99521
32

365
2

153
4

801
16

5897
8

99521
32

1719041
128

5897
8

801
16
−17343

64
99521

32
1719041

128
30274049

512


,

B(3) :=



18 153
4

801
16

−17343
64

365
2

5897
8

99521
32

1719041
128

5897
8

99521
32

1719041
128

30274049
512

153
4

801
16

−17343
64

−893439
256

801
16

−17343
64

−893439
256

−27228159
1024

−17343
64

−893439
256

−27228159
1024

−709193727
4096


,

C(3) :=


5897

8
99521

32
1719041

128
30274049

512
99521

32
1719041

128
30274049

512
543551489

2048
1719041

128
30274049

512
543551489

2048
9954181121

8192
30274049

512
543551489

2048
9954181121

8192
185950830593

32768

 .

Calculations with nested determinants show that M is positive semidefi-
nite, with a column basis B ≡ {1, X, Y, X2, XY, Y2, X2Y, XY2}, and column de-
pendence relations f (X, Y) = 0 and g(X, Y) = 0 (with f and g as in Example 3.9).
It follows readily that r = 8 and that V(M) = Z( f ) ∩ Z(g) = V . To show that
M(4)[µ] is a flat extension of M(3)[µ], note that V(M(4)[µ]) ⊂ V(M(3)[µ]),
whence (via (1.2)) 8 = rankM(3)[µ] 6 rankM(4)[µ] 6 cardV(M(4)[µ]) 6
cardV(M(3)[µ]) = cardV = 8.

4. AN ALGORITHMIC SOLUTION TO THE RECURSIVELY
DETERMINATE TRUNCATED MOMENT PROBLEM

For a general sequence β, it may be very difficult to verify the condition of
Theorem 2.1. In this section we introduce the class of recursively determinate mo-
ment matrices; for this class, it is possible to determine the existence of extensions
M(n + 1), . . . ,M(n + v− r + 1) algorithmically, in a purely mechanical fashion
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(cf. Algorithm 4.10). To this end, we recall from [9] thatM(n) is recursively gener-
ated if the following property holds:

(4.1) p, q, pq ∈ Pn, p(X) = 0 =⇒ (pq)(X) = 0.

It follows from (1.1) that recursiveness is a necessary condition for representing
measures. It is straightforward to verify recursiveness: it suffices to check that
whenever the column relation Xi = p(X) expresses column Xi as a linear com-
bination of columns to its left inM(n) (for some p ∈ Pn), then Xi+j = (xj p)(X)
whenever |j| 6 n− |i|. Note, in particular, that ifM(n− 1) is nonsingular, then
(vacuously) M(n) is recursively generated. Roughly speaking, the recursively
determinate matrices comprise the largest class for which the existence of a con-
vergent extension sequence can be detected solely by imposing recursiveness. We
next motivate the definition of recursive determinancy with a basic example.

EXAMPLE 4.1. Let d = 2 (the plane). Suppose M(n) has column depen-
dence relations of the form

Xn = p(X, Y) (p ∈ Pn−1),(4.2)

Yn = q(X, Y) (q ∈ Pn is free of the term yn).(4.3)

We will show that the preceding relations determine any possible positive, re-
cursively generated moment matrix extensionsM(n + 1),M(n + 2), . . .. Indeed,
any extensionM(n + 1) is of the form

M(n + 1) ≡
(
M(n) B(n + 1)

B(n + 1)T C(n + 1)

)
,

and since d = 2, columns Xn+1 and Yn+1 of
(

B(n+1)
C(n+1)

)
contain all of the “new

moments” of degrees 2n + 1 and 2n + 2 (see below). Since M(n + 1) is to be
positive, the Extension Principle [18] (cf. Section 2) implies that relations (4.2) and
(4.3) must hold for the columns ofM(n + 1). The requirement of recursiveness
inM(n + 1) then implies that in CM(n+1) we must have

Xn+1 = (xp)(X, Y),(4.4)

Yn+1 = (yq)(X, Y).(4.5)

These relations, when applied to the columns of
(
M(n) B(n + 1)

)
, completely

determine block B(n + 1). To see this, consider the moments of degree 2n + 1 in
B(n + 1), which form the block

Mn,n+1 ≡


β2n+1,0 β2n,1 ··· βn+2,n−1 βn+1,n βn,n+1

β2n,1 β2n−1,2 ··· βn+1,n βn,n+1 βn−1,n+2
β2n−1,2 β2n−2,3 ··· βn,n+1 βn−1,n+2 βn−2,n+3

...
...

...
...

...
...

βn+1,n βn,n+1 ··· β2,2n−1 β1,2n β0,2n+1


(with columns Xn+1, XnY, . . . , XYn, Yn+1). Since deg p 6 n − 1, relation (4.4)
uniquely determines column Xn+1 in block B(n + 1) as a linear combination of
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columns ofM(n). Thus the moments β2n+1,0, β2n,1, . . . , βn+1,n, which define col-
umn Xn+1 in Mn,n+1, are determined, and these moments propagate through the
upper left triangle of Mn,n+1. Now assume deg q = n. In the first row of Mn,n+1,
the moments transposed from column Xn+1 by moment matrix structure are used
with (4.5) to determine βn,n+1 in column Yn+1. Then, in the second row, these mo-
ments and βn,n+1 are used with (4.5) to determine βn−1,n+2. In row 3, βn,n+1 and
βn−1,n+2 are used with the earlier moments and (4.5) to determine βn−2,n+3, etc.
In this manner we successively determine all of the moments of column Yn+1 in
block Mn,n+1. In case deg q < n, column Yn+1 in block B(n + 1) is determined
from (4.5) simply as a linear combination of columns ofM(n).

Having determined B(n + 1), when relations (4.4) and (4.5) are then applied
to the columns of

(
B(n + 1)T C(n + 1)

)
, the above method yields all of the

moments of degree 2n + 2 needed to determine block C(n + 1) (which is a Hankel
matrix, since d = 2). In this way we complete the construction of an extension
M(n + 1). If M(n + 1) is positive and recursively generated, then (4.4), (4.5),
and recursiveness can be used (as above) to uniquely determine an extension
M(n + 2), and recursiveness inM(n + 2) uniquely determinesM(n + 3), and
so on. We illustrate this procedure in Example 4.15 (below).

Example 4.1 encompasses any extremal planarM(3) satisfying Y = X3. In-
deed, it is shown in Sections 4–5 of [15] that extremality implies that Y3 = q(X, Y)
where q ∈ P3 is free of the term y3, so conditions (4.2) and (4.3) are satisfied. The-
orem 3.1 describes the solution of the truncated moment problem for measures
supported in a planar curve p(x, y) = 0 with deg p 6 2. [15] is related to the
truncated moment problem for y = x3, which remains unsolved. More generally,
little is known about the truncated moment problem for y = xn with n > 2, but
Example 4.1 (and Proposition 4.2 and Theorem 4.3 below) provide a framework
for generating examples and testing hypotheses (cf. Example 4.18).

We now procede to define recursive determinancy formally. Consider a
proposed extension M(n + 1) in which B(n + 1) and C(n + 1) are as yet un-
determined, and consider also a finite family of column dependence relations in
M(n),

(4.6) pi(X) = 0 (deg pi = n, 1 6 i 6 s).

Suppose further that there are corresponding monomials of degree 1, xj1 , . . . , xjs ,
such that in the column space of

(
M(n) B(n + 1)

)
, the formal system

(4.7) (xji pi)(X) = 0 (1 6 i 6 s)

determines all new moments of degree 2n + 1, leaving no “free” choices. Since
(4.7) is a system of linear equations in variables representing the new moments
of degree 2n + 1, the requirement that there are no free choices implies that the
moments of degree 2n + 1 are uniquely determined by (4.7). Using these mo-
ments, we may form block B(n + 1). Consider now the formal system (4.7) in
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the column space of
(

B(n + 1)T C(n + 1)
)
, and suppose that this system de-

termines all moments of degree 2n + 2 for C(n + 1), with no free choices. As
above, since there are no free choices and the system is linear in the moments
of degree 2n + 2, these moments are uniquely determined. Defining C(n + 1) in
this way, we say that the resulting extension M(n + 1) is recursively determined.
Note that there can be only one recursively determined extensionM(n + 1) that
is recursively generated, because in such an extension all systems (4.7) must be
valid simultaneously.

M(n) is recursively determinate if it enjoys the following property: for each
i > 0, if M(n + i) is a positive, recursively generated extension of M(n), then
M(n + i) admits a recursively determined extensionM(n + i + 1). In this defi-
nition, we do not presuppose thatM(n + i + 1) is itself recursively generated or
positive semidefinite. For i = 0, we considerM(n) to be a (trivial) extension of
itself, so ifM(n) is recursively determinate, positive, and recursively generated,
then the definition entails a recursively determined extension M(n + 1). Note
that if M(n) is recursively determinate and M(n + i) (i > 0) is a positive and
recursively generated extension, then M(n + i) is also recursively determined.
Indeed, the Extension Principle [18] implies that M(n + i − 1) is positive and
recursively generated, soM(n + i − 1) has a recursively determined extension,
which must then coincide withM(n + i).

The fundamental example of a recursively determinate moment matrix con-
cerns the case of flat data, whereM(n) � 0 satisfies rankM(n) = rankM(n− 1).
In this case, for each i ∈ Zd

+ with |i| = n, there exists pi ∈ Pn−1 such that
Xi = pi(X) in CM(n). The main result of [8] (closely related to Theorem 1.1) is
that in this case, the formal system Xi+j = (xj pi)(X) (|i| = n, |j| = 1) admits
a unique solution, leading to a unique flat, positive, recursively generated ex-
tension M(n + 1). Further, Theorem 1.2 implies that in this case v = r, so the
existence of a flat extension M(n + 1) is consistent with Theorem 4.3 (below).
We next identify a family of recursively determinate planar moment matrices;
instances of this family appear in Examples 3.3, 3.9, 4.15, 4.18.

PROPOSITION 4.2. Let d = 2. M(n) is recursively determinate if it has column
relations of the form Xn = p(X, Y), with deg p < n, and Yn = q(X, Y), where deg q 6
n and q is free of the term yn.

The proof of Proposition 4.2 is essentially contained in Example 4.1; observe
that ifM(n + i) is a positive, recursively generated extension ofM(n), then in
CM(n+i) we have Xn+i = (xi p)(X, Y) and Yn+i = (yiq)(X, Y), so (as in Exam-
ple 4.1) we may define a recursively determined extensionM(n + i + 1) via the
relations Xn+i+1 = (xi+1 p)(X, Y) and Yn+i+1 = (yi+1q)(X, Y). A modification of
the argument in Example 4.1 shows that Proposition 4.2 also holds if the roles of
p and q are reversed.
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The main result of this section, which follows, shows that for the class of
recursively determinate moment matrices with finite variety, we can refine Theo-
rem 2.1 so as to detect minimal representing measures.

THEOREM 4.3. SupposeM(n)(β) is recursively determinate, with r 6 v < +∞.
The following are equivalent:

(i) β has a representing measure;
(ii) There exists i, 0 6 i 6 v− r, such thatM(n) admits successive positive, recur-

sively determined extensionsM(n + 1), . . . ,M(n + i + 1), andM(n + i + 1) is a flat
extension ofM(n + i).

If the preceding conditions hold, and if i is minimal with respect to the flat extension
property for a particular extension sequence satisfying (ii), then the unique representing
measure forM(n + i + 1) (cf. Theorem 1.2) is a minimal representing measure for β.

As with Theorem 2.1, a version of Theorem 4.3 holds for the case when the
variety is not necessarily finite (cf. Remark 4.11). Theorem 4.3 shows that ifM(n)
(with finite variety) is recursively determinate and has a representing measure,
then a minimal representing measure always corresponds to minimum-length
convergent extension sequence. Whether this behavior holds for arbitraryM(n)
is a question that we discuss further below (cf. Question 4.13 and Example 4.14).
In Algorithm 4.10 we describe a computational procedure for verifying whether
the conditions of Theorem 4.3(ii) are satisfied.

For the proof of Theorem 4.3 we require several preliminary results. We
begin by deriving another necessary condition for the existence of a positive mo-

ment matrix extensionM(n + 1) ≡
( M(n) B(n+1)

B(n+1)T C(n+1)

)
. In the sequel, for a vector

h with components indexed by the monomials in Pn+1 in degree-lexicographic
order, let [h]n denote the projection of h onto the components indexed by the
monomials in Pn.

PROPOSITION 4.4. SupposeM(n + 1) � 0 and let p ∈ Pn with p(X) = 0 in
CM(n). For each polynomial q with deg q 6 n + 1− deg p,

(i) [(pq)(X)]n = 0 in the column space of
(
M(n) B(n + 1)

)
, and

(ii) ifM(n + 1) is recursively generated, then (pq)(X) = 0 in CM(n+1).

We require the following lemma.

LEMMA 4.5. Suppose M(n + 1) � 0 and let p ∈ Pn−1 with p(X) = 0 in
CM(n). If |j| = 1, then (xj p)(X) = 0 in CM(n).

Proof. SinceM(n + 1) � 0 and p(X) = 0 in CM(n), the Extension Principle
implies that p(X) = 0 in CM(n+1), i.e., M(n + 1) p̂ = 0. Since deg p < n and

|j| = 1, then for s ∈ Pn, 〈M(n) p̂xj, ŝ〉 = Λ(pxjs) = 〈M(n + 1) p̂, x̂js〉 = 0,
whence (pxj)(X) =M(n) p̂xj = 0 in CM(n).
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Proof of Proposition 4.4. (i) Let k = deg q (6 n + 1− deg p), so that q(x) =
∑
|j|6k

ajxj. Since [(pq)(X)]n = ∑
|j|6k

[aj(pxj)(X)]n, we may assume that q is a mono-

mial, of the form q(x) = xj for some j with |j| = k. Consider first the case when
deg p = n and k = 1. Since p(X) = 0 inM(n) andM(n + 1) � 0, the Extension
Principle implies that p(X) = 0 in M(n + 1), and thus 〈M(n + 1) p̂, û〉 = 0
for every u ∈ Pn+1. In particular, for each s ∈ Pn, if u = xjs, then 0 =
〈M(n + 1) p̂, x̂js〉 = Λ(pxjs) = 〈M(n + 1) p̂xj, ŝ〉, whence [(pxj)(X)]n = 0.

Now suppose k > 1 and write xj = xj1 · · · xjk , where |ji| = 1, 1 6 i 6 k. If
k + deg p 6 n, we may apply Lemma 4.5 successively to conclude that in CM(n),
(xj1 p)(X) = 0, (xj1 xj2 p)(X) = 0, . . . , (xj p)(X) = (xj1 · · · xjk p)(X) = 0. In the
remaining case, k + deg p = n + 1. We may apply Lemma 4.5 successively (as
above) to derive (xj2 · · · xjk p)(X) = 0 in CM(n), and then apply the first case
(when deg p=n and k=1) to conclude that [(xj p)(X)]n =[(xj1(xj2 · · · xjk p))(X)]n
= 0. This completes the proof of (i).

(ii) Suppose M(n + 1) is both positive and recursively generated. Since
p(X) = 0 in CM(n), the Extension Principle implies that p(X) = 0 in CM(n+1),
whence recursiveness implies that (pq)(X) = 0 in CM(n+1).

COROLLARY 4.6. SupposeM(n + 1) is positive and that in CM(n), X j1 = p1(X)
(|j1| 6 n, deg p1 6 n, p1(x) is free of xj1 ) and X j2 = p2(X) (|j2| 6 n, deg p2 6 n,
p2(x) is free of xj2 ). If i1, i2 ∈ Zd

+ satisfy i1 + j1 = i2 + j2 and |i1|+ |j1| = |i2|+ |j2| =
n + 1, then (xi1 p1)(X) = (xi2 p2)(X) in C(M(n) B(n+1) ). Moreover, if M(n + 1) is
also recursively generated, then (xi1 p1)(X) = (xi2 p2)(X) in CM(n+1).

For the truncated complex moment problem, an analogue of Proposition 4.4
appears in Theorem 1.6 in [9]. We illustrate Proposition 4.4 and Corollary 4.6 with
an example of a positive, recursively generatedM(n) with no positive extension
M(n + 1).

EXAMPLE 4.7. Let d = 2 and considerM(3) of the form

1 0 0 1 0 1 0 0 0 0
0 1 0 0 0 0 α 0 b 0
0 0 1 0 0 0 0 b 0 2−b
1 0 0 α 0 b 0 γ 0 0
0 0 0 0 b 0 γ 0 0 0
1 0 0 b 0 2−b 0 0 0 δ
0 α 0 0 γ 0 e 0 bα 0
0 0 b γ 0 0 0 bα 0 b2

0 b 0 0 0 0 bα 0 b2 0
0 0 2−b 0 0 δ 0 b2 0 f


,

where α = −2+b+4b2

−1+4b , δ = −4b(b − 1), and γ = −4b(b−1)
−1+4b . A calculation with

nested determinants shows that for 0 < b < 1
4 and e and f sufficiently large,

M(3) is positive and recursively generated, withM(2) � 0, rankM(3) = 8, and
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column relations

X2Y = 1 + bY− 1
2

X2 − 1
2

Y2,(4.8)

XY2 = bX.(4.9)

Proposition 4.4(i) implies that in any positive extensionM(4) we must have Y +
bY2 − 1

2 X2Y− 1
2 Y3 = X2Y2 = bX2 in the columns of

(
M(3) B(4)

)
. Now the

last entry in bX2 is 0, but if f is sufficiently large, we can insure that the last entry
in Y + bY2 − 1

2 X2Y − 1
2 Y3 is nonzero. Thus M(3) admits no positive extension

M(4).

In Example 4.7, the system (4.8)–(4.9) recursively determined two different
choices for column X2Y2. It is clear from Corollary 4.6 that if a system of depen-
dence relations inM(n) leads to such conflicting choices for moments of degree
2n + 1, thenM(n) admits no positive extensionM(n + 1) (and thus admits no
representing measure). This observation is a basic ingredient in Algorithm 4.10
(below).

COROLLARY 4.8. Suppose M(n) is recursively determinate. If β has a repre-
senting measure, then M(n) has unique successive recursively determined extensions
M(n + 1), M(n + 2), . . ., which are also the unique successive positive, recursively
generated extensions ofM(n).

Proof. If β has a representing measure, then [2] implies that β has a finitely
atomic representing measure ν (cf. Section 2), and thus M(n + 1)[ν], M(n +
2)[ν], . . . are positive, recursively generated extensions. Suppose M(n + 1) is
a recursively determined extension, as determined from some system (4.6)–(4.7).
Proposition 4.4 implies that (4.6)–(4.7) also hold in M(n + 1)[ν], so M(n + 1)
must coincide with M(n + 1)[ν] and, in particular, M(n + 1) is also positive
and recursively generated. Assume by induction thatM(n + i)[µ] is the unique
recursively determined extension of M(n) of degree 2(n + i). Since M(n) is
recursively determinate and M(n + i)[µ] is positive and recursively generated,
some system S in the column space ofM(n + i)[µ], together with recursiveness,
determines an extension M(n + i + 1). As above, Proposition 4.4 and S imply
thatM(n + i + 1) coincides withM(n + i + 1)[µ]. ThusM(n + i + 1)[µ] is the
unique recursively determined extension of M(n) of degree 2(n + i + 1) and,
clearly,M(n + i + 1)[µ] is positive and recursively generated.

Proof of Theorem 4.3. Suppose β has a representing measure. If follows as
in the proof of Theorem 2.1 that there exists a positive, recursively generated
extensionM(n + v− r + 1) satisfying v ≡ cardV(M(n)) > · · · > cardV(M(n +
v − r + 1)) > rankM(n + v − r + 1) > · · · rankM(n) ≡ r. [18] implies that
each extension M(n + i) (1 6 i 6 v − r) is positive and recursively generated,
and is thus recursively determined (see the remarks following the definition of
recursive determinancy). As in the proof of Theorem 2.1, it now follows that for
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some i, 0 6 i 6 v− r,M(n + i + 1) is a flat extension ofM(n + i). Conversely,
the existence of such a flat extension, together with Theorem 1.1, immediately
implies the existence of a rankM(n + i)-atomic representing measure for β.

Now suppose (ii) holds and that i is minimal with respect to the flat ex-
tension property. Let µ be the unique representing measure corresponding to
the flat extensionM(n + i + 1) (cf. Theorem 1.2), which is rankM(n + i)-atomic.
If ν is a minimal representing measure for β, then ν is finitely atomic, and the
matrices M(n + 1)[ν],M(n + 2)[ν], . . . are positive and recursively generated.
Since M(n) is recursively determinate, Corollary 4.8 implies that these exten-
sions must coincide with the positive, recursively generated extensionsM(n + 1)
(= M(n + 1)[µ]),M(n + 2) (= M(n + 2)[µ]), . . .. It follows from Corollary 2.6
in [13] that µ = ν, so rankM(n + i) is the size of the support of a minimal repre-
senting measure for β.

REMARK 4.9. An example of recursive determinancy in the truncated com-
plex moment problem is implicit in [19]. In the moment problem for a complex
sequence γ ≡ γ(2n), suppose the complex moment matrix M(n)(γ) enjoys a col-
umn dependence relation of the form Zn = p(Z, Z), deg p < n. Since column
Zn+1 (for a proposed extension M(n + 1)) contains all moments of degrees 2n + 1
and 2n + 2 (up to conjugation), we may define an analytic extension by imposing
Zn+1 = (zp)(Z, Z). In Theorem 2.2 in [19] we proved that such a sequence γ
has a finitely atomic representing measure if and only if M(n)(γ) admits succes-
sive positive, recursively generated analytic extensions M(n + 1), . . . , M(2n− 2)
(where each M(n + j) is determined by Zn+j = (zj p)(Z, Z)).

Suppose M(n)(β) is recursively determinate, with r 6 v < +∞. Theo-
rem 4.3 leads immediately to the following procedure for determining whether
or not β has a representing measure and, in the positive case, for determining a
minimal representing measure. For the case when the variety is not necessarily
finite, see Remark 4.11. Remark 4.11 also describes how to use this procedure to
decide whether or not a given moment matrix is recursively determinate.

ALGORITHM 4.10. Test for representing measures forM(n) recursively determi-
nate with r 6 v < +∞.

Algorithm. We may assume thatM(n) is positive and recursively generated, for
otherwise there is no representing measure. SinceM(n) is recursively determi-
nate, we may use the column dependence relations in M(n) to determine data
for block B(n + 1) of some recursively determined extensionM(n + 1). Proposi-
tion 4.4 and Corollary 4.6 show that if the various dependence relations inM(n)
lead to conflicting definitions for the data in B(n + 1), then β has no representing
measure. If B(n + 1) is well-defined, we test whether RanB(n + 1) ⊂ RanM(n),
or, equivalently, whether there is a matrix W satisfying B(n + 1) = M(n)W. If
such a factorization is impossible, β has no representing measure, since there can-
not be a positive extension in this case (cf. Section 2). If W does exist, it can be
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computed using elementary linear algebra. In this case, sinceM(n) is recursively
determinate, we may use recursive relations in the columns of B(n + 1)T to deter-
mine data for a block C(n + 1). Indeed, since B(n + 1)T = WTM(n), each depen-
dence relation inM(n) extends to the columns of B(n + 1)T. By our assumption
that M(n) is recursively determinate, these dependence relations propagate so
as to determine data for some moment matrix block C(n + 1). If this cannot be
done unambiguously, then (as above, using Proposition 4.4 and Corollary 4.6),
there is no representing measure for β.

IfM(n + 1) is well-defined, we check whetherM(n + 1) � 0, or, equiva-
lently, whether C(n + 1) � C ≡ B(n + 1)TW. If such is not the case, β has no
representing measure. SupposeM(n + 1) � 0. If rankM(n + 1) = rankM(n),
then the unique representing measure for M(n + 1) is a minimal representing
measure for β and may be computed as in Theorem 1.2. Suppose M(n + 1) is
not a flat extension. IfM(n + 1) is not recursively generated, then Corollary 4.6
implies that there is no representing measure. If M(n + 1) is recursively gen-
erated, then, since M(n) is recursively determinate, we may repeat the above
procedure starting with M(n + 1), so as to construct a recursively determined
extensionM(n + 2) . In general, having constructed a positive, recursively gen-
erated extension M(n + i) (as above), if the recursively determined extension
M(n + i + 1) fails to be positive and recursively generated, then β has no rep-
resenting measure. On the other hand, if a recursively determined extension
M(n + i + 1) is a flat extension ofM(n + i), then the unique representing mea-
sure forM(n + i + 1) is a representing measure for β, and a minimal representing
measure for β corresponds to a minimal i with the flat extension property (Theo-
rem 4.3). In the case when a measure exists, Theorem 4.3 guarantees that there is a
flat extensionM(n + i + 1) for some i 6 v− r. Thus, after at most v− r + 1 exten-
sion steps, we are able to conclude whether or not β has a representing measure,
and if a measure exists, we are able to compute a minimal representing measure
using Theorem 4.3 and Theorem 1.2.

REMARK 4.11. (i) In many cases we can expect the preceding algorithm to
terminate in far fewer than v− r + 1 steps. To see this, let d = 2 (the plane) and
consider a recursively determinate M(n) whose only column dependence rela-
tions are of the form Xn = p(X, Y) (deg p < n) and Yn = q(X, Y) (deg q < n). In
this case, r = (n+1)(n+2)

2 − 2. Let us assume that f and g have n2 common zeros
in the plane, so that the gap is v− r = n2−3n+2

2 . When we examine how the above
dependence relations propagate in successive recursively determined extensions
M(n + 1),M(n + 2) . . ., we see that in the case where there is a measure, we must
achieve a flat extension after at most n− 1 steps, for in the extensionM(2n− 1)
(= M(n + (n − 1))), every column of degree 2n − 1 will be recursively deter-
mined. Thus, the actual number of extensions leading to a first flat extension is
of order at most n, as compared to the order n2 estimate from the gap.

(ii) As noted in Section 2, [2] implies that if β(2n) has a representing measure,
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then it has a representing measure ν with card supp ν 6 dimP2n. Using this re-
sult, it is not difficult to derive versions of Theorem 4.3 and Algorithm 4.10 that
apply to the case when the variety of β is not necessarily finite; in such results,
we replace the estimate v− r by dimP2n − r (cf. Proposition 2.3 and Remark 2.4).

(iii) When Algorithm 4.10 is applied to a moment matrixM(n) that we know is
recursively determinate (e.g., from Proposition 4.2 or Proposition 4.16), then we
can be certain that the procedure will determine whether or not β(2n) has a repre-
senting measure. But the procedure of Algorithm 4.10 can actually be applied to
an arbitrary moment matrixM(n) to decide whether or notM(n) is recursively
determinate. We explain how this can be done by considering several cases.

First, consider the case when we can follow the steps of Algorithm 4.10 to
construct unique positive recursively determined extensionsM(n + 1), . . . ,M(k)
(for some k > 0), such thatM(k) is a flat extension ofM(k − 1). (In establish-
ing each extension, we are not assuming that M(n) is recursively determinate;
instead, at each stage we recursively propagate the column dependence rela-
tions, and we observe that this leads to a well-defined recursively determined
extension.) Using [8], it then follows that there exist unique successive positive,
recursively determined (flat) extensions M(k + 1), M(k + 2), . . .. Now, if M
is a positive, recursively generated extension of M(n) of degree 2n + 2i, then
we must haveM = M(n + i), soM has the recursively determined extension
M(n + i + 1); thusM(n) is recursively determinate (and has a representing mea-
sure).

Next, consider the case when we can follow the steps of Algorithm 4.10 to
determine unique recursively determined extensions M(n + 1), . . . ,M(k) (for
some k > 0), such thatM(k− 1) is positive and recursively generated, butM(k)
fails to be positive and recursively generated. In this case, M(n) is recursively
determinate, but there is no representing measure.

Consider the case when either k = 0, or we have determined unique pos-
itive recursively determined extensions M(n + 1), . . . ,M(k) (for some k > 0).
When we try to construct an extensionM(k + 1) by recursively propagating all of
the column relations inM(k), it may happen that there are some “free” (undeter-
mined) moments of degree 2k + 1 or 2k + 2. In this case,M(n) is not recursively
determinate and Algorithm 4.10 simply does not apply toM(n). Sometimes it is
possible to choose free moments which lead to a representing measure, but this is
not done by Algorithm 4.10. For example, consider the truncated moment prob-
lem for planar measures supported in the parabola y = x2. Theorem 3.1 shows
that β(2n) has a representing measure supported in this curve if and only ifM(n)
is positive and recursively generated, has a column relation Y = X2, and satisfies
r 6 v. There are cases where M(n) satisfies these conditions but is not recur-
sively determinate. In these cases, it is always possible to construct a positive,
rank-increasing extensionM(n + 1) which has a flat extensionM(n + 2) (yield-
ing a representing measure supported in the parabola), but this construction is
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beyond the scope of Algorithm 4.10 and uses special features of a moment matrix
M(n) with a column relation Y = X2.

If we attempt to apply Algorithm 4.10 in a case where M(n) is not recur-
sively determinate, the results may be inconclusive. For example, if M(n) is
invertible, then all of the moments in block B(n + 1) are free choices. Once we
select a definite choice for the new moments, this may lead (via Algorithm 4.10)
to successive positive extensions M(n + 1), . . . ,M(k) (for some k > 0) before
finally leading to the conclusion that M(k) has no representing measure. But
this says nothing about whetherM(n) has a measure. One would have to start
with another choice for B(n + 1) and try again; since there are infinitely many
choices for B(n + 1), it is impossible to implement this case algorithmically. An-
other possibility is that free choices at each extension step lead to a sequence of
rank-increasing positive extensionsM(n + 1),M(n + 2), . . . with no conclusion
at each stage. The ultimate M(∞) may or may not have a measure, and the
present theory of the full moment problem may not be able to decide. Further, if
it is possible to determine thatM(∞) does not have a measure, this conclusion
does not necessarily apply toM(n). (It is known that a planarM(1) � 0 always
admits a representing measure, but the analogous problem forM(2) � 0 is open.
For an example of a planarM(3) � 0 having no representing measure, see [10].)

We may summarize the preceding discussion as follows. M(n) is recur-
sively determinate if and only if the following holds: when the steps of Algo-
rithm 4.10 are applied to M(n), we arrive at a recursively determined exten-
sionM(n + k + 1) of some positive, recursively generated extensionM(n + k),
and either (i) rankM(n + k + 1) = rankM(n + k) (a measure exists), or (ii)
M(n + k + 1) is not recursively generated (there is no measure). In every other
case, within 1 + dimP2n− r extension steps, some positive, recursively generated
extensionM(n + k) fails to have a recursively determined extension, soM(n) is
not recursively determinate.

Whether the general result of Remark 4.11(ii) is actually needed is unclear,
since the following question is open.

QUESTION 4.12. IfM(n) is recursively determinate, is the variety ofM(n) fi-
nite?

Theorem 4.3 shows that for M(n + 1) recursively determinate, minimal
representing measures correspond to minimal-length convergent extension se-
quences. Recall from Proposition 2.3 that if a general β(2n) has a representing
measure, then it has a convergent extension sequence. It is unclear how the length
of such a sequence is related to the size of the corresponding measure.

QUESTION 4.13. Suppose β ≡ β(2n) has a representing measure. Does a mini-
mal representing measure always correspond to a minimal-length convergent extension
sequence?
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In the positive direction (apart from Theorem 4.3), we note that if a minimal-
length convergent extension sequence has length 0 or 1, then the measure cor-
responding to the terminating flat extension is rankM(n)-atomic, and is thus a
minimal representing measure for β (by (1.2)). On the other hand, we next show
that convergent extension sequences of equal length may lead to representing
measures of differing sizes, which perhaps suggests a negative answer to Ques-
tion 4.13.

EXAMPLE 4.14. Let µD denote planar Lebesgue measure restricted to the
closed unit disk D. It is known that µD has a cubature rule ν of degree 8 with
16 nodes [6], [4], [5]. Consider the extension sequence M(4)[ν] (= M(4)[µD]),
M(5)[ν], M(6)[ν]. Since the disk has nonempty interior, rankM(4)[µD] = 15.
If rankM(5)[ν] = 15, thenM(5)[ν] is a flat extension ofM(4)[ν], whence The-
orem 1.2 implies that the unique representing measure forM(5)[ν] is 15-atomic.
Since ν is a 16-atomic representing measure forM(5)[ν], we conclude that 16 6
rankM(5)[ν] 6 card supp ν = 16, whence rankM(5)[ν] = 16. Similarly, we have
16 = rankM(5)[ν] 6 rankM(6)[ν] 6 card supp ν = 16, soM(6)[ν] is a flat ex-
tension ofM(5)[ν]. ThusM(4)[µD] −→ M(5)[ν] −→ M(6)[ν] is a convergent
extension sequence of length 2 leading to a 16-atomic representing measure for
β ≡ β(8)[µD].

We will now show that there also exists a length-2 convergent extension se-
quence leading to an 18-atomic representing measure for β. Indeed, it is known
that a minimal cubature rule for µD of degree 9 has 18 nodes (see [3], [4], [6]
and the discussion and references in Section 5 of [21]). It is proved in Corollary

5.11 in [21] that each such rule arises by first completing
(M(4)[µD] B(5)[µD]

B(5)[µD]T

)
to

a rank 18 M(5) and by then constructing a flat extension M(6). (The result in
[21] is stated in terms of complex moment matrices, but the corresponding result
for real moment matrices follows from the equivalence of the real and complex
truncated moment problems (see Section 2 of [13]).) The resulting length-2 con-
vergent extension sequence M(4)[µD] −→ M(5) −→ M(6) thus leads to an
18-atomic representing measure for β. This example would provide a negative
answer to Question 4.13 were it known that the 16-node cubature rule ν cited
above is a minimal degree-8 rule for µD; however, it remains an open question as
to whetherM(4)[µD] admits a flat extensionM(5) and a corresponding 15-node
minimal rule of degree 8.

We conclude this section with several examples illustrating Theorem 4.3 and
Algorithm 4.10. For these examples, we explicitly compute the variety of each
extension, but this is not really necessary. Indeed, once we know that v is fi-
nite (say, from Bezout’s Theorem), then we know in advance that Algorithm 4.10
will determine the existence of a measure within v − r + 1 extension steps. As
noted in Remark 4.11(iii), we can also apply the method of Algorithm 4.10 with-
out knowing that v is finite or even thatM(n) is recursively determinate. In this
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case, if it is possible to achieve a recursively determined, positive and recursively
generated extensionM(n + k), then we can use the condition rankM(n + k) =
rankM(n + k − 1) as an exit test which guarantees the existence of a finitely
atomic representing measure. Only if we wish to know the atoms and densities
of this measure is it necessary to compute the variety ofM(n + k).

In the sequel, when we consider a planar moment matrix (d = 2), we may
describeM(n) via the block decompositionM(n) = (Mij)06i,j6n, where Mi,j is
the (i + 1)× (j + 1) matrix of the form

βi+j,0 βi+j−1,1 ... βi+1,j−1 βi,j
βi+j−1,1 βi+j−2,2 ... βi,j βi−1,j+1

...
...

...
...

...
β j,i β j−1,i+1 ... β1,i+j−1 β0,i+j

 .

EXAMPLE 4.15. Let d = 2. We begin by constructing a positive, recursively
generated, recursively determinate M(5) with a gap of 6. Consider β ≡ β(10)

defined as follows:
moment of degree 0: β00 = 61;
moments of degree 1: β10 = 84, β01 = 168;
moments of degree 2: β20 = 726, β11 = 228, β02 = 570;
moments of degree 3: β30 = 5046, β21 = 2232, β12 = 774, β03 = 2184;
moments of degree 4: β40 = 45378, β31 = 16356, β22 = 8274, β13 = 3000, β04 =
8994;
moments of degree 5: β50 = 421734, β41 = 157944, β32 = 63138, β23 = 34032,
β14 = 12558, β05 = 38808;
moments of degree 6: β60 = 4071426, β51 = 1554648, β42 = 636882, β33 = 267708,
β24 = 148530, β15 = 55128, β06 = 173010;
moments of degree 7: β70 = 40134066, β61 = 15765360, β52 = 6478974, β43 =
2773752, β34 = 1195890, β25 = 672432, β16 = 249774, β07 = 790104;
moments of degree 8: β80 = 402564066, β71 = 161892924, β62 = 67511586, β53 =
28774680, β44 = 12609762, β35 = 5513196, β26 = 3119394, β17 = 1157160, β08 =
3675234;
moments of degree 9: β90 = 4094720430, β81 = 1679825112, β72 = 708902562,
β63 = 304637616, β54 = 132458718, β45 = 58844664, β36 = 25944498, β27 =
14721552, β18 = 5449518, β09 = 17342808;
moments of degree 10: β10,0 =42137314386, β91 =17570281368, β82 =7493058354,
β73 = 3241156524, β64 = 1416559890, β55 = 623436648, β46 = 279382002, β37 =
123845628, β28 = 70358610, β19 = 25985208, β0,10 = 82772850.

A basis B for the columns ofM(5) consists of the columns indexed by P4,
together with X4Y, X3Y2, X2Y3, and XY4. Calculations with nested determinants
show that MB , the compression of M(5) to rows and columns indexed by B,
is positive definite, whence M(5) is positive semidefinite. Further, the column
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dependence relations

X5 =−12X3+8X4+12XY−14X2Y+X4Y+6Y2+XY2−2X2Y2 + Y3,(4.10)

Y5 =120 · 1− 274Y + 225Y2 − 85Y3 + 15Y4,(4.11)

imply that rankM(5) = 19 and that V(M(5)) = Z(u) ∩ Z(s), where

u(x, y)= x5 − p(x, y), with(4.12)

p(x, y)=−12x3+8x4+12xy−14x2y+x4y+6y2+xy2−2x2y2+y3;

s(x, y)=y5 − q(x, y), with q(x, y) = 120− 274y + 225y2 − 85y3 + 15y4.(4.13)

A calculation shows that V(M(5)) consists of the following 25 points wi ≡ (xi, yi)
(1 6 i 6 25) (so the gap is 6): w1 = (7, 1), w2 = (8, 2), w3 = (9, 3), w4 = (10, 4),
w5 = (11, 5), w6 = (−1, 1), w7 = (1, 1), w8 = (1 −

√
2, 1), w9 = (1 +

√
2, 1),

w10 = (−
√

2, 2), w11 = (
√

2, 2), w12 = (1−
√

3, 2), w13 = (1 +
√

3, 2), w14 =
(−1, 3), w15 = (3, 3), w16 = (−

√
3, 3), w17 = (

√
3, 3), w18 = (−2, 4), w19 = (2, 4),

w20 = (1−
√

5, 4), w21 = (1 +
√

5, 4), w22 = (−
√

5, 5), w23 = (
√

5, 5), w24 =
(1−

√
6, 5), w25 = (1 +

√
6, 5).

From Proposition 4.2 (but reversing the roles of p and q), we see thatM(5)
is recursively determinate. We will use Theorem 4.3 and Algorithm 4.10 to de-
termine whether β admits a representing measure; since v − r = 6, at most 7
extension steps will be required, and it will be possible to revise this estimate
downward as we procede. Following Algorithm 4.10, we first construct a recur-
sively determined extension M(6), with moments of degrees 11 and 12 deter-
mined from the relations

X6 = (xp)(X, Y),(4.14)

Y6 = (yq)(X, Y).(4.15)

M(6) is positive semidefinite and recursively generated, with a column basis B′
consisting of the 19 columns inM(6) corresponding to B, together with columns
X6, X3Y3, X2Y4; thus r = 22. InM(6), the column relations X5Y = (yp)(X, Y)
and Y5X = (xq)(X, Y), together with (4.10)–(4.11) and (4.14)–(4.15), readily imply
that kerM(6) = 〈û, ŝ, x̂u, ŷu, x̂s, ŷs〉, whence V ′ ≡ V(M(6)) = Z(u) ∩ Z(s) =
V(M(5)), so we again have v = 25. Since inM(6) we have v− r = 3 andM(6)
is recursively determinate (by Proposition 4.2), we see that at most 4 additional
extension steps are needed to resolve the existence of a representing measure
for β.

We next construct a recursively determined extensionM(7) from the rela-
tions X7 = (x2 p)(X, Y) and Y7 = (y2q)(X, Y), and it results thatM(7) is positive
semidefinite and recursively generated, with r = 23. Indeed, a column basis
B′′ consists of the 22 columns in M(7) corresponding to B′, together with col-
umn X7. To analyze V(M(7)), note that by positivity, the column dependence
relations in M(6) extend to M(7). Next, consider the dependence relations
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X7 = (x2 p)(X, Y), X6Y = (xyp)(X, Y), X5Y2 = (y2 p)(X, Y), Y7 = (y2q)(X, Y),
Y6X = (yxq)(X, Y), and Y5X2 = (x2q)(X, Y). The common zeros of x2u(= x7 −
x2 p), xyu(= x6y− xyp), y2u(= x5y2 − y2 p), y2s(= y7 − y2q), xys(= y6x− yxq),
y2s(= y5x2− x2q), and of the polynomials corresponding to kerM(6), clearly co-
incide with Z(p) ∩ Z(q) = V(M(5)). However, there is also a dependence rela-
tion X3Y4 = h(X, Y), where h(x, y) = −1320 + 120x + 2750y + 264x2 − 250xy−
1925y2 − 24x3 − 550x2y + 175xy2 + 550y3 + 50x3y + 385x2y2 − 50xy3 − 55y4 −
35x3y2 − 110x2y3 + 5xy4 + 10x3y3 + 11x2y4. Thus, a basis for kerM(7) consists

of {x̂iyj p}i,j>0,i+j62, {x̂iyjq}i,j>0,i+j62, and ĝ (where g(x, y) = x3y4 − h(x, y)), so
V ′′ ≡ V(M(7)) = Z(u) ∩ Z(s) ∩ Z(g) = {wi}16i623, whenceM(7) is extremal
(with r = v = 23).

At this point, we can procede either by continuing with Theorem 4.3 and
Algorithm 4.10 to compute a recursively determined extensionM(8), or by ap-
plying Theorem 3.4 (concerning the extremal case). In the first approach, since the
gap inM(7) is 0, the next extension step is decisive. Indeed, we find thatM(8),
determined using X8 = (x3 p)(X, Y) and Y8 = (y3q)(X, Y), is a flat extension of

M(7), with a corresponding representing measure µ ≡
23
∑

i=1
ρiδwi that can be com-

puted as in Theorem 1.2. Alternately, using Theorem 3.2 (and the notation from
Section 3), we find that Lβ(14) ∈ RanU14[V ′′], so that β(14) is consistent. The unique

representing measure for β(14) is thus of the above form, where ρ ≡ (ρ1, . . . , ρ23)
is determined by UB′′ [V ′′]ρT = vT

B′′ (vB′′ is the vector of moments correspond-
ing to the monomials in basis B′′ in degree-lexicographic order; cf. Theorem 3.2).
Using either approach, we find that ρ1 = ρ2 = 2, ρ3 = ρ4 = ρ5 = 1, and ρi = 3
(6 6 i 6 23) . Thus, Theorem 4.3 implies that µ is a minimal representing measure
for β.

The next example concerns d = 3 and requires the following preliminary
result, which identifies, from among the (n+1)(n+2)

2 columns of degree n inM(n),
a determinate set of n + 2 columns.

PROPOSITION 4.16. Let d = 3. M(n) is recursively determinate if each of the
following columns of degree n,

Fn : Xn, Xn−iYZi−1 (1 6 i 6 n− 1), Yn, Zn,

can be expressed as linear combinations of columns of strictly smaller degree.

Proof. We observe first that the columns of Fn contain all moments of de-
grees 2n − 1 and 2n. Indeed, in block B(n), column Xn contains β jrs with n 6
j 6 2n − 1, r, s > 0 and r + s + j = 2n − 1. Further, for 1 6 i 6 n − 1,
columns Yn, Zn, and Xn−iYZi−1 contain all moments βn−i,r,s with r, s > 0 and
r + s + n− i = 2n− 1. Columns Yn and Zn together contain the moments β0,r,s
(r + s = 2n − 1, r, s > 0). In block C(n), column Xn contains all moments β jrs
with n 6 j 6 2n, r, s > 0, and r + s + j = 2n. For 1 6 i 6 n− 1, the moments
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βn−i,r,s with r, s > 0 and n− i + r + s = 2n are located in columns Xn−iYZi−1, Yn,
and Zn. Finally, columns Yn and Zn contain the moments β0,r,s with r, s > 0 and
r + s = 2n.

Now suppose thatM(n + i) is a positive, recursively generated extension of
M(n). By applying recursiveness to the columns in Fn (extended intoM(n + i)
via positivity), we see that in the column space of M(n + i), each column in
Fn+i can be expressed as some linear combination of columns of strictly smaller
degree. It follows that by propagating these relations into degree n + i + 1 (which
can be done in various ways), we can determine columns for Fn+i+1 (first in
block B(n + i + 1), then in block C(n + i + 1)), and thereby define a recursively
determined extensionM(n + i + 1).

EXAMPLE 4.17. We consider a 3-dimensional moment matrixM(4)(β) with
a gap of 7. Since there are 165 distinct monomials xiyjzk in P8, we record the
moments of β(8) in an appendix (Section 5). The size ofM(4) is 35× 35; by using
nested determinants, we see that M(2) is positive definite, i.e., M(2) � 0. In
M(3) we have the single column dependence relation

(4.16) X2Y = 5XY− 4Y,

and if we delete fromM(3) the row and column corresponding to X2Y, the re-
sulting compression is positive definite; thus M(3) � 0. In M(4) we have the
following degree-4 column relations:

X4 = 12X3 − 49X2 + 78X− 40,(4.17)

X3Y = 5X2Y− 4XY,(4.18)

X2Y2 = 5XY2 − 4Y2,(4.19)

X2YZ = 5XYZ− 4YZ,(4.20)

XYZ2 = YZ2 + 4XY− 4Y,(4.21)

Y4 = 2Y3 + Y2 − 2Y,(4.22)

Z4 = 2XZ2 − X2 + 2XZ− 2Z3.(4.23)

In view of (4.17), (4.18), (4.20)–(4.23) and Proposition 4.16, M(4) is recursively
determinate.

Since relations (4.18)–(4.20) correspond to (4.16) via recursiveness, we see
that V(M(4)) depends only on (4.16)–(4.17) and (4.21)–(4.23), and consists of the
following 34 points: letting α = −1, 0, 2, 1, we have

(1, α,±1), (1, α,−1±
√

2),(4, α,±2), (4, 0,−1±
√

5), (2, 0,±
√

2),

(2, 0,−1±
√

3), (5, 0,±
√

5), (5, 0,−1±
√

6).(4.24)

If we delete from M(4) the eight pairs of rows and columns corresponding to
(4.16)–(4.23), nested determinants implies that the resulting compression is posi-
tive definite. ThusM(4) � 0, with r = 27 and v = 34, leaving a gap of 7.
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SinceM(4) is recursively determinate, Algorithm 4.10 permits us to resolve
the existence of a representing measure for β(8) with at most 8 extensions. We see
that the recursively determined extensionM(5) is positive and recursively gen-
erated. InM(5) all of the columns X5, Y5, Z5, X4Y, X3YZ, X2YZ2, XYZ3, X4Z,
X3Y2, X2Y3, X2Y2Z, XY2Z2, XY4, Y4Z, XZ4, YZ4 are recursively determined and
we also find the following “nonrecursive” column relation:

Y2Z3 = −YZ3 + (−1 +
√

2)Y2Z2 + (−1 +
√

2)YZ2 + XY2Z(4.25)

+ XYZ− (−1 +
√

2)XY2 + (1−
√

2)XY.

The 31 columns ofM(5) complementary to the columns in the preceding 25 de-
pendence relations define a column basis B, and the compressionMB ofM(5)
to the rows and columns corresponding to B satisfiesMB � 0. ThusM(5) � 0,
rankM(5) = 31, and V(M(5)) consists of the points of V(M(4)) that are also
zeros of

v(x, y, z) :=y2z3+yz3−(−1+
√

2)y2z2−(−1+
√

2)yz2−xy2z−xyz(4.26)

+(−1+
√

2)xy2−(1−
√

2)xy=y(1+y)(−1+
√

2−z)(x−z2).

Comparison of (4.26) with (4.24) shows that V(M(5)) = V(M(4)) \ {(1, 1,−1−√
2), (1, 2,−1−

√
2)}, so inM(5) we have r = 31, v = 32, and the gap has been

reduced to 1, implying that at most 2 additional extensions are needed.
We next use the degree-5 column relations ofM(5) to compute the follow-

ing determinate set of columns for a positive, recursively generated extension
M(6): X6, Y6, Z6, X5Y, X4YZ, X3YZ2, X2YZ3, XYZ4. There are 28 new columns
(of degree 6) in the resultingM(6). Of these, 27 are recursively determined from
dependence relations inM(5). However, a calculation shows that column X3Y3

is linearly independent of the columns in
(M(5)
B(6)T

)
, so rankM(6) = 1 +M(5) =

32. A calculation with compressions and nested determinants now shows that
M(6) > 0. Further, since the only new column dependence relations inM(6) are
recursively determined, we have V(M(6)) = V(M(5)) (see the remarks imme-
diately preceding the proof of Theorem 2.1), whenceM(6) is extremal, with r =
v = 32. When we next compute a recursively determined extensionM(7), we see
thatM(7) is well-defined and that every column is recursively determined from
M(6). ThusM(7) is a flat extension ofM(6). Theorem 4.3 now implies that β(8)

has a representing measure and that the unique minimal representing measure µ

is 32-atomic. It follows that supp µ = V(M(7)) = V(M(6)) ≡ {ωi}32
i=1, and a

calculation as in Theorem 1.2 shows that µ =
32
∑

i=1
δωi .

In our final example we show how to use Algorithm 4.10 to establish the
nonexistence of a representing measure.

EXAMPLE 4.18. We consider againM(3) defined as in Example 3.9. Recall
that M(3) is positive and extremal, with r = v = 8 and column dependence
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relations

X3 = Y,(4.27)

Y3 = 3X +
45
4

Y− 13X2 +
65
4

XY− 13
4

Y2 − 22X2Y +
35
4

XY2.(4.28)

Proposition 4.2 implies that M(3) is recursively determinate, and we can de-
termine column X4 for block B(4) of any positive, recursively generated M(4)
by X4 = XY; we find β70 = −43115

128 , β61 = −926695
512 , β52 = −19736547

2048 , β43 =
−419176415

8192 . Using these values and the column relation Y4 = 3XY + 45
4 Y2 −

13X2Y + 65
4 XY2− 13

4 Y3− 22X2YY + 35
4 XY3, we then successively compute β34 =

−8894873563
32768 , β25 = −188695052247

131072 , β16 = −4002599665619
524288 , β07 = −84900703109071

2097152 . We
will impose the Smul’jan criteria for positivity of a moment matrix extension
(cf. Section 2). A calculation using Mathematica, W = LinearSolve[M(3), B(4)],
shows that there exists W satisfying B(4) =M(3)W. As in Example 4.1, we next
use the above relations for X4 and Y4 in the columns of

(
B(4)T C(4)

)
to deter-

mine the moments for block C := C(4). The resulting recursively determined ex-
tensionM(4) is positive semidefinite if and only if C � C′ := WTM(3)W. Now
C33 := C51 = 49568350247

65536 ≈ 756353 and C′33 = 1264843863151430003
1671544766464 ≈ 756692. Since

C33 < C′33, there is no positive, recursively generated extension M(4), whence
Theorem 4.3 implies that β(6) has no representing measure.

In the examples of [12] and [14], as in Example 4.18, when a positive, re-
cursively determinate M(n) fails to have a representing measure, it transpires
thatM(n) does not admit a positive, recursively generated extensionM(n + 1).
Moreover, if a positive moment matrixM(n) admits a flat extensionM(n + 1),
then it admits unique successive flat, positive, recursively generated extensions
M(n + 2),M(n + 3), . . . (cf. [8], [13]). These observations and Theorem 4.3 sug-
gest the following question.

QUESTION 4.19. If M(n) is recursively determinate and admits a positive, re-
cursively generated extension M(n + 1), does it admit successive positive, recursively
generated extensionsM(n + 2),M(n + 3), . . . (and a corresponding representing mea-
sure (cf. Theorem 4.3))?

5. APPENDIX

We present below the data for Example 4.17. We define a moment ma-
trix M(4)(β) in three real variables x, y, z. The moment data for each degree k
(0 6 k 6 8) follows the degree-lexicographic ordering of the monomials of de-
gree k. Thus, for degree 3, the ordering is x3, x2y, x2z, xy2, xyz, xz2, y3, y2z, yz2,
z3, and the corresponding moments are presented in the order β300, β210, β201,
β120, β111, β102, β030, β021, β012, β003. In the sequel, s denotes

√
2.

Degree 0 moment: 32.
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Degree 1 moments: 82, 9, −12 + 2s.
Degree 2 moments: 290, 21,−28 + 2s, 31,−1 + 3s, 106− 4s.
Degree 3 moments: 1186, 69,−96+2s, 67,−1 +3s, 346−4s, 39,−7+5s, 23−6s,−132+
10s.
Degree 4 moments: 5138, 261,−400 + 2s, 211,−1 + 3s, 1378− 4s, 87,−7 + 5s, 71−
6s,−400 + 10s, 91,−7 + 9s, 81− 10s,−7 + 15s, 610− 24s.
Degree 5 moments: 22882, 1029, −1800 + 2s, 787,−1 +3s, 5938− 4s, 279, −7 + 5s,
263− 6s,−1584 + 10s, 199, −7 + 9s, 225− 10s,−7 + 15s, 2178− 24s, 159, 19 + 17s,
101− 18s,−49 + 25s,85− 36s,−1232 + 58s.
Degree 6 moments: 103730, 4101,−8368 + 2s, 3091,−1 + 3s, 26482− 4s, 1047,−7 +
5s, 1031− 6s,−7000 + 10s, 631,−7 + 9s, 801− 10s,−7 + 15s, 9106− 24s, 351,−19 +
17s, 293− 18s,−49 + 25s, 277− 36s,−4368 + 58s, 331,−31 + 33s, 237− 34s,−49 +
45s, 323− 60s,−41 + 87s, 4642− 140s.
Degree 7 moments: 476866, 16389,−39576 + 2s, 12307,−1 + 3s, 120466− 4s, 4119,
−7 + 5s, 4103− 6s,−32304 + 10s, 2359,−7 + 9s, 3105− 10s,−7 + 15s, 40482− 24s,
1119,−19 + 17s, 1061− 18s,−49 + 25s, 1045− 36s,−18536 + 58s, 727,−31 + 33s,
669− 34s,−49 + 45s, 889− 60s,−41 + 87s, 17842− 140s, 639,−67 + 65s, 413− 66s,
−133 + 85s, 391− 108s,−287 + 145s, 359− 210s,−12080 + 338s.
Degree 8 moments: 2218898, 65541,−189280+2s, 49171,−1+3s, 556018−4s, 16407,
−7 + 5s, 16391− 6s,−152200 + 10s, 9271,−7 + 9s, 12321− 10s,−7 + 15s, 185074−
24s, 4191,−19 + 17s, 4133− 18s,−49 + 25s, 4117− 36s,−84240 + 58s, 2311,−31 +
33s, 2397− 34s, 49 + 45s, 3203− 60s,−41 + 87s, 77554− 140s, 1407,−67 + 65s, 1181
−66s,−133 + 85s, 1159− 108s,−287 + 145s, 1127− 210s,−47544+338s, 1291,−127
+129s, 861− 130s,−217 + 165s, 935− 204s,−287 + 261s, 1473− 350s,−239 + 507s,
42002− 816s.
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ADDED IN PROOFS. 1. A revised version of [26] entitled “Sums of squares, mo-
ment matrices and optimization over polynomials” is to appear in Emerging Applications
of Algebraic Geometry, Vol. 147 of IMA Volumes in Mathematics and its Applications
(M. Putinar and S. Sullivant (eds)), Springer.
2. A negative answer to Question 3.5 appears in the author’s forthcoming paper “Solution
of the truncated moment problem with variety y = x3”.


