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ABSTRACT. In this paper we show that the Samuel multiplicity of a lower
semi-Fredholm tuple T ∈ L(X)n of commuting bounded operators on a com-
plex Banach space X coincides with the generic dimension of the last cohomol-
ogy groups Hn(z− T, X) of its Koszul complex near z = 0. As applications we
show that the algebraic and analytic Samuel multiplicities of T coincide and
that the Samuel multiplicity is additive for closed invariant subspaces of the
symmetric Fock space.
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1. INTRODUCTION

Let T ∈ L(X)n be a commuting tuple of bounded linear operators on a
complex Banach space X, and let K•(T, X) be the cochain Koszul complex of
T. The tuple T is said to be lower semi-Fredholm if the last cohomology group

Hn(T, X) = X/
n
∑

i=1
TiX of its Koszul complex is finite dimensional. In this case

all the spaces Mk(T) = ∑
|α|=k

TαX (k ∈ N) are finite codimensional, and the di-

rect sum
⊕
k>0

Mk(T)/ Mk+1(T) can be turned in a canonical way into a graded

finitely generated C[z]-module. Hence by a classical result of Hilbert there is
a polynomial p ∈ Q[x] of degree 6 n, the Hilbert–Samuel polynomial, with
dim X/Mk(T) = p(k) for large k and such that its n-th order coefficient multi-
plied with n!

c(T) = n! lim
k→∞

dim X/Mk(T)
kn

defines a natural number, the so-called Samuel multiplicity of T.
On the other hand, for a given lower semi-Fredholm tuple T ∈ L(X)n, there

is an open polydisc U at 0 ∈ Cn such that dim Hn(z− T, X) < ∞ for all z ∈ U and



400 JÖRG ESCHMEIER

such that the last cohomology sheafH = Hn(z− T,OX
U) of the induced complex

K•(z− T,OX
U) of OU-modules is isomorphic to a quotient of a free module ON

U
on U. In particular, the stalk H0 is a Noetherian module over the local ring O0
of all convergent power series at z = 0, and hence possesses a Hilbert–Samuel
polynomial pan ∈ Q[x] such that dimH0/mkH0 = pan(k) for large k. Here m is
the maximal ideal of O0.

In a paper [4] from 1993 both versions of the Hilbert–Samuel polynomial
were studied and it was conjectured that their leading coefficients and degrees
should have a natural meaning in operator theory.

It is well known that, for T and U as above, the dimensions dim Hn(z −
T, X) depend in an upper semicontinuous way on z ∈ U and that the set of dis-
continuity points of this function is a proper analytic subset S of U. One can show
that the stabilized value of this function, that is, its constant value on U \ S, co-
incides with the rank of the coherent sheaf H = Hn(z − T,OX

U) at z = 0 (cf.
Corollary 2.2 below). In the present paper we show that the Samuel multiplic-
ity of a lower semi-Fredholm tuple T ∈ L(X)n on a complex Banach space X
coincides with the stabilized dimension of the last cohomology group at z = 0

c(T) = dim Hn(z− T, X) = rank0 H (z ∈ U \ S).

This result was proved by Xiang Fang in the case of single operators [7] and in
the case that T = (Mz1 , . . . , Mzn) is given by the multiplication operators with the
coordinate functions on a large class of functional Hilbert spaces [8]. In [5] the
method of Xiang Fang was extended to prove the above formula for quotients of
sufficiently regular Banach space tuples.

As elementary applications we prove that both versions of the Samuel mul-
tiplicity introduced by Douglas and Yan coincide for lower semi-Fredholm tuples
on Banach spaces and deduce the additivity of the Samuel multiplicity in partic-
ular cases.

The Hilbert-space case of the above results, together with a number of inter-
esting applications, is also proved, using a different method, in a paper of Xiang
Fang [10], which the author received in the very last stage of preparing this note.

2. ANALYTICALLY PARAMETERIZED COMPLEXES

A bounded analytically parameterized complex of Banach spaces with only
finite-dimensional cohomology groups is locally quasiisomorphic to a complex of
finite-dimensional vector spaces (Remark 9.4.6 in [6]). Our first aim is to deduce
a variant of this result which is still valid when only the last cohomology groups
are supposed to be finite dimensional.

THEOREM 2.1. Let X, Y be Banach spaces and let α ∈ O(U, L(Y, X)) be a holo-
morphic map on an open set U ⊂ Cn such that dim X/α(z0)Y < ∞ for some point
z0 ∈ U. Then there are an open neighbourhood V ⊂ U of z0, a Banach space E and a
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finite-dimensional subspace D ⊂ X as well as a holomorphic map u ∈ O(V, L(E, D))
such that u(0) = 0 and such that all the following maps are well-defined vector-space
isomorphisms:

D
Im u(z)

→ X
Im α(z)

, [x] 7→ [x] (z ∈ V).

Proof. For simplicity, we assume that z0 = 0. Define T = α(0) ∈ L(Y, X).
We first consider the particular case that the space Ker T has a direct com-

plement in Y, that is, Y = M⊕ Ker T for some closed subspace M ⊂ Y. By hy-
pothesis the space Im T possesses a finite-dimensional direct complement D ⊂ X.
We denote by PD and PIm T the continuous projections of X onto D and Im T given
by the decomposition X = Im T ⊕ D. For z ∈ U, the map α(z) : M ⊕ Ker T →
Im T ⊕ D possesses a matrix representation of the form

α(z) =
(

a(z) b(z)
c(z) d(z)

)
with suitable analytic operator-valued functions a, b, c, d.

Since a(0) = PIm TT|M is invertible and since X = Im α(0) + D, there is an
open zero neighbourhood V ⊂ U such that a(z) ∈ L(M, Im T) is invertible and
X = Im α(z) + D for every z ∈ V (cf. Lemma 2.1.3 in [6]).

We claim that the holomorphic map

u : V → L(Ker T, D), u(z) = d(z)− c(z)a(z)−1b(z)

has the required properties. To check this, it suffices to prove that

Im u(z) = D ∩ Im α(z) (z ∈ V).

For this purpose, the reader should observe that u(z)x = PDα(z)x − PDα(z)y,
where y ∈ M is the unique vector with PIm Tα(z)y = PIm Tα(z)x. Using the
matrix-representation of α(z) chosen above, one finds that y = a(z)−1b(z)x. As
an immediate consequence we find that

u(z)x = PDα(z)x− α(z)y + PIm Tα(z)y = α(z)(x− y) ∈ D ∩ Im α(z)

for every vector x ∈ Ker T. Conversely, if d ∈ D ∩ Im α(z), then there are vectors
x ∈ Ker T, y ∈ M with d = α(z)(x − y). Since PIm Tα(z)(x − y) = 0, it follows
that d = u(z)x. Thus the proof is complete in the case where Ker T = Ker α(0) is
complemented in Y.

It remains to prove the assertion without this additional hypothesis. By
shrinking U we can achieve that dim X/Im α(z) < ∞ for all z ∈ U. In [12]
(Section 1) it is shown that there is a family of continuous linear operators

α̃(z) : Z → `1(B) (z ∈ U)

between a Banach space Z and some `1-space `1(B) such that the associated map-
ping α̃ : U → L(Z, `1(B)) is holomorphic, all kernels Ker α̃(z) ⊂ Z (z ∈ U)
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are complemented and such that there is a surjective continuous linear operator
π : `1(B)→ X with

−1
π (Im α(z)) = Im α̃(z) (z ∈ U).

It follows that the induced maps

π̂ :
`1(B)

Im α̃(z)
→ X

Im α(z)
(z ∈ U)

are well-defined vector-space isomorphisms. Applying the first part of the proof
to the mapping α̃ ∈ O(U, L(Z, `1(B)) we find a Banach space E, a finite-dimensio-
nal subspace D ⊂ `1(B) and a holomorphic map u ∈ O(V, L(E, D)) on a suitable
zero neighbourhood V ⊂ U such that all the maps

D
Im u(z)

→ `1(B)
Im α̃(z)

, [x] 7→ [x] (z ∈ V)

are well-defined vector-space isomorphisms. Then π(D) ⊂ X is a finite-dimen-
sional subspace such that the map

V → L(E, π(D)), z 7→ πu(z)

is holomorphic and the next induced mappings are vector-space isomorphisms:

π(D)
Im πu(z)

→ X
Im α(z)

, [x] 7→ [x] (z ∈ V).

Let α ∈ O(U, L(Y, X)) and z0 ∈ U be given as in Theorem 2.1. Suppose first
that Ker α(z0) has a direct complement in Y. With the notations of the first part
of the proof of Theorem 2.1, we define

V = {z ∈ U : a(z) is invertible and X = D + Im α(z)}.
Then V ⊂ U is an open neighbourhood of z0. Exactly as in the first part of the
proof of Theorem 2.1, one can show that the chosen mapping u ∈ O(V, L(E, D))
has the property that

uO(W, E) = O(W, D) ∩ αO(W, Y)

holds for each open set W ⊂ V. Using Lemma 2.1.5 from [6] one obtains the
identity

OX
V = OD

V + αOY
V

for the associated analytic sheaves.
If Ker α(z0) is not assumed to be complemented in Y, then after shrinking

U, we can choose a lifting π : `1(B) → X and a holomorphic map α̃ : U →
L(Z, `1(B)) with pointwise complemented kernels as in the proof of Theorem 2.1.
As seen above, there are an open neighbourhood V of z0, a finite-dimensional
subspace D ⊂ `1(B) and a suitable holomorphic mapping u ∈ O(V, L(E, D))
such that

uO(W, E) = O(W, D) ∩ α̃O(W, Z)
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for each open set W ⊂ V and such that O`1(B)
V = OD

V + α̃OZ
V .

Using the explicit constructions of Z and α̃ ∈ O(U, L(Z, `1(B))) given by
Kaballo in [12] one can easily check that in this case the identities

πuO(W, E) = O(W, π(D)) ∩ αO(W, Y)

hold for every open set W ⊂ V and that the equality

OX
V = Oπ(D)

V + αOY
V

remains true on the level of sheaves. Summarizing these observations we obtain
the following result.

COROLLARY 2.2. Let X, Y be Banach spaces and let α ∈ O(U, L(Y, X)) be a
holomorphic map on an open set U ⊂ Cn.

(i) For every point z0 ∈ U with dim X/Im α(z0) < ∞, there are an open neighbour-
hood V of z0, a Banach space E, a finite-dimensional subspace D ⊂ X and a holomorphic
mapping u ∈ O(V, L(E, D)) with u(z0) = 0 such that

uO(W, E) = O(W, D) ∩ αO(W, Y)

for every open set W ⊂ V and OX
V = OD

V + αOY
V .

(ii) The subset U0 = {z ∈ U : dim X/Im α(z) < ∞} ⊂ U is open, and the quotient
sheaf OX

U0
/αOY

U0
is a coherent analytic sheaf.

Proof. Part (i) has already been proved. An elementary application of Lem-
ma 2.1.5 from [6] shows that the set U0 defined in part (ii) is open. But then part
(i) implies that, locally on U0, there are sheaf isomorphisms of the form

OD
V

uOE
V

∼−→
OX

V
αOY

V

with u as explained in part (i). A result of Markoe ([13], Proposition 5) shows that
the quotient sheaf on the left is coherent. Hence the same is true for the quotient
sheaf on the right. Since coherence of analytic sheaves is a local property, this
observation completes the proof.

Let α ∈ O(U, L(Y, X)) be a holomorphic map with Banach spaces X and Y.
Suppose that U is a connected open neighbourhood of 0 ∈ Cn and that

dim X/Im α(0) < ∞.

After shrinking U we may suppose that there are a Banach space E, a finite-
dimensional subspace D ⊂ X and a holomorphic map u ∈ O(U, L(E, D)) such
that all maps

D
Im u(z)

→ X
Im α(z)

, [x] 7→ [x] (z ∈ U)

are well-defined isomorphisms and such that

uO(U, E) = O(U, D) ∩ αO(U, Y).
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Then M = uO(U, E) = O(U, D) ∩ αO(U, Y) ⊂ O(U, D) is a C[z]-submodule.
Define

Mz = { f (z) : f ∈ M} (z ∈ U).

Since Mz = Im u(z), we find that

dim Mz + dim X/Im α(z) = dim D (z ∈ U).

Define Ok(U, D) = ∑
|α|=k

zαO(U, D) and denote by

Tk : O(U, D)→ O(U, D), f 7→ ∑
|α|6k

( f (α)(0)/α!)zα

the linear map that associates with each analytic function on U its k-th Taylor
polynomial.

COROLLARY 2.3. With the hypotheses and notations from above, we can choose a
proper analytic subset S ⊂ U such that the following identity holds for all z ∈ U \ S:

dim X/Im α(z)=min
w∈U

dim X/Im α(w)=dim D−n! lim
k→∞

dim
(M+Ok(U, D)
Ok(U, D)

)
/kn.

Proof. In [5] it was shown that there is a proper analytic set S ⊂ U with

dim Mz = max
w∈U

dim Mw = n! lim
k→∞

dim Tk(M)
kn

for all z ∈ U \ S. To complete the proof it suffices to observe that the following
maps are well-defined vector-space isomorphisms for k > 1:

M +Ok(U, D)
Ok(U, D)

→ Tk−1(M), [ f ] 7→ Tk−1( f ).

3. SAMUEL MULTIPLICITY

Let T = (T1, . . . , Tn) ∈ L(X)n be a commuting tuple of continuous linear
operators on a Banach space X. In the following we apply the results of Section 2
to the case where α(z) = z − T ∈ L(Xn, X) is the last operator in the cochain
Koszul complex K•(z− T, X) of z− T, that is,

(z− T)(xi)n
i=1 =

n

∑
i=1

(zi − Ti)xi.

Suppose that dim Hn(T, X) < ∞. The results proved so far imply that there exist
an open neighbourhood U of 0 ∈ Cn, a Banach space E, a finite-dimensional
subspace D of X and a holomorphic map u ∈ O(U, L(E, D)) with u(0) = 0 such
that the maps

D
Im u(z)

→ Hn(z− T, X), [x] 7→ [x] (z ∈ U)
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are well-defined isomorphisms and such that the identity

uO(V, E) = O(V, D) ∩
n

∑
i=1

(zi − Ti)O(V, X)

holds for each open subset V ⊂ U. Our aim is to relate the limit occurring in
Corollary 2.3 to the Samuel multiplicity of T

c(T) = n! lim
k→∞

dim
( X

∑
|α|=k

TαX

)
/kn.

To establish this relation, we use an exactness result for analytically parame-
trized complexes of Banach spaces.

LEMMA 3.1. Let X, Y, Z be Banach spaces and let Ω ⊂ Cn be open. Suppose that
α ∈ O(Ω, L(Y, X)) and β ∈ O(Ω, L(X, Z)) are analytic maps with β(z) ◦ α(z) = 0
for all z ∈ Ω and Kerβ(w) = Imα(w) for some point w ∈ Ω. Then there is a real
number r0 > 0 with the following property. For each open polydisc V = Pr(w) (0 <
r < r0), each function g = ∑

k∈Nn
gkzk ∈ O(V, X) with βg = 0 on V and any finite

family ( fk)|k|6N of vectors in Y with

α(w) fk = gk − ∑
0 6=µ6k

α(µ)(w)
µ!

fk−µ

for |k| 6 N, there is an analytic function f ∈ O(V, Y) with g = α f on V and
f (k)(w)/k! = fk for |k| 6 N.

Proof. The result forms a slight extension of Lemma 2.1.5 in [6] and can be
proved in a similar way. For simplicity, let us suppose that w = 0.

Choose a real number r0 > 0 as explained in the proof on Lemma 2.1.5 in
[6]. Let V = Pr(0) be an open polydisc with 0 < r < r0. Note that, for g and
( fk)|k|6N as in Lemma 3.1, the function h ∈ O(V, X) defined by

h(z) = g(z)− α(z) ∑
|k|6N

fkzk

possesses no non-zero Taylor coefficient of order |k|6 N and satisfies βh≡0 on V.
The proof of Lemma 2.1.5 in [6] shows that there is a function f̃ ∈ O(V, Y)

with h = α f̃ on V such that f̃ possesses no non-zero Taylor coefficient of order
|k| 6 N. But then f = f̃ + ∑

|k|6N
fkzk has all the required properties.

Let V = Pr(0) be a polydisc as in the proof of Lemma 3.1. For a given
analytic function h ∈ O(V, G) with values in some Banach space G, we shall
denote by

h(z) = ∑
k∈Nn

hkzk
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the Taylor expansion of h at z = 0. Note that, for given functions f ∈ O(V, Y)
and g ∈ O(V, X), the relation α f = g holds if and only if the following identity
holds for all k ∈ N:

α(0) fk = gk − ∑
0 6=µ6k

αµ fk−µ .

Let us return to the situation described at the beginning of Section 3. For
a lower semi-Fredholm tuple T ∈ L(X)n and u ∈ O(U, L(E, D)) as explained

there, the condition u(0) = 0 implies that X =
n
∑

i=1
TiX⊕D. In particular, the map

α(z) : Xn ⊕ D → X, ((xi)n
i=1, y) 7→

n

∑
i=1

(zi − Ti)xi + y

is onto for z = 0. We apply Lemma 3.1 with β ≡ 0 and α ∈ O(U, L(Xn ⊕ D, X))
to find an open polydisc V = Pr(0) ⊂ U such that, for each function g ∈ O(V, X),
there is a solution f ∈ O(V, Xn ⊕ D) of the equation α f = g with finitely many
prescribed Taylor coefficients as explained in Lemma 3.1.

For k ∈ N, define Vk = {p ∈ C[z] : deg(p) 6 k} and recall the notation

Mk(T) = ∑
|α|=k

TαX.

We need the following elementary and well-known result.

LEMMA 3.2. For k > 1, the following identity holds:

X
Mk(T)

=
∨
{p(T)x + Mk(T) : p ∈ Vk−1 and x ∈ D}.

Proof. For completeness sake, we indicate the elementary inductive proof.
For k = 1, the assertion obviously holds. Let k > 2 be given, and suppose

that the assertion is true for k− 1. Given x ∈ X, choose polynomials p1, . . . , ps ∈
Vk−2 and vectors xα ∈ X (|α| = k− 1) such that

x− ∑
|α|=k−1

Tαxα ∈
s

∑
i=1

pi(T)D.

For each multiindex α with |α| = k− 1, there are vectors yα,ν ∈ X (ν = 1, . . . , n)

such that xα −
n
∑

ν=1
Tνyα,ν ∈ D. The next observation completes the proof:

x− ∑
|α|=k−1

n

∑
ν=1

TαTνyα,ν ∈
s

∑
i=1

pi(T)D + ∑
|α|=k−1

TαD.

According to Lemma 3.2 the linear maps

τk :
O(V, D)
Ok(V, D)

→ X
Mk(T)

, [ f ] 7→
[

∑
|α|<k

Tα fα

]
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are surjective for k > 1. Here as before f = ∑
α∈Nn

fαzα is the Taylor expansion of f

and we have used the notations introduced at the end of Section 2. Define

M = uO(V, E) = O(V, D) ∩
n

∑
i=1

(zi − Ti)O(V, X).

The main result of this section is the following theorem.

THEOREM 3.3. For every k > 1, the following sequence, where jk denotes the
inclusion map, is well defined and exact:

0 → M +Ok(V, D)
Ok(V, D)

jk
↪→ O(V, D)
Ok(V, D)

τk→ X
Mk(T)

→ 0.

The proof of Theorem 3.3 will be divided into several parts. Fix k > 1. Note
first that the inclusion map jk is obviously injective and that τk is surjective by
Lemma 3.2. All that remains is to prove that

Ker τk = Im jk.

LEMMA 3.4. Let g ∈ M be given. Then we obtain, for all k > 1, that

∑
|j|<k

T jgj ∈ ∑
|α|=k

TαX.

Proof. Let g ∈ M = O(V, D) ∩
n
∑

i=1
(zi − Ti)O(V, X) be given. Choose func-

tions fi = ∑
j∈Nn

fi,jzj ∈ O(V, X) such that

g(z) =
n

∑
i=1

(zi − Ti) fi(z) (z ∈ V).

By comparing the Taylor coefficients of both sides, one easily obtains that gj =( n
∑

i=1,ei6j
fi,j−ei

)
−

n
∑

i=1
Ti fi,j for all j ∈ Nn. Here ei = (0, . . . , 0, 1, 0, . . . , 0) is the i-th

canonical unit vector.
By induction on k we prove that

∑
|j|<k

T jgj = − ∑
|j|=k−1

T j
( n

∑
i=1

Ti fi,j

)
∈ ∑
|α|=k

TαX

for all k > 1. For k = 1, the assertion follows by choosing j = 0 in the previous
equations. Suppose that the assertion has been proved for some natural number
k > 1. Then we find that

∑
|j|<k+1

T jgj = ∑
|j|<k

T jgj+ ∑
|j|=k

T jgj

= − ∑
|j|=k−1

T j
( n

∑
i=1

Ti fi,j

)
+ ∑
|j|=k

T j
( n

∑
i=1
ei6j

fi,j−ei

)
− ∑
|j|=k

T j
( n

∑
i=1

Ti fi,j

)
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= − ∑
|j|=k

T j
( n

∑
i=1

Ti fi,j

)
.

To verify the last equation, the reader should note that the map (i, j) 7→
(i, j + ei) defines a bijection between the sets {(i, j) : |j| = k− 1, i = 1, . . . , n} and
{(i, j) : |j| = k and i = 1, . . . , n with ei 6 j}. Thus the inductive proof is complete,
and the assertion of Lemma 3.4 follows.

As an immediate application of Lemma 3.4 we obtain that

Im jk ⊂ Ker τk (k > 1).

We shall use Lemma 3.1 to prove the opposite inclusion. Recall that we have
chosen the polydisc V = Pr(0) ⊂ U in such a way that Lemma 3.1 can be applied
with β ≡ 0 and α ∈ O(V, L(Xn ⊕ D)) defined by

α(z)((xi)n
i=1, y) =

n

∑
i=1

(zi − Ti)xi + y.

Note that the only non-zero Taylor coefficients of α at z = 0 are given by

α0 : Xn ⊕ D → X, ((xi)n
i=1, y) 7→ −

n

∑
i=1

Tixi + y;

αej : Xn ⊕ D → X, ((xi)n
i=1, y) 7→ xj (j = 1, . . . , n).

Let (hj)|j|<k = (( fi,j)n
i=1, gj)|j|<k be a family of vectors in Xn ⊕D. According

to Lemma 3.1 and our choice of V, there is an analytic function h = (( fi)n
i=1, G)

in O(V, Xn ⊕ D) with
n

∑
i=1

(zi − Ti) fi + G = αh ≡ 0

on V such that the Taylor coefficients of h of order |j| < k at z = 0 are precisely
the given vectors hj (|j| < k) if the relation

gj =
n

∑
i=1

Ti fi,j −
n

∑
i=1,ei6j

fi,j−ei

holds for all multiindices j with |j| < k. Hence to obtain the missing inclusions
Ker τk ⊂ Im jk (k > 1) it is enough to prove the following result.

LEMMA 3.5. Let k > 1. For every family (gj)|j|<k of vectors in D with

∑
|j|<k

T jgj ∈ Mk(T),

there are vectors fi,j ∈ X (|j| < k, i = 1, . . . , n) such that, for |j| < k,

gj =
n

∑
i=1

Ti fi,j −
n

∑
i=1,ei6j

fi,j−ei .
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Proof. By hypothesis there is a family (xj)|j|=k of vectors in X such that

∑
|j|<k

T jgj = ∑
|j|=k

T jxj.

For |j| = k− 1 and i = 1, . . . , n, define

fi,j =
xj+ei

nj+ei

∈ X

where, for α ∈ Nn, we denote by nα the number of indices ν ∈ {1, . . . , n} with
αν > 1. An elementary calculation shows that

∑
|j|<k

T jgj = ∑
|j|=k

T j
( n

∑
i=1,ei6j

fi,j−ei

)
= ∑
|j|=k−1

T j
( n

∑
i=1

Ti fi,j

)
.

If k = 1, then the chosen vectors f1,0, . . . , fn,0 have all properties required in the
lemma.

Let us suppose that k > 1 and that, for some 0 < m < k, a family of vectors
fi,j ∈ X (m 6 |j| < k, i = 1, . . . , n) has been defined such that the relations

gj =
n

∑
i=1

Ti fi,j −
n

∑
i=1,ei6j

fi,j−ei

hold for all m < |j| < k. For |j| = m− 1 and i = 1, . . . , n, define

fi,j =
∑n

ν=1 Tν fν,j+ei − gj+ei

nj+ei

.

Then, for every multiindex j with |j| = m, we obtain that
n

∑
i=1

Ti fi,j −
n

∑
i=1,ei6j

fi,j−ei =
n

∑
i=1

Ti fi,j −
n

∑
i=1,ei6j

∑n
ν=1 Tν fν,j − gj

nj
= gj.

Thus by descending induction we have constructed a family of vectors fi,j ∈
X (|j| < k, i = 1, . . . , n) which satisfy the conditions required in the lemma for
every multiindex j with 0 < |j| < k.

Using repeatedly the above recursive definition we obtain the following
identities which complete the proof of Lemma 3.5:

n

∑
i=1

Ti fi,0 =
n

∑
i=1

Ti

( n

∑
ν=1

Tν fν,ei − gei

)
= ∑
|j|=2

T j
( n

∑
i=1,ei6j

fi,j−ei

)
− ∑
|j|=1

T jgj

= ∑
|j|=2

T j
( n

∑
ν=1

Tν fν,j − gj

)
− ∑
|j|=1

T jgj

= · · ·

= ∑
|j|=k−1

T j
( n

∑
ν=1

Tν fν,j

)
− ∑

0<|j|<k
T jgj = g0.
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As explained before, Lemma 3.5 completes the proof of our main result
(Theorem 3.3). As an elementary application we deduce that the Samuel mul-
tiplicity of a lower semi-Fredholm tuple T ∈ L(X)n on an arbitrary Banach space
X calculates the stabilized dimension of the last cohomology groups Hn(z− T, X)
near z = 0.

COROLLARY 3.6. Let T ∈ L(X)n be a commuting tuple on a Banach space X
with dim Hn(T, X) < ∞. Then there is an open neighbourhood U of 0 ∈ Cn such that

dim Hn(z− T, X) < ∞ (z ∈ U).

If U is connected, then there is a proper analytic subset S ⊂ U satisfying the following
inequality, for all w ∈ S and z ∈ U \ S:

dim Hn(w− T, X) > dim Hn(z− T, X) = c(T).

Proof. By Lemma 2.1.3 in [6], the right essential resolvent set of T

ρr
e(T) = {z ∈ Cn : dim Hn(z− T, X) < ∞} ⊂ Cn

is open. Suppose that V ⊂ ρr
e(T) is a connected open zero neighbourhood. It was

shown by Kaballo [12] (Satz 1.5) that the set

S =
{

w ∈ V : dim Hn(w− T, X) > min
z∈V

dim Hn(z− T, X)
}

is an analytic subset of V. By its very definition, S is a proper subset of V.
Since proper analytic subsets of connected open sets in Cn have (2n)-dimensional
Lebesgue measure 0, the value of the minimum occurring above is independent
of the choice of V. Let m denote this minimal value.

To apply our previous results, we choose V as an open polydisc with centre
0 ∈ Cn such that Theorem 3.3 holds and such that Corollary 2.3 holds with V
instead of U and with α(z) = z− T ∈ L(Xn, X). Since

dim
O(V, D)
Ok(V, D)

= dimVk−1 ⊗ D = dim D
k(k + 1) · · · (k + n− 1)

n!
,

we find the following identities which complete the proof of Corollary 3.6:

c(T) = dim D− n! lim
k→∞

dim
(M +Ok(V, D)
Ok(V, D)

)
/kn = m.

4. APPLICATIONS

Let T ∈ L(X)n be a commuting tuple of bounded operators on a Banach
space X with dim Hn(T, X) < ∞. Then there is a connected open neighbourhood
U of 0 ∈ Cn such that the quotient sheaf H = OX

U/(z − T)OXn

U is a coherent
analytic sheaf on U. The stalk H0 of H at z = 0 is a Noetherian module over the
local ring O0 of all convergent power series at z = 0. Let m be the maximal ideal
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of O0. It is well known that there is a polynomial pan ∈ Q[x] with deg(p) 6 n
such that

dimC
( H0

mkH0

)
= pan(k)

for sufficiently large natural numbers k and such that the limit

can(T) = n! lim
k→∞

(
dim

H0

mkH0

)
/kn

exists and defines a non-negative integer can(T). We call can(T) the analytic
Samuel multiplicity of T. It was observed by Douglas and Yan [4] that the in-
equality can(T) 6 c(T) holds.

COROLLARY 4.1. Let T ∈ L(X)n be a commuting tuple of bounded operators on
a Banach space X with dim Hn(T, X) < ∞. Then its Samuel multiplicity and analytic
Samuel multiplicity coincide, that is, c(T) = can(T).

Proof. Since, with the above notations, the sheaf H = OX
U/(z − T)OXn

U is
coherent, standard results from analytic geometry (Theorem 7.4 in [3]) show that
the map

U → N, z 7→ can(z− T) = n! lim
k→∞

dim
( Hz

mk
zHz

)
/kn

is upper semicontinuous. We know that the points w in U with

dim Hn(w− T, X) > min
z∈U

dim Hn(z− T, X)

form a proper analytic subset S of U. Since can(z − T) = dim Hn(z − T, X) for
z ∈ U \ S (Lemma 1.3 in [5]), it follows that

can(λ− T) = min
z∈U

dim Hn(z− T, X) = c(T) (λ ∈ U \ S).

The mentioned upper semicontinuity of the function on the left implies that
can(T) > c(T). Thus the proof is complete.

Let us recall that the symmetric Fock space H(Bn) over the open Euclidean
unit ball Bn ⊂ Cn is the Hilbert space of analytic functions given by the repro-
ducing kernel

K : Bn ×Bn → C, (z, w) 7→ (1− 〈z, w〉)−1.

It can also be obtained by symmetrizing the full Fock space as was observed by
Arveson in [1]. Let D be a Hilbert space. Then the Hilbertian tensor product
H⊗D is in a canonical way unitarily equivalent to the Hilbert space ofD-valued
analytic functionsH(Bn,D) on Bn given by the operator-valued reproducing ker-
nel KD : Bn × Bn → L(D), (z, w) 7→ K(z, w)1D . Since the coordinate functions
are multipliers of H(Bn), one can consider the n-tuple Mz = (Mz1 , . . . , Mzn) ∈
L(H(Bn,D))n consisting of the multiplication operators with the coordinate func-
tions.
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Let us denote by Lat(Mz) the set of all closed subspaces of H(Bn,D) that
are invariant under Mzi for 1 6 i 6 n. Fix a space Y ∈ Lat(Mz). Define Z =
H(Bn,D)/Y and denote by

S = Mz|Y , R = Mz/Y

the restriction and the quotient tuple induced by Mz on Y and Z, respectively.
Define X = H(Bn,D) and T = Mz ∈ L(X)n. It is well known that the augmented
Koszul complex

K•(λ− T, X)
ελ−→ D −→ 0,

where ελ denotes the point evaluation ελ( f ) = f (λ), is exact for each point λ ∈
Bn ([11]).

Let us suppose in addition that dimD < ∞. In an effort to find natural
situations in which the operator-theoretic Samuel multiplicity is additive, Xiang
Fang proved in [9] (Theorem 15) that over the unit ball B2 ⊂ C2 the identity

c(S) + c(R) = c(T)

holds whenever dim H2(S, Y) < ∞.
Our formula for the Samuel multiplicity, together with results of Gleason–

Richter–Sundberg [11], immediately implies that the same result remains true in
three or more variables.

THEOREM 4.2. Let D be a finite-dimensional Hilbert space and let Y 6= {0} be
a closed invariant subspace of the multiplication tuple T = Mz on H(Bn,D). Denote
by S = Mz|Y and R = Mz/Y the restriction and quotient tuple induced by T. If
dim Hn(S, Y) < ∞, then

c(S) + c(R) = c(T) = dimD.

Proof. With the notations fixed in the sections preceding the theorem, we
obtain short exact sequences

0→ K•(λ− S, Y)→ K•(λ− T, X)→ K•(λ− R, Z)→ 0

for λ ∈ Cn which induce long exact sequences of cohomology

0 −→ H0(λ− S, Y)
j−→ H0(λ− T, X)

q−→ H0(λ− R, Z)

−→ H1(λ− S, Y)
j−→ · · · · · ·

· · · · · · · · ·
−→ Hn(λ− S, Y)

j−→ Hn(λ− T, X)
q−→ Hn(λ− R, Z) −→ 0.

The zero set Z(Y) =
⋂

(Z( f ) : f ∈ Y), where Z( f ) denotes the zero set of
f , is a proper analytic subset of Bn. By [11] (Theorem 3.4 and Corollary 3.5), for
λ ∈ Bn \ Z(Y), at most the last three spaces in the above long exact sequence of
cohomology can be non-zero. Hence, for λ ∈ Bn \ Z(Y), we have the short exact
sequences

0→ Hn(λ− S, Y)→ Hn(λ− T, X)→ Hn(λ− R, Z)→ 0.
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Choose a connected open neighbourhood V ⊂ Bn of zero such that these three
spaces are finite dimensional for every point λ ∈ V. Then we find that

min
λ∈V

dim Hn(λ− S, Y) + min
λ∈V

dim Hn(λ− R, Z) = dimD.

Now an application of Corollary 3.6 completes the proof.

As in the paper of Fang [9], one can show that the additivity of the Samuel
multiplicity implies its monotonicity in the following sense.

COROLLARY 4.3. Suppose that Y1 ⊂ Y2 ⊂ H(Bn,D) are closed invariant sub-

spaces for Mz with dim Yj/
n
∑

i=1
(zi − Mzi )Yj < ∞ for j = 1, 2. Then we obtain the

inequalities
c(Mz|Y1) 6 c(Mz|Y2) 6 dimD.

Proof. Let us denote by Sj the restrictions of Mz to Yj and by Rj the corre-
sponding quotient tuples on Zj = H(Bn,D)/Yj. Since there are canonical surjec-
tions

Z1

Mk(R1)
→ Z2

Mk(R2)
, [z] 7→ [z] (k > 1),

it follows that c(R2) 6 c(R1). But then Theorem 4.2 implies that c(S1) 6 c(S2) 6
dimD.

It is elementary to check that, for a closed Mz-invariant subspace Y of the
one-dimensional Bergman space L2

a(D) with finite index dim(Y/MzY) < ∞, the
analogue of Theorem 4.2, that is, the formula

c(Mz|Y) + c
(

Mz/Y
)

= 1

holds if and only if dim(Y/MzY) = 1. Hence Theorem 4.2 fails for every Mz-
invariant subspace Y ⊂ L2

a(D) with index 1 < dim(Y/MzY) < ∞.
On the other hand, the results obtained in [11] (Theorem 3.4 and Corol-

lary 3.5) can be used to show that, for a large class of Mz-invariant subspaces of
the Hardy or Bergman spaces on the unit ball or polydisc in Cn, the formula of
Theorem 4.2 remains true. More precisely, for the formula in Theorem 4.2 to hold
in these cases, it suffices that the bounded D-valued analytic functions are dense
in Y. If dimD = 1, then the existence of a single non-trivial bounded analytic
function in Y is sufficient. It is an open question whether Theorem 4.2 is true in
general for the Hardy space over the unit ball.
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