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ABSTRACT. If A is an irreducible essentially normal operator, then we prove
that the C∗-algebra generated by A has a finite number of irreducible sub-
normal operators as generators if and only if the essential spectrum of A is
uncountable. It is shown that, in general, at most eight irreducible subnor-
mal generators are required. Additionally, it is shown that frequently two
irreducible subnormal operators will suffice and that, in many instances, the
subnormal operators can be taken to be unilateral shifts of multiplicity one or
unitarily equivalent to the dual of the Bergman shift.
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INTRODUCTION

If A1, . . . , An are bounded linear operators on a separable complex Hilbert
space, then C∗(A1, . . . , An) will denote the C∗-algebra of operators generated by
A1, . . . , An and the identity operator. If S1, . . . , Sn belong to the singly generated
algebra C∗(A), then S1, . . . , Sn generate C∗(A) if C∗(S1, . . . , Sn) = C∗(A). We are
interested in the question of which operators A have the property that C∗(A) has
a finite number of irreducible subnormal generators. Subnormal and hyponor-
mal generators of von Neumann algebras have been studied by Wogen [17] and
Behncke [2]. In 1984 Putnam [15] showed that certain hyponormal operators have
C∗-algebras generated by a unilateral shift, and raised a related question. This
question and more was answered by Conway and McGuire [6] where they char-
acterized the operators whose C∗-algebra is generated by a unilateral shift. In
1988, McGuire [12] extended that result to operators whose C∗-algebras are gen-
erated by a single subnormal operator whose essential spectrum is a finite union
of disjoint Jordan curves. In 2006, Feldman and McGuire [10] considered the ques-
tion of which irreducible essentially normal operators A have their C∗-algebra
generated by a subnormal (or hyponormal) operator. The answer depends only
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on the spectral picture of A, that is the essential spectrum of A and the values
of the Fredholm index function, ind(A− λI), off the essential spectrum. It was
shown that many such operators A do have subnormal generators for C∗(A), and
yet many do not. In this paper we consider the question of just how many irre-
ducible subnormal operators are necessary to generate C∗(A) when A is an irre-
ducible essentially normal operator. One of the principal results is Theorem 3.11,
which asserts that every irreducible essentially normal operator with an uncount-
able essential spectrum has its C∗-algebra generated by at most eight irreducible
subnormal operators. Additional results are obtained that provide conditions on
A in order that C∗(A) is generated by two irreducible subnormal operators of a
special type. In particular Theorem 3.7 establishes that if the essential spectrum
of A is an interval, then C∗(A) is generated by two subnormal operators unitar-
ily equivalent to the dual of the Bergman shift. This is striking in that the dual
of the Bergman shift is an operator whose spectrum and essential spectrum are
both equal to the closed unit disk. Also, it is shown in Corollary 2.7 that if the
Fredholm index of A takes on either the value 1 or −1, then C∗(A) is generated
by a pair of subnormal operators each unitarily equivalent to the unilateral shift
of multiplicity one.

1. PRELIMINARIES

In what follows H will denote a separable infinite dimensional complex
Hilbert space, B(H) the algebra of all bounded linear operators onH, B0(H) the
ideal of all compact operators on H, and B/B0 the Calkin algebra. An operator
S ∈ B(H) is subnormal if there is a normal operator N ∈ B(K), H ⊂ K, such
that H is invariant for N and S is the restriction of N to H. We will assume N
is the minimal normal extension of S. The restriction T of N∗ to (H)⊥ = K 	H
is also a subnormal operator and is known as the dual of S. One can show that
S is irreducible if and only if T is irreducible. An operator is essentially normal
if its self-commutator is compact. The kernel of an operator A is ker(A) = {x :
Ax = 0}. An operator A is Fredholm if it has closed range, dim ker(A) < ∞, and
dim ker(A∗) < ∞. When A is Fredholm, then its (Fredholm) index is defined as
ind(A) = dim ker(A) − dim ker(A∗). The essential spectrum of A is σe(A) =
{λ ∈ C : (A− λI) is not Fredholm}. The (Fredholm) index function for A is the
integer-valued continuous function λ 7→ ind(A− λI) defined on C \ σe(A).

The term spectral picture of an operator A generally refers to the essential
spectrum of A, σe(A), and the values of its index function on the components
of C \ σe(A), and also perhaps to the spectrum of A and some other subsets of
the spectrum. In this paper, the term spectral picture of an operator will mean the
essential spectrum and the index function of that operator. If S is subnormal and
essentially normal, then T, the dual of S, is also essentially normal and σe(N) =
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σe(T) ∪ σe(S). For more on subnormal operators and their duals see Conway [4]
and Conway [5].

With the terminology above, the well known Brown-Douglas-Fillmore The-
orem [3] takes the following form:

THEOREM 1.1 (BDF Theorem). Two essentially normal operators A and B are
unitarily equivalent modulo the compact operators if and only if A and B have the same
spectral picture.

That is, there exists a unitary operator U and a compact operator C such that
U∗AU = B + C if and only if σe(A) = σe(B) and ind(A − λI) = ind(B − λI)
for all λ ∈ C \ K, where K = σe(A) = σe(B).

1.1. SOME TOPOLOGICAL TOOLS. For a set E ⊆ C, int(E) and cl(E) will denote
the interior and closure of E, respectively. For a Jordan curve γ in C, inside(γ)
will denote the bounded component of C \ γ and outside(γ) will denote the un-
bounded component of C \ γ. For a compact set K ⊆ C, the outer boundary of K
will be the boundary of the unbounded component of C \ K.

1.1.1. JORDAN REGIONS AND WINDING NUMBERS. If γ : [a, b]→ C is a rectifiable
continuous closed curve in the complex plane and λ is a point not on the curve,
then n(γ, λ) = 1

2πi

∫
γ

1
z−λ dz is the winding number of γ about λ. The winding

number is well known to be a homotopy invariant. If γ is only a continuous
curve, then one can approximate it by rectifiable curves and use the homotopy
invariance to define the winding number of γ. Alternatively, if γ : [a, b] → C is a
continuous closed curve and, say, 0 is a point not on γ, then let θ : [a, b] → R be
a continuous branch of the argument of γ. So, θ(t) is a continuous function and
γ(t) = |γ(t)|eiθ(t) for t ∈ [a, b]. Then n(γ, 0) := 1

2π (θ(b)− θ(a)). If Γ is a finite

system of closed curves γ1, . . . , γn, then n(Γ, λ) :=
n
∑

k=1
n(γk, λ) for λ /∈ ⋃

k
γk. The

inside and outside of a system Γ of closed curves are defined by inside(Γ) =
{λ ∈ C : n(Γ, λ) = 1} and outside(Γ) = {λ ∈ C : n(Γ, λ) = 0}.

A Jordan region is a region bounded by a finite number of disjoint rectifiable
Jordan curves. A Jordan region G is positively oriented if each Jordan curve in the
boundary of G is oriented such that inside(∂G) = G and outside(∂G) = C \ clG.

1.2. THE SPECTRAL PICTURE OF f (A). For a compact set K in the complex plane,
C(K) will denote the set of all continuous complex valued functions on K. If A
is an essentially normal operator and f ∈ C(σe(A)), and π : B(H) → B/B0 is
the natural projection into the Calkin algebra, then π(A) is a normal element of
the C∗-algebra B/B0, thus f (π(A)) is a well-defined element of B/B0. Since any
two operators in π−1( f (π(A)) differ by a compact operator, they must have the
same spectral picture, hence we may define the spectral picture of f (A) to be the
spectral picture of any operator in π−1( f (π(A))). In general we will use f (A)
to denote any operator in π−1( f (π(A)) and anything done with f (A) will be
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invariant under compact perturbations. The C∗-algebra generated by A is equal
to C∗(A) = π−1(C∗(π(A)) = { f (A) + K : f ∈ C(σe(A)), K ∈ C∗(A) ∩ B0}. If
the operator A is irreducible, then C∗(A) contains all the compact operators and
C∗(A) = { f (A) + K : f ∈ C(σe(A)), K ∈ B0}.

The next result is proved in Feldman and McGuire [9].

THEOREM 1.2 (Functions of Spectral Pictures). If A is an essentially normal
operator and f ∈ C(σe(A)), then the following hold:

(i) σe( f (A)) = f (σe(A)).
(ii) Let {Gn}∞

n=1 be the bounded components of C \ σe(A) and let f̂ denote any con-
tinuous extension of f to σ(A). For each n > 1, let an ∈ Gn. If λ ∈ C \ σe( f (A)),

then there exists an integer 0 < N < ∞ and a compact set K ⊆
N⋃

n=1
int(clGn) such

that if {Ωn}N
n=1 is any finite collection of positively oriented Jordan regions satisfying

K ⊆
N⋃

n=1
Ωn ⊆

N⋃
n=1

clΩn ⊆
N⋃

n=1
int(clGn), then

ind( f (A)− λI) =
N

∑
n=1

n( f̂ (∂Ωn), λ)ind(A− an I).

(iii) Keeping the notation from (ii), if each component Gn is bounded by a (positively
oriented) Jordan curve, then for each λ ∈ C \ σe( f (A)) there exists an integer 0 < N <
∞ such that

ind( f (A)− λI) =
N

∑
n=1

n( f (∂Gn), λ)ind(A− an I).

In fact, n( f (∂Gn), λ) = 0 for all n > N, so

ind( f (A)− λI) =
∞

∑
n=1

n( f (∂Gn), λ)ind(A− an I).

We will need the following proposition which follows from Theorem 1.2
and appeared as Proposition 6.5 on page 476 of Feldman and McGuire [10].

PROPOSITION 1.3. Let A be an irreducible essentially normal operator, G0 a
bounded component of C \ σe(A), and N = ind(A− λI) for λ ∈ G0. Also, let ∆ be a
closed disk contained in G0. If ψ is a Mobius transformation such that ψ(C \ ∆) = ∆,
then the spectral picture of ψ(A) is as follows: σe(ψ(A)) = ψ(σe(A)) and ind(ψ(A)−
ψ(λ)I) = ind(A− λI)− N, λ ∈ C \ σe(A).

2. RESULTS

DEFINITION 2.1. If K ⊆ C and f1, f2, . . . , fn ∈ C(K), then ( f1, f2, . . . , fn) is
a one-to-one n-tuple if F : K → Cn given by F(z) = ( f1(z), f2(z), . . . , fn(z)) is a
one-to-one map. Equivalently, { f1, . . . , fn} separate the points of K.
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THEOREM 2.2. If K ⊂ C is a compact set and f1, f2, . . . , fn ∈ C(K), then the
C∗-algebra generated by f1, f2, . . . , fn equals C(K) if and only if ( f1, f2, . . . , fn) is a
one-to-one n-tuple.

Proof. This is just the Stone-Weierstrass Theorem.

THEOREM 2.3. If A is an irreducible essentially normal operator and B1, . . . , Bn
belong to C∗(A), then C∗(A) = C∗(B1, . . . , Bn) if and only if

(i) there are continuous functions f1, . . . , fn : σe(A) → C and compact operators
K1, . . . ,Kn such that Bi = fi(A) + Ki, for i = 1, . . . , n;

(ii) the n-tuple (B1, . . . , Bn) is irreducible;
(iii) ( f1, . . . , fn) is a one-to-one n-tuple.

Proof. Since Bi ∈ C∗(A), then Bi = fi(A) + Ki for some fi ∈ C(σe(A)) and
Ki ∈ B0. Also, π(C∗(A)) ∼= C(σe(A)) and π(C∗(B1, . . . , Bn)) ∼= C∗( f1, . . . , fn).

Since A is irreducible, then C∗(A) contains all the compact operators, thus
we have C∗(A) = π−1(π(C∗(A)). In order for C∗(A) to equal C∗(B1, . . . , Bn), we
need C∗(B1, . . . , Bn) to contain all the compact operators and π(C∗(B1, . . . , Bn)) =
π(C∗(A)), for then we would have

C∗(A) = π−1(π(C∗(A)) = π−1(π(C∗(B1, . . . , Bn))) = C∗(B1, . . . , Bn).

Here the last equality holds because C∗(B1, . . . , Bn) contains all the compacts.
Thus, (B1, . . . , Bn) needs to be irreducible and C(σe(A)) = C∗( f1, . . . , fn), which
is equivalent to the tuple ( f1, . . . , fn) being one-to-one.

COROLLARY 2.4. If A is an irreducible essentially normal operator, then C∗(A)
is generated by n irreducible subnormal operators if and only if there are continuous func-
tions f1, . . . , fn : σe(A) → C such that f1(A), . . . , fn(A) each have the same spectral
picture as an irreducible subnormal operator and ( f1, . . . , fn) is a one-to-one n-tuple.

EXAMPLE 2.5. The examples below introduce three one-to-one pairs that
will play a significant role in later results.

(i) If ∂D is the unit circle, then the radial projection R of C \ {0} onto ∂D is
defined by R(z) = z

|z| . The arc, A of the parabola y = x2, x > 0, intersects the

circle ∂D at a point w0 and every point in C \ {0} is uniquely expressible as eiθz
where z is a point on A and 0 6 θ < 2π. The parabolic projection P of C \ {0}
onto ∂D is defined by P(eiθz) = eiθw0. With these definitions, the pair (R, P) is a
one-to-one pair of continuous functions from C \ {0} onto ∂D.

(ii) The exterior radial projection RE and exterior parabolic projection PE of C
onto ∂D are defined exactly as R and P on the exterior of D and as the identity on
D itself. The pair (RE, PE) is a one-to-one continuous pair.

(iii) If πx and πy denote the orthogonal projections onto the x and y axes respec-
tively, then (πx, πy) is a one-to-one pair of continuous functions. More generally,



434 NATHAN S. FELDMAN AND PAUL J. MCGUIRE

if L1, L2 are two lines that intersect in a single point and πL1 , πL2 denote the or-
thogonal projections onto L1,L2, then (πL1 , πL2) is a one-to-one pair of continuous
functions.

THEOREM 2.6. If A is an irreducible essentially normal operator and for some
λ ∈ C \ σe(A) we have ind(A − λI) 6= 0, then there are two unitarily equivalent
irreducible subnormal operators S1 and S2 such that C∗(A) = C∗(S1, S2).

Proof. Let ∆ be a closed disk of radius r centered at w and contained in a
component of C \ σe(A) where ind(A−wI) = a0 is nonzero. By Theorem 1.2 the
spectral picture of each of R( A−wI

r ) and P( A−wI
r ) consists of ∂D together with the

index value a0 in D. It is well known that there exists an irreducible subnormal
operator S with spectral picture ∂D and index value −|a0| in the interior of D, see
McGuire [13] or Feldman and McGuire [8]. Theorem 1.1 implies that a compact
perturbation of R( A−wI

r ), as well as P( A−wI
r ), is unitarily equivalent to S or S∗.

Theorem 2.3 now implies that C∗(A) is generated by two subnormal operators
unitarily equivalent to S.

COROLLARY 2.7. If A is an irreducible essentially normal operator and either
ind(A − λI) = 1 or ind(A − λI) = −1 for some λ ∈ C \ σe(A) , then C∗(A) is
generated by two unilateral shifts of multiplicity one.

Proof. If the index of A− λI is ±1 for λ in a disk of radius r and center w,
then R( A−wI

r ) and P( A−wI
r ) are unitarily equivalent to a compact perturbation of

the unilateral shift of multiplicity one by Theorem 1.1.

COROLLARY 2.8. If A is an irreducible essentially normal operator and there are
two components Ω1 and Ω2 of C \ σe(A) with associated Fredholm indices α1 and α2
such that |α1 − α2| = 1, then C∗(A) is generated by two unilateral shifts of multiplicity
one.

Proof. Let ∆ be a closed disk with center w contained in Ω1 and let ψ be the
transformation ψ(z) = 1

z−w . Note that σe(ψ(A)) is a homeomorphic image of the
essential spectrum of A and, by Proposition 1.3, ψ(A) has index value ±1 in a
component of C \ σe(ψ(A)). We may assume ψ(A) is irreducible as ψ(A) can be
any operator in π−1( f (π(A))) and an irreducible compact perturbation of ψ(A)
can always be chosen. By Corollary 2.7, C∗(A) = C∗(ψ(A)) is generated by two
unilateral shifts of multiplicity one.

The following corollary is an immediate consequence of the preceding corol-
lary.

COROLLARY 2.9. If A is an irreducible essentially normal operator and there is
a homeomorphism ψ of σe(A) such that ψ(A) has index value ±1 at some point in
C \ ψ(σe(A)), then C∗(A) is generated by two unilateral shifts of multiplicity one.
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The following three examples apply the above corollaries in three different
instances of varying complexity and indicate how much easier it is to have two
subnormal (or hyponormal) generators rather than one. In all three examples the
corollary implies C∗(A) is generated by two unilateral shifts of multiplicity one.

EXAMPLE 2.10 (Non-zero index, no single subnormal generator, a single hy-
ponormal generator). Let K consist of the boundary of the unit square together
with the vertical line segment from ( 1

2 , 0) to ( 1
2 , 1) and the horizontal line seg-

ment from (0, 1
2 ) to (1, 1

2 ). If A is an irreducible essentially normal operator
with σe(A) = K and ind(A − λI) = 0 for λ ∈ C \ K ∩ {z : <e{z} < 1

2} and
ind(A− λI) = 1 for λ ∈ C \ K ∩ {z : <e{z} > 1

2}, then C∗(A) does not have a
single subnormal generator, although it does have a single hyponormal generator
(see Feldman and McGuire [10], page 496). However, Corollary 2.8 implies that
C∗(A) is generated by two unilateral shifts of multiplicity one.

EXAMPLE 2.11 (Non-zero index, no single hyponormal generator). Let K1 =
{z ∈ C : 1 6 |z| 6 2}, let K = K1 ∪ {1 − 1

n}∞
n=1 ∪ {2 + 1

n}∞
n=1. If A is an

irreducible essentially normal operator with σe(A) = K and ind(A− λI) = −1
for λ ∈

(
D \ {1 − 1

n}∞
n=1
)
, then C∗(A) does not have a hyponormal generator

(see Feldman and McGuire [10], page 493). However, Corollary 2.8 implies that
C∗(A) is generated by two unilateral shifts of multiplicity one.

EXAMPLE 2.12. Let K = C1 ∪ C2 ∪ C3 where C1, C2, and C3 are the circles
of radius one centered at −3, 0, and 3 respectively. Assume A is an irreducible
essentially normal operator with σe(A) = K and index values 3, 5, and 9 in the
respective interiors of C1, C2, and C3. If ψ is a homeomorphism of K which acts
as the identity on C2, maps C1 to the circle of radius 1

2 centered at the origin in
an orientation preserving manner, and which maps C3 to the circle of radius 1

4
centered at the origin in a manner that reverses the orientation, then an applica-
tion of Theorem 1.2 will show that ψ(A)− λI has index −1 for |λ| < 1

4 . In this
example C∗(A) has a single subnormal generator (see McGuire [12] or Feldman
and McGuire [10]), but Corollary 2.9 implies that C∗(A) can also be viewed as
being generated by two unilateral shifts of multiplicity one.

THEOREM 2.13. If A is an irreducible essentially normal operator and the interior
of σe(A) is non-empty, then there are two irreducible subnormal operators S1 and S2
that are unitarily equivalent to the dual of the Bergman shift and such that C∗(A) =
C∗(S1, S2).

Proof. If int[σe(A)] 6= ∅, then let ∆ be a closed disk of radius r and center w
contained in int[σe(A)] and consider RE( A−wI

r ) and PE( A−wI
r ) where RE and PE

are the exterior radial and parabolic projections. Both RE( A−wI
r ) and PE( A−wI

r )
have the same spectral picture as the dual of the Bergman shift. Since the dual of
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the Bergman shift is an irreducible essentially normal subnormal operator, Theo-
rem 1.1 and Theorem 2.3 together imply that C∗(A) has two subnormal genera-
tors unitarily equivalent to the dual of the Bergman shift.

3. OPERATORS WITH THIN ESSENTIAL SPECTRA AND INDEX ZERO

The results above indicate that if A is an irreducible essentially normal oper-
ator such that either the index of A− λI is nonzero at some point or the essential
spectrum of A has non-empty interior, then at most two subnormal operators are
required to generate C∗(A). We next turn our intention to the situation where the
essential spectrum of A has no interior and the index of A− λI is always zero for
λ ∈ C \ σe(A). Our first result of this kind shows that if the essential spectrum
of A is an interval (or Jordan arc), then C∗(A) is generated by two subnormal
operators each of which is unitarily equivalent to the dual of the Bergman shift.
This requires the construction of a one-to-one pair of space filling curves from the
interval [0, 1] onto the unit square. The curves are Peano curves and their con-
struction closely follows the construction in Sagan [16], page 31. In what follows
the notation t = .

b
t1t2t3 · · · will be used to denote the base b decimal expansion

of a number t ∈ [0, 1].

DEFINITION 3.1. For each t = .
3
t1t2t3 · · · in the interval [0, 1], let

f (t) =

 .
3
t1(kt2 t3)(kt2+t4 t5) · · ·
.
3
(kt1 t2)(kt1+t3 t4) · · ·


where k(t) = 2 − t and kv denotes the vth iterate of k. Similarly for each t =
.
5
t1t2t3 · · · in the interval [0, 1], let

g(t) =

 .
5
t1(ut2 t3)(ut2+t4 t5) · · ·
.
5
(ut1 t2)(ut1+t3 t4) · · ·


where u(t) = 4− t and uv denotes the vth iterate of u.

Note that f (0) = g(0) = (0, 0) and that the representation of t = 1 in base 3
or base 5 is uniquely given by .

3
222 · · · and .

5
444 · · · respectively. For our purposes

both 0 and 1 will not be viewed as having finite ternary or base five expansions.
Every other finite ternary or base five expansion can also be written as an infinite
ternary with trailing 2’s or an infinite base five decimal with trailing 4’s. The
curve f above is Peano’s space filling curve and the curve g is a mild variation of
f . Both f and g are well defined, continuous, and map the interval [0, 1] onto the
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unit square (see Chapter 3 of Sagan [16]). Moreover if

f (t) =

 .
3
β1β2β3 · · ·

.
3
γ1γ2γ3 · · ·

 ,

then one can recursively solve for t2n−1 =kt2+t4+···+t2n−2 βn and t2n =kt1+t34+···+t2n−1

γn. Similarly if

g(t) =

 .
5
β1β2β3 · · ·

.
5
γ1γ2γ3 · · ·

 ,

then one can recursively solve for t2n−1=ut2+t4+···+t2n−2 βn and t2n =ut1+t34+···+t2n−1

γn.
Neither f or g is injective. However if (β, γ) is a point in the unit square with

a unique ternary expansion, then f−1(β, γ) is uniquely determined. Similarly
if (β, γ) is a point in the unit square with a unique base five expansion, then
g−1(β, γ) is uniquely determined. If one of β or γ has a unique expansion and
the other has a finite expansion, then at most two preimages exist for each map.
If both β and γ have finite expansions, then possibly four preimages exist.

PROPOSITION 3.2. If f (t) = (β, γ) where exactly one of β or γ has a finite
ternary expansion, then there are two possibilities for t, denoted by ta and tb, that satisfy
ta + tb is a number of the form B + A

3s where 0 < A < 3s and either B = 0 or B = 1.

Proof. Assume β has a finite ternary expansion and γ = .
3
γ1γ2γ3 · · · has a

unique infinite expansion. First note that if f (ta) = .
3
β1β2β3 · · · βs000 · · · where

βs 6= 0 and ta = .
3
a1a2a3 · · · , then a1 = β1, a2 = (ka1 γ1), a3 = (ka2 β2), a4 =

(ka1+a3 γ2), a5 = ka2+a4 β3, · · · . Next note that if we write β with trailing 2’s and
seek tb = .

3
b1b2b3 · · · where f (tb) = .

3
β1β2β3 · · · (βs − 1)222 · · · , then bj = aj for

j = 1, . . . , 2s − 2. Since βs 6= 0, βs is either 1 or 2. If βs = 1, then a2s−1 = 1,
βs − 1 = 0 and b2s−1 is either 0 or 2. If βs = 2, then βs − 1 = 1, b2s−1 = 1, and
a2s−1 is either 0 or 2. Thus a2s−1 + b2s−1 is either 1 or 3. Hence the 2s − 1 digit
in the ternary expansion of ta + tb is either 0 or 1. This insures that ta + tb is not
equal to 1. Additionally note that a2s−1 and b2s−1 have opposite parity, meaning
that one is even and the other is odd.

Now let τ = a1 + a3 + · · · + a2s−3 and σ = a2 + a4 + · · · + a2s−2. Since
a2s = kτ+a2s−1 γs, b2s = kτ+b2s−1 γs, and a2s−1 has opposite parity to b2s−1, we
see that b2s = ka2s = 2 − a2s or a2s + b2s = 2. Since a2s+1 = kσ+a2s 0, a2s+1
is even. Similarly for j > s, a2j+1 = kσ+a2s+···+a2j 0 is even. However, b2s+1 =
kσ+b2s2 = ka2s+1 implies that b2s+1 = 2 when a2s = 0 and b2s+1 = 0 when
a2s = 2. Proceding in the same fashion, one obtains that aj + bj = 2 for all j > 2s.

Since
∞
∑

j=2s

2
3j = 1

32s−1 , the result follows.
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The case when β has a unique infinite ternary expansion and γ has a finite
ternary expansion is similar.

PROPOSITION 3.3. If g(t) = (β, γ) where exactly one of β or γ has a finite base 5
expansion, then there are two possibilities for t, denoted by ta and tb, that satisfy ta + tb
is a number of the form B + A

5r where 0 < A < 5r and either B = 0 or B = 1.

Proof. This proof is very similar to the base three case.

PROPOSITION 3.4. If f (t) = (β, γ) where both β and γ have finite ternary ex-
pansions, then t is of the form A

3s where 0 < A < 3s or of the form A
3s + 1

4·3s .

Proof. Assume first that β and γ are written as β = .
3
β1β2β3 · · · βk000 · · ·

and γ = .
3
γ1γ2γ3 · · · γr000 · · · . If f (t) = β where t = .

3
t1t2t3 · · · , then for all suffi-

ciently large j, t2j = kt1+t2+···+t2 j−10 and t2j+1 = kt2+t4+···+t2 j0. Thus for large j, t2j
and t2j+1 are both constant sequences consisting of either solely 0’s or solely 2’s.
Hence the ternary expansion of t must be either of the form .

3
t1t2t3 · · · ts000 · · · ,

.
3
t1t2t3 · · · ts222 · · · , or .

3
t1t2t3 · · · ts0202 · · · .

The remaining three cases where

(i) β = .
3
β1β2β3 · · · βk000 · · · and γ = .

3
γ1γ2γ3 · · · γr222 · · · ,

(ii) β = .
3
β1β2β3 · · · βk222 · · · and γ = .

3
γ1γ2γ3 · · · γr000 · · · ,

(iii) β = .
3
β1β2β3 · · · βk222 · · · and γ = .

3
γ1γ2γ3 · · · γr222 · · · ,

are all similar and for large j, t2j and t2j+1 are both constant sequences consisting
of either solely 0’s or solely 2’s. Thus, in all cases the ternary expansion of t is of
the form

(i) .
3
t1t2t3 · · · ts000 · · · ,

(ii) .
3
t1t2t3 · · · ts222 · · · , or

(iii) .
3
t1t2t3 · · · ts0202 · · · .

In the first two instances, t is of the form B
3s for some B < 3S. Note the expan-

sion of t cannot consist of all 2’s as that would imply f (t) = (1, 1) and we have
excluded 1 as having a "finite" ternary expansion. In the last case t is of the form
B
3s +

∞
∑

j=s+2

2
3j = B

3s + 1
4·3s .

PROPOSITION 3.5. If g(t) = (β, γ) where both β and γ have finite base five
expansions, then t is of the form A

5r where 0 < A < 5r or of the form A
5r + 1

6·5r .

Proof. This proof is very similar to the base three case.

PROPOSITION 3.6. If f (t1) = f (t2), then g(t1) 6= g(t2).
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Proof. If f (t1) = f (t2) = (β, γ) is such that β and γ both have finite ternary
expansions, then neither β or γ has a finite base five expansion. Hence g(t1) 6=
g(t2).

If f (t1) = f (t2) = (β, γ) and exactly one of β and γ has a finite ternary
expansion, then t1 + t2 = A

3s or t1 + t2 = 1 + A
3s for some positive integer s and

0 < A < 3s. Thus at most one of the pair (β, γ) can have a finite base five
expansion and if g(t1) = g(t2) = (β, γ), then t1 + t2 = B

5r or t1 + t2 = 1 + B
5r for

some positive integer r and 0 < B < 5r.
Hence there are four cases to check:

(i) t1 + t2 = A
3s = B

5r ;
(ii) t1 + t2 = A

3s = 1 + B
5r ;

(iii) t1 + t2 = 1 + A
3s = B

5r ;
(iv) t1 + t2 = 1 + A

3s = 1 + B
5r .

In each case, clearing the denominators and using the prime factorization theo-
rem establishes that t1 cannot equal t2.

THEOREM 3.7. If A is an irreducible essentially normal operator with essential
spectrum equal to a Jordan arc, then C∗(A) = C∗(S1, S2) where S1 and S2 are unitarily
equivalent to the dual of the Bergman shift.

Proof. Let φ be a homeomorphism of the essential spectrum of A onto the
interval [0, 1]. Let ψ be a homeomorphism of the unit square onto the closed unit
disk D. With f and g as in Definiton 3.1, Proposition 3.6 implies that (ψ ◦ f ◦ φ, ψ ◦
g ◦ φ) is a one-to-one pair. Since both f (A) and g(A) have essential spectrum D,
Theorem 1.1 implies that there are compact perturbations of f (A) and g(A) that
are unitarily equivalent to the dual of the Bergman shift. The result follows from
Theorem 2.3.

Before proceeding with our final result, we require two preliminary lemmas.

LEMMA 3.8. If F = ( f1, . . . , fm) is a one-to-one continuous m-tuple from K to L
and G = (g1, . . . , gn) is a one-to-one n-tuple from L to M, then the mn-tuple G ◦ F =
(gj( fi))i=1,...,m,j=1,...,n is a one-to-one continuous mn-tuple from K to M.

Proof. The continuity of G ◦ F is clear. Suppose (G ◦ F)(x1) = (G ◦ F)(x2) for
some x1, x2 ∈ K. Since G is a one-to-one n-tuple, fi(x1) = fi(x2) for i = 1, . . . , m.
Since F is a one-to-one m tuple, x1 = x2.

LEMMA 3.9. There exist continuous functions φ and ψ from the Cantor set C onto
the unit square [0, 1]2 such that (φ, ψ) is a one-to-one pair.

Proof. Assume h is a continuous function from C onto [0, 1] and recall that C
is homeomorphic to C × C. It is well known that (h(x), h(y)) then provides a con-
tinuous function from C × C onto [0, 1]2. Hence, given such an h, the homeomor-
phism from C to C × C followed by (h(x), h(y)) provides a continuous mapping
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of C onto [0, 1]2. We will provide a one-to-one pair of continuous functions from
C onto [0, 1] which by the above remarks will produce the desired one-to-one pair
from C onto [0, 1]2.

View C as the set of all numbers in [0, 1] whose ternary decimal expansion
consists of only the digits 0 and 2 and let φ be the usual Cantor function which

maps
∞
∑

k=1
bk

1
3k to

∞
∑

k=1

bk
2

1
2k . The function φ identifies consecutive endpoints in C,

but otherwise is one-to-one.
To define ψ, first note that C consists of numbers whose base nine decimal

expansions contain only the digits 0, 2, 6, and 8. For each t = .
9
t1t2t3 · · · in C,

we define ψ(t) to be the base four decimal .
4
κ(t1)κ(t2)κ(t3) · · · where κ(0) = 2,

κ(2) = 0, κ(6) = 3, κ(8) = 1. It is straightforward to verify that ψ is a continuous
function from C onto [0, 1]. The consecutive endpoints 1

3 = .
9
2888 · · · and 2

3 =

.
9
6000 · · · of C satisfy ψ( 1

3 ) = .
4
0111 · · · = 1

2 6= .
4
3222 · · · = ψ1( 2

3 ). Similarly all

consecutive endpoints of C that are identified by φ are separated by ψ. Hence the
pair (φ, ψ) is one-to-one.

LEMMA 3.10. If K is a compact subset of R that has no interior and C is any
Cantor set in R, then K is homeomorphic to a subset of C. Furthermore if a ∈ K and
b ∈ C, then we may choose the homeomorphism to map a to b.

Proof. First construct a Cantor set X in R that contains K. Since any two
Cantor sets are homeomorphic, let h1 : X → C be a homeomorphism. Also since
Cantor sets are homogeneous, there is a homeomorphism h2 : C → C such that
h2(h1(a)) = b. Then h2 ◦ h1 : K → C is the desired embedding.

THEOREM 3.11. If A is an irreducible essentially normal operator with an un-
countable spectrum, then at most eight irreducible subnormal operators are required in
order to generate C∗(A).

Proof. By our previous results, at most two subnormal operators are re-
quired to generate C∗(A) if the essential spectrum of A has non-empty interior.
Hence we may assume that K = σe(A) is an uncountable set with no interior.
Since K is uncountable either πx(K) or πy(K) is uncountable. Assuming πx(K)
is uncountable, either πy(K) is uncountable or there exists a value y0 such that
π−1

y (y0) is uncountable. In that case the line L given by y = x is such that πL(K)
is uncountable. By part (iii) of Example 2.5 (πx(K), πL(K)) is a one-to-one con-
tinuous pair. By a further homeomorphism of the plane, we may assume that L
is the y coordinate axis and that πx(K) and πy(K) are both uncountable subsets
respectively of the x and y axes. By part (iii) of Example 2.5, Q = (πx, πy) is a
one-to-one pair.

We will treat separately the cases where πx(K) or πy(K) have interior. If, for
example, πx(K) has interior, then we will produce a one-to-one pair F = ( f1, f2)
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that maps πx(K) onto [0, 1]. Letting G be the one-to-one pair of Definition 3.1 and
Proposition 3.6, Lemma 3.8 implies that the composition G ◦ F ◦ Q will be a one-
to-one eight tuple from K onto the unit square. If π(K) has no interior, then we
need only produce a one-to-one pair F = ( f1, f2) that maps πx(K) onto a Cantor
set and then use Lemma 3.9 to obtain a one-to-one pair G = (g1, g2) that maps
the Cantor set onto the unit square. As before the composition G ◦ F ◦Q will be a
one-to-one eight tuple from K onto the unit square.

If πx(K) has interior, then without loss of generality we may assume that
πx(K) contains the interval [−1, 1]. It is easy to see that F = ( f1, f2) is a one-to-
one continuous pair from πx(K) onto [0, 1] if

f1(x) =


0 if x < −1,
x+1

2 if x ∈ [−1, 1],
1 if x > 1,

and f2(x) =

{
1+ 1

x
2 if x /∈ [−1, 1],

1+x
2 if x ∈ [−1, 1].

For the case where πx(K) has no interior, first write πx(K) = C ∪∆ where C
is a set homeomorphic to the Cantor set and ∆ is a countable set. (To see how to
do this see the proof of Lemma 5.1 on page 23 of Oxtoby [14].) Note πx(K) is con-
tained in [−N, N] for some N. Consider πx(K) \ C which consists of a countable
union of disjoint open intervals {Ij = (aJ , bJ)}∞

j=1 where each aj and bj belong to
C. For each j, find a point xj in Ij \ ∆ and consider [xj, bj]. We now define two
maps g1, g2 : C ∪∆→ C. Both maps are the identity on C.

The first map g1 will map ∆∩ [xj, bj] to the endpoint bj and maps ∆∩ [aj, xj]
to the endpoint aj. Since πx(K) is closed, xj is not a limit point of ∆ and hence g1
is well defined and continuous.

For the second map we will define g2 on ∆∩ [xj, bj] as the homeomorphism
guaranteed by Lemma 3.10 that maps ∆∩ [xj, bj] into C and satisfies h(bj) = bj.
Similarly, g2 is defined on ∆∩ [aj, xj] as a homeomorphism that maps ∆∩ [aj, xj]
into C and satisfies g2(aj) = aj. In this manner g2 becomes a continuous function
mapping ∆∪ C into C.

Finally, if h is a homeomorphism from C to the canonical Cantor set C, then
the pair G = (h ◦ g1, h ◦ g2) is a continuous one-to-one pair of πx(K) onto C. By
our remarks above this completes the proof.

COROLLARY 3.12. If A is an irreducible essentially normal operator, then C∗(A)
has a finite number of irreducible subnormal generators if and only if the essential spec-
trum of A is uncountable.

Proof. If σe(A) is uncountable, then Theorem 3.11 says that there are eight
irreducible subnormal generators. For the converse, if σe(A) is countable, then
for any continuous function f on σe(A), f (σe(A) would also be countable and
thus f (A) could not have the same spectral picture as an irreducible subnormal
operator. Thus by Corollary 2.4, C∗(A) cannot be generated by a finite number of
irreducible subnormal operators.
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Theorem 3.11 asserts that at most eight irreducible subnormal operators are
needed to generate C∗(A) for any irreducible essentially normal operator A with
uncountable essential spectrum. Moreover, the subnormal operators are either
irreducible subnormal operators with spectrum the closed unit disk and finite
index in the open unit disk or they are unitarily equivalent to the dual of the
Bergman shift. In most instances at most two irreducible subnormal generators
are required. It is unknown whether the number eight is sharp.

4. QUESTIONS

(1) If A is an irreducible essentially normal operator with an uncountable es-
sential spectrum, then do there always exist two irreducible subnormal operators
S1 and S2 such that C∗(A) = C∗(S1, S2)?

(2) If the answer to (1) is no, then what is the fewest number of irreducible
subnormal operators S1, . . . , Sk necessary in order that

C∗(A) = C∗(S1, . . . , Sk)?

Note that by Theorem 3.11, k 6 8.
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