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1. INTRODUCTION AND THE MAIN RESULT

In [3], T. Gowers and B. Maurey gave the first example of a hereditarily inde-
composable Banach space Z (recall that an infinite dimensional space Z is called
hereditarily indecomposable if it is not isomorphic to a direct sum of two infinite di-
mensional Banach spaces). Since then, a variety of hereditarily indecomposable
Banach spaces were constructed. An overview of the current state of affairs is
given in [5].

A non-commutative counterpart of this space was obtained by E. Ricard and
the author in [8]. There, we gave an example of an operator space X, isometric
to `2 (as a Banach space), such that an operator T : Y → X (Y being a subspace
of X) is completely bounded if and only if T = λJY + S, where JY is the natural
embedding, λ ∈ C, and S is a Hilbert-Schmidt map. In particular, X is completely
hereditarily indecomposable — that is, no infinite dimensional subspace Y ↪→ X is
completely isomorphic to an `∞ sum of two infinite dimensional operator spaces.
Moreover, X fails the Operator Approximation Property (see below for the defi-
nition). For any n-dimensional subspace Y ↪→ X, there exists a unitary U : Y → Y
such that ‖U‖cb >

√
n/16.
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Our present goal is to construct completely hereditarily indecomposable op-
erator spaces with “some structure” — that is, spaces which are saturated with
“nice” finite dimensional subspaces. More precisely, for any homogeneous Hil-
bertian operator space H, we construct a Hilbertian operator space X such that:

(i) For any infinite dimensional subspace Y of a quotient of X, n ∈ N, and
ε > 0, there exists a subspace F ↪→ Y which is (1 + ε)-completely isomorphic to
an n-dimensional subspace of H.

(ii) Any Y as above is completely hereditarily indecomposable, and fails the
Operator Approximation Property.

If H satisfies certain conditions, then, in addition, any c.b. map on Y is a
compact perturbation of a scalar.

Below we recall some facts and definitions concerning operator spaces. For
more information, the reader is referred to [2], [9], or [10].

We say that an operator space is c-Hilbertian if its underlying Banach space
is c-isomorphic to a Hilbert space. X is c-homogeneous if ‖T‖cb 6 c‖T‖ for any
T ∈ B(X). An infinite dimensional operator space X is called completely inde-
composable if it is not completely isomorphic to an `∞ direct sum of two infinite
dimensional operator spaces (equivalently, any c.b. projection on X has finite di-
mensional kernel, or finite dimensional range).

We use the term subquotient to mean a subspace of a quotient.
An operator space X is said to have the Operator Approximation Property

(OAP, for short) if, for any x ∈ K ⊗ X and ε > 0, there exists a finite rank map
T : X → X such that ‖(IK ⊗ T)x − x‖ < ε (here K is the space of compact op-
erators on `2, and ⊗ denotes the minimal (injective) tensor product). X has the
Compact Operator Approximation Property (COAP) if, for any x ∈ K ⊗ X and ε > 0,
there exists a compact map T : X → X such that ‖(IK ⊗ T)x− x‖ < ε. More de-
tails about the OAP, as well as several equivalent reformulations of this property,
can be found in Chapter 11 of [2].

The complete Banach-Mazur distance between the operator spaces X and Y is
defined as

dcb(X, Y) = inf{‖T‖cb‖T−1‖cb | T ∈ CB(X, Y)}.

We say that an operator space Y is c-completely finitely representable in X if for any
finite dimensional subspace Z ↪→ Y there exists W ↪→ X such that dcb(W, Z) 6 c.
Y is called c-completely complementably finitely representable in X if for any finite
dimensional subspace Z ↪→ Y there exists a projection P ∈ CB(X) such that
‖P‖cb 6 c, and dcb(P(X), Z) 6 c.

If H is a 1-homogeneous 1-Hilbertian operator space, we denote by Hn the
n-dimensional operator space, completely isometric to (any) n-dimensional sub-
space of H. We say that H has property (P) if there exists a sequence (m(n)) ⊂ N
such that

lim
n→∞

1
n
‖id : MINm(n)(Rn + Cn) → Hn‖cb = 0.
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Here, id is the formal identity map between n-dimensional Hilbert spaces, and
the space MINk(X) (X being an operator space) is such that

‖x‖K⊗MINk(X) = sup{‖IK ⊗ u(x)‖K⊗Mk | u ∈ CB(X, Mk), ‖u‖cb 6 1},

where, as usual, Mk stands for the pace of k× k matrices. The reader is referred to
[8] for more information about MINk. For future reference, we need to consider a
special case of the functor MINk — namely, MIN1 (denoted by MIN for the sake
of brevity). If X is a Banach or operator space, and x ∈ K ⊗ X, then

‖x‖K⊗MIN(X) = sup{‖IK ⊗ f (x)‖K | f ∈ X∗, ‖ f ‖cb 6 1}.

In other words, if a1, . . . , an ∈ K, and x1, . . . , xn ∈ X, then∥∥∥ ∑ ai ⊗ xi

∥∥∥
K⊗MIN(X)

= sup
{∥∥∥ ∑ f (xi)ai

∥∥∥
K
| f ∈ X∗, ‖ f ‖cb 6 1

}
.

Note that, for any 1-homogeneous 1-Hilbertian space H, ‖id : MIN(`n
2 ) →

Hn‖cb > ‖id : MINm(n)(Rn + Cn) → Hn‖cb, hence H has property (P) when-
ever lim sup

n
‖id : MIN(`n

2 ) → Hn‖cb/n = 0. In particular (by Chapter 10 of

[10]), the spaces OH, R + C, and R ∩ C have (P). To describe another large class
of spaces possessing (P), recall that an operator space X is exact if there exists
C > 0 such that for any finite dimensional subspace E ↪→ X there exists F ↪→ MN
such that dcb(E, F) 6 C. The infimum of all such constants C is called the exact-
ness constant of X, and denoted by ex (X). Observe that H has property (P) if
lim

n→∞
ex (Hn)/

√
n = 0. Indeed, by Smith’s Lemma (Proposition 8.11 of [9]), there

exists a sequence of positive integers r(1) < r(2) < · · · such that , for every
operator space X, and every v ∈ CB(X, Hn),

‖v : X → Hn‖cb 6 2ex (Hn)‖IMr(n)
⊗ v : Mr(n) ⊗ X → Mr(n) ⊗ Hn‖

(we could have used 1 + ε instead of 2). Then, by [8],

(2ex (Hn))−1‖id : MINr(n)(Rn + Cn) → Hn‖cb

6 ‖IMr(n)
⊗ id : Mr(n) ⊗MINr(n)(Rn + Cn) → Mr(n) ⊗ Hn‖

= ‖IMr(n)
⊗ id : Mr(n) ⊗ (Rn + Cn) → Mr(n) ⊗ Hn‖ 6 ‖id : Rn + Cn → Hn‖cb.

However, by Theorem 10.6 of [10],

‖id : Rn + Cn → Hn‖cb 6 ‖id : Rn + Cn → MAX(`n
2 )‖cb =

√
n.

This establishes property (P).
The main result of this paper is

THEOREM 1.1. Suppose H is a separable 1-homogeneous 1-Hilbertian operator
space. Then there exists a separable 1-Hilbertian operator space X such that for every
infinite dimensional subquotient Y of X we have:

(i) For any ε>0, H is (1+ε)-completely complementably finitely representable in Y.
(ii) Y is completely indecomposable.



6 T. OIKHBERG

(iii) Y fails the Compact Operator Approximation Property.
(iv) If H has property (P), then every completely bounded map on Y is a compact

perturbation of a scalar.

Clearly, the COAP implies the OAP. By Chapter 11 of [2], the OAP passes
from an operator space to its predual. Therefore, dualizing the space X con-
structed in Theorem 1.1, we conclude:

COROLLARY 1.2. Suppose H is a separable 1-homogeneous 1-Hilbertian opera-
tor space, whose dual H∗ has property (P). Then there exists a separable 1-Hilbertian
operator space X such that for every infinite dimensional subquotient Y of X we have:

(i) For any ε>0, H is (1+ε)-completely complementably finitely representable in Y.
(ii) Y is completely indecomposable.

(iii) Y fails the Operator Approximation Property.
(iv) Every completely bounded map on Y is a compact perturbation of a scalar.

In Section 2, we present a modification of the construction of asymptotic
sets on the unit sphere of `2 (initially due to E. Odell and T. Schlumprecht [6]).
In Section 3, we use these asymptotic sets to construct the space X from Theo-
rem 1.1. Furthermore, we establish that all infinite dimensional subquotients of
X are completely indecomposable, and H is completely complementably finitely
representable in all such subquotients. In Section 4 we prove that all infinite-
dimensional subquotients of X fail the OAP. Finally, in Section 5 we show that
any c.b. map on an infinite dimensional subquotient of X is a compact perturba-
tion of a scalar multiple of the identity, provided H has property (P).

2. ASYMPTOTIC SETS IN `2

First we recall some Banach space notions, to be used in this and subsequent
sections. All spaces are presumed to be infinite dimensional, unless stated other-
wise. For a space X, BX = {x ∈ X | ‖x‖ 6 1} and SX = {x ∈ X | ‖x‖ = 1} stand
for the unit ball and the unit sphere of X, respectively.

We say that a sequence (δi)∞
i=1 is a basis in a Banach space X if for every

x ∈ X there exists a unique sequence of scalars (ai) such that x =
∞
∑

i=1
aiδi. Equiv-

alently (see e.g. Proposition 1.a.3 of [4]), the projections Pn ∈ B(X), defined via

Pn

( ∞
∑

i=1
aiδi

)
=

n
∑

i=1
aiδi, are well defined, and sup

n
‖Pn‖ < ∞. If E is a finite sub-

set of N, we write E
( ∞

∑
i=1

aiδi

)
= ∑

i∈E
aiδi. The support of a =

∞
∑

i=1
aiδi (denoted by

supp a) is the set of i ∈ N for which ai 6= 0.
If E and F are finite subsets of N, we write E < F if max E < min F. If a

Banach space X has a basis (δi)i∈N, we write a < b (a, b ∈ X) if supp a < supp b.
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The basis (δi)∞
i=1 is called 1-subsymmetric if

∥∥∥ ∑
i

aiδi

∥∥∥ =
∥∥∥ ∑

i
ωiaiδni

∥∥∥ for any

finite sequence (ai), any (ωi) with |ωi| = 1, and any increasing sequence n1 <
n2 < · · · (sometimes, the term “1-unconditional 1-subsymmetric” is used to de-
scribe bases with this property).

For S1,S2 ⊂ X, we set dist(S1,S2) = inf{‖x1 − x2‖ | x1 ∈ S1, x2 ∈ S2}.
A set A ⊂ X is called asymptotic if, for every infinite dimensional Y ⊂ X,

dist(A, Y) = 0. If (δi)i∈N is a 1-subsymmetric basis for X, we say that A ⊂ X

is spreading (unconditional) if, for any
∞
∑

i=1
aiδi ∈ A, we have

∞
∑

i=1
aiδni ∈ A for any

n1 < n2 < · · · (respectively
∞
∑

i=1
ωiaiδi ∈ A for any |ωi| = 1).

The idea of constructing a sequence of asymptotic sets, satisfying certain
conditions, was used by E. Odell and T. Schlumprecht in [6] in order to prove
that `p is distortable for 1 < p < ∞. Below we prove a sharper version of one of
their results.

THEOREM 2.1. Suppose ε1 > ε2 > · · · is a sequence of positive numbers, and
(Ki)∞

i=1 is a sequence of positive integers. Then there exists a sequence of asymptotic
spreading unconditional sets A1, A2, . . ., consisting of unit vectors in `2 with finite sup-
port, such that

(2.1)
Kn

∑
k=1

|〈a, bk〉|2 < ε2
m

whenever m < n, a ∈ Am, b1, . . . , bKn ∈ An, and b1 < · · · < bKn .

The Schlumprecht space S is essential for proving this theorem. Recall (see
[3], [6], [7], [11]) that S has a 1-subsymmetric basis (δi)∞

i=1, and

(2.2)
∥∥∥ ∑

i
aiδi

∥∥∥ = sup
{

sup
i
|ai|, sup

n>2, E1<···<En

1
φ(n)

n

∑
j=1

∥∥∥ ∑
i∈Ej

aiδi

∥∥∥}
(here φ(t) = log(t + 1)). Using the ideas of [6], we first present “nice” sets in S
and its dual.

LEMMA 2.2. Suppose σ1 > σ2 > · · · is a sequence of positive numbers, and
(Ki)∞

i=1 is a sequence of positive integers. Then there exist spreading unconditional sets
B1, B2, . . . ⊂ SS and B∗1 , B∗2 , . . . ⊂ BS∗ , consisting of vectors with finite support, such
that:

(i) Bn is asymptotic for every n.
(ii) |〈a, Eb〉| < σmin{m,n} if a ∈ Bn, b ∈ B∗m, and E ⊂ N.

(iii) For every a ∈ Bm there exists b ∈ B∗m satisfying |〈a, b〉| > 1− σm.
(iv) Suppose m<n, a∈Bm, b1, . . . , bKn ∈B∗n, b1 < · · ·<bKn , and E1 < · · ·< EKn .

Then
Kn
∑

k=1
|〈a, Ekbk〉| < 2σm.
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Sketch of the proof. We rely on the construction from Section 2 of [3] (summa-
rized in [6] as Lemma 3.3). There, T. Gowers and B. Maurey show the existence of
a rapidly increasing sequence pk ↗ ∞, and a rapidly decreasing sequence σ′k ↘ 0,
with the following property: for n ∈ N, define

B∗n =
{ 1

φ(pn)

pn

∑
j=1

bj | bj ∈ S∗, ‖bj‖ = 1, b1 < · · · < bpn

}
⊂ BS∗ ,

and let Bn be the set of all
( pn

∑
i=1

xi

)
/
∥∥∥ pn

∑
i=1

xi

∥∥∥ ∈ SS, where (xi)
pn
i=1 is a RIS sequence

of length pn, with constant 1 + σ′n (we do not reproduce the definition of RIS, as it
is quite cumbersome, and is not really necessary here; suffices to say that above,
x1 < x2 < · · · < xpn ). Then the sets Bn and B∗n are unconditional and spreading,
and the statements (i), (ii), and (iii) of the lemma hold. It remains to prove (iv).

By passing to a subsequence, we can assume that φ(Kn pn) < 2φ(pn) for
every n (recall that φ(t) = log(t + 1)). Suppose m, n, a, and (bk)

Kn
k=1 are as in (2.2).

The sets Bm and B∗n are unconditional, hence it suffices to prove (2.2) when all
the entries of a and (bk) are non-negative, and Ek = supp bk for each k. In this

situation, we have to show that
〈

a,
Kn
∑

k=1
bk

〉
< 2σm. By construction,

bk =
1

φ(pn)

pn

∑
j=1

bjk,

where bjk ∈ BS∗ (1 6 j 6 pn) are such that b1k < · · · < bpnk. By passing from bjk
to Ekbjk if necessary, we can assume that supp bjk ⊂ supp bk for each j, hence

b11 < b21 < · · · < bpn1 < b12 < · · · < bpnKn .

Let

b̃ =
1

φ(pnKn)

Kn

∑
k=1

pn

∑
j=1

bjk =
φ(pn)

φ(pnKn)

Kn

∑
k=1

bk.

By (2.2), ‖b̃‖ 6 1, hence
∥∥∥ Kn

∑
k=1

bk

∥∥∥ 6 φ(pnKn)/φ(pn) < 2. Moreover, a = α
pm

∑
s=1

as,

where ‖as‖ = 1 for each s, a1 < a2 < · · · < apm , and α =
∥∥∥ pm

∑
s=1

as

∥∥∥. By (2.2),

α 6 φ(pm)/pm. By Lemma 5 of [3] (and by the choice of sequences (pn) and

(σ′n)), 〈a, b̃〉 6 2α < σm. Thus,
〈

a,
Kn
∑

k=1
bk

〉
< 2σm, as desired.

Proof of Theorem 2.1. Below we view elements of S, S∗, and `2 as sequences
(via the expansions with respect to the canonical bases of these spaces). Opera-
tions of multiplication etc. are defined pointwise.

Suppose B1, B∗1 , B2, B∗2 , . . . are as in the previous lemma, with 2σk/(1− σk) <

εk. Define Ak as the set of vectors x ∈ `2 for which |x|2 = ab/〈a, b〉, with a ∈ Bk,
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b ∈ B∗k , a, b > 0, and 〈a, b〉 > 1 − σk. It follows from [6] that the sets Ak are
asymptotic, spreading, and unconditional. To show (2.1), suppose m < n, and
consider non-negative x, y1, . . . , yKn ∈ `2 such that x2 = ab and y2

k = akbk with
a ∈ Bm, b ∈ B∗m, ak ∈ Bn, bk ∈ B∗n (for 1 6 k 6 Kn), and y1 < y2 < · · · < yKn . Let
Ek = supp yk. By Cauchy-Schwartz Inequality,

∑
k
〈x, yk〉2 = ∑

k
〈
√

a
√

b,
√

Ekak
√

Ekbk 〉2 6 ∑
k
〈a, Ekbk〉〈ak, Ekb〉.

By the previous lemma, ∑
k
〈a, Ekbk〉 < 2σm, and 〈ak, Ekb〉 < σm. Therefore,

∑
k

〈 x
‖x‖ ,

yk
‖yk‖

〉2
6

2σ2
m

(1− σm)2 .

This establishes (2.1).

3. CONSTRUCTION AND BASIC PROPERTIES OF X

Construct a sequence of sets An as in Theorem 2.1, with εn = 239−n and
Kn = 10n. Let (δi)N

i=1 and (δi)∞
i=1 be the canonical bases in `N

2 and `2, respectively.
Denote by U the set of operators U : `2 → `Kn

2 (n even) of the form

Uξ =
Kn

∑
j=1
〈ξ, f j〉δj with f1, . . . , fKn ∈ An, f1 < · · · < fKn ,

or

Uξ =
1√
2

Kn

∑
j=1
〈ξ, f j+Kn + ε f j〉δj with f1 < · · · < f2Kn , ε = ±1,

and either f1, . . . , f2Kn ∈ An, or f1, . . . , fKn ∈ An, fKn+1, . . . , f2Kn ∈ An+2

(in both cases, ξ ∈ `2). Let (Ui) be a countable dense subset in U (that is, for every
U ∈ U and every ε > 0 there exists i ∈ N such that the range spaces of U and Ui
coincide, and ‖U −Ui‖1 < ε).

Denote by W the set of operators W ∈ B(`2) such that Wξ =
Kn
∑

j=1
〈ξ, f j〉δj for

ξ ∈ `2, where n is odd, and f1 < · · · < fKn belong to An.
Following [8], fix a sequence s0 < s1 < · · · (increasing “sufficiently fast”),

and define spaces Ei = MINsi (MAXsi−1(Rni ∩ Cni )), for which:

(i) ni = 100j for some j = j(i) ∈ N, and moreover, for each j ∈ N the number
100j occurs infinitely many times in the sequence (ni).

(ii) For any operator u : E∗i → Ej, we have ‖u‖1/5 6 ‖u‖cb 6 ‖u‖1 if i = j,
‖u‖cb = ‖u‖2 if i 6= j.
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(iii) If, in addition, H has property (P), then lim
j→∞

γj/100j = 0, where

γj = ‖id : MINsi−1(R100j + C100j) → H100j‖cb,

and i is the smallest integer satisfying ni = 100j (or in other words, i = min{k :
j = j(k)}). Consequently, ‖id : E∗i → H100j(i)‖cb 6 γj for any i.

Define the operator space X by setting, for x ∈ K ⊗ `2,

(3.1)
‖x‖K⊗X =

max
{
‖x‖K⊗MIN(`2), sup

i∈N
‖(IK ⊗Ui)x‖K⊗Ei , sup

W∈W
‖(IK ⊗W)x‖K⊗H

}
(recall that, for x = ∑

i
ai ⊗ δi ∈ K ⊗MIN(`2),

‖x‖K⊗MIN(`2) = sup
{∥∥∥ ∑

i
αiai

∥∥∥
K
| ∑

i
|αi|2 6 1

}
).

It is easy to check that X satisfies Ruan’s axioms, hence it is an operator space.
Also, X is isometric to `2. We shall show that it has all the desired properties.
Start by showing that elements of U and W “ignore” each other.

LEMMA 3.1. If U ∈ U and W ∈ W , then ‖UW∗‖1 6 1.

Proof. It suffices to prove that ‖UV‖1 6 1/2 when U ∈ B(`2, `Kn
2 ) and V ∈

B(`2, `2) are given by

(3.2) Uξ =
Km

∑
j=1
〈ξ, gj〉δj, and Vδi =

{
fi i 6 Kn,
0 i > Kn,

where f1 < · · · < fKn belong to An, and g1 < · · · < gKm belong to A`, for ` > m,
and n /∈ {m, `}. Indeed, the adjoint of any element ofW equals V as above, while
any element of U either equals to a U of the above form, or can be represented as
(U1 + U2)/

√
2, with U1 and U2 resembling U in (3.2). Note that, for U and V as

in (3.2),

UVδi =


Km
∑

j=1
〈 fi, gj〉δj i 6 Kn,

0 i > Kn,

and therefore,

(3.3) ‖UV‖2
2 =

Kn

∑
i=1

Km

∑
j=1
|〈 fi, gj〉|2.

To estimate ‖UV‖1, suppose first that n < `. By construction of An and A`,
Km
∑

j=1
|〈 fi, gj〉|2 < ε2

n for 1 6 i 6 Kn. Therefore, by (3.3) ‖UV‖2
2 6 Knε2

n. Moreover,
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rank UV 6 rank U = Kn, hence

‖UV‖1 6
√

rank UV‖UV‖2 = Knεn <
1
2

,

by our choice of Kn and εn. If n > `, we similarly obtain ‖UV‖1 < Kmε` 6 K`ε` <
1/2 (we use the fact that m 6 `).

We shall identify subquotients of X with subspaces of X (as linear spaces).
More precisely, suppose X′′ ↪→ X′ ↪→ X. Then Y = X/X′′ and Y′ = X′/X′′ are
identified with Xª X′′ and X′ ª X′′, respectively.

PROPOSITION 3.2. H is (1 + ε)-completely complementably finitely representable
in any infinite dimensional subquotient of X.

Proof. Fix an odd n, and consider f1, . . . , fKn ∈ An such that f1 < · · · < fKn .
Denote by Xf the span of f1, . . . , fKn in X. We shall show that Xf is completely
contractively complemented in X, and completely isometric to HKn . Indeed, there

exists W0 ∈ W such that W0ξ =
Kn
∑

j=1
〈ξ, f j〉δj for ξ ∈ X. By (3.1), ‖W0‖cb = 1.

Consider W∗
0 as an operator V : H → X. Then

‖V‖cb = max
{
‖V‖CB(H,MIN(`2)), sup

i∈N
‖UiV‖CB(H,Ei), sup

W∈W
‖WV‖CB(H)

}
.

But ‖V‖CB(H,MIN(`2)) = ‖V‖ = 1, ‖WV‖CB(H) = ‖WV‖ 6 1, and ‖UiV‖CB(H,Ei)
6 ‖UiV‖1 6 1 by Lemma 3.1. Thus, both W0 and V are complete contractions,
hence Xf is completely isometric to HKn . Moreover, P = VW0 is a completely
contractive projection onto Xf.

Now consider Y′ = X′/X′′ (with X′′ ↪→ X′ ↪→ X). By perturbing X′ and
X′′ slightly, and identifying Y′ with a subspace of X (as explained above), we
can assume that Y′ ∩ An contains f1 < · · · < fKn . Denote by Z the span of
f1, . . . , fKn in Y′. We claim that Z is completely isometric to HKn , and completely
contractively complemented in Y′. Indeed, consider the orthogonal projection P
from X onto Z. Above we have established that P is completely contractive as an
operator on X. Therefore, for any z ∈ K ⊗ Z,

‖z‖K⊗X′ > ‖z‖K⊗Y′ = inf{‖z + x‖K⊗X′ | x ∈ K ⊗ X′′}
> inf{‖(IK ⊗ P)(z + x)‖K⊗X′ | x ∈ K ⊗ X′′} = ‖z‖K⊗X′ ,

since X′′ ⊂ ker P. Thus, Z is completely isometric to the span of f1, f2, . . . , fKn in
X′, which, by the above, is completely isometric to HKn . Moreover, P (viewed as
an operator on Y) is completely contractive.

The following result yields a useful lower estimate for c.b. norms of opera-
tors on X and its subquotients.

PROPOSITION 3.3. Suppose X′′ ↪→ X′ ↪→ X, and let Y and Y′ are the quotient
spaces X/X′′ and X′/X′′, respectively.
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(i) Consider the operators T : Y′ → Y, U : Y → `100n

2 , and V : `100n

2 → Y′, such
that U, V∗ ∈ U . Then

‖T‖cb >
‖UTV‖1

5 max{10n, ‖UV‖1}
.

Consequently, ‖T‖cb >‖UTV‖1/(5 · 10n) whenever U and V as above satisfy UV =0.
(ii) Suppose H has property (P), and consider the operators T : Y′ → Y, U : Y →

`100n

2 , and V : `100n

2 → Y′, such that U ∈ U . Then

‖T‖cb >
‖UTV‖1

5 max{10n‖V‖, γn‖V‖, ‖UV‖1}
.

For the proof, we need the following two lemmas. Below, X′′, X′, X′′, Y′,
and Y are as in the statement of Proposition 3.3.

LEMMA 3.4. Suppose P is the orthogonal projection from X onto Y′, and Ui :
X → Ei is as in the definition of X. Then ‖Ui|Y′‖CB(Y′ ,Ei) 6 1 + 2‖Ui −UiP‖1.

Proof. Observe first that

‖UiP‖CB(X,Ei) 6 1 + ‖Ui −UiP‖CB(X,Ei) 6 1 + ‖Ui −UiP‖1.

Moreover, ‖UiP‖CB(X,Ei) > ‖UiP|Y′‖CB(Y′ ,Ei). Indeed, suppose y ∈ Mn ⊗ Y′ sat-
isfies ‖y‖Mn⊗Y′ < 1. Then there exists x ∈ Mn ⊗ X such that ‖x‖Mn⊗X < 1, and
IMn ⊗ P(x) = y. We conclude that

‖IMn ⊗UiP(y)‖Mn⊗Ei = ‖IMn ⊗UiP(x)‖Mn⊗Ei < ‖UiP‖CB(X,Ei).

To finish the proof, note that ‖Ui|Y′‖CB(Y′ ,Ei) 6‖UiP|Y′‖CB(Y′ ,Ei)+‖Ui−UiP‖1.

LEMMA 3.5. Suppose V as an operator from E∗i to Y′. Then

‖V‖CB(E∗i ,Y′) 6 max
{
‖UiV‖1, ‖V‖2, sup

W∈W
‖WV‖cb

}
.

Consequently:
(i) If V∗ ∈ U , then ‖V‖CB(E∗i ,Y′) 6 max{‖UiV‖1, ‖V‖2}.

(ii) If H has property (P) and ni = 100k, then

‖V‖CB(E∗i ,Y′) 6 max{‖UiV‖1, max{
√

ni, γk}‖V‖}.

Proof. Let q : X′ → Y′ is the complete quotient map. By (3.1),

‖V‖CB(E∗i ,Y′) =‖qV‖CB(E∗i ,Y′) 6 ‖V‖CB(E∗i ,X)

=max
{
‖V‖CB(E∗i ,MIN(`2)), sup

j∈N
‖UjV‖CB(E∗i ,Ej), sup

W∈W
‖WV‖CB(E∗i ,H)

}
.

However, ‖V‖CB(E∗i ,MIN(`2)) = ‖V‖, ‖UiV‖cb 6 ‖UiV‖1, and ‖UjV‖cb = ‖UjV‖2

6 ‖V‖2 for j 6= i. If V∗ ∈ U , then, by Lemma 3.1, ‖WV‖cb 6 ‖WV‖1 6 1. If H
has property (P) and ni = 100k, then ‖WV‖cb 6 γk‖V‖.



SPACES WITH FEW COMPLETELY BOUNDED MAPS 13

Proof of Proposition 3.3. We observe that, for any i ∈ N,

‖T‖cb >
‖UiTV‖CB(E∗i ,Ei)

‖Ui|Y‖CB(Y,Ei)‖V‖CB(E∗i ,Y′)
>

‖UiTV‖1

5‖Ui|Y‖CB(Y,Ei)‖V‖CB(E∗i ,Y′)
.

Approximating U with operators Ui, and using estimates for ‖Ui‖cb and ‖V‖cb
obtained in Lemmas 3.4 and 3.5, we achieve the result.

COROLLARY 3.6. Any infinite dimensional subquotient of X is completely inde-
composable.

Proof. Suppose P is a projection on Y′ = X′/X′′ (here, X′′ ↪→ X′ ↪→ X), and
both the range and the kernel of P are infinite dimensional. The sets An involved
in the construction of X are asymptotic, and therefore, by a small perturbation
argument, we can assume that for any even n there exist f1, . . . , f2Kn ∈ An ∩ Y′

such that f1 < · · · < f2Kn , and

P f j =
{

f j j 6 Kn,
0 j > Kn.

Consider the operators U, V ∈ B(X, `Kn
2 ), defined by

Uξ =
1√
2

Kn

∑
s=1
〈η, fs+Kn − fs〉δs, Vξ =

1√
2

Kn

∑
s=1
〈η, fs+Kn + fs〉δs (ξ ∈ `2).

Then U, V ∈ U , and UV∗ = 0. Therefore, by Proposition 3.3,

‖P‖cb >
‖UPV∗‖1

5 · 10n/2 =
10n/2

5 · 10n/2 = 10n/2−1.

The even integer n can be arbitrarily large, hence P is not completely bounded.

4. SUBQUOTIENTS OF X FAIL THE OAP

As in the previous section, we assume that X′′ ↪→ X′ ↪→ X, and Y′ = X′/X′′

is infinite dimensional. We establish

THEOREM 4.1. Y′ fails the Compact Operator Approximation Property.

Our main tool is

LEMMA 4.2. Suppose Z is an operator space with the Compact Operator Ap-
proximation Property, (Zi)∞

i=0 a sequence of finite dimensional subspaces of Z, (Fi)∞
i=1

a sequence of 1-exact operator spaces, and the function f : N → (2, ∞) is such that
lim

n→∞
f (n) = ∞. Then there exists a compact operator ψ : Z → Z such that ψ|Z0 = IZ0 ,

and ‖uiψ|Zi‖cb 6 f (i)‖ui‖cb for any i ∈ N and ui : Z → Fi.

We omit the proof, as it is identical to the proof of Lemma 6.1 of [8].
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Proof of Theorem 4.1. By a small perturbation argument, we may assume that
Y′ contains vectors fij (j ∈ N, 1 6 i 6 K2j) with finite support such that fij ∈ A2j,
and fij < fk` if j < `, or j = ` and i < k. For every j ∈ N, 1 6 m 6 100, and

ε = ±1, define operators Aj,m,ε : Y′ → `
K2j
2 and Bj,m,ε : `

K2j
2 → Y′ by setting

m′ = K2j(m− 1),

Bj,m,εδij =
1√
2
( fij − ε fm′+i+1,j+1) for 1 6 i 6 100j

((δij)
K2j
i=1 is the canonical basis of `

K2j
2 ), and

Aj,m,εξ =
1√
2

100j

∑
i=1
〈ξ, fij + ε fm′+i+1,j+1〉δi for ξ ∈ Y′.

We can assume that, for every triple (j, m, ε) as above, there exists s = s(j, m, ε) ∈
N for which dim Es = K2j, and Us = Aj,m,ε (here, we identify Es with `

K2j
2 ).

Suppose, for the sake of contradiction, that Y′ has the COAP. By Lemma 4.2,
there exists a compact operator ψ : Y′ → Y′ such that ψ fi,3 = fi,3 for 1 6 i 6 1003,
and

‖Aj,m,εψBj,m,ε‖cb 6 j‖Aj,m,ε‖cb‖Bj,m,ε‖cb for j > 3, 1 6 m 6 100, ε = ±1,

with Aj,m,ε and Bj,m,ε viewed as elements of CB(Y′, Es(j,m,ε)) and CB(E∗s(j,m,ε), Y′),

respectively. However, ‖Aj,m,ε‖cb 6 1, and ‖Bj,m,ε‖cb 6
√

K2j = 10j (by Lem-
ma 3.4 and Lemma 3.5, respectively). Thus, we have

‖Aj,m,εψBj,m,ε‖CB(E∗s(j,m,ε),Es(j,m,ε)) 6 j · 10j

for any appropriate triple (j, m, ε). By the basic properties of spaces Ei, we have

Re(tr(Aj,m,εψBj,m,ε)) 6 ‖Aj,m,εψBj,m,ε‖1 6 5j · 10j.

An easy computation shows that

tr(Aj,m,εψBj,m,ε) =
1
2

K2j

∑
i=1
〈ψ( fij − ε fm′+i+1,j+1), fij + ε fm′+i+1,j+1〉.

Therefore,

Re(tr(Aj,m,1ψBj,m,1 + Aj,m,−1ψBj,m,−1))

= Re
( K2j

∑
i=1

(〈ψ( fij), fij〉 − 〈ψ( fm′+i+1,j+1), fm′+i+1,j+1〉)
)

6 10j+1 j.

Consequently,

Re
( K2j

∑
i=1
〈ψ( fm′+i+1,j+1), fm′+i+1,j+1〉

)
> Re

( K2j

∑
i=1
〈ψ( fij), fij〉

)
− 2 · 10j+1 j.
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Summing over all values of m (1 6 m 6 100), we obtain

(4.1) Sj+1 > 100(Sj − 2 · 10j+1 j),

where Sj = Re
100j

∑
i=1
〈ψ( fij), fij〉. This allows us to show by induction that

(4.2) Sj >
j + 1

2j
100j >

100j

2

whenever j > 3. Indeed, ψ( fi,3) = fi,3 for 1 6 i 6 1003, hence S3 = 1003.
Assuming (4.2) holds for some j > 3, observe that

2 · 101+j j
Sj

< 102−j j <
1

(j + 1)2 ,

hence, by (4.1),

Sj+1 > 100Sj

(
1− 2 · 10j+1 j

Sj

)
>

j + 1
2j

100j+1
(

1− 1
(j + 1)2

)
=

j + 2
2(j + 1)

100j+1.

This proves (4.2) for j + 1.
On the other hand, ψ is compact, hence max

16i6K2j
‖ψ( fij)‖ < 1/2 when j is

sufficiently large. For such j, Sj < 100j/2. This contradicts (4.2).

As a corollary, we prove:

COROLLARY 4.3. In the above notation, the spaces Y′ and Y′∗ are not exact.

For the proof, we need a non-commutative analogue of the notion of a basis.
We say that a sequence (xi) in an operator space X is C-completely basic if it is a
basis in Y = span[xi | i ∈ N], and moreover, the basis projections Pn ∈ CB(Y) (de-
fined by setting Pnxi = xi if i 6 n, and Pnxi = 0 if i > n) satisfy sup

n
‖Pn‖cb 6 C.

In this setting, Y = span[xi | i ∈ N] clearly has the OAP. Therefore, Corollary 4.3
is proved by combining Theorem 4.1 with

LEMMA 4.4. Suppose Z is an infinite-dimensional λ-exact operator space. Then
Z contains a C-completely basic sequence for any C > λ.

Proof. We select a C-completely basic sequence (zi) ⊂ Z inductively. More
precisely, we select linearly independent vectors z1, z2, . . . ∈ Z, finite codimen-
sional subspaces · · · ↪→ Z2 ↪→ Z1 ↪→ Z, and finite rank projections Pn ∈ CB(Zn)
such that, for any n, z1, . . . , zn ∈ Zn, ran Pn = span[z1, . . . , zn], ‖Pn‖cb < C, and
Pmzn = 0 whenever m < n (then the operators Pn|span[zk | k∈N] play the role of
basis projections).

First pick an arbitrary non-zero z1 ∈ Z. By Hahn-Banach Theorem, there
exists a contractive projection P1 onto E1 = span[z1]. Moreover, P1 has rank 1,
hence it is completely contractive. Let Z1 = Z.
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Now suppose z1, . . . , zn, Z1, . . . , Zn, and P1, . . . , Pn, as above have been se-

lected. Pick an arbitrary non-zero zn+1 ∈ Zn ∩
( n⋂

m=1
ker Pm

)
. Let E=span[z1, . . . ,

zn+1]. Find F ↪→ MN and u : E → F such that ‖u‖cb = 1, ‖u−1‖cb < C. By
Arveson-Wittstock-Stinespring-Paulsen extension theorem, there exists ũ : Zn →
MN such that ũ|E = u, and ‖ũ‖cb = 1. Let Zn+1 = span[E, ker ũ] ↪→ Zn, and
note that dim Zn/ker ũ 6 dim MN < ∞, hence dim Zn/Zn+1 < ∞. Furthermore,
ũ(Zn+1) ⊂ F. It is easy to see that Pn+1 = u−1ũ|Zn+1 is a projection from Zn+1
onto span[z1, . . . , zn+1], with ‖Pn+1‖cb < C. Moreover, Pmzn+1 = 0 for m 6 n.

5. COMPLETELY BOUNDED MAPS ON SUBQUOTIENTS OF X

In this section, we assume that H has property (P), X′′ ↪→ X′ ↪→ X, Y =
X/X′′, and Y′ = X′/X′′ is infinite dimensional. We denote by JY′ the natural
embedding of Y′ into Y. We show:

THEOREM 5.1. Any completely bounded operator S : Y′ → Y is of the form
S = cJY′ + S′, where c ∈ C and S′ is compact.

For the proof, we need the following proposition (it may be known to spe-
cialists).

PROPOSITION 5.2. Suppose Z′ is a subspace of a Hilbert space Z, and T ∈
B(Z′, Z). Then either T is a compact perturbation of a scalar multiple of J (the natu-
ral embedding of Z′ into Z), or there exist mutually orthogonal projections of infinite
rank P ∈ B(Z′), Q ∈ B(Z) such that QT|ran P ∈ B(ran P, ran Q) is invertible.

Proof. First denote by Q0 the orthogonal projection in B(Z) whose kernel
equals Z′. If there are no infinite rank projections P and Q such that ran Q ⊂
ran Q0 and QT|ran P is invertible, then Q0T is compact. This reduces the problem
to the case of Z′ = Z.

We denote by K(H) the space of compact operators on H. We shall show
that, if c = dist(T, CIZ +K(Z)) > 0, then there exist mutually orthogonal projec-
tions P and Q of infinite rank such that QT|ran P ∈ B(ran P, ran Q) is invertible.

Note that dist(RTR, CR +K(ran R)) = c for any orthogonal projection R ∈
B(Z) with finite dimensional kernel. By Theorem 9.12 of [1], for such an R there
exist mutually orthogonal norm 1 vectors ξ(R), η(R) ∈ ran R such that 〈Tξ(R),
η(R)〉 > c/3. This allows us to construct inductively vectors (ξn)n∈N and (ηn)n∈N
in Z, such that, for any k, j,

(5.1) 〈ξk, ηj〉=0, 〈ξk, ξ j〉= 〈ηk, ηj〉=
{

1 k= j,
0 k 6= j,

〈Tξk, ηj〉
{

> c/3 k= j,
=0 k 6= j.

Indeed, let R1 = IZ, ξ1 = ξ(R1), and η1 = η(R1). Suppose ξ1, . . . , ξn, η1, . . . , ηn
have already been selected in such a way that (5.1) holds whenever j, k 6 n. Let
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Rn+1 be the orthogonal projection whose kernel is spanned by (ξi)n
i=1, (ηi)n

i=1,
(Tξi)n

i=1, and (T∗ηi)n
i=1. Let ξn+1 = ξ(Rn+1), ηn+1 = η(Rn+1), and observe that

now (5.1) holds for all j, k 6 n + 1.
Denote by Q and P the orthogonal projections from Z onto span[ηn | n ∈ N]

and span[ξn | n ∈ N], respectively. By the above, QT|ran P is invertible.

Proof of Theorem 5.1. Suppose T : Y′ → Y is not a compact perturbation of
JY′ . We shall show T is not completely bounded. By Proposition 5.2, there exist
mutually orthogonal projections P and Q of infinite rank such that ‖QTξ‖ >
‖ξ‖/C for any ξ ∈ ran P (C > 0). By a small perturbation argument, assume
the existence of f1 < · · · < fKn in ran Q ∩ An (n even). Consider U ∈ U which
sends f j into δj (1 6 j 6 Kn), and annihilates span[ f1, . . . , fKn ]

⊥. Define V : `Kn
2 →

ran P ↪→ Y′ by setting Vδj = (QT)−1 f j (once again, 1 6 j 6 Kn). Then ‖V‖ 6 C,
UV = 0, and UTV is the identity on `Kn

2 . Applying Lemma 3.3, we conclude that

‖T‖cb >
100n

5C max{γn, 10n} .

n can be chosen to be arbitrarily large, hence T is not completely bounded.
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