FINITE REPRESENTABILITY OF HOMOGENEOUS HILBERTIAN OPERATOR SPACES IN SPACES WITH FEW COMPLETELY BOUNDED MAPS

T. OIKHBERG

Communicated by William Arveson

Abstract

For every homogeneous Hilbertian operator space H, we construct a Hilbertian operator space X such that every infinite dimensional subquotient Y of X is completely indecomposable, and fails the Operator Approximation Property, yet H is completely finitely representable in Y. If H satisfies certain conditions, we also prove that every completely bounded map on such Y is a compact perturbation of a scalar.

Keywords: Operator spaces, homogeneous Hilbertian spaces, finite representability, Operator Approximation Property.

MSC (2000): 46L07, 47L25, 46B20.

1. INTRODUCTION AND THE MAIN RESULT

In [3], T. Gowers and B. Maurey gave the first example of a hereditarily indecomposable Banach space Z (recall that an infinite dimensional space Z is called hereditarily indecomposable if it is not isomorphic to a direct sum of two infinite dimensional Banach spaces). Since then, a variety of hereditarily indecomposable Banach spaces were constructed. An overview of the current state of affairs is given in [5].

A non-commutative counterpart of this space was obtained by E. Ricard and the author in [8]. There, we gave an example of an operator space X, isometric to ℓ_{2} (as a Banach space), such that an operator $T: Y \rightarrow X(Y$ being a subspace of X) is completely bounded if and only if $T=\lambda J_{Y}+S$, where J_{Y} is the natural embedding, $\lambda \in \mathbb{C}$, and S is a Hilbert-Schmidt map. In particular, X is completely hereditarily indecomposable - that is, no infinite dimensional subspace $Y \hookrightarrow X$ is completely isomorphic to an ℓ_{∞} sum of two infinite dimensional operator spaces. Moreover, X fails the Operator Approximation Property (see below for the definition). For any n-dimensional subspace $Y \hookrightarrow X$, there exists a unitary $U: Y \rightarrow Y$ such that $\|U\|_{\mathrm{cb}} \geqslant \sqrt{n} / 16$.

Our present goal is to construct completely hereditarily indecomposable operator spaces with "some structure" - that is, spaces which are saturated with "nice" finite dimensional subspaces. More precisely, for any homogeneous Hilbertian operator space H, we construct a Hilbertian operator space X such that:
(i) For any infinite dimensional subspace Y of a quotient of $X, n \in \mathbb{N}$, and $\varepsilon>0$, there exists a subspace $F \hookrightarrow Y$ which is $(1+\varepsilon)$-completely isomorphic to an n-dimensional subspace of H.
(ii) Any Y as above is completely hereditarily indecomposable, and fails the Operator Approximation Property.

If H satisfies certain conditions, then, in addition, any c.b. map on Y is a compact perturbation of a scalar.

Below we recall some facts and definitions concerning operator spaces. For more information, the reader is referred to [2], [9], or [10].

We say that an operator space is c-Hilbertian if its underlying Banach space is c-isomorphic to a Hilbert space. X is c-homogeneous if $\|T\|_{c b} \leqslant c\|T\|$ for any $T \in B(X)$. An infinite dimensional operator space X is called completely indecomposable if it is not completely isomorphic to an ℓ_{∞} direct sum of two infinite dimensional operator spaces (equivalently, any c.b. projection on X has finite dimensional kernel, or finite dimensional range).

We use the term subquotient to mean a subspace of a quotient.
An operator space X is said to have the Operator Approximation Property (OAP, for short) if, for any $x \in \mathcal{K} \otimes X$ and $\varepsilon>0$, there exists a finite rank map $T: X \rightarrow X$ such that $\left\|\left(I_{\mathcal{K}} \otimes T\right) x-x\right\|<\varepsilon$ (here \mathcal{K} is the space of compact operators on ℓ_{2}, and \otimes denotes the minimal (injective) tensor product). X has the Compact Operator Approximation Property (COAP) if, for any $x \in \mathcal{K} \otimes X$ and $\varepsilon>0$, there exists a compact map $T: X \rightarrow X$ such that $\left\|\left(I_{\mathcal{K}} \otimes T\right) x-x\right\|<\varepsilon$. More details about the OAP, as well as several equivalent reformulations of this property, can be found in Chapter 11 of [2].

The complete Banach-Mazur distance between the operator spaces X and Y is defined as

$$
d_{\mathrm{cb}}(X, Y)=\inf \left\{\|T\|_{\mathrm{cb}}\left\|T^{-1}\right\|_{\mathrm{cb}} \mid T \in C B(X, Y)\right\}
$$

We say that an operator space Y is c-completely finitely representable in X if for any finite dimensional subspace $Z \hookrightarrow Y$ there exists $W \hookrightarrow X$ such that $d_{\mathrm{cb}}(W, Z) \leqslant c$. Y is called c-completely complementably finitely representable in X if for any finite dimensional subspace $Z \hookrightarrow Y$ there exists a projection $P \in C B(X)$ such that $\|P\|_{\mathrm{cb}} \leqslant c$, and $d_{\mathrm{cb}}(P(X), Z) \leqslant c$.

If H is a 1-homogeneous 1-Hilbertian operator space, we denote by H_{n} the n-dimensional operator space, completely isometric to (any) n-dimensional subspace of H. We say that H has property (\mathcal{P}) if there exists a sequence $(m(n)) \subset \mathbb{N}$ such that

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left\|\mathrm{id}: \operatorname{MIN}_{m(n)}\left(R_{n}+C_{n}\right) \rightarrow H_{n}\right\|_{\mathrm{cb}}=0
$$

Here, $i d$ is the formal identity map between n-dimensional Hilbert spaces, and the space $\operatorname{MIN}_{k}(X)$ (X being an operator space) is such that

$$
\|x\|_{\mathcal{K} \otimes \operatorname{MiN}_{k}(X)}=\sup \left\{\left\|I_{\mathcal{K}} \otimes u(x)\right\|_{\mathcal{K} \otimes M_{k}} \mid u \in C B\left(X, M_{k}\right),\|u\|_{\mathrm{cb}} \leqslant 1\right\},
$$

where, as usual, M_{k} stands for the pace of $k \times k$ matrices. The reader is referred to [8] for more information about MIN_{k}. For future reference, we need to consider a special case of the functor MIN_{k} - namely, MIN_{1} (denoted by MIN for the sake of brevity). If X is a Banach or operator space, and $x \in \mathcal{K} \otimes X$, then

$$
\|x\|_{\mathcal{K} \otimes \operatorname{MIN}(X)}=\sup \left\{\left\|I_{\mathcal{K}} \otimes f(x)\right\|_{\mathcal{K}} \mid f \in X^{*},\|f\|_{\mathrm{cb}} \leqslant 1\right\} .
$$

In other words, if $a_{1}, \ldots, a_{n} \in \mathcal{K}$, and $x_{1}, \ldots, x_{n} \in X$, then

$$
\left\|\sum a_{i} \otimes x_{i}\right\|_{\mathcal{K} \otimes \operatorname{MIN}(X)}=\sup \left\{\left\|\sum f\left(x_{i}\right) a_{i}\right\|_{\mathcal{K}} \mid f \in X^{*},\|f\|_{\mathrm{cb}} \leqslant 1\right\}
$$

Note that, for any 1-homogeneous 1-Hilbertian space $H, \| \mathrm{id}: \operatorname{MIN}\left(\ell_{2}^{n}\right) \rightarrow$ $H_{n}\left\|_{\mathrm{cb}} \geqslant\right\| \mathrm{id}: \operatorname{MIN}_{m(n)}\left(R_{n}+C_{n}\right) \rightarrow H_{n} \|_{\mathrm{cb}}$, hence H has property (\mathcal{P}) whenever $\limsup \left\|\mathrm{id}: \operatorname{MIN}\left(\ell_{2}^{n}\right) \rightarrow H_{n}\right\|_{\mathrm{cb}} / n=0$. In particular (by Chapter 10 of [10]), the spaces $O H, R+C$, and $R \cap C$ have (\mathcal{P}). To describe another large class of spaces possessing (\mathcal{P}), recall that an operator space X is exact if there exists $C>0$ such that for any finite dimensional subspace $E \hookrightarrow X$ there exists $F \hookrightarrow M_{N}$ such that $d_{\mathrm{cb}}(E, F) \leqslant C$. The infimum of all such constants C is called the exactness constant of X, and denoted by ex (X). Observe that H has property (\mathcal{P}) if $\lim _{n \rightarrow \infty} \mathrm{ex}\left(H_{n}\right) / \sqrt{n}=0$. Indeed, by Smith's Lemma (Proposition 8.11 of [9]), there exists a sequence of positive integers $r(1)<r(2)<\cdots$ such that, for every operator space X, and every $v \in C B\left(X, H_{n}\right)$,

$$
\left\|v: X \rightarrow H_{n}\right\|_{\mathrm{cb}} \leqslant 2 \operatorname{ex}\left(H_{n}\right)\left\|I_{M_{r(n)}} \otimes v: M_{r(n)} \otimes X \rightarrow M_{r(n)} \otimes H_{n}\right\|
$$

(we could have used $1+\varepsilon$ instead of 2). Then, by [8],

$$
\begin{aligned}
& \left(2 \mathrm{ex}\left(H_{n}\right)\right)^{-1}\left\|\mathrm{id}: \operatorname{MIN}_{r(n)}\left(R_{n}+C_{n}\right) \rightarrow H_{n}\right\|_{\mathrm{cb}} \\
& \leqslant\left\|I_{M_{r(n)}} \otimes \mathrm{id}: M_{r(n)} \otimes \operatorname{MIN}_{r(n)}\left(R_{n}+C_{n}\right) \rightarrow M_{r(n)} \otimes H_{n}\right\| \\
& =\left\|I_{M_{r(n)}} \otimes \mathrm{id}: M_{r(n)} \otimes\left(R_{n}+C_{n}\right) \rightarrow M_{r(n)} \otimes H_{n}\right\| \leqslant\left\|\mathrm{id}: R_{n}+C_{n} \rightarrow H_{n}\right\|_{\mathrm{cb}} .
\end{aligned}
$$

However, by Theorem 10.6 of [10],

$$
\left\|\mathrm{id}: R_{n}+C_{n} \rightarrow H_{n}\right\|_{\mathrm{cb}} \leqslant\left\|\mathrm{id}: R_{n}+C_{n} \rightarrow \operatorname{MAX}\left(\ell_{2}^{n}\right)\right\|_{\mathrm{cb}}=\sqrt{n} .
$$

This establishes property (\mathcal{P}).
The main result of this paper is
Theorem 1.1. Suppose H is a separable 1-homogeneous 1-Hilbertian operator space. Then there exists a separable 1-Hilbertian operator space X such that for every infinite dimensional subquotient Y of X we have:
(i) For any $\varepsilon>0, H$ is $(1+\varepsilon)$-completely complementably finitely representable in Y.
(ii) Y is completely indecomposable.
(iii) Y fails the Compact Operator Approximation Property.
(iv) If H has property (\mathcal{P}), then every completely bounded map on Y is a compact perturbation of a scalar.

Clearly, the COAP implies the OAP. By Chapter 11 of [2], the OAP passes from an operator space to its predual. Therefore, dualizing the space X constructed in Theorem 1.1, we conclude:

Corollary 1.2. Suppose H is a separable 1-homogeneous 1-Hilbertian operator space, whose dual H^{*} has property (\mathcal{P}). Then there exists a separable 1-Hilbertian operator space X such that for every infinite dimensional subquotient Y of X we have:
(i) For any $\varepsilon>0, H$ is $(1+\varepsilon)$-completely complementably finitely representable in Y.
(ii) Y is completely indecomposable.
(iii) Y fails the Operator Approximation Property.
(iv) Every completely bounded map on Y is a compact perturbation of a scalar.

In Section 2, we present a modification of the construction of asymptotic sets on the unit sphere of ℓ_{2} (initially due to E. Odell and T. Schlumprecht [6]). In Section 3, we use these asymptotic sets to construct the space X from Theorem 1.1. Furthermore, we establish that all infinite dimensional subquotients of X are completely indecomposable, and H is completely complementably finitely representable in all such subquotients. In Section 4 we prove that all infinitedimensional subquotients of X fail the OAP. Finally, in Section 5 we show that any c.b. map on an infinite dimensional subquotient of X is a compact perturbation of a scalar multiple of the identity, provided H has property (\mathcal{P}).

2. ASYMPTOTIC SETS IN ℓ_{2}

First we recall some Banach space notions, to be used in this and subsequent sections. All spaces are presumed to be infinite dimensional, unless stated otherwise. For a space $X, \mathbf{B}_{X}=\{x \in X \mid\|x\| \leqslant 1\}$ and $\mathbf{S}_{X}=\{x \in X \mid\|x\|=1\}$ stand for the unit ball and the unit sphere of X, respectively.

We say that a sequence $\left(\delta_{i}\right)_{i=1}^{\infty}$ is a basis in a Banach space X if for every $x \in X$ there exists a unique sequence of scalars $\left(a_{i}\right)$ such that $x=\sum_{i=1}^{\infty} a_{i} \delta_{i}$. Equivalently (see e.g. Proposition 1.a. 3 of [4]), the projections $P_{n} \in B(X)$, defined via $P_{n}\left(\sum_{i=1}^{\infty} a_{i} \delta_{i}\right)=\sum_{i=1}^{n} a_{i} \delta_{i}$, are well defined, and $\sup _{n}\left\|P_{n}\right\|<\infty$. If E is a finite subset of \mathbb{N}, we write $E\left(\sum_{i=1}^{\infty} a_{i} \delta_{i}\right)=\sum_{i \in E} a_{i} \delta_{i}$. The support of $a=\sum_{i=1}^{\infty} a_{i} \delta_{i}$ (denoted by $\operatorname{supp} a)$ is the set of $i \in \mathbb{N}$ for which $a_{i} \neq 0$.

If E and F are finite subsets of \mathbb{N}, we write $E<F$ if $\max E<\min F$. If a Banach space X has a basis $\left(\delta_{i}\right)_{i \in \mathbb{N}}$, we write $a<b(a, b \in X)$ if supp $a<\operatorname{supp} b$.

The basis $\left(\delta_{i}\right)_{i=1}^{\infty}$ is called 1-subsymmetric if $\left\|\sum_{i} a_{i} \delta_{i}\right\|=\left\|\sum_{i} \omega_{i} a_{i} \delta_{n_{i}}\right\|$ for any finite sequence $\left(a_{i}\right)$, any $\left(\omega_{i}\right)$ with $\left|\omega_{i}\right|=1$, and any increasing sequence $n_{1}<$ $n_{2}<\cdots$ (sometimes, the term "1-unconditional 1-subsymmetric" is used to describe bases with this property).

For $\mathcal{S}_{1}, \mathcal{S}_{2} \subset X$, we set $\operatorname{dist}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)=\inf \left\{\left\|x_{1}-x_{2}\right\| \mid x_{1} \in \mathcal{S}_{1}, x_{2} \in \mathcal{S}_{2}\right\}$.
A set $A \subset X$ is called asymptotic if, for every infinite dimensional $Y \subset X$, $\operatorname{dist}(A, Y)=0$. If $\left(\delta_{i}\right)_{i \in \mathbb{N}}$ is a 1 -subsymmetric basis for X, we say that $A \subset X$ is spreading (unconditional) if, for any $\sum_{i=1}^{\infty} a_{i} \delta_{i} \in A$, we have $\sum_{i=1}^{\infty} a_{i} \delta_{n_{i}} \in A$ for any $n_{1}<n_{2}<\cdots$ (respectively $\sum_{i=1}^{\infty} \omega_{i} a_{i} \delta_{i} \in A$ for any $\left|\omega_{i}\right|=1$).

The idea of constructing a sequence of asymptotic sets, satisfying certain conditions, was used by E. Odell and T. Schlumprecht in [6] in order to prove that ℓ_{p} is distortable for $1<p<\infty$. Below we prove a sharper version of one of their results.

THEOREM 2.1. Suppose $\varepsilon_{1}>\varepsilon_{2}>\cdots$ is a sequence of positive numbers, and $\left(K_{i}\right)_{i=1}^{\infty}$ is a sequence of positive integers. Then there exists a sequence of asymptotic spreading unconditional sets A_{1}, A_{2}, \ldots, consisting of unit vectors in ℓ_{2} with finite support, such that

$$
\begin{equation*}
\sum_{k=1}^{K_{n}}\left|\left\langle a, b_{k}\right\rangle\right|^{2}<\varepsilon_{m}^{2} \tag{2.1}
\end{equation*}
$$

whenever $m<n, a \in A_{m}, b_{1}, \ldots, b_{K_{n}} \in A_{n}$, and $b_{1}<\cdots<b_{K_{n}}$.
The Schlumprecht space S is essential for proving this theorem. Recall (see [3], [6], [7], [11]) that S has a 1-subsymmetric basis $\left(\delta_{i}\right)_{i=1}^{\infty}$, and

$$
\begin{equation*}
\left\|\sum_{i} a_{i} \delta_{i}\right\|=\sup \left\{\sup _{i}\left|a_{i}\right|, \sup _{n \geqslant 2, E_{1}<\cdots<E_{n}} \frac{1}{\phi(n)} \sum_{j=1}^{n}\left\|\sum_{i \in E_{j}} a_{i} \delta_{i}\right\|\right\} \tag{2.2}
\end{equation*}
$$

(here $\phi(t)=\log (t+1)$). Using the ideas of [6], we first present "nice" sets in S and its dual.

LEMMA 2.2. Suppose $\sigma_{1}>\sigma_{2}>\cdots$ is a sequence of positive numbers, and $\left(K_{i}\right)_{i=1}^{\infty}$ is a sequence of positive integers. Then there exist spreading unconditional sets $B_{1}, B_{2}, \ldots \subset \mathbf{S}_{S}$ and $B_{1}^{*}, B_{2}^{*}, \ldots \subset \mathbf{B}_{S^{*}}$, consisting of vectors with finite support, such that:
(i) B_{n} is asymptotic for every n.
(ii) $|\langle a, E b\rangle|<\sigma_{\min \{m, n\}}$ if $a \in B_{n}, b \in B_{m}^{*}$, and $E \subset \mathbb{N}$.
(iii) For every $a \in B_{m}$ there exists $b \in B_{m}^{*}$ satisfying $|\langle a, b\rangle|>1-\sigma_{m}$.
(iv) Suppose $m<n, a \in B_{m}, b_{1}, \ldots, b_{K_{n}} \in B_{n}^{*}, b_{1}<\cdots<b_{K_{n}}$, and $E_{1}<\cdots<E_{K_{n}}$.

Then $\sum_{k=1}^{K_{n}}\left|\left\langle a, E_{k} b_{k}\right\rangle\right|<2 \sigma_{m}$.

Sketch of the proof. We rely on the construction from Section 2 of [3] (summarized in [6] as Lemma 3.3). There, T. Gowers and B. Maurey show the existence of a rapidly increasing sequence $p_{k} \nearrow \infty$, and a rapidly decreasing sequence $\sigma_{k}^{\prime} \searrow 0$, with the following property: for $n \in \mathbb{N}$, define

$$
B_{n}^{*}=\left\{\left.\frac{1}{\phi\left(p_{n}\right)} \sum_{j=1}^{p_{n}} b_{j} \right\rvert\, b_{j} \in S^{*},\left\|b_{j}\right\|=1, b_{1}<\cdots<b_{p_{n}}\right\} \subset \mathbf{B}_{S^{*}}
$$

and let B_{n} be the set of all $\left(\sum_{i=1}^{p_{n}} x_{i}\right) /\left\|\sum_{i=1}^{p_{n}} x_{i}\right\| \in \mathbf{S}_{S}$, where $\left(x_{i}\right)_{i=1}^{p_{n}}$ is a RIS sequence of length p_{n}, with constant $1+\sigma_{n}^{\prime}$ (we do not reproduce the definition of RIS, as it is quite cumbersome, and is not really necessary here; suffices to say that above, $\left.x_{1}<x_{2}<\cdots<x_{p_{n}}\right)$. Then the sets B_{n} and B_{n}^{*} are unconditional and spreading, and the statements (i), (ii), and (iii) of the lemma hold. It remains to prove (iv).

By passing to a subsequence, we can assume that $\phi\left(K_{n} p_{n}\right)<2 \phi\left(p_{n}\right)$ for every n (recall that $\phi(t)=\log (t+1)$). Suppose m, n, a, and $\left(b_{k}\right)_{k=1}^{K_{n}}$ are as in (2.2). The sets B_{m} and B_{n}^{*} are unconditional, hence it suffices to prove (2.2) when all the entries of a and $\left(b_{k}\right)$ are non-negative, and $E_{k}=\operatorname{supp} b_{k}$ for each k. In this situation, we have to show that $\left\langle a, \sum_{k=1}^{K_{n}} b_{k}\right\rangle<2 \sigma_{m}$. By construction,

$$
b_{k}=\frac{1}{\phi\left(p_{n}\right)} \sum_{j=1}^{p_{n}} b_{j k}
$$

where $b_{j k} \in \mathbf{B}_{S^{*}}\left(1 \leqslant j \leqslant p_{n}\right)$ are such that $b_{1 k}<\cdots<b_{p_{n} k}$. By passing from $b_{j k}$ to $E_{k} b_{j k}$ if necessary, we can assume that $\operatorname{supp} b_{j k} \subset \operatorname{supp} b_{k}$ for each j, hence

$$
b_{11}<b_{21}<\cdots<b_{p_{n} 1}<b_{12}<\cdots<b_{p_{n} K_{n}}
$$

Let

$$
\widetilde{b}=\frac{1}{\phi\left(p_{n} K_{n}\right)} \sum_{k=1}^{K_{n}} \sum_{j=1}^{p_{n}} b_{j k}=\frac{\phi\left(p_{n}\right)}{\phi\left(p_{n} K_{n}\right)} \sum_{k=1}^{K_{n}} b_{k}
$$

By (2.2), $\|\widetilde{b}\| \leqslant 1$, hence $\left\|\sum_{k=1}^{K_{n}} b_{k}\right\| \leqslant \phi\left(p_{n} K_{n}\right) / \phi\left(p_{n}\right)<2$. Moreover, $a=\alpha \sum_{s=1}^{p_{m}} a_{s}$, where $\left\|a_{s}\right\|=1$ for each $s, a_{1}<a_{2}<\cdots<a_{p_{m}}$, and $\alpha=\left\|\sum_{s=1}^{p_{m}} a_{s}\right\|$. By (2.2), $\alpha \leqslant \phi\left(p_{m}\right) / p_{m}$. By Lemma 5 of [3] (and by the choice of sequences $\left(p_{n}\right)$ and $\left.\left(\sigma_{n}^{\prime}\right)\right),\langle a, \widetilde{b}\rangle \leqslant 2 \alpha<\sigma_{m}$. Thus, $\left\langle a, \sum_{k=1}^{K_{n}} b_{k}\right\rangle<2 \sigma_{m}$, as desired.

Proof of Theorem 2.1. Below we view elements of S, S^{*}, and ℓ_{2} as sequences (via the expansions with respect to the canonical bases of these spaces). Operations of multiplication etc. are defined pointwise.

Suppose $B_{1}, B_{1}^{*}, B_{2}, B_{2}^{*}, \ldots$ are as in the previous lemma, with $2 \sigma_{k} /\left(1-\sigma_{k}\right)<$ ε_{k}. Define A_{k} as the set of vectors $x \in \ell_{2}$ for which $|x|^{2}=a b /\langle a, b\rangle$, with $a \in B_{k}$,
$b \in B_{k}^{*}, a, b \geqslant 0$, and $\langle a, b\rangle>1-\sigma_{k}$. It follows from [6] that the sets A_{k} are asymptotic, spreading, and unconditional. To show (2.1), suppose $m<n$, and consider non-negative $x, y_{1}, \ldots, y_{K_{n}} \in \ell_{2}$ such that $x^{2}=a b$ and $y_{k}^{2}=a_{k} b_{k}$ with $a \in B_{m}, b \in B_{m}^{*}, a_{k} \in B_{n}, b_{k} \in B_{n}^{*}$ (for $1 \leqslant k \leqslant K_{n}$), and $y_{1}<y_{2}<\cdots<y_{K_{n}}$. Let $E_{k}=\operatorname{supp} y_{k}$. By Cauchy-Schwartz Inequality,

$$
\sum_{k}\left\langle x, y_{k}\right\rangle^{2}=\sum_{k}\left\langle\sqrt{a} \sqrt{b}, \sqrt{E_{k} a_{k}} \sqrt{E_{k} b_{k}}\right\rangle^{2} \leqslant \sum_{k}\left\langle a, E_{k} b_{k}\right\rangle\left\langle a_{k}, E_{k} b\right\rangle .
$$

By the previous lemma, $\sum_{k}\left\langle a, E_{k} b_{k}\right\rangle<2 \sigma_{m}$, and $\left\langle a_{k}, E_{k} b\right\rangle<\sigma_{m}$. Therefore,

$$
\sum_{k}\left\langle\frac{x}{\|x\|}, \frac{y_{k}}{\left\|y_{k}\right\|}\right\rangle^{2} \leqslant \frac{2 \sigma_{m}^{2}}{\left(1-\sigma_{m}\right)^{2}}
$$

This establishes (2.1).

3. CONSTRUCTION AND BASIC PROPERTIES OF X

Construct a sequence of sets A_{n} as in Theorem 2.1, with $\varepsilon_{n}=239^{-n}$ and $K_{n}=10^{n}$. Let $\left(\delta_{i}\right)_{i=1}^{N}$ and $\left(\delta_{i}\right)_{i=1}^{\infty}$ be the canonical bases in ℓ_{2}^{N} and ℓ_{2}, respectively.

Denote by \mathcal{U} the set of operators $U: \ell_{2} \rightarrow \ell_{2}^{K_{n}}$ (n even) of the form

$$
U \xi=\sum_{j=1}^{K_{n}}\left\langle\xi, f_{j}\right\rangle \delta_{j} \quad \text { with } f_{1}, \ldots, f_{K_{n}} \in A_{n}, f_{1}<\cdots<f_{K_{n}}
$$

or

$$
U \xi=\frac{1}{\sqrt{2}} \sum_{j=1}^{K_{n}}\left\langle\xi, f_{j+K_{n}}+\varepsilon f_{j}\right\rangle \delta_{j} \quad \text { with } f_{1}<\cdots<f_{2 K_{n}}, \varepsilon= \pm 1
$$

and either $f_{1}, \ldots, f_{2 K_{n}} \in A_{n}$, or $f_{1}, \ldots, f_{K_{n}} \in A_{n}, f_{K_{n}+1}, \ldots, f_{2 K_{n}} \in A_{n+2}$
(in both cases, $\xi \in \ell_{2}$). Let $\left(U_{i}\right)$ be a countable dense subset in \mathcal{U} (that is, for every $U \in \mathcal{U}$ and every $\varepsilon>0$ there exists $i \in \mathbb{N}$ such that the range spaces of U and U_{i} coincide, and $\left\|U-U_{i}\right\|_{1}<\varepsilon$).

Denote by \mathcal{W} the set of operators $W \in B\left(\ell_{2}\right)$ such that $W \xi=\sum_{j=1}^{K_{n}}\left\langle\xi, f_{j}\right\rangle \delta_{j}$ for $\xi \in \ell_{2}$, where n is odd, and $f_{1}<\cdots<f_{K_{n}}$ belong to A_{n}.

Following [8], fix a sequence $s_{0}<s_{1}<\cdots$ (increasing "sufficiently fast"), and define spaces $E_{i}=\operatorname{MIN}_{s_{i}}\left(\operatorname{MAX}_{s_{i-1}}\left(R_{n_{i}} \cap C_{n_{i}}\right)\right)$, for which:
(i) $n_{i}=100^{j}$ for some $j=j(i) \in \mathbb{N}$, and moreover, for each $j \in \mathbb{N}$ the number 100^{j} occurs infinitely many times in the sequence $\left(n_{i}\right)$.
(ii) For any operator $u: E_{i}^{*} \rightarrow E_{j}$, we have $\|u\|_{1} / 5 \leqslant\|u\|_{\mathrm{cb}} \leqslant\|u\|_{1}$ if $i=j$, $\|u\|_{\mathrm{cb}}=\|u\|_{2}$ if $i \neq j$.
(iii) If, in addition, H has property (\mathcal{P}), then $\lim _{j \rightarrow \infty} \gamma_{j} / 100^{j}=0$, where

$$
\gamma_{j}=\left\|\mathrm{id}: \operatorname{MIN}_{s_{i-1}}\left(R_{100^{j}}+C_{100^{j}}\right) \rightarrow H_{100^{j}}\right\|_{\mathrm{cb}}
$$

and i is the smallest integer satisfying $n_{i}=100^{j}$ (or in other words, $i=\min \{k$: $j=j(k)\})$. Consequently, $\|$ id $: E_{i}^{*} \rightarrow H_{100 j(i)} \|_{\mathrm{cb}} \leqslant \gamma_{j}$ for any i.

Define the operator space X by setting, for $x \in \mathcal{K} \otimes \ell_{2}$,

$$
\begin{align*}
& \|x\|_{\mathcal{K} \otimes X}= \\
& \max \left\{\|x\|_{\mathcal{K} \otimes \operatorname{MIN}\left(\ell_{2}\right)}, \sup _{i \in \mathbb{N}}\left\|\left(I_{\mathcal{K}} \otimes U_{i}\right) x\right\|_{\mathcal{K} \otimes E_{i}} \sup _{W \in \mathcal{W}}\left\|\left(I_{\mathcal{K}} \otimes W\right) x\right\|_{\mathcal{K} \otimes H}\right\} \tag{3.1}
\end{align*}
$$

(recall that, for $x=\sum_{i} a_{i} \otimes \delta_{i} \in \mathcal{K} \otimes \operatorname{MIN}\left(\ell_{2}\right)$,

$$
\left.\|x\|_{\mathcal{K} \otimes \operatorname{MIN}\left(\ell_{2}\right)}=\sup \left\{\left.\left\|\sum_{i} \alpha_{i} a_{i}\right\|_{\mathcal{K}}\left|\sum_{i}\right| \alpha_{i}\right|^{2} \leqslant 1\right\}\right) .
$$

It is easy to check that X satisfies Ruan's axioms, hence it is an operator space. Also, X is isometric to ℓ_{2}. We shall show that it has all the desired properties. Start by showing that elements of \mathcal{U} and \mathcal{W} "ignore" each other.

Lemma 3.1. If $U \in \mathcal{U}$ and $W \in \mathcal{W}$, then $\left\|U W^{*}\right\|_{1} \leqslant 1$.
Proof. It suffices to prove that $\|U V\|_{1} \leqslant 1 / 2$ when $U \in B\left(\ell_{2}, \ell_{2}^{K_{n}}\right)$ and $V \in$ $B\left(\ell_{2}, \ell_{2}\right)$ are given by

$$
U \xi=\sum_{j=1}^{K_{m}}\left\langle\xi, g_{j}\right\rangle \delta_{j}, \quad \text { and } \quad V \delta_{i}=\left\{\begin{array}{cc}
f_{i} & i \leqslant K_{n} \tag{3.2}\\
0 & i>K_{n}
\end{array}\right.
$$

where $f_{1}<\cdots<f_{K_{n}}$ belong to A_{n}, and $g_{1}<\cdots<g_{K_{m}}$ belong to A_{ℓ}, for $\ell \geqslant m$, and $n \notin\{m, \ell\}$. Indeed, the adjoint of any element of \mathcal{W} equals V as above, while any element of \mathcal{U} either equals to a U of the above form, or can be represented as $\left(U_{1}+U_{2}\right) / \sqrt{2}$, with U_{1} and U_{2} resembling U in (3.2). Note that, for U and V as in (3.2),

$$
U V \delta_{i}= \begin{cases}\sum_{j=1}^{K_{m}}\left\langle f_{i}, g_{j}\right\rangle \delta_{j} & i \leqslant K_{n} \\ 0 & i>K_{n}\end{cases}
$$

and therefore,

$$
\begin{equation*}
\|U V\|_{2}^{2}=\sum_{i=1}^{K_{n}} \sum_{j=1}^{K_{m}}\left|\left\langle f_{i}, g_{j}\right\rangle\right|^{2} \tag{3.3}
\end{equation*}
$$

To estimate $\|U V\|_{1}$, suppose first that $n<\ell$. By construction of A_{n} and A_{ℓ}, $\sum_{j=1}^{K_{m}}\left|\left\langle f_{i}, g_{j}\right\rangle\right|^{2}<\varepsilon_{n}^{2}$ for $1 \leqslant i \leqslant K_{n}$. Therefore, by (3.3) $\|U V\|_{2}^{2} \leqslant K_{n} \varepsilon_{n}^{2}$. Moreover,
$\operatorname{rank} U V \leqslant \operatorname{rank} U=K_{n}$, hence

$$
\|U V\|_{1} \leqslant \sqrt{\operatorname{rank} U V}\|U V\|_{2}=K_{n} \varepsilon_{n}<\frac{1}{2}
$$

by our choice of K_{n} and ε_{n}. If $n>\ell$, we similarly obtain $\|U V\|_{1}<K_{m} \varepsilon_{\ell} \leqslant K_{\ell} \varepsilon_{\ell}<$ $1 / 2$ (we use the fact that $m \leqslant \ell$).

We shall identify subquotients of X with subspaces of X (as linear spaces). More precisely, suppose $X^{\prime \prime} \hookrightarrow X^{\prime} \hookrightarrow X$. Then $Y=X / X^{\prime \prime}$ and $Y^{\prime}=X^{\prime} / X^{\prime \prime}$ are identified with $X \ominus X^{\prime \prime}$ and $X^{\prime} \ominus X^{\prime \prime}$, respectively.

Proposition 3.2. H is $(1+\varepsilon)$-completely complementably finitely representable in any infinite dimensional subquotient of X.

Proof. Fix an odd n, and consider $f_{1}, \ldots, f_{K_{n}} \in A_{n}$ such that $f_{1}<\cdots<f_{K_{n}}$. Denote by $X_{\mathbf{f}}$ the span of $f_{1}, \ldots, f_{K_{n}}$ in X. We shall show that $X_{\mathbf{f}}$ is completely contractively complemented in X, and completely isometric to $H_{K_{n}}$. Indeed, there exists $W_{0} \in \mathcal{W}$ such that $W_{0} \xi=\sum_{j=1}^{K_{n}}\left\langle\xi, f_{j}\right\rangle \delta_{j}$ for $\xi \in X$. By (3.1), $\left\|W_{0}\right\|_{\mathrm{cb}}=1$.

Consider W_{0}^{*} as an operator $V: H \rightarrow X$. Then

$$
\|V\|_{\mathrm{cb}}=\max \left\{\|V\|_{C B\left(H, \mathrm{MIN}\left(\ell_{2}\right)\right)}, \sup _{i \in \mathbb{N}}\left\|U_{i} V\right\|_{C B\left(H, E_{i}\right)}, \sup _{W \in \mathcal{W}}\|W V\|_{C B(H)}\right\}
$$

But $\|V\|_{C B\left(H, \operatorname{MIN}\left(\ell_{2}\right)\right)}=\|V\|=1,\|W V\|_{C B(H)}=\|W V\| \leqslant 1$, and $\left\|U_{i} V\right\|_{C B\left(H, E_{i}\right)}$ $\leqslant\left\|U_{i} V\right\|_{1} \leqslant 1$ by Lemma 3.1. Thus, both W_{0} and V are complete contractions, hence $X_{\mathbf{f}}$ is completely isometric to $H_{K_{n}}$. Moreover, $P=V W_{0}$ is a completely contractive projection onto X_{f}.

Now consider $Y^{\prime}=X^{\prime} / X^{\prime \prime}$ (with $X^{\prime \prime} \hookrightarrow X^{\prime} \hookrightarrow X$). By perturbing X^{\prime} and $X^{\prime \prime}$ slightly, and identifying Y^{\prime} with a subspace of X (as explained above), we can assume that $Y^{\prime} \cap A_{n}$ contains $f_{1}<\cdots<f_{K_{n}}$. Denote by Z the span of $f_{1}, \ldots, f_{K_{n}}$ in Y^{\prime}. We claim that Z is completely isometric to $H_{K_{n}}$, and completely contractively complemented in Y^{\prime}. Indeed, consider the orthogonal projection P from X onto Z. Above we have established that P is completely contractive as an operator on X. Therefore, for any $z \in \mathcal{K} \otimes Z$,

$$
\begin{aligned}
\|z\|_{\mathcal{K} \otimes X^{\prime}} & \geqslant\|z\|_{\mathcal{K} \otimes Y^{\prime}}=\inf \left\{\|z+x\|_{\mathcal{K} \otimes X^{\prime}} \mid x \in \mathcal{K} \otimes X^{\prime \prime}\right\} \\
& \geqslant \inf \left\{\left\|\left(I_{\mathcal{K}} \otimes P\right)(z+x)\right\|_{\mathcal{K} \otimes X^{\prime}} \mid x \in \mathcal{K} \otimes X^{\prime \prime}\right\}=\|z\|_{\mathcal{K} \otimes X^{\prime}}
\end{aligned}
$$

since $X^{\prime \prime} \subset$ ker P. Thus, Z is completely isometric to the span of $f_{1}, f_{2}, \ldots, f_{K_{n}}$ in X^{\prime}, which, by the above, is completely isometric to $H_{K_{n}}$. Moreover, P (viewed as an operator on Y) is completely contractive.

The following result yields a useful lower estimate for c.b. norms of operators on X and its subquotients.

Proposition 3.3. Suppose $X^{\prime \prime} \hookrightarrow X^{\prime} \hookrightarrow X$, and let Y and Y^{\prime} are the quotient spaces $X / X^{\prime \prime}$ and $X^{\prime} / X^{\prime \prime}$, respectively.
(i) Consider the operators $T: Y^{\prime} \rightarrow Y, U: Y \rightarrow \ell_{2}^{100^{n}}$, and $V: \ell_{2}^{100^{n}} \rightarrow Y^{\prime}$, such that $U, V^{*} \in \mathcal{U}$. Then

$$
\|T\|_{\mathrm{cb}} \geqslant \frac{\|U T V\|_{1}}{5 \max \left\{10^{n},\|U V\|_{1}\right\}}
$$

Consequently, $\|T\|_{\mathrm{cb}} \geqslant\|U T V\|_{1} /\left(5 \cdot 10^{n}\right)$ whenever U and V as above satisfy $U V=0$.
(ii) Suppose H has property (\mathcal{P}), and consider the operators $T: Y^{\prime} \rightarrow Y, U: Y \rightarrow$ $\ell_{2}^{100^{n}}$, and $V: \ell_{2}^{100^{n}} \rightarrow Y^{\prime}$, such that $U \in \mathcal{U}$. Then

$$
\|T\|_{\mathrm{cb}} \geqslant \frac{\|U T V\|_{1}}{5 \max \left\{10^{n}\|V\|, \gamma_{n}\|V\|,\|U V\|_{1}\right\}}
$$

For the proof, we need the following two lemmas. Below, $X^{\prime \prime}, X^{\prime}, X^{\prime \prime}, Y^{\prime}$, and Y are as in the statement of Proposition 3.3.

Lemma 3.4. Suppose P is the orthogonal projection from X onto Y^{\prime}, and U_{i} : $X \rightarrow E_{i}$ is as in the definition of X. Then $\left\|\left.U_{i}\right|_{Y^{\prime}}\right\|_{C B\left(Y^{\prime}, E_{i}\right)} \leqslant 1+2\left\|U_{i}-U_{i} P\right\|_{1}$.

Proof. Observe first that

$$
\left\|U_{i} P\right\|_{C B\left(X, E_{i}\right)} \leqslant 1+\left\|U_{i}-U_{i} P\right\|_{C B\left(X, E_{i}\right)} \leqslant 1+\left\|U_{i}-U_{i} P\right\|_{1}
$$

Moreover, $\left\|U_{i} P\right\|_{C B\left(X, E_{i}\right)} \geqslant\left\|\left.U_{i} P\right|_{Y^{\prime}}\right\|_{C B\left(Y^{\prime}, E_{i}\right)}$. Indeed, suppose $y \in M_{n} \otimes Y^{\prime}$ satisfies $\|y\|_{M_{n} \otimes Y^{\prime}}<1$. Then there exists $x \in M_{n} \otimes X$ such that $\|x\|_{M_{n} \otimes X}<1$, and $I_{M_{n}} \otimes P(x)=y$. We conclude that

$$
\left\|I_{M_{n}} \otimes U_{i} P(y)\right\|_{M_{n} \otimes E_{i}}=\left\|I_{M_{n}} \otimes U_{i} P(x)\right\|_{M_{n} \otimes E_{i}}<\left\|U_{i} P\right\|_{C B\left(X, E_{i}\right)}
$$

To finish the proof, note that $\left\|\left.U_{i}\right|_{Y^{\prime}}\right\|_{C B\left(Y^{\prime}, E_{i}\right)} \leqslant\left\|\left.U_{i} P\right|_{Y^{\prime}}\right\|_{C B\left(Y^{\prime}, E_{i}\right)}+\left\|U_{i}-U_{i} P\right\|_{1}$.
Lemma 3.5. Suppose V as an operator from E_{i}^{*} to Y^{\prime}. Then

$$
\|V\|_{C B\left(E_{i}^{*}, Y^{\prime}\right)} \leqslant \max \left\{\left\|U_{i} V\right\|_{1},\|V\|_{2}, \sup _{W \in \mathcal{W}}\|W V\|_{\mathrm{cb}}\right\} .
$$

Consequently:
(i) If $V^{*} \in \mathcal{U}$, then $\|V\|_{C B\left(E_{i}^{*}, Y^{\prime}\right)} \leqslant \max \left\{\left\|U_{i} V\right\|_{1},\|V\|_{2}\right\}$.
(ii) If H has property (\mathcal{P}) and $n_{i}=100^{k}$, then

$$
\|V\|_{C B\left(E_{i}^{*}, \gamma^{\prime}\right)} \leqslant \max \left\{\left\|U_{i} V\right\|_{1}, \max \left\{\sqrt{n_{i}}, \gamma_{k}\right\}\|V\|\right\}
$$

Proof. Let $q: X^{\prime} \rightarrow Y^{\prime}$ is the complete quotient map. By (3.1),

$$
\begin{aligned}
\|V\|_{C B\left(E_{i}^{*}, Y^{\prime}\right)} & =\|q V\|_{C B\left(E_{i}^{*}, Y^{\prime}\right)} \leqslant\|V\|_{C B\left(E_{i}^{*}, X\right)} \\
& =\max \left\{\|V\|_{C B\left(E_{i}^{*}, \operatorname{MIN}\left(\ell_{2}\right)\right)}, \sup _{j \in \mathbb{N}}\left\|U_{j} V\right\|_{C B\left(E_{i}^{*}, E_{j}\right)}, \sup _{W \in \mathcal{W}}\|W V\|_{C B\left(E_{i}^{*}, H\right)}\right\} .
\end{aligned}
$$

However, $\|V\|_{C B\left(E_{i}^{*}, \operatorname{MIN}\left(\ell_{2}\right)\right)}=\|V\|,\left\|U_{i} V\right\|_{\mathrm{cb}} \leqslant\left\|U_{i} V\right\|_{1}$, and $\left\|U_{j} V\right\|_{\mathrm{cb}}=\left\|U_{j} V\right\|_{2}$ $\leqslant\|V\|_{2}$ for $j \neq i$. If $V^{*} \in \mathcal{U}$, then, by Lemma 3.1, $\|W V\|_{\mathrm{cb}} \leqslant\|W V\|_{1} \leqslant 1$. If H has property (\mathcal{P}) and $n_{i}=100^{k}$, then $\|W V\|_{\mathrm{cb}} \leqslant \gamma_{k}\|V\|$.

Proof of Proposition 3.3. We observe that, for any $i \in \mathbb{N}$,

$$
\|T\|_{\mathrm{cb}} \geqslant \frac{\left\|U_{i} T V\right\|_{C B\left(E_{i}^{*}, E_{i}\right)}}{\left\|\left.U_{i}\right|_{Y}\right\|_{C B\left(Y, E_{i}\right)}\|V\|_{C B\left(E_{i}^{*}, Y^{\prime}\right)}} \geqslant \frac{\left\|U_{i} T V\right\|_{1}}{5\left\|\left.U_{i}\right|_{Y}\right\|_{C B\left(Y, E_{i}\right)}\|V\|_{C B\left(E_{i}^{*}, Y^{\prime}\right)}} .
$$

Approximating U with operators U_{i}, and using estimates for $\left\|U_{i}\right\|_{\mathrm{cb}}$ and $\|V\|_{\mathrm{cb}}$ obtained in Lemmas 3.4 and 3.5, we achieve the result.

Corollary 3.6. Any infinite dimensional subquotient of X is completely indecomposable.

Proof. Suppose P is a projection on $Y^{\prime}=X^{\prime} / X^{\prime \prime}$ (here, $X^{\prime \prime} \hookrightarrow X^{\prime} \hookrightarrow X$), and both the range and the kernel of P are infinite dimensional. The sets A_{n} involved in the construction of X are asymptotic, and therefore, by a small perturbation argument, we can assume that for any even n there exist $f_{1}, \ldots, f_{2 K_{n}} \in A_{n} \cap Y^{\prime}$ such that $f_{1}<\cdots<f_{2 K_{n}}$, and

$$
P f_{j}=\left\{\begin{array}{cl}
f_{j} & j \leqslant K_{n} \\
0 & j>K_{n}
\end{array}\right.
$$

Consider the operators $U, V \in B\left(X, \ell_{2}^{K_{n}}\right)$, defined by

$$
U \xi=\frac{1}{\sqrt{2}} \sum_{s=1}^{K_{n}}\left\langle\eta, f_{s+K_{n}}-f_{s}\right\rangle \delta_{s}, \quad V \xi=\frac{1}{\sqrt{2}} \sum_{s=1}^{K_{n}}\left\langle\eta, f_{s+K_{n}}+f_{s}\right\rangle \delta_{s} \quad\left(\xi \in \ell_{2}\right) .
$$

Then $U, V \in \mathcal{U}$, and $U V^{*}=0$. Therefore, by Proposition 3.3,

$$
\|P\|_{\mathrm{cb}} \geqslant \frac{\left\|U P V^{*}\right\|_{1}}{5 \cdot 10^{n / 2}}=\frac{10^{n} / 2}{5 \cdot 10^{n / 2}}=10^{n / 2-1}
$$

The even integer n can be arbitrarily large, hence P is not completely bounded.

4. SUBQUOTIENTS OF X FAIL THE OAP

As in the previous section, we assume that $X^{\prime \prime} \hookrightarrow X^{\prime} \hookrightarrow X$, and $Y^{\prime}=X^{\prime} / X^{\prime \prime}$ is infinite dimensional. We establish

TheOrem 4.1. Y^{\prime} fails the Compact Operator Approximation Property.
Our main tool is
Lemma 4.2. Suppose Z is an operator space with the Compact Operator Approximation Property, $\left(Z_{i}\right)_{i=0}^{\infty}$ a sequence of finite dimensional subspaces of $Z,\left(F_{i}\right)_{i=1}^{\infty}$ a sequence of 1-exact operator spaces, and the function $f: \mathbb{N} \rightarrow(2, \infty)$ is such that $\lim _{n \rightarrow \infty} f(n)=\infty$. Then there exists a compact operator $\psi: Z \rightarrow Z$ such that $\left.\psi\right|_{Z_{0}}=I_{Z_{0}}$, and $\left\|\left.u_{i} \psi\right|_{Z_{i}}\right\|_{\mathrm{cb}} \leqslant f(i)\left\|u_{i}\right\|_{\mathrm{cb}}$ for any $i \in \mathbb{N}$ and $u_{i}: Z \rightarrow F_{i}$.

We omit the proof, as it is identical to the proof of Lemma 6.1 of [8].

Proof of Theorem 4.1. By a small perturbation argument, we may assume that Y^{\prime} contains vectors $f_{i j}\left(j \in \mathbb{N}, 1 \leqslant i \leqslant K_{2 j}\right)$ with finite support such that $f_{i j} \in A_{2 j}$, and $f_{i j}<f_{k \ell}$ if $j<\ell$, or $j=\ell$ and $i<k$. For every $j \in \mathbb{N}, 1 \leqslant m \leqslant 100$, and $\varepsilon= \pm 1$, define operators $A_{j, m, \varepsilon}: Y^{\prime} \rightarrow \ell_{2}^{K_{2 j}}$ and $B_{j, m, \varepsilon}: \ell_{2}^{K_{2 j}} \rightarrow Y^{\prime}$ by setting $m^{\prime}=K_{2 j}(m-1)$,

$$
B_{j, m, \varepsilon} \delta_{i j}=\frac{1}{\sqrt{2}}\left(f_{i j}-\varepsilon f_{m^{\prime}+i+1, j+1}\right) \quad \text { for } 1 \leqslant i \leqslant 100^{j}
$$

$\left(\left(\delta_{i j}\right)_{i=1}^{K_{2 j}}\right.$ is the canonical basis of $\left.\ell_{2}^{K_{2 j}}\right)$, and

$$
A_{j, m, \varepsilon} \xi=\frac{1}{\sqrt{2}} \sum_{i=1}^{100 j}\left\langle\xi, f_{i j}+\varepsilon f_{m^{\prime}+i+1, j+1}\right\rangle \delta_{i} \quad \text { for } \xi \in Y^{\prime}
$$

We can assume that, for every triple (j, m, ε) as above, there exists $s=s(j, m, \varepsilon) \in$ \mathbb{N} for which $\operatorname{dim} E_{s}=K_{2 j}$, and $U_{s}=A_{j, m, \varepsilon}$ (here, we identify E_{s} with $\ell_{2}^{K_{2 j}}$).

Suppose, for the sake of contradiction, that Y^{\prime} has the COAP. By Lemma 4.2, there exists a compact operator $\psi: Y^{\prime} \rightarrow Y^{\prime}$ such that $\psi f_{i, 3}=f_{i, 3}$ for $1 \leqslant i \leqslant 100^{3}$, and

$$
\left\|A_{j, m, \varepsilon} \psi B_{j, m, \varepsilon}\right\|_{\mathrm{cb}} \leqslant j\left\|A_{j, m, \varepsilon}\right\|_{\mathrm{cb}}\left\|B_{j, m, \varepsilon}\right\|_{\mathrm{cb}} \quad \text { for } j \geqslant 3,1 \leqslant m \leqslant 100, \varepsilon= \pm 1
$$

with $A_{j, m, \varepsilon}$ and $B_{j, m, \varepsilon}$ viewed as elements of $C B\left(Y^{\prime}, E_{s(j, m, \varepsilon)}\right)$ and $C B\left(E_{s(j, m, \varepsilon)}^{*}, Y^{\prime}\right)$, respectively. However, $\left\|A_{j, m, \varepsilon}\right\|_{\mathrm{cb}} \leqslant 1$, and $\left\|B_{j, m, \varepsilon}\right\|_{\mathrm{cb}} \leqslant \sqrt{K_{2 j}}=10^{j}$ (by Lemma 3.4 and Lemma 3.5, respectively). Thus, we have

$$
\left.\left\|A_{j, m, \varepsilon} \psi B_{j, m, \varepsilon}\right\|_{C B\left(E_{s(j, m, \varepsilon)}^{*}\right)} E_{s(j, m, \varepsilon)}\right) \leqslant j \cdot 10^{j}
$$

for any appropriate triple (j, m, ε). By the basic properties of spaces E_{i}, we have

$$
\operatorname{Re}\left(\operatorname{tr}\left(A_{j, m, \varepsilon} \psi B_{j, m, \varepsilon}\right)\right) \leqslant\left\|A_{j, m, \varepsilon} \psi B_{j, m, \varepsilon}\right\|_{1} \leqslant 5 j \cdot 10^{j}
$$

An easy computation shows that

$$
\operatorname{tr}\left(A_{j, m, \varepsilon} \psi B_{j, m, \varepsilon}\right)=\frac{1}{2} \sum_{i=1}^{K_{2 j}}\left\langle\psi\left(f_{i j}-\varepsilon f_{m^{\prime}+i+1, j+1}\right), f_{i j}+\varepsilon f_{m^{\prime}+i+1, j+1}\right\rangle .
$$

Therefore,

$$
\begin{aligned}
& \operatorname{Re}\left(\operatorname{tr}\left(A_{j, m, 1} \psi B_{j, m, 1}+A_{j, m,-1} \psi B_{j, m,-1}\right)\right) \\
& \quad=\operatorname{Re}\left(\sum_{i=1}^{K_{2 j}}\left(\left\langle\psi\left(f_{i j}\right), f_{i j}\right\rangle-\left\langle\psi\left(f_{m^{\prime}+i+1, j+1}\right), f_{m^{\prime}+i+1, j+1}\right\rangle\right)\right) \leqslant 10^{j+1} j .
\end{aligned}
$$

Consequently,

$$
\operatorname{Re}\left(\sum_{i=1}^{K_{2 j}}\left\langle\psi\left(f_{m^{\prime}+i+1, j+1}\right), f_{m^{\prime}+i+1, j+1}\right\rangle\right) \geqslant \operatorname{Re}\left(\sum_{i=1}^{K_{2 j}}\left\langle\psi\left(f_{i j}\right), f_{i j}\right\rangle\right)-2 \cdot 10^{j+1} j .
$$

Summing over all values of $m(1 \leqslant m \leqslant 100)$, we obtain

$$
\begin{equation*}
S_{j+1} \geqslant 100\left(S_{j}-2 \cdot 10^{j+1} j\right) \tag{4.1}
\end{equation*}
$$

where $S_{j}=\operatorname{Re} \sum_{i=1}^{100^{j}}\left\langle\psi\left(f_{i j}\right), f_{i j}\right\rangle$. This allows us to show by induction that

$$
\begin{equation*}
S_{j}>\frac{j+1}{2 j} 100^{j}>\frac{100^{j}}{2} \tag{4.2}
\end{equation*}
$$

whenever $j \geqslant 3$. Indeed, $\psi\left(f_{i, 3}\right)=f_{i, 3}$ for $1 \leqslant i \leqslant 100^{3}$, hence $S_{3}=100^{3}$. Assuming (4.2) holds for some $j \geqslant 3$, observe that

$$
\frac{2 \cdot 10^{1+j} j}{S_{j}}<10^{2-j} j<\frac{1}{(j+1)^{2}}
$$

hence, by (4.1),

$$
S_{j+1} \geqslant 100 S_{j}\left(1-\frac{2 \cdot 10^{j+1} j}{S_{j}}\right)>\frac{j+1}{2 j} 100^{j+1}\left(1-\frac{1}{(j+1)^{2}}\right)=\frac{j+2}{2(j+1)} 100^{j+1}
$$

This proves (4.2) for $j+1$.
On the other hand, ψ is compact, hence $\max _{1 \leqslant i \leqslant K_{2 j}}\left\|\psi\left(f_{i j}\right)\right\|<1 / 2$ when j is sufficiently large. For such $j, S_{j}<100^{j} / 2$. This contradicts (4.2).

As a corollary, we prove:
Corollary 4.3. In the above notation, the spaces Y^{\prime} and $Y^{\prime *}$ are not exact.
For the proof, we need a non-commutative analogue of the notion of a basis. We say that a sequence $\left(x_{i}\right)$ in an operator space X is C-completely basic if it is a basis in $Y=\operatorname{span}\left[x_{i} \mid i \in \mathbb{N}\right]$, and moreover, the basis projections $P_{n} \in C B(Y)$ (defined by setting $P_{n} x_{i}=x_{i}$ if $i \leqslant n$, and $P_{n} x_{i}=0$ if $\left.i>n\right)$ satisfy $\sup _{n}\left\|P_{n}\right\|_{\mathrm{cb}} \leqslant C$. In this setting, $Y=\operatorname{span}\left[x_{i} \mid i \in \mathbb{N}\right]$ clearly has the OAP. Therefore, Corollary 4.3 is proved by combining Theorem 4.1 with

Lemma 4.4. Suppose Z is an infinite-dimensional λ-exact operator space. Then Z contains a C-completely basic sequence for any $C>\lambda$.

Proof. We select a C-completely basic sequence $\left(z_{i}\right) \subset Z$ inductively. More precisely, we select linearly independent vectors $z_{1}, z_{2}, \ldots \in Z$, finite codimensional subspaces $\cdots \hookrightarrow Z_{2} \hookrightarrow Z_{1} \hookrightarrow Z$, and finite rank projections $P_{n} \in C B\left(Z_{n}\right)$ such that, for any $n, z_{1}, \ldots, z_{n} \in Z_{n}$, ran $P_{n}=\operatorname{span}\left[z_{1}, \ldots, z_{n}\right],\left\|P_{n}\right\|_{\mathrm{cb}}<C$, and $P_{m} z_{n}=0$ whenever $m<n$ (then the operators $\left.P_{n}\right|_{\operatorname{span}\left[z_{k} \mid k \in \mathbb{N}\right]}$ play the role of basis projections).

First pick an arbitrary non-zero $z_{1} \in Z$. By Hahn-Banach Theorem, there exists a contractive projection P_{1} onto $E_{1}=\operatorname{span}\left[z_{1}\right]$. Moreover, P_{1} has rank 1, hence it is completely contractive. Let $Z_{1}=Z$.

Now suppose $z_{1}, \ldots, z_{n}, Z_{1}, \ldots, Z_{n}$, and P_{1}, \ldots, P_{n}, as above have been selected. Pick an arbitrary non-zero $z_{n+1} \in Z_{n} \cap\left(\bigcap_{m=1}^{n} \operatorname{ker} P_{m}\right)$. Let $E=\operatorname{span}\left[z_{1}, \ldots\right.$, $\left.z_{n+1}\right]$. Find $F \hookrightarrow M_{N}$ and $u: E \rightarrow F$ such that $\|u\|_{\mathrm{cb}}=1,\left\|u^{-1}\right\|_{\mathrm{cb}}<C$. By Arveson-Wittstock-Stinespring-Paulsen extension theorem, there exists $\widetilde{u}: Z_{n} \rightarrow$ M_{N} such that $\left.\widetilde{u}\right|_{E}=u$, and $\|\widetilde{u}\|_{c b}=1$. Let $Z_{n+1}=\operatorname{span}[E, \operatorname{ker} \tilde{u}] \hookrightarrow Z_{n}$, and note that $\operatorname{dim} Z_{n} / \operatorname{ker} \tilde{u} \leqslant \operatorname{dim} M_{N}<\infty$, hence $\operatorname{dim} Z_{n} / Z_{n+1}<\infty$. Furthermore, $\widetilde{u}\left(Z_{n+1}\right) \subset F$. It is easy to see that $P_{n+1}=\left.u^{-1} \widetilde{u}\right|_{Z_{n+1}}$ is a projection from Z_{n+1} onto span $\left[z_{1}, \ldots, z_{n+1}\right]$, with $\left\|P_{n+1}\right\|_{\mathrm{cb}}<C$. Moreover, $P_{m} z_{n+1}=0$ for $m \leqslant n$.

5. COMPLETELY BOUNDED MAPS ON SUBQUOTIENTS OF X

In this section, we assume that H has property $(\mathcal{P}), X^{\prime \prime} \hookrightarrow X^{\prime} \hookrightarrow X, Y=$ $X / X^{\prime \prime}$, and $Y^{\prime}=X^{\prime} / X^{\prime \prime}$ is infinite dimensional. We denote by $J_{Y^{\prime}}$ the natural embedding of Y^{\prime} into Y. We show:

THEOREM 5.1. Any completely bounded operator $S: Y^{\prime} \rightarrow Y$ is of the form $S=c J_{Y^{\prime}}+S^{\prime}$, where $c \in \mathbb{C}$ and S^{\prime} is compact.

For the proof, we need the following proposition (it may be known to specialists).

Proposition 5.2. Suppose Z^{\prime} is a subspace of a Hilbert space Z, and $T \in$ $B\left(Z^{\prime}, Z\right)$. Then either T is a compact perturbation of a scalar multiple of J (the natural embedding of Z^{\prime} into Z), or there exist mutually orthogonal projections of infinite $\operatorname{rank} P \in B\left(Z^{\prime}\right), Q \in B(Z)$ such that $\left.Q T\right|_{\operatorname{ran} P} \in B(\operatorname{ran} P, \operatorname{ran} Q)$ is invertible.

Proof. First denote by Q_{0} the orthogonal projection in $B(Z)$ whose kernel equals Z^{\prime}. If there are no infinite rank projections P and Q such that $\operatorname{ran} Q$ $\operatorname{ran} Q_{0}$ and $\left.Q T\right|_{\text {ran } P}$ is invertible, then $Q_{0} T$ is compact. This reduces the problem to the case of $Z^{\prime}=Z$.

We denote by $\mathcal{K}(H)$ the space of compact operators on H. We shall show that, if $c=\operatorname{dist}\left(T, \mathbb{C} I_{Z}+\mathcal{K}(Z)\right)>0$, then there exist mutually orthogonal projections P and Q of infinite rank such that $\left.Q T\right|_{\operatorname{ran} P} \in B(\operatorname{ran} P, \operatorname{ran} Q)$ is invertible.

Note that $\operatorname{dist}(R T R, \mathbb{C} R+\mathcal{K}(\operatorname{ran} R))=c$ for any orthogonal projection $R \in$ $B(Z)$ with finite dimensional kernel. By Theorem 9.12 of [1], for such an R there exist mutually orthogonal norm 1 vectors $\xi(R), \eta(R) \in \operatorname{ran} R$ such that $\langle T \xi(R)$, $\eta(R)\rangle>c / 3$. This allows us to construct inductively vectors $\left(\xi_{n}\right)_{n \in \mathbb{N}}$ and $\left(\eta_{n}\right)_{n \in \mathbb{N}}$ in Z, such that, for any k, j,

$$
\left\langle\xi_{k}, \eta_{j}\right\rangle=0,\left\langle\xi_{k}, \xi_{j}\right\rangle=\left\langle\eta_{k}, \eta_{j}\right\rangle=\left\{\begin{array} { l l }
{ 1 } & { k = j , } \tag{5.1}\\
{ 0 } & { k \neq j , }
\end{array} \quad \langle T \xi _ { k } , \eta _ { j } \rangle \left\{\begin{array}{ll}
>c / 3 & k=j, \\
=0 & k \neq j .
\end{array}\right.\right.
$$

Indeed, let $R_{1}=I_{Z}, \xi 1=\xi\left(R_{1}\right)$, and $\eta_{1}=\eta\left(R_{1}\right)$. Suppose $\xi_{1}, \ldots, \xi_{n}, \eta_{1}, \ldots, \eta_{n}$ have already been selected in such a way that (5.1) holds whenever $j, k \leqslant n$. Let
R_{n+1} be the orthogonal projection whose kernel is spanned by $\left(\xi_{i}\right)_{i=1}^{n},\left(\eta_{i}\right)_{i=1}^{n}$, $\left(T \xi_{i}\right)_{i=1}^{n}$, and $\left(T^{*} \eta_{i}\right)_{i=1}^{n}$. Let $\xi_{n+1}=\xi\left(R_{n+1}\right), \eta_{n+1}=\eta\left(R_{n+1}\right)$, and observe that now (5.1) holds for all $j, k \leqslant n+1$.

Denote by Q and P the orthogonal projections from Z onto $\operatorname{span}\left[\eta_{n} \mid n \in \mathbb{N}\right]$ and $\operatorname{span}\left[\xi_{n} \mid n \in \mathbb{N}\right]$, respectively. By the above, $\left.Q T\right|_{\operatorname{ran} P}$ is invertible.

Proof of Theorem 5.1. Suppose $T: Y^{\prime} \rightarrow Y$ is not a compact perturbation of $J_{Y^{\prime}}$. We shall show T is not completely bounded. By Proposition 5.2, there exist mutually orthogonal projections P and Q of infinite rank such that $\|Q T \xi\| \geqslant$ $\|\xi\| / C$ for any $\xi \in \operatorname{ran} P(C>0)$. By a small perturbation argument, assume the existence of $f_{1}<\cdots<f_{K_{n}}$ in $\operatorname{ran} Q \cap A_{n}$ (n even). Consider $U \in \mathcal{U}$ which sends f_{j} into $\delta_{j}\left(1 \leqslant j \leqslant K_{n}\right)$, and annihilates $\operatorname{span}\left[f_{1}, \ldots, f_{K_{n}}\right]^{\perp}$. Define $V: \ell_{2}^{K_{n}} \rightarrow$ $\operatorname{ran} P \hookrightarrow Y^{\prime}$ by setting $V \delta_{j}=(Q T)^{-1} f_{j}$ (once again, $1 \leqslant j \leqslant K_{n}$). Then $\|V\| \leqslant C$, $U V=0$, and $U T V$ is the identity on $\ell_{2}^{K_{n}}$. Applying Lemma 3.3, we conclude that

$$
\|T\|_{\mathrm{cb}} \geqslant \frac{100^{n}}{5 C \max \left\{\gamma_{n}, 10^{n}\right\}} .
$$

n can be chosen to be arbitrarily large, hence T is not completely bounded.

Acknowledgements. The author was partially supported by the NSF.

REFERENCES

[1] K. Davidson, Nest Algebras. Triangular Forms for Operator Algebras on Hilbert Space, Longman Sci. Tech., Harlow 1988.
[2] E. Effros. Z.-J. Ruan, Operator Spaces, Oxford Univ. Press, New York 2000.
[3] W.T. Gowers, B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6(1993), 851-874.
[4] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces. I, Springer-Verlag, Berlin 1977.
[5] B. MAUREY, Banach spaces with few operators, in Handbook of the Geometry of Banach Spaces, Vol. 2, North-Holland, Amsterdam 2003, pp. 1247-1297.
[6] E. Odell, T. Schlumprecht, The distortion problem, Acta Math. 173(1994), 259281.
[7] E. Odell, T. Schlumprecht, Distortion and asymptotic structure, in Handbook of the Geometry of Banach Spaces, Vol. 2, North-Holland, Amsterdam 2003, pp. 1333-1360.
[8] T. Oikhberg, E. Ricard, Operator spaces with few completely bounded maps, Math. Ann. 328(2004), 229-259.
[9] V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge Univ. Press, Cambridge 2002.
[10] G. Pisier, An Introduction to the Theory of Operator Spaces, Cambridge Univ. Press, Cambridge 2003.
[11] T. SCHLUMPRECHT, An arbitrarily distortable Banach space, Israel J. Math. 76(1993), 81-95.
T. OIKHBERG, Department of Mathematics, University of California Irvine, Irvine CA 92697, USA

E-mail address: toikhber@math.uci.edu

Received July 2, 2004; revised May 6, 2006.

