FINITE REPRESENTABILITY OF HOMOGENEOUS HILBERTIAN OPERATOR SPACES IN SPACES WITH FEW COMPLETELY BOUNDED MAPS

T. OIKHBERG

Communicated by William Arveson

ABSTRACT. For every homogeneous Hilbertian operator space H, we construct a Hilbertian operator space X such that every infinite dimensional subquotient Y of X is completely indecomposable, and fails the Operator Approximation Property, yet H is completely finitely representable in Y. If H satisfies certain conditions, we also prove that every completely bounded map on such Y is a compact perturbation of a scalar.

KEYWORDS: *Operator spaces, homogeneous Hilbertian spaces, finite representability, Operator Approximation Property.*

MSC (2000): 46L07, 47L25, 46B20.

1. INTRODUCTION AND THE MAIN RESULT

In [3], T. Gowers and B. Maurey gave the first example of a hereditarily indecomposable Banach space *Z* (recall that an infinite dimensional space *Z* is called *hereditarily indecomposable* if it is not isomorphic to a direct sum of two infinite dimensional Banach spaces). Since then, a variety of hereditarily indecomposable Banach spaces were constructed. An overview of the current state of affairs is given in [5].

A non-commutative counterpart of this space was obtained by E. Ricard and the author in [8]. There, we gave an example of an operator space X, isometric to ℓ_2 (as a Banach space), such that an operator $T : Y \to X$ (Y being a subspace of X) is completely bounded if and only if $T = \lambda J_Y + S$, where J_Y is the natural embedding, $\lambda \in \mathbb{C}$, and S is a Hilbert-Schmidt map. In particular, X is *completely hereditarily indecomposable* — that is, no infinite dimensional subspace $Y \hookrightarrow X$ is completely isomorphic to an ℓ_{∞} sum of two infinite dimensional operator spaces. Moreover, X fails the Operator Approximation Property (see below for the definition). For any *n*-dimensional subspace $Y \hookrightarrow X$, there exists a unitary $U : Y \to Y$ such that $||U||_{cb} \ge \sqrt{n}/16$. Our present goal is to construct completely hereditarily indecomposable operator spaces with "some structure" — that is, spaces which are saturated with "nice" finite dimensional subspaces. More precisely, for any homogeneous Hilbertian operator space H, we construct a Hilbertian operator space X such that:

(i) For any infinite dimensional subspace *Y* of a quotient of *X*, $n \in \mathbb{N}$, and $\varepsilon > 0$, there exists a subspace $F \hookrightarrow Y$ which is $(1 + \varepsilon)$ -completely isomorphic to an *n*-dimensional subspace of *H*.

(ii) Any *Y* as above is completely hereditarily indecomposable, and fails the Operator Approximation Property.

If *H* satisfies certain conditions, then, in addition, any c.b. map on *Y* is a compact perturbation of a scalar.

Below we recall some facts and definitions concerning operator spaces. For more information, the reader is referred to [2], [9], or [10].

We say that an operator space is *c*-*Hilbertian* if its underlying Banach space is *c*-isomorphic to a Hilbert space. *X* is *c*-homogeneous if $||T||_{cb} \leq c||T||$ for any $T \in B(X)$. An infinite dimensional operator space *X* is called *completely indecomposable* if it is not completely isomorphic to an ℓ_{∞} direct sum of two infinite dimensional operator spaces (equivalently, any c.b. projection on *X* has finite dimensional kernel, or finite dimensional range).

We use the term *subquotient* to mean a subspace of a quotient.

An operator space *X* is said to have the *Operator Approximation Property* (*OAP*, for short) if, for any $x \in \mathcal{K} \otimes X$ and $\varepsilon > 0$, there exists a finite rank map $T : X \to X$ such that $||(I_{\mathcal{K}} \otimes T)x - x|| < \varepsilon$ (here \mathcal{K} is the space of compact operators on ℓ_2 , and \otimes denotes the minimal (injective) tensor product). *X* has the *Compact Operator Approximation Property* (*COAP*) if, for any $x \in \mathcal{K} \otimes X$ and $\varepsilon > 0$, there exists a compact map $T : X \to X$ such that $||(I_{\mathcal{K}} \otimes T)x - x|| < \varepsilon$. More details about the OAP, as well as several equivalent reformulations of this property, can be found in Chapter 11 of [2].

The *complete Banach-Mazur distance* between the operator spaces *X* and *Y* is defined as

$$d_{cb}(X,Y) = \inf\{\|T\|_{cb}\|T^{-1}\|_{cb} \mid T \in CB(X,Y)\}.$$

We say that an operator space *Y* is *c*-completely finitely representable in *X* if for any finite dimensional subspace $Z \hookrightarrow Y$ there exists $W \hookrightarrow X$ such that $d_{cb}(W, Z) \leq c$. *Y* is called *c*-completely complementably finitely representable in *X* if for any finite dimensional subspace $Z \hookrightarrow Y$ there exists a projection $P \in CB(X)$ such that $||P||_{cb} \leq c$, and $d_{cb}(P(X), Z) \leq c$.

If *H* is a 1-homogeneous 1-Hilbertian operator space, we denote by H_n the *n*-dimensional operator space, completely isometric to (any) *n*-dimensional subspace of *H*. We say that *H* has property (\mathcal{P}) if there exists a sequence (m(n)) $\subset \mathbb{N}$ such that

$$\lim_{n\to\infty}\frac{1}{n}\|\mathrm{id}:\mathrm{MIN}_{m(n)}(R_n+C_n)\to H_n\|_{\mathrm{cb}}=0.$$

Here, *id* is the formal identity map between *n*-dimensional Hilbert spaces, and the space $MIN_k(X)$ (*X* being an operator space) is such that

$$\|x\|_{\mathcal{K}\otimes\mathrm{MIN}_k(X)} = \sup\{\|I_{\mathcal{K}}\otimes u(x)\|_{\mathcal{K}\otimes M_k} \mid u\in CB(X,M_k), \|u\|_{\mathrm{cb}}\leqslant 1\},\$$

where, as usual, M_k stands for the pace of $k \times k$ matrices. The reader is referred to [8] for more information about MIN_k. For future reference, we need to consider a special case of the functor MIN_k — namely, MIN₁ (denoted by MIN for the sake of brevity). If *X* is a Banach or operator space, and $x \in \mathcal{K} \otimes X$, then

$$\|x\|_{\mathcal{K}\otimes\mathrm{MIN}(X)} = \sup\{\|I_{\mathcal{K}}\otimes f(x)\|_{\mathcal{K}} \mid f\in X^*, \|f\|_{\mathrm{cb}}\leqslant 1\}.$$

In other words, if $a_1, \ldots, a_n \in \mathcal{K}$, and $x_1, \ldots, x_n \in X$, then

$$\left\|\sum a_i \otimes x_i\right\|_{\mathcal{K} \otimes \mathrm{MIN}(X)} = \sup \left\{\left\|\sum f(x_i)a_i\right\|_{\mathcal{K}} \mid f \in X^*, \, \|f\|_{\mathrm{cb}} \leq 1\right\}.$$

Note that, for any 1-homogeneous 1-Hilbertian space H, $\|\text{id} : \text{MIN}(\ell_2^n) \rightarrow H_n\|_{cb} \ge \|\text{id} : \text{MIN}_{m(n)}(R_n + C_n) \rightarrow H_n\|_{cb}$, hence H has property (\mathcal{P}) whenever $\lim_n \sup \|\text{id} : \text{MIN}(\ell_2^n) \rightarrow H_n\|_{cb}/n = 0$. In particular (by Chapter 10 of [10]), the spaces OH, R + C, and $R \cap C$ have (\mathcal{P}) . To describe another large class of spaces possessing (\mathcal{P}) , recall that an operator space X is *exact* if there exists C > 0 such that for any finite dimensional subspace $E \hookrightarrow X$ there exists $F \hookrightarrow M_N$ such that $d_{cb}(E,F) \le C$. The infimum of all such constants C is called *the exactness constant* of X, and denoted by ex (X). Observe that H has property (\mathcal{P}) if $\lim_{n\to\infty} \exp(H_n)/\sqrt{n} = 0$. Indeed, by Smith's Lemma (Proposition 8.11 of [9]), there exists a sequence of positive integers $r(1) < r(2) < \cdots$ such that , for every operator space X, and every $v \in CB(X, H_n)$,

$$\|v: X \to H_n\|_{cb} \leq 2ex (H_n) \|I_{M_{r(n)}} \otimes v: M_{r(n)} \otimes X \to M_{r(n)} \otimes H_n\|$$

(we could have used $1 + \varepsilon$ instead of 2). Then, by [8],

$$(2\mathrm{ex} (H_n))^{-1} \| \mathrm{id} : \mathrm{MIN}_{r(n)}(R_n + C_n) \to H_n \|_{\mathrm{cb}}$$

$$\leq \| I_{M_{r(n)}} \otimes \mathrm{id} : M_{r(n)} \otimes \mathrm{MIN}_{r(n)}(R_n + C_n) \to M_{r(n)} \otimes H_n \|$$

$$= \| I_{M_{r(n)}} \otimes \mathrm{id} : M_{r(n)} \otimes (R_n + C_n) \to M_{r(n)} \otimes H_n \| \leq \| \mathrm{id} : R_n + C_n \to H_n \|_{\mathrm{cb}}.$$

However, by Theorem 10.6 of [10],

 $\|\mathrm{id}:R_n+C_n\to H_n\|_{\mathrm{cb}}\leqslant \|\mathrm{id}:R_n+C_n\to \mathrm{MAX}(\ell_2^n)\|_{\mathrm{cb}}=\sqrt{n}.$

This establishes property (\mathcal{P}) .

The main result of this paper is

THEOREM 1.1. Suppose H is a separable 1-homogeneous 1-Hilbertian operator space. Then there exists a separable 1-Hilbertian operator space X such that for every infinite dimensional subquotient Y of X we have:

(i) For any ε > 0, H is (1+ε)-completely complementably finitely representable in Y.
(ii) Y is completely indecomposable.

(iii) Y fails the Compact Operator Approximation Property.

(iv) If H has property (\mathcal{P}) , then every completely bounded map on Y is a compact perturbation of a scalar.

Clearly, the COAP implies the OAP. By Chapter 11 of [2], the OAP passes from an operator space to its predual. Therefore, dualizing the space *X* constructed in Theorem 1.1, we conclude:

COROLLARY 1.2. Suppose H is a separable 1-homogeneous 1-Hilbertian operator space, whose dual H^{*} has property (\mathcal{P}). Then there exists a separable 1-Hilbertian operator space X such that for every infinite dimensional subquotient Y of X we have:

(i) For any $\varepsilon > 0$, *H* is $(1+\varepsilon)$ -completely complementably finitely representable in Y.

(ii) *Y* is completely indecomposable.

(iii) Y fails the Operator Approximation Property.

(iv) Every completely bounded map on Y is a compact perturbation of a scalar.

In Section 2, we present a modification of the construction of asymptotic sets on the unit sphere of ℓ_2 (initially due to E. Odell and T. Schlumprecht [6]). In Section 3, we use these asymptotic sets to construct the space *X* from Theorem 1.1. Furthermore, we establish that all infinite dimensional subquotients of *X* are completely indecomposable, and *H* is completely complementably finitely representable in all such subquotients. In Section 4 we prove that all infinite-dimensional subquotients of *X* fail the OAP. Finally, in Section 5 we show that any c.b. map on an infinite dimensional subquotient of *X* is a compact perturbation of a scalar multiple of the identity, provided *H* has property (\mathcal{P}).

2. ASYMPTOTIC SETS IN ℓ_2

First we recall some Banach space notions, to be used in this and subsequent sections. All spaces are presumed to be infinite dimensional, unless stated otherwise. For a space X, $\mathbf{B}_X = \{x \in X \mid ||x|| \le 1\}$ and $\mathbf{S}_X = \{x \in X \mid ||x|| = 1\}$ stand for the unit ball and the unit sphere of X, respectively.

We say that a sequence $(\delta_i)_{i=1}^{\infty}$ is a *basis* in a Banach space X if for every $x \in X$ there exists a unique sequence of scalars (a_i) such that $x = \sum_{i=1}^{\infty} a_i \delta_i$. Equivalently (see e.g. Proposition 1.a.3 of [4]), the projections $P_n \in B(X)$, defined via $P_n\left(\sum_{i=1}^{\infty} a_i \delta_i\right) = \sum_{i=1}^{n} a_i \delta_i$, are well defined, and $\sup_n ||P_n|| < \infty$. If *E* is a finite subset of \mathbb{N} , we write $E\left(\sum_{i=1}^{\infty} a_i \delta_i\right) = \sum_{i \in E} a_i \delta_i$. The *support* of $a = \sum_{i=1}^{\infty} a_i \delta_i$ (denoted by supp *a*) is the set of $i \in \mathbb{N}$ for which $a_i \neq 0$.

If *E* and *F* are finite subsets of \mathbb{N} , we write E < F if max $E < \min F$. If a Banach space *X* has a basis $(\delta_i)_{i \in \mathbb{N}}$, we write a < b $(a, b \in X)$ if supp a < supp b.

The basis $(\delta_i)_{i=1}^{\infty}$ is called 1-*subsymmetric* if $\left\|\sum_i a_i \delta_i\right\| = \left\|\sum_i \omega_i a_i \delta_{n_i}\right\|$ for any finite sequence (a_i) , any (ω_i) with $|\omega_i| = 1$, and any increasing sequence $n_1 < n_2 < \cdots$ (sometimes, the term "1-unconditional 1-subsymmetric" is used to describe bases with this property).

For $S_1, S_2 \subset X$, we set dist $(S_1, S_2) = \inf\{\|x_1 - x_2\| \mid x_1 \in S_1, x_2 \in S_2\}$.

A set $A \subset X$ is called *asymptotic* if, for every infinite dimensional $Y \subset X$, dist(A, Y) = 0. If $(\delta_i)_{i \in \mathbb{N}}$ is a 1-subsymmetric basis for X, we say that $A \subset X$ is *spreading* (*unconditional*) if, for any $\sum_{i=1}^{\infty} a_i \delta_i \in A$, we have $\sum_{i=1}^{\infty} a_i \delta_{n_i} \in A$ for any $n_1 < n_2 < \cdots$ (respectively $\sum_{i=1}^{\infty} \omega_i a_i \delta_i \in A$ for any $|\omega_i| = 1$).

The idea of constructing a sequence of asymptotic sets, satisfying certain conditions, was used by E. Odell and T. Schlumprecht in [6] in order to prove that ℓ_p is distortable for 1 . Below we prove a sharper version of one of their results.

THEOREM 2.1. Suppose $\varepsilon_1 > \varepsilon_2 > \cdots$ is a sequence of positive numbers, and $(K_i)_{i=1}^{\infty}$ is a sequence of positive integers. Then there exists a sequence of asymptotic spreading unconditional sets A_1, A_2, \ldots , consisting of unit vectors in ℓ_2 with finite support, such that

(2.1)
$$\sum_{k=1}^{K_n} |\langle a, b_k \rangle|^2 < \varepsilon_m^2$$

whenever m < n, $a \in A_m$, b_1 , ..., $b_{K_n} \in A_n$, and $b_1 < \cdots < b_{K_n}$.

The Schlumprecht space *S* is essential for proving this theorem. Recall (see [3], [6], [7], [11]) that *S* has a 1-subsymmetric basis $(\delta_i)_{i=1}^{\infty}$, and

(2.2)
$$\left\|\sum_{i}a_{i}\delta_{i}\right\| = \sup\left\{\sup_{i}|a_{i}|,\sup_{n\geq 2, E_{1}<\cdots< E_{n}}\frac{1}{\phi(n)}\sum_{j=1}^{n}\left\|\sum_{i\in E_{j}}a_{i}\delta_{i}\right\|\right\}$$

(here $\phi(t) = \log(t+1)$). Using the ideas of [6], we first present "nice" sets in *S* and its dual.

LEMMA 2.2. Suppose $\sigma_1 > \sigma_2 > \cdots$ is a sequence of positive numbers, and $(K_i)_{i=1}^{\infty}$ is a sequence of positive integers. Then there exist spreading unconditional sets $B_1, B_2, \ldots \subset \mathbf{S}_S$ and $B_1^*, B_2^*, \ldots \subset \mathbf{B}_{S^*}$, consisting of vectors with finite support, such that:

(i) B_n is asymptotic for every n.

(ii) $|\langle a, Eb \rangle| < \sigma_{\min\{m,n\}}$ if $a \in B_n$, $b \in B_m^*$, and $E \subset \mathbb{N}$.

(iii) For every $a \in B_m$ there exists $b \in B_m^*$ satisfying $|\langle a, b \rangle| > 1 - \sigma_m$.

(iv) Suppose $m < n, a \in B_m, b_1, ..., b_{K_n} \in B_n^*, b_1 < \cdots < b_{K_n}$, and $E_1 < \cdots < E_{K_n}$. Then $\sum_{k=1}^{K_n} |\langle a, E_k b_k \rangle| < 2\sigma_m$.

T. OIKHBERG

Sketch of the proof. We rely on the construction from Section 2 of [3] (summarized in [6] as Lemma 3.3). There, T. Gowers and B. Maurey show the existence of a rapidly increasing sequence $p_k \nearrow \infty$, and a rapidly decreasing sequence $\sigma'_k \searrow 0$, with the following property: for $n \in \mathbb{N}$, define

$$B_n^* = \left\{ rac{1}{\phi(p_n)} \sum_{j=1}^{p_n} b_j \, | \, b_j \in S^*, \, \|b_j\| = 1, \, b_1 < \cdots < b_{p_n}
ight\} \subset \mathbf{B}_{S^*},$$

and let B_n be the set of all $\left(\sum_{i=1}^{p_n} x_i\right) / \left\|\sum_{i=1}^{p_n} x_i\right\| \in \mathbf{S}_S$, where $(x_i)_{i=1}^{p_n}$ is a RIS sequence of length p_n , with constant $1 + \sigma'_n$ (we do not reproduce the definition of RIS, as it is quite cumbersome, and is not really necessary here; suffices to say that above, $x_1 < x_2 < \cdots < x_{p_n}$). Then the sets B_n and B_n^* are unconditional and spreading, and the statements (i), (ii), and (iii) of the lemma hold. It remains to prove (iv).

By passing to a subsequence, we can assume that $\phi(K_n p_n) < 2\phi(p_n)$ for every *n* (recall that $\phi(t) = \log(t+1)$). Suppose *m*, *n*, *a*, and $(b_k)_{k=1}^{K_n}$ are as in (2.2). The sets B_m and B_n^* are unconditional, hence it suffices to prove (2.2) when all the entries of *a* and (b_k) are non-negative, and $E_k = \text{supp } b_k$ for each *k*. In this situation, we have to show that $\langle a, \sum_{k=1}^{K_n} b_k \rangle < 2\sigma_m$. By construction,

$$b_k = \frac{1}{\phi(p_n)} \sum_{j=1}^{p_n} b_{jk},$$

where $b_{jk} \in \mathbf{B}_{S^*}$ $(1 \le j \le p_n)$ are such that $b_{1k} < \cdots < b_{p_nk}$. By passing from b_{jk} to $E_k b_{jk}$ if necessary, we can assume that supp $b_{jk} \subset$ supp b_k for each j, hence

$$b_{11} < b_{21} < \cdots < b_{p_n 1} < b_{12} < \cdots < b_{p_n K_n}$$

Let

$$\widetilde{b} = \frac{1}{\phi(p_n K_n)} \sum_{k=1}^{K_n} \sum_{j=1}^{p_n} b_{jk} = \frac{\phi(p_n)}{\phi(p_n K_n)} \sum_{k=1}^{K_n} b_k.$$

By (2.2), $\|\tilde{b}\| \leq 1$, hence $\left\|\sum_{k=1}^{K_n} b_k\right\| \leq \phi(p_n K_n)/\phi(p_n) < 2$. Moreover, $a = \alpha \sum_{s=1}^{p_m} a_s$, where $\|a_s\| = 1$ for each s, $a_1 < a_2 < \cdots < a_{p_m}$, and $\alpha = \left\|\sum_{s=1}^{p_m} a_s\right\|$. By (2.2), $\alpha \leq \phi(p_m)/p_m$. By Lemma 5 of [3] (and by the choice of sequences (p_n) and (σ'_n)), $\langle a, \tilde{b} \rangle \leq 2\alpha < \sigma_m$. Thus, $\left\langle a, \sum_{k=1}^{K_n} b_k \right\rangle < 2\sigma_m$, as desired.

Proof of Theorem 2.1. Below we view elements of *S*, *S*^{*}, and ℓ_2 as sequences (via the expansions with respect to the canonical bases of these spaces). Operations of multiplication etc. are defined pointwise.

Suppose $B_1, B_1^*, B_2, B_2^*, ...$ are as in the previous lemma, with $2\sigma_k/(1-\sigma_k) < \varepsilon_k$. Define A_k as the set of vectors $x \in \ell_2$ for which $|x|^2 = ab/\langle a, b \rangle$, with $a \in B_k$,

 $b \in B_k^*$, $a, b \ge 0$, and $\langle a, b \rangle > 1 - \sigma_k$. It follows from [6] that the sets A_k are asymptotic, spreading, and unconditional. To show (2.1), suppose m < n, and consider non-negative $x, y_1, \ldots, y_{K_n} \in \ell_2$ such that $x^2 = ab$ and $y_k^2 = a_k b_k$ with $a \in B_m$, $b \in B_m^*$, $a_k \in B_n$, $b_k \in B_n^*$ (for $1 \le k \le K_n$), and $y_1 < y_2 < \cdots < y_{K_n}$. Let $E_k =$ supp y_k . By Cauchy-Schwartz Inequality,

$$\sum_{k} \langle x, y_k \rangle^2 = \sum_{k} \langle \sqrt{a}\sqrt{b}, \sqrt{E_k a_k}\sqrt{E_k b_k} \rangle^2 \leqslant \sum_{k} \langle a, E_k b_k \rangle \langle a_k, E_k b \rangle.$$

By the previous lemma, $\sum_{k} \langle a, E_k b_k \rangle < 2\sigma_m$, and $\langle a_k, E_k b \rangle < \sigma_m$. Therefore,

$$\sum_{k} \left\langle \frac{x}{\|x\|}, \frac{y_k}{\|y_k\|} \right\rangle^2 \leq \frac{2\sigma_m^2}{(1-\sigma_m)^2}$$

This establishes (2.1).

3. CONSTRUCTION AND BASIC PROPERTIES OF X

Construct a sequence of sets A_n as in Theorem 2.1, with $\varepsilon_n = 239^{-n}$ and $K_n = 10^n$. Let $(\delta_i)_{i=1}^N$ and $(\delta_i)_{i=1}^\infty$ be the canonical bases in ℓ_2^N and ℓ_2 , respectively. Denote by \mathcal{U} the set of operators $U : \ell_2 \to \ell_2^{K_n}$ (*n* even) of the form

$$U\xi = \sum_{j=1}^{K_n} \langle \xi, f_j \rangle \delta_j$$
 with $f_1, \ldots, f_{K_n} \in A_n, f_1 < \cdots < f_{K_n}$

or

$$U\xi = rac{1}{\sqrt{2}}\sum_{j=1}^{K_n} \langle \xi, f_{j+K_n} + \varepsilon f_j
angle \delta_j \quad ext{with } f_1 < \cdots < f_{2K_n}, \ arepsilon = \pm 1,$$

and either $f_1, ..., f_{2K_n} \in A_n$, or $f_1, ..., f_{K_n} \in A_n$, $f_{K_n+1}, ..., f_{2K_n} \in A_{n+2}$

(in both cases, $\xi \in \ell_2$). Let (U_i) be a countable dense subset in \mathcal{U} (that is, for every $U \in \mathcal{U}$ and every $\varepsilon > 0$ there exists $i \in \mathbb{N}$ such that the range spaces of U and U_i coincide, and $||U - U_i||_1 < \varepsilon$).

Denote by \mathcal{W} the set of operators $W \in B(\ell_2)$ such that $W\xi = \sum_{j=1}^{K_n} \langle \xi, f_j \rangle \delta_j$ for

 $\xi \in \ell_2$, where *n* is odd, and $f_1 < \cdots < f_{K_n}$ belong to A_n .

Following [8], fix a sequence $s_0 < s_1 < \cdots$ (increasing "sufficiently fast"), and define spaces $E_i = \text{MIN}_{s_i}(\text{MAX}_{s_{i-1}}(R_{n_i} \cap C_{n_i}))$, for which:

(i) $n_i = 100^j$ for some $j = j(i) \in \mathbb{N}$, and moreover, for each $j \in \mathbb{N}$ the number 100^j occurs infinitely many times in the sequence (n_i) .

(ii) For any operator $u : E_i^* \to E_j$, we have $||u||_1 / 5 \le ||u||_{cb} \le ||u||_1$ if i = j, $||u||_{cb} = ||u||_2$ if $i \ne j$.

(iii) If, in addition, *H* has property (\mathcal{P}), then $\lim_{i \to \infty} \gamma_j / 100^j = 0$, where

$$\gamma_j = \| \text{id} : \text{MIN}_{s_{i-1}}(R_{100^j} + C_{100^j}) \to H_{100^j} \|_{\text{cb}}$$

and *i* is the smallest integer satisfying $n_i = 100^j$ (or in other words, $i = \min\{k : j = j(k)\}$). Consequently, $\|\text{id} : E_i^* \to H_{100^{j(i)}}\|_{cb} \leq \gamma_j$ for any *i*.

Define the operator space *X* by setting, for $x \in \mathcal{K} \otimes \ell_2$,

(3.1)
$$\|x\|_{\mathcal{K}\otimes X} = \max\left\{ \|x\|_{\mathcal{K}\otimes \operatorname{MIN}(\ell_{2})}, \sup_{i\in\mathbb{N}} \|(I_{\mathcal{K}}\otimes U_{i})x\|_{\mathcal{K}\otimes E_{i}}, \sup_{W\in\mathcal{W}} \|(I_{\mathcal{K}}\otimes W)x\|_{\mathcal{K}\otimes H} \right\}$$

(recall that, for $x = \sum_{i} a_i \otimes \delta_i \in \mathcal{K} \otimes MIN(\ell_2)$,

$$\|x\|_{\mathcal{K}\otimes\mathrm{MIN}(\ell_2)} = \sup\left\{\left\|\sum_i \alpha_i a_i\right\|_{\mathcal{K}} \mid \sum_i |\alpha_i|^2 \leqslant 1\right\}\right).$$

It is easy to check that *X* satisfies Ruan's axioms, hence it is an operator space. Also, *X* is isometric to ℓ_2 . We shall show that it has all the desired properties. Start by showing that elements of \mathcal{U} and \mathcal{W} "ignore" each other.

LEMMA 3.1. If $U \in U$ and $W \in W$, then $||UW^*||_1 \leq 1$.

Proof. It suffices to prove that $||UV||_1 \leq 1/2$ when $U \in B(\ell_2, \ell_2^{K_n})$ and $V \in B(\ell_2, \ell_2)$ are given by

(3.2)
$$U\xi = \sum_{j=1}^{K_m} \langle \xi, g_j \rangle \delta_j, \text{ and } V\delta_i = \begin{cases} f_i & i \leq K_n, \\ 0 & i > K_n, \end{cases}$$

where $f_1 < \cdots < f_{K_n}$ belong to A_n , and $g_1 < \cdots < g_{K_m}$ belong to A_ℓ , for $\ell \ge m$, and $n \notin \{m, \ell\}$. Indeed, the adjoint of any element of W equals V as above, while any element of U either equals to a U of the above form, or can be represented as $(U_1 + U_2)/\sqrt{2}$, with U_1 and U_2 resembling U in (3.2). Note that, for U and V as in (3.2),

$$UV\delta_i = \begin{cases} \sum_{j=1}^{K_m} \langle f_i, g_j \rangle \delta_j & i \leq K_n, \\ 0 & i > K_n, \end{cases}$$

and therefore,

(3.3)
$$\|UV\|_2^2 = \sum_{i=1}^{K_n} \sum_{j=1}^{K_n} |\langle f_i, g_j \rangle|^2$$

To estimate $||UV||_1$, suppose first that $n < \ell$. By construction of A_n and A_ℓ , $\sum_{j=1}^{K_m} |\langle f_i, g_j \rangle|^2 < \varepsilon_n^2$ for $1 \le i \le K_n$. Therefore, by (3.3) $||UV||_2^2 \le K_n \varepsilon_n^2$. Moreover, rank $UV \leq \operatorname{rank} U = K_n$, hence

$$\|UV\|_1 \leqslant \sqrt{\operatorname{rank} UV} \|UV\|_2 = K_n \varepsilon_n < \frac{1}{2},$$

by our choice of K_n and ε_n . If $n > \ell$, we similarly obtain $||UV||_1 < K_m \varepsilon_\ell \leq K_\ell \varepsilon_\ell < 1/2$ (we use the fact that $m \leq \ell$).

We shall identify subquotients of *X* with subspaces of *X* (as linear spaces). More precisely, suppose $X'' \hookrightarrow X' \hookrightarrow X$. Then Y = X/X'' and Y' = X'/X'' are identified with $X \ominus X''$ and $X' \ominus X''$, respectively.

PROPOSITION 3.2. *H is* $(1 + \varepsilon)$ *-completely complementably finitely representable in any infinite dimensional subquotient of X.*

Proof. Fix an odd n, and consider $f_1, \ldots, f_{K_n} \in A_n$ such that $f_1 < \cdots < f_{K_n}$. Denote by X_f the span of f_1, \ldots, f_{K_n} in X. We shall show that X_f is completely contractively complemented in X, and completely isometric to H_{K_n} . Indeed, there wint $M_{K_n} \in \mathbb{N}$ and $M_{K_n} \in \mathbb{N}$.

exists
$$W_0 \in \mathcal{W}$$
 such that $W_0\xi = \sum_{j=1}^{\infty} \langle \xi, f_j \rangle \delta_j$ for $\xi \in X$. By (3.1), $\|W_0\|_{cb} = 1$.

Consider W_0^* as an operator $V : H \to X$. Then

$$\|V\|_{cb} = \max\Big\{\|V\|_{CB(H,MIN(\ell_2))}, \sup_{i\in\mathbb{N}}\|U_iV\|_{CB(H,E_i)}, \sup_{W\in\mathcal{W}}\|WV\|_{CB(H)}\Big\}.$$

But $||V||_{CB(H,MIN(\ell_2))} = ||V|| = 1$, $||WV||_{CB(H)} = ||WV|| \le 1$, and $||U_iV||_{CB(H,E_i)} \le ||U_iV||_1 \le 1$ by Lemma 3.1. Thus, both W_0 and V are complete contractions, hence X_f is completely isometric to H_{K_n} . Moreover, $P = VW_0$ is a completely contractive projection onto X_f .

Now consider Y' = X'/X'' (with $X'' \hookrightarrow X' \hookrightarrow X$). By perturbing X' and X'' slightly, and identifying Y' with a subspace of X (as explained above), we can assume that $Y' \cap A_n$ contains $f_1 < \cdots < f_{K_n}$. Denote by Z the span of f_1, \ldots, f_{K_n} in Y'. We claim that Z is completely isometric to H_{K_n} , and completely contractively complemented in Y'. Indeed, consider the orthogonal projection P from X onto Z. Above we have established that P is completely contractive as an operator on X. Therefore, for any $z \in \mathcal{K} \otimes Z$,

$$\begin{aligned} \|z\|_{\mathcal{K}\otimes X'} \ge \|z\|_{\mathcal{K}\otimes Y'} &= \inf\{\|z+x\|_{\mathcal{K}\otimes X'} \mid x \in \mathcal{K}\otimes X''\}\\ \ge \inf\{\|(I_{\mathcal{K}}\otimes P)(z+x)\|_{\mathcal{K}\otimes X'} \mid x \in \mathcal{K}\otimes X''\} = \|z\|_{\mathcal{K}\otimes X'},\end{aligned}$$

since $X'' \subset \ker P$. Thus, *Z* is completely isometric to the span of $f_1, f_2, \ldots, f_{K_n}$ in *X'*, which, by the above, is completely isometric to H_{K_n} . Moreover, *P* (viewed as an operator on *Y*) is completely contractive.

The following result yields a useful lower estimate for c.b. norms of operators on X and its subquotients.

PROPOSITION 3.3. Suppose $X'' \hookrightarrow X' \hookrightarrow X$, and let Y and Y' are the quotient spaces X/X'' and X'/X'', respectively.

(i) Consider the operators $T: Y' \to Y$, $U: Y \to \ell_2^{100^n}$, and $V: \ell_2^{100^n} \to Y'$, such that $U, V^* \in U$. Then

$$||T||_{cb} \ge \frac{||UTV||_1}{5\max\{10^n, ||UV||_1\}}.$$

Consequently, $||T||_{cb} \ge ||UTV||_1 / (5 \cdot 10^n)$ whenever U and V as above satisfy UV = 0. (ii) Suppose H has property (\mathcal{P}) , and consider the operators $T : Y' \to Y, U : Y \to \ell_1^{100^n}$, and $V : \ell_1^{100^n} \to Y'$, such that $U \in \mathcal{U}$. Then

$$|T||_{cb} \ge \frac{\|UTV\|_1}{5\max\{10^n \|V\|, \gamma_n \|V\|, \|UV\|_1\}}.$$

For the proof, we need the following two lemmas. Below, X'', X', X'', Y', and Y are as in the statement of Proposition 3.3.

LEMMA 3.4. Suppose *P* is the orthogonal projection from *X* onto *Y'*, and U_i : $X \to E_i$ is as in the definition of *X*. Then $||U_i|_{Y'}||_{CB(Y',E_i)} \leq 1 + 2||U_i - U_iP||_1$.

Proof. Observe first that

$$||U_iP||_{CB(X,E_i)} \leq 1 + ||U_i - U_iP||_{CB(X,E_i)} \leq 1 + ||U_i - U_iP||_1.$$

Moreover, $||U_iP||_{CB(X,E_i)} \ge ||U_iP|_{Y'}||_{CB(Y',E_i)}$. Indeed, suppose $y \in M_n \otimes Y'$ satisfies $||y||_{M_n \otimes Y'} < 1$. Then there exists $x \in M_n \otimes X$ such that $||x||_{M_n \otimes X} < 1$, and $I_{M_n} \otimes P(x) = y$. We conclude that

$$||I_{M_n} \otimes U_i P(y)||_{M_n \otimes E_i} = ||I_{M_n} \otimes U_i P(x)||_{M_n \otimes E_i} < ||U_i P||_{CB(X,E_i)}$$

To finish the proof, note that $||U_i|_{Y'}||_{CB(Y',E_i)} \leq ||U_iP|_{Y'}||_{CB(Y',E_i)} + ||U_i-U_iP||_1$.

LEMMA 3.5. Suppose V as an operator from E_i^* to Y'. Then

$$\|V\|_{CB(E_i^*,Y')} \leq \max \Big\{ \|U_iV\|_1, \|V\|_2, \sup_{W \in \mathcal{W}} \|WV\|_{cb} \Big\}.$$

Consequently:

(i) If $V^* \in \mathcal{U}$, then $\|V\|_{CB(E_i^*, Y')} \leq \max\{\|U_i V\|_1, \|V\|_2\}$.

(ii) If *H* has property (\mathcal{P}) and $n_i = 100^k$, then

$$||V||_{CB(E_i^*,Y')} \leq \max\{||U_iV||_1, \max\{\sqrt{n_i}, \gamma_k\}||V||\}.$$

Proof. Let $q : X' \to Y'$ is the complete quotient map. By (3.1),

$$\|V\|_{CB(E_{i}^{*},Y')} = \|qV\|_{CB(E_{i}^{*},Y')} \leq \|V\|_{CB(E_{i}^{*},X)}$$

= max $\Big\{ \|V\|_{CB(E_{i}^{*},\operatorname{MIN}(\ell_{2}))}, \sup_{j\in\mathbb{N}} \|U_{j}V\|_{CB(E_{i}^{*},E_{j})}, \sup_{W\in\mathcal{W}} \|WV\|_{CB(E_{i}^{*},H)} \Big\}.$

However, $\|V\|_{CB(E_i^*, MIN(\ell_2))} = \|V\|$, $\|U_iV\|_{cb} \leq \|U_iV\|_1$, and $\|U_jV\|_{cb} = \|U_jV\|_2 \leq \|V\|_2$ for $j \neq i$. If $V^* \in U$, then, by Lemma 3.1, $\|WV\|_{cb} \leq \|WV\|_1 \leq 1$. If H has property (\mathcal{P}) and $n_i = 100^k$, then $\|WV\|_{cb} \leq \gamma_k \|V\|$.

Proof of Proposition 3.3. We observe that, for any $i \in \mathbb{N}$,

$$\|T\|_{cb} \ge \frac{\|U_i TV\|_{CB(E_i^*, E_i)}}{\|U_i|_Y\|_{CB(Y, E_i)} \|V\|_{CB(E_i^*, Y')}} \ge \frac{\|U_i TV\|_1}{5\|U_i|_Y\|_{CB(Y, E_i)} \|V\|_{CB(E_i^*, Y')}}$$

Approximating *U* with operators U_i , and using estimates for $||U_i||_{cb}$ and $||V||_{cb}$ obtained in Lemmas 3.4 and 3.5, we achieve the result.

COROLLARY 3.6. Any infinite dimensional subquotient of X is completely indecomposable.

Proof. Suppose *P* is a projection on Y' = X'/X'' (here, $X'' \hookrightarrow X' \hookrightarrow X$), and both the range and the kernel of *P* are infinite dimensional. The sets A_n involved in the construction of *X* are asymptotic, and therefore, by a small perturbation argument, we can assume that for any even *n* there exist $f_1, \ldots, f_{2K_n} \in A_n \cap Y'$ such that $f_1 < \cdots < f_{2K_n}$, and

$$Pf_j = \begin{cases} f_j & j \leq K_n, \\ 0 & j > K_n. \end{cases}$$

Consider the operators $U, V \in B(X, \ell_2^{K_n})$, defined by

$$U\xi = \frac{1}{\sqrt{2}}\sum_{s=1}^{K_n} \langle \eta, f_{s+K_n} - f_s \rangle \delta_s, \quad V\xi = \frac{1}{\sqrt{2}}\sum_{s=1}^{K_n} \langle \eta, f_{s+K_n} + f_s \rangle \delta_s \quad (\xi \in \ell_2).$$

Then $U, V \in U$, and $UV^* = 0$. Therefore, by Proposition 3.3,

$$||P||_{cb} \ge \frac{||UPV^*||_1}{5 \cdot 10^{n/2}} = \frac{10^n/2}{5 \cdot 10^{n/2}} = 10^{n/2-1}.$$

The even integer *n* can be arbitrarily large, hence *P* is not completely bounded.

4. SUBQUOTIENTS OF X FAIL THE OAP

As in the previous section, we assume that $X'' \hookrightarrow X' \hookrightarrow X$, and Y' = X'/X'' is infinite dimensional. We establish

THEOREM 4.1. Y' fails the Compact Operator Approximation Property.

Our main tool is

LEMMA 4.2. Suppose Z is an operator space with the Compact Operator Approximation Property, $(Z_i)_{i=0}^{\infty}$ a sequence of finite dimensional subspaces of Z, $(F_i)_{i=1}^{\infty}$ a sequence of 1-exact operator spaces, and the function $f : \mathbb{N} \to (2, \infty)$ is such that $\lim_{n\to\infty} f(n) = \infty$. Then there exists a compact operator $\psi : Z \to Z$ such that $\psi|_{Z_0} = I_{Z_0}$, and $\|u_i\psi|_{Z_i}\|_{cb} \leq f(i)\|u_i\|_{cb}$ for any $i \in \mathbb{N}$ and $u_i : Z \to F_i$.

We omit the proof, as it is identical to the proof of Lemma 6.1 of [8].

T. OIKHBERG

Proof of Theorem 4.1. By a small perturbation argument, we may assume that Y' contains vectors f_{ij} ($j \in \mathbb{N}$, $1 \leq i \leq K_{2j}$) with finite support such that $f_{ij} \in A_{2j}$, and $f_{ij} < f_{k\ell}$ if $j < \ell$, or $j = \ell$ and i < k. For every $j \in \mathbb{N}$, $1 \leq m \leq 100$, and $\varepsilon = \pm 1$, define operators $A_{j,m,\varepsilon} : Y' \to \ell_2^{K_{2j}}$ and $B_{j,m,\varepsilon} : \ell_2^{K_{2j}} \to Y'$ by setting $m' = K_{2j}(m-1)$,

$$B_{j,m,\varepsilon}\delta_{ij} = \frac{1}{\sqrt{2}}(f_{ij} - \varepsilon f_{m'+i+1,j+1}) \quad \text{for } 1 \le i \le 100^{j}$$

 $\left(\left(\delta_{ij}
ight)_{i=1}^{K_{2j}}
ight)$ is the canonical basis of $\ell_2^{K_{2j}}$), and

$$A_{j,m,\varepsilon}\xi = \frac{1}{\sqrt{2}}\sum_{i=1}^{100'} \langle \xi, f_{ij} + \varepsilon f_{m'+i+1,j+1} \rangle \delta_i \quad \text{for } \xi \in Y'.$$

We can assume that, for every triple (j, m, ε) as above, there exists $s = s(j, m, \varepsilon) \in \mathbb{N}$ for which dim $E_s = K_{2j}$, and $U_s = A_{j,m,\varepsilon}$ (here, we identify E_s with $\ell_2^{K_{2j}}$).

Suppose, for the sake of contradiction, that Y' has the COAP. By Lemma 4.2, there exists a compact operator $\psi : Y' \to Y'$ such that $\psi f_{i,3} = f_{i,3}$ for $1 \le i \le 100^3$, and

$$\|A_{j,m,\varepsilon}\psi B_{j,m,\varepsilon}\|_{cb} \leqslant j \|A_{j,m,\varepsilon}\|_{cb} \|B_{j,m,\varepsilon}\|_{cb} \quad \text{for } j \ge 3, \ 1 \leqslant m \leqslant 100, \ \varepsilon = \pm 1,$$

with $A_{j,m,\varepsilon}$ and $B_{j,m,\varepsilon}$ viewed as elements of $CB(Y', E_{s(j,m,\varepsilon)})$ and $CB(E^*_{s(j,m,\varepsilon)}, Y')$, respectively. However, $||A_{j,m,\varepsilon}||_{cb} \leq 1$, and $||B_{j,m,\varepsilon}||_{cb} \leq \sqrt{K_{2j}} = 10^j$ (by Lemma 3.4 and Lemma 3.5, respectively). Thus, we have

$$\|A_{j,m,\varepsilon}\psi B_{j,m,\varepsilon}\|_{CB(E^*_{s(j,m,\varepsilon)},E_{s(j,m,\varepsilon)})} \leq j \cdot 10^{j}$$

for any appropriate triple (j, m, ε) . By the basic properties of spaces E_i , we have

$$\operatorname{Re}(\operatorname{tr}(A_{j,m,\varepsilon}\psi B_{j,m,\varepsilon})) \leqslant \|A_{j,m,\varepsilon}\psi B_{j,m,\varepsilon}\|_1 \leqslant 5j \cdot 10^j.$$

An easy computation shows that

$$\operatorname{tr}(A_{j,m,\varepsilon}\psi B_{j,m,\varepsilon}) = \frac{1}{2}\sum_{i=1}^{K_{2j}} \langle \psi(f_{ij} - \varepsilon f_{m'+i+1,j+1}), f_{ij} + \varepsilon f_{m'+i+1,j+1} \rangle.$$

Therefore,

$$\operatorname{Re}(\operatorname{tr}(A_{j,m,1}\psi B_{j,m,1} + A_{j,m,-1}\psi B_{j,m,-1})) = \operatorname{Re}\left(\sum_{i=1}^{K_{2j}} (\langle \psi(f_{ij}), f_{ij} \rangle - \langle \psi(f_{m'+i+1,j+1}), f_{m'+i+1,j+1} \rangle)\right) \leq 10^{j+1}j.$$

Consequently,

$$\operatorname{Re}\left(\sum_{i=1}^{K_{2j}} \langle \psi(f_{m'+i+1,j+1}), f_{m'+i+1,j+1} \rangle \right) \ge \operatorname{Re}\left(\sum_{i=1}^{K_{2j}} \langle \psi(f_{ij}), f_{ij} \rangle \right) - 2 \cdot 10^{j+1} j.$$

Summing over all values of *m* ($1 \le m \le 100$), we obtain

(4.1)
$$S_{j+1} \ge 100(S_j - 2 \cdot 10^{j+1}j),$$

where $S_j = \operatorname{Re} \sum_{i=1}^{100^{j}} \langle \psi(f_{ij}), f_{ij} \rangle$. This allows us to show by induction that

(4.2)
$$S_j > \frac{j+1}{2j} 100^j > \frac{100^j}{2}$$

whenever $j \ge 3$. Indeed, $\psi(f_{i,3}) = f_{i,3}$ for $1 \le i \le 100^3$, hence $S_3 = 100^3$. Assuming (4.2) holds for some $j \ge 3$, observe that

$$rac{2 \cdot 10^{1+j} j}{S_j} < 10^{2-j} j < rac{1}{(j+1)^2},$$

hence, by (4.1),

$$S_{j+1} \ge 100S_j \left(1 - \frac{2 \cdot 10^{j+1}j}{S_j}\right) > \frac{j+1}{2j} 100^{j+1} \left(1 - \frac{1}{(j+1)^2}\right) = \frac{j+2}{2(j+1)} 100^{j+1}.$$

This proves (4.2) for j + 1.

On the other hand, ψ is compact, hence $\max_{1 \le i \le K_{2j}} \|\psi(f_{ij})\| < 1/2$ when *j* is sufficiently large. For such *j*, $S_j < 100^j/2$. This contradicts (4.2).

As a corollary, we prove:

COROLLARY 4.3. In the above notation, the spaces Y' and Y'^* are not exact.

For the proof, we need a non-commutative analogue of the notion of a basis. We say that a sequence (x_i) in an operator space X is *C*-completely basic if it is a basis in $Y = \text{span}[x_i | i \in \mathbb{N}]$, and moreover, the basis projections $P_n \in CB(Y)$ (defined by setting $P_n x_i = x_i$ if $i \leq n$, and $P_n x_i = 0$ if i > n) satisfy $\sup ||P_n||_{cb} \leq C$.

In this setting, $Y = \text{span}[x_i | i \in \mathbb{N}]$ clearly has the OAP. Therefore, Corollary 4.3 is proved by combining Theorem 4.1 with

LEMMA 4.4. Suppose Z is an infinite-dimensional λ -exact operator space. Then Z contains a C-completely basic sequence for any $C > \lambda$.

Proof. We select a *C*-completely basic sequence $(z_i) \subset Z$ inductively. More precisely, we select linearly independent vectors $z_1, z_2, \ldots \in Z$, finite codimensional subspaces $\cdots \hookrightarrow Z_2 \hookrightarrow Z_1 \hookrightarrow Z$, and finite rank projections $P_n \in CB(Z_n)$ such that, for any $n, z_1, \ldots, z_n \in Z_n$, ran $P_n = \text{span}[z_1, \ldots, z_n]$, $||P_n||_{cb} < C$, and $P_m z_n = 0$ whenever m < n (then the operators $P_n|_{\text{span}[z_k \mid k \in \mathbb{N}]}$ play the role of basis projections).

First pick an arbitrary non-zero $z_1 \in Z$. By Hahn-Banach Theorem, there exists a contractive projection P_1 onto $E_1 = \text{span}[z_1]$. Moreover, P_1 has rank 1, hence it is completely contractive. Let $Z_1 = Z$.

Now suppose $z_1, \ldots, z_n, Z_1, \ldots, Z_n$, and P_1, \ldots, P_n , as above have been selected. Pick an arbitrary non-zero $z_{n+1} \in Z_n \cap \left(\bigcap_{m=1}^n \ker P_m\right)$. Let $E = \operatorname{span}[z_1, \ldots, z_{n+1}]$. Find $F \hookrightarrow M_N$ and $u : E \to F$ such that $||u||_{\operatorname{cb}} = 1$, $||u^{-1}||_{\operatorname{cb}} < C$. By Arveson-Wittstock-Stinespring-Paulsen extension theorem, there exists $\widetilde{u} : Z_n \to M_N$ such that $\widetilde{u}|_E = u$, and $||\widetilde{u}||_{\operatorname{cb}} = 1$. Let $Z_{n+1} = \operatorname{span}[E, \ker \widetilde{u}] \hookrightarrow Z_n$, and note that dim $Z_n / \ker \widetilde{u} \leq \dim M_N < \infty$, hence dim $Z_n / Z_{n+1} < \infty$. Furthermore, $\widetilde{u}(Z_{n+1}) \subset F$. It is easy to see that $P_{n+1} = u^{-1}\widetilde{u}|_{Z_{n+1}}$ is a projection from Z_{n+1} onto $\operatorname{span}[z_1, \ldots, z_{n+1}]$, with $||P_{n+1}||_{\operatorname{cb}} < C$. Moreover, $P_m z_{n+1} = 0$ for $m \leq n$.

5. COMPLETELY BOUNDED MAPS ON SUBQUOTIENTS OF X

In this section, we assume that *H* has property (\mathcal{P}) , $X'' \hookrightarrow X' \hookrightarrow X$, Y = X/X'', and Y' = X'/X'' is infinite dimensional. We denote by $J_{Y'}$ the natural embedding of Y' into Y. We show:

THEOREM 5.1. Any completely bounded operator $S : Y' \to Y$ is of the form $S = cJ_{Y'} + S'$, where $c \in \mathbb{C}$ and S' is compact.

For the proof, we need the following proposition (it may be known to specialists).

PROPOSITION 5.2. Suppose Z' is a subspace of a Hilbert space Z, and $T \in B(Z', Z)$. Then either T is a compact perturbation of a scalar multiple of J (the natural embedding of Z' into Z), or there exist mutually orthogonal projections of infinite rank $P \in B(Z')$, $Q \in B(Z)$ such that $QT|_{\operatorname{ran} P} \in B(\operatorname{ran} P, \operatorname{ran} Q)$ is invertible.

Proof. First denote by Q_0 the orthogonal projection in B(Z) whose kernel equals Z'. If there are no infinite rank projections P and Q such that ran $Q \subset$ ran Q_0 and $QT|_{\operatorname{ran} P}$ is invertible, then Q_0T is compact. This reduces the problem to the case of Z' = Z.

We denote by $\mathcal{K}(H)$ the space of compact operators on H. We shall show that, if $c = \text{dist}(T, \mathbb{C}I_Z + \mathcal{K}(Z)) > 0$, then there exist mutually orthogonal projections P and Q of infinite rank such that $QT|_{\text{ran }P} \in B(\text{ran }P, \text{ran }Q)$ is invertible.

Note that dist(*RTR*, $\mathbb{C}R + \mathcal{K}(\operatorname{ran} R)$) = c for any orthogonal projection $R \in B(Z)$ with finite dimensional kernel. By Theorem 9.12 of [1], for such an R there exist mutually orthogonal norm 1 vectors $\xi(R)$, $\eta(R) \in \operatorname{ran} R$ such that $\langle T\xi(R), \eta(R) \rangle > c/3$. This allows us to construct inductively vectors $(\xi_n)_{n \in \mathbb{N}}$ and $(\eta_n)_{n \in \mathbb{N}}$ in Z, such that, for any k, j,

(5.1)
$$\langle \xi_k, \eta_j \rangle = 0, \ \langle \xi_k, \xi_j \rangle = \langle \eta_k, \eta_j \rangle = \begin{cases} 1 & k=j, \\ 0 & k\neq j, \end{cases} \ \langle T\xi_k, \eta_j \rangle \begin{cases} >c/3 & k=j, \\ =0 & k\neq j. \end{cases}$$

Indeed, let $R_1 = I_Z$, $\xi_1 = \xi(R_1)$, and $\eta_1 = \eta(R_1)$. Suppose $\xi_1, \ldots, \xi_n, \eta_1, \ldots, \eta_n$ have already been selected in such a way that (5.1) holds whenever $j, k \leq n$. Let

 R_{n+1} be the orthogonal projection whose kernel is spanned by $(\xi_i)_{i=1}^n$, $(\eta_i)_{i=1}^n$, $(T\xi_i)_{i=1}^n$, and $(T^*\eta_i)_{i=1}^n$. Let $\xi_{n+1} = \xi(R_{n+1})$, $\eta_{n+1} = \eta(R_{n+1})$, and observe that now (5.1) holds for all $j, k \leq n+1$.

Denote by *Q* and *P* the orthogonal projections from *Z* onto span[$\eta_n | n \in \mathbb{N}$] and span[$\xi_n | n \in \mathbb{N}$], respectively. By the above, $QT|_{\operatorname{ran} P}$ is invertible.

Proof of Theorem 5.1. Suppose $T : Y' \to Y$ is not a compact perturbation of $J_{Y'}$. We shall show T is not completely bounded. By Proposition 5.2, there exist mutually orthogonal projections P and Q of infinite rank such that $||QT\xi|| \ge ||\xi||/C$ for any $\xi \in \operatorname{ran} P(C > 0)$. By a small perturbation argument, assume the existence of $f_1 < \cdots < f_{K_n}$ in $\operatorname{ran} Q \cap A_n$ (n even). Consider $U \in U$ which sends f_j into δ_j ($1 \le j \le K_n$), and annihilates $\operatorname{span}[f_1, \ldots, f_{K_n}]^{\perp}$. Define $V : \ell_2^{K_n} \to \operatorname{ran} P \hookrightarrow Y'$ by setting $V\delta_j = (QT)^{-1}f_j$ (once again, $1 \le j \le K_n$). Then $||V|| \le C$, UV = 0, and UTV is the identity on $\ell_2^{K_n}$. Applying Lemma 3.3, we conclude that

$$||T||_{\rm cb} \ge \frac{100^n}{5C \max\{\gamma_n, 10^n\}}.$$

n can be chosen to be arbitrarily large, hence *T* is not completely bounded.

Acknowledgements. The author was partially supported by the NSF.

REFERENCES

- K. DAVIDSON, Nest Algebras. Triangular Forms for Operator Algebras on Hilbert Space, Longman Sci. Tech., Harlow 1988.
- [2] E. EFFROS. Z.-J. RUAN, Operator Spaces, Oxford Univ. Press, New York 2000.
- [3] W.T. GOWERS, B. MAUREY, The unconditional basic sequence problem, J. Amer. Math. Soc. 6(1993), 851–874.
- [4] J. LINDENSTRAUSS, L. TZAFRIRI, Classical Banach Spaces. I, Springer-Verlag, Berlin 1977.
- [5] B. MAUREY, Banach spaces with few operators, in *Handbook of the Geometry of Banach Spaces, Vol.* 2, North-Holland, Amsterdam 2003, pp. 1247–1297.
- [6] E. ODELL, T. SCHLUMPRECHT, The distortion problem, Acta Math. 173(1994), 259–281.
- [7] E. ODELL, T. SCHLUMPRECHT, Distortion and asymptotic structure, in *Handbook of the Geometry of Banach Spaces, Vol. 2*, North-Holland, Amsterdam 2003, pp. 1333–1360.
- [8] T. OIKHBERG, E. RICARD, Operator spaces with few completely bounded maps, Math. Ann. 328(2004), 229–259.
- [9] V. PAULSEN, Completely Bounded Maps and Operator Algebras, Cambridge Univ. Press, Cambridge 2002.
- [10] G. PISIER, An Introduction to the Theory of Operator Spaces, Cambridge Univ. Press, Cambridge 2003.

[11] T. SCHLUMPRECHT, An arbitrarily distortable Banach space, Israel J. Math. 76(1993), 81–95.

T. OIKHBERG, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA - IRVINE, IRVINE CA 92697, USA

E-mail address: toikhber@math.uci.edu

Received July 2, 2004; revised May 6, 2006.