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ABSTRACT. We deal with infinite sequences of inner functions {qj}j>0 with
the property that qj is divisible by qj+1. It is shown that these sequences have
a close relation to the module structure of the Hardy space over the bidisk.
Commutators, Hilbert–Schmidt norms and spectra of operators related to the
module structure will be calculated exactly.
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0. INTRODUCTION

Let D be the open unit disk in the complex plane C, and let H2(z) denote
the classical Hardy space over D with the variable z. kλ(z) will denote the re-
producing kernel of H2(z) at a point λ in D. The Hardy space over the bidisk
H2 = H2(D2) is the tensor product Hilbert space H2(z)⊗ H2(w) with variables
z and w. A closed subspace M of H2 (respectively H2(z)) is called a submodule if
M is invariant under the action of the multiplication operator of any polynomial
of z and w (respectively z).

In the classical Hardy space theory, Beurling proved that every submodule
is characterized by an inner function. Beurling’s theorem is one of the important
theorems for the structure theory of a single operator acting on a Hilbert space (cf.
[1], [7] and [11]). However, in the theory of the Hardy space over the bidisk, it is
known that the structure of submodules is extremely complicated (cf. [5], [6] and
[8]), so that we need good examples which help us to understand the structure of
submodules in H2.

In this paper, we will focus on computable submodules constructed below.

DEFINITION 0.1. An infinite sequence of functions {qj}j>0 in H2(z) is called
an inner sequence if {qj}j>0 consists of inner functions having the following prop-
erty:
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(I) qj is divisible by qj+1 for any j, that is, every (qj/qj+1) is inner.

First, we mention that inner sequences have already appeared in other pre-
vious works, for example, the theory of Jordan operators (cf. Chapter III in [4])
and Remark 3 in [2]. Next, we note that the condition (I) is equivalent to that
qj(z)H2(z) is contained in qj+1(z)H2(z). Hence every inner sequence {qj(z)}j>0

corresponds to a submodule M in H2 as follows:

M =
∞

∑
j=0

⊕
qj(z)H2(z)wj.

Then the quotient module N of M is as follows:

N = H2/M =
∞

∑
j=0

⊕
(H2(z)ª qj(z)H2(z))wj.

In this paper, the above submodule M is called the submodule arising from an
inner sequence {qj(z)}j>0.

Let Pj (respectively P⊥j ) be the orthogonal projection from H2(z) onto
qj(z)H2(z) (respectively H2(z) ª qj(z)H2(z)). Since {Pj}j>0 is a monotone in-
creasing sequence of projections, Pj converges strongly to the projection P∞ whose
range is q∞(z)H2(z) for some inner function q∞(z). Without loss of generality,
we may assume that the first non-zero Taylor coefficient of q∞(z) is positive. Let
Rz (respectively Rw) denote the restriction of the Toeplitz operator Tz (respec-
tively Tw) to a submodule M. The quotient module N = H2/M is the orthog-
onal complement of a submodule M in H2, and let Sz (respectively Sw) denote
the compression of Tz (respectively Tw) to N , that is, we set Sz = PN Tz|N (re-
spectively Sw = PN Tw|N ) where PN denotes the orthogonal projection from H2

onto N . [A, B] denotes the commutator of operators A and B, that is, we set
[A, B] = AB− BA.

This paper is a sequel to [10], and the purpose is to study submodules aris-
ing from inner sequences in detail. This paper has been divided into seven sec-
tions. Section 0 is the introduction. In Section 1, we calculate defect spaces and
give a dimension formula. In Section 2, unitary equivalence of submodules will
be discussed. In Section 3, we study commutators of Sz and Sw. Especially, the
Hilbert–Schmidt norm of [S∗z , Sw] is calculated explicitly. In Section 4, we have
complete descriptions of spectra of Sz and Sw. In Section 5, we show that the
commutant of Sz and Sw is the weak closed algebra generated by Sz, Sw and the
identity operator. In Section 6, we deal with Rudin’s submodule as an example.

1. DEFECT SPACES

Defect spaces of operators are important objects in operator theory. In gen-
eral, it is not easy to calculate defect spaces related to submodules in H2. How-
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ever, in our setting, we can calculate defect spaces of Rz and Rw.

THEOREM 1.1. Let λ be a point in D. IfM is the submodule arising from an inner
sequence {qj(z)}j>0, then the following hold:

(i) Mª (z− λ)M =
∞
∑

j=0

⊕
Ckλ(z)qj(z)wj;

(ii) Mª wM = q0(z)H2(z)⊕
∞
∑

j=1

⊕{qj(z)H2(z)ª qj−1(z)H2(z)}wj;

(iii) Mª ((z− λ)M+ wM) = Ckλ(z)q0(z)⊕∑
j

′ ⊕ Ckλ(z)qj(z)wj,

where the sum ∑
j

′ is taken only over the subset of positive integers such that kλ(z)qj(z)

belongs to qj(z)H2(z)ª qj−1(z)H2(z).

Proof. It is easy to check (i) and (ii). We shall show (iii). Let f be a function
in Mª ((z − λ)M + wM) = (Mª (z − λ)M) ∩ (Mª wM). Taking Taylor
expansions of f with respect to the variable w in Mª (z− λ)M and Mª wM,
we have

f =
∞

∑
j=0

cjkλ(z)qj(z)wj = q0(z)g0(z)⊕
∞

∑
j=1

qj(z)gj(z)wj,

where every cj is some constant and every gj(z) is a function in H2(z) such that
qj(z)gj(z) is in qj(z)H2(z)ª qj−1(z)H2(z) for any j > 1. Since the Taylor expan-
sion of f is unique, we have cjkλ(z) = gj(z) for any j > 0, that is, c0kλ(z) = g0(z)
and cjkλ(z)qj(z) is in qj(z)H2(z)ª qj−1(z)H2(z) for any j > 1.

Conversely, we set f = c0kλ(z)q0(z) + ∑′
j cjkλ(z)qj(z)wj. Then, trivially f

belongs to Mª (z− λ)M and Mª wM. This completes the proof.

COROLLARY 1.2. Let λ be a point in D. If M is the submodule arising from an
inner sequence {qj(z)}j>0, then the following dimension formula holds:

dim(Mª ((z− λ)M+ wM)) = 1 + |{j > 1 : (qj−1/qj)(λ) = 0}| < +∞,

where |A| denotes the cardinal number of a set A.

2. UNITARY EQUIVALENCE

Two submodulesM1 andM2 are said to be unitarily equivalent if there ex-
ists a unitary module map U fromM1 ontoM2. In order to classify submodules,
unitary equivalence is a natural equivalence relation. In the one variable case, all
submodules are unitarily equivalent to H2(z) by Beurling’s theorem. However,
it is known that there exist many equivalence classes of submodules in H2 (cf.
[5] and [6]). In this section, we restrict unitary equivalence only to submodules
arising from inner sequences; then the situation is simple.
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THEOREM 2.1. Let M and M̃ denote submodules arising from inner sequences
{qj(z)}j>0 and {q̃j(z)}j>0, respectively. Then M and M̃ are unitarily equivalent if
and only if there exists a unimodular function q = q(z) depending only on the variable
z such that M = qM̃. Moreover, for any j > 0, there exists a unimodular constant cj
such that q = cjqj/q̃j.

Proof. If M and M̃ are unitarily equivalent, then there exists a unimodular
function q such that the unitary module map from M onto M̃ is the multiplica-
tion operator of q and M = qM̃ by the theorem of Agrawal–Clark–Douglas [2].
Since q(z, w)q0(z) and q(z, w)q̃0(z) are in H2, q(z, w) is w-analytic and conjugate
w-analytic. Hence q depends only on the variable z. The converse is trivial.

We show the last statement. Since M = q(z)M̃, there exist inner functions
f j(z) and f̃ j(z) in H2(z) such that{

q(z)qj(z)wj = q̃j(z) f̃ j(z)wj (j > 0),
q(z)q̃j(z)wj = qj(z) f j(z)wj (j > 0).

It follows that

q̃j(z) f̃ j(z) = q(z)qj(z) = q̃j(z)qj(z) f j(z)qj(z) = q̃j(z) f j(z).

Hence we have that f j(z) and f̃ j(z) are constants. This completes the proof.

3. COMMUTATORS

Let ‖A‖2 denote the Hilbert–Schmidt norm of an operator A. Following
Yang’s work ([12], [13], [14] and [15]), we set

Σ0 = ‖[R∗w, Rw][R∗z , Rz]‖2
2 = ‖[R∗z , Rz][R∗w, Rw]‖2

2,

Σ1 = ‖[R∗z , Rw]‖2
2 = ‖[R∗w, Rz]‖2

2.

In [13], Yang proved Σ0 = Σ1 + 1 under some mild condition.
The author and Yang showed the following in [10]:

THEOREM 3.1 ([10]). If M is the submodule arising from an inner sequence
{qj(z)}j>0, then the following hold:

(i) Σ0 = 1 + ∑
j>0

(1− |(qj/qj+1)(0)|2);

(ii) Σ1 = ∑
j>0

(1− |(qj/qj+1)(0)|2).

In this section, we study commutators of Sz and Sw on the quotient module
arising from an inner sequence.

THEOREM 3.2. Let N be the quotient module arising from an inner sequence
{qj(z)}j>0. Then, for any function ∑

j>0
gj(z)wj in N , the following hold:
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(i) [S∗z , Sw]
(

∑
j>0

gj(z)wj
)

= ∑
j>0
{[T∗z , P⊥j+1]gj(z)}wj+1;

(ii) [S∗w, Sz]
(

∑
j>0

gj(z)wj
)

= ∑
j>1
{(P⊥j − P⊥j−1)Tzgj(z)}wj−1;

(iii) (IN − S∗z Sz)
(

∑
j>0

gj(z)wj
)

= ∑
j>0

(T∗z qj(z)⊗ T∗z qj(z))gjwj;

(iv) (IN − SzS∗z )
(

∑
j>0

gj(z)wj
)

= ∑
j>0

(P⊥j 1⊗ P⊥j 1)gjwj;

(v) (IN − S∗wSw)
(

∑
j>0

gj(z)wj
)

= ∑
j>0

(I − P⊥j+1)gj(z)wj;

(vi) (IN − SwS∗w)
(

∑
j>0

gj(z)wj
)

= g0(z).

Proof. We show only (i):

S∗z Sw ∑
j

gj(z)wj = S∗z ∑
j
(P⊥j+1gj(z))wj+1 = ∑

j
S∗z (P⊥j+1gj(z))wj+1

= ∑
j

P⊥j+1T∗z (P⊥j+1gj(z))wj+1 = ∑
j

T∗z (P⊥j+1gj(z))wj+1,

and

SwS∗z ∑
j

gj(z)wj = Sw ∑
j

S∗z gj(z)wj = Sw ∑
j

T∗z gj(z)wj = ∑
j
(P⊥j+1T∗z gj(z))wj+1.

Therefore we have

(S∗z Sw − SwS∗z ) ∑
j

gj(z)wj = ∑
j
{(T∗z P⊥j+1 − P⊥j+1T∗z )gj(z)}wj+1.

COROLLARY 3.3. Let N be the quotient module arising from an inner sequence
{qj(z)}j>0. Then Sw is a partial isometry.

Proof. Since IN − S∗wSw is a projection by (v) in Theorem 3.2, Sw is a partial
isometry.

In order to calculate the Hilbert–Schmidt norm of [S∗z , Sw], we prove the
following lemma:

LEMMA 3.4. Let {qj(z)}j>0 be an inner sequence. Then, for every j > 1,

Pj−1qj(z) = (qj−1/qj)(0)qj−1(z) = 〈qj(z), qj−1(z)〉qj−1(z).

Proof. Since qj−1(z)/qj(z) is analytic, we have the following that completes
the proof:

Pj−1qj(z) = ∑
k>0
〈qj(z), qj−1(z)zk〉qj−1(z)zk = ∑

k>0
〈qj(z)/qj−1(z), zk〉qj−1(z)zk

= 〈qj(z)/qj−1(z), 1〉qj−1(z) = 〈qj(z), qj−1(z)〉qj−1(z).



80 MICHIO SETO

THEOREM 3.5. Let N be the quotient module arising from an inner sequence
{qj(z)}j>0. Then

‖[S∗z , Sw]‖2
2 =

∞

∑
j=0

(1− |qj+1(0)|2)(1− |(qj/qj+1)(0)|2).

Proof. By (i) in Theorem 3.2, [S∗z , Sw] can be identified with the following
operator matrix acting on H2(z)⊗ l2(Z>0):

0 0 0 · · ·
(T∗z P⊥1 − P⊥1 T∗z )P⊥0 0 0 · · ·

0 (T∗z P⊥2 − P⊥2 T∗z )P⊥1 0 · · ·

0 0 (T∗z P⊥3 − P⊥3 T∗z )P⊥2
. . .

0
. . . . . . . . .

 .

Then it is easy to check that (T∗z P⊥j+1 − P⊥j+1T∗z )P⊥j = −P⊥j+1T∗z (Pj+1 − Pj). Hence
we have

[S∗z , Sw]∗[S∗z , Sw] = diag(P⊥j+1T∗z (Pj+1 − Pj))∗(P⊥j+1T∗z (Pj+1 − Pj)).

Therefore

‖[S∗z , Sw]‖2
2 = tr([S∗z , Sw]∗[S∗z , Sw])=

∞

∑
j=0

tr((P⊥j+1T∗z (Pj+1−Pj))∗(P⊥j+1T∗z (Pj+1−Pj)))

=
∞

∑
j=0
‖P⊥j+1T∗z (Pj+1 − Pj)‖2

2.

We note that P⊥j+1T∗z (Pj+1 − Pj) is a finite rank operator. In fact, for any function
f (z) = qj+1(z) ∑ cnzn in (Pj+1 − Pj)H2(z) = qj+1(z)H2(z)ª qj(z)H2(z), we have

P⊥j+1T∗z f = T∗z c0qj+1(z) = 〈 f (z), qj+1(z)〉T∗z qj+1(z) = (T∗z qj+1(z)⊗ qj+1(z)) f .

Let {ek(z)} be an orthonormal basis of (Pj+1− Pj)H2(z) in the case that Pj 6= Pj+1.
Then we have

‖P⊥j+1T∗z (Pj+1 − Pj)‖2
2

=∑
k
‖(T∗z qj+1(z)⊗ qj+1(z))ek(z)‖2 = ∑

k
|〈ek(z), qj+1(z)〉|2‖T∗z qj+1(z)‖2

=(1−|qj+1(0)|2)∑
k
|〈qj+1(z), ek(z)〉|2=(1−|qj+1(0)|2)‖(Pj+1−Pj)qj+1(z)‖2.

By Lemma 3.4, we have ‖(Pj+1− Pj)qj+1(z)‖2 = 1− |(qj/qj+1)(0)|2. We note that
this formula holds in the case that Pj = Pj+1. Hence we have the following that
concludes the proof:

‖[S∗z , Sw]‖2
2 =

∞

∑
j=0

(1− |qj+1(0)|2)(1− |(qj/qj+1)(0)|2).
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REMARK 3.6. In Theorem 3.5, it may be worth remarking that the difference
between Σ1 and ‖[S∗z , Sw]‖2

2 depends only on the first inner function q0(z) and the
limit of |qj(0)| as follows:

Σ1 − ‖[S∗z , Sw]‖2
2 = lim

j→∞
|qj(0)|2 − |q0(0)|2.

4. SPECTRA OF Sz AND Sw

Let σ(T) denote spectrum of an operator T on a Hilbert space, and σp(T),
σc(T) and σr(T) will denote the point spectrum, the continuous spectrum and the
residual spectrum, respectively.

Spectra of Sz and Sw are described by the model theory of Sz.-Nagy and
Foiaş (cf. [7] and [11]).

THEOREM 4.1. Let N be the quotient module arising from an inner sequence
{qj(z)}j>0. Then σ(Sz) = σ(q0(z)), where σ(q0(z)) is the spectrum of q0(z), that
is, σ(q0(z)) consists of all zero points of q0(z) in D and all points ζ on the unit circle ∂D
such that q0(z) can not be extended analytically from D to ζ.

Proof. Since Sz can be represented as a diagonal operator matrix on the infi-

nite direct sum Hilbert space
∞⊕

j=0
(H2(z)ª qj(z)H2(z)) and the minimal function

of Sz is q0(z), we have the conclusion.

In order to describe the spectrum of Sw, we need several lemmas. Let Eλ

denote the right evaluation operator at a point λ in D, that is, Eλ is defined as
follows: Eλ f (z, w) = f (z, λ) for any f (z, w) in H2. Then Eλ is a bounded lin-
ear operator from H2 onto H2(z), and the adjoint operator is the multiplication
operator of kλ(w) from H2(z) to H2.

LEMMA 4.2 (Yang). Let N be the quotient module arising from an inner se-
quence {qj(z)}j>0. If there exists no non-negative integer k such that qj(z)H2(z) =
qk(z)H2(z) for any j > k, then σ(Sw) is the whole closed unit disk D.

Proof. Since Eλ|MªwM can be identified with the characteristic function of
Sw in the model theory of Sz.-Nagy and Foiaş, a point λ in D is in σ(Sw) if and
only if Eλ|MªwM is not invertible as an operator fromMªwM to H2(z). Taking
a sequence of functions {gj(z)wj}j>0 inMªwM such that ‖gj(z)‖ = 1 for every
j (cf. (ii) in Theorem 1.1), we have that ‖Eλgj(z)wj‖ = |λ|j converges to 0 as j
tends to infinity for any λ in D. It follows that Eλ|MªwM is not invertible, which
is equivalent to that λ is in σ(Sw). This concludes the proof.

LEMMA 4.3. Let N denote the quotient module arising from an inner sequence
{qj(z)}j>0. Then the following assertions are equivalent:

(i) q∞(z) 6= 1;
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(ii) σp(S∗w) = D;
(iii) S∗w has a non-zero eigenvalue.

Proof. First, we suppose (i). Then there exists a non-zero function f (z)
in H2(z) such that f (z) belongs to P⊥j H2(z) for every non-negative integer j,

because {P⊥j }j>0 is a monotone decreasing sequence of orthogonal projections.
Hence, for any λ in D, we have that f (z)kλ(w) belongs to N , which is an eigen-
function of S∗w. This implies (ii). Trivially, (ii) implies (iii).

Next, we suppose (iii). If λ is a non-zero eigenvalue of S∗w, then λ is in D and
there exists a non-zero function f (z) such that f (z)kλ(w) is the eigenfunction of
S∗w. Hence f (z) belongs to P⊥j H2(z) for every non-negative integer j. This implies
(i). We complete the proof.

REMARK 4.4. In the proof of Lemma 4.3, we showed the following:

ker(S∗w − λ) =

{
(H2(z)ª q∞(z)H2(z))⊗Ckλ(w) (λ 6= 0),
(H2(z)ª q0(z)H2(z))⊗C1 (λ = 0).

LEMMA 4.5. LetM be the submodule arising from an inner sequence {qj(z)}j>0.
Then, for any non-zero λ in D, M∩ ker Eλ = (w− λ)M.

Proof. Suppose that f is in M∩ ker Eλ. Then there exists a function g =
∑
j

gj(z)wj in H2 such that

f = ∑
l

ql(z) fl(z)wl = (w− λ) ∑
j

gj(z)wj = ∑
j

gj(z)wj+1 −∑
j

λgj(z)wj.

Comparing vector coefficients with respect to the variable w, we have the follow-
ing equations: {

q0(z) f0(z) = −λg0(z),
qj(z) f j(z) = gj−1(z)− λgj(z) (j > 1),

It follows that gj(z) divisible by qj(z) for every j, that is, g belongs to M. This
concludes the proof.

LEMMA 4.6. LetM be the submodule arising from an inner sequence {qj(z)}j>0.
Then Sw has no non-zero eigenvalue, that is, ker Sw−λ = {0} for any non-zero λ.

Proof. First we note that every eigenvalue of Sw is in D, because Sn
w con-

verges to 0 as n tends to infinity in the weak operator topology. If there exists
a function g in N such that Swg = λg for some non-zero λ in D, then we have
S(w−λ)g = 0. It follows that (w − λ)g belongs to M. Since (w − λ)g is an ele-
ment in ker Eλ, we have g is in M by Lemma 4.5. Therefore we have g = 0. This
completes the proof.

REMARK 4.7. We note that 0 is an eigenvalue of Sw in non-trivial cases. To
see this, we shall recall Theorem 3.2(v) and Corollary 3.3. If 0 is not an eigenvalue
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of Sw, then Sw is an isometry. This implies that P⊥j = P⊥j+1 6= 0 for every j, that is,
we have N = (H2(z)ª q0(z)H2(z))⊗ H2(w), in which Sw is a unilateral shift.

THEOREM 4.8. Let N be the quotient module arising from an inner sequence
{qj(z)}j>0.

(i) If qm(z) = 1 for some finite m, then

σp(Sw) = {0}, σc(Sw) = ∅ and σr(Sw) = ∅.

(ii) If q∞(z) = 1 and qj(z) 6= 1 for any j, then

σp(Sw) = {0}, σc(Sw) = D \ {0} and σr(Sw) = ∅.

(iii) If q∞(z) 6= 1 and qj(z) 6= q0(z) for some j, then

σp(Sw) = {0}, σc(Sw) = ∂D and σr(Sw) = D \ {0}.

(iv) If qj(z) = q0(z) 6= 1 for any j, then

σp(Sw) = ∅, σc(Sw) = ∂D and σr(Sw) = D.

Proof. Proof of (i): let m be the smallest integer such that qm(z) = 1. Then
we have Sm

w = 0, which implies that σ(Sw) = σp(Sw) = {0} by Remark 4.7.
Proof of (ii): By Lemmas 4.2, 4.6 and Remark 4.4, we have that σ(Sw) = D and
σp(Sw) = {0}. Let λ be a non-zero point in the closed unit disk D. If λ was in
σr(Sw), then λ would be in σp(S∗w). Hence λ would be in D. However, this is a
contradiction by Lemma 4.3.
Proof of (iii): By Lemma 4.6 and Remark 4.7, we have σp(Sw)={0}. By Lemma 4.3,
we have σp(S∗w) = D. This implies that σ(Sw) = D and D \ {0} is contained in
σr(Sw) by Lemma 4.6. Let λ be a point on ∂D. If λ was in σr(Sw), then λ would
be an eigenvalue of S∗w, that is, λ be in D. This is a contradiction. Hence we have
σc(Sw) = ∂D and σr(Sw) = D \ {0}.
Proof of (iv): it is trivial by Remark 4.7.

5. THE COMMUTANT OF Sz AND Sw

Let A be the weak closed algebra generated by Sz, Sw and IN on a quotient
module N , and A′ denotes the commutant of A in the algebra of all bounded
linear operators on N . For a bounded analytic function ϕ, Sϕ denotes the com-
pression of the multiplication operator of ϕ to N , that is, we set Sϕ f = PN ϕ f
for any f in N . Let H∞ (respectively H∞(z)) denote the algebra of all bounded
analytic functions on D2 (respectively D). Then it is easy to check that A is equal
to the weak closure of the set {Sϕ : ϕ ∈ H∞}. In [3], Amar and Menini gave an
example in which Sarason’s theorem ([9]) does not hold in H2(D2), that is, they
gave an example of quotient module N such that A′ 6= {Sϕ : ϕ ∈ H∞} on N .
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In this section we will show that A = A′ on quotient modules arising from inner
sequences.

THEOREM 5.1. Let N be the quotient module arising from an inner sequence
{qj(z)}j>0. Then A = A′. Moreover, for any element A in A′, there exists a sequence

of bounded analytic functions {ϕj(z)}j>0 in H∞(z) such that A = ∑
j>0

Sϕj(z)Sj
w in the

weak operator topology.

Proof. Let A be an operator in A′. Then A can be identified with an operator
matrix (Aij) acting on ∑

j>0

⊕Nj, where we set Nj = H2(z)ª qj(z)H2(z). In this

representation, every entry Aij is an operator from Nj to Ni. Since A commutes

with Sz, Aij intertwines S(i)
z and S(j)

z for any i, j > 0, where we set S(k)
z = P⊥k Tz|Nk .

Hence there exists a bounded analytic function ϕij(z) such that Aij = P⊥i Tϕij(z)|Nj

by the commutant lifting theorem. Moreover, since A commutes with Sw, we
have {

Aij = 0 (i < j),
P⊥i+1 Aij = Ai+1,j+1P⊥j+1 (i > j).

These equations imply that P⊥i+1Tϕij(z)|Nj = P⊥i+1Tϕi+1,j+1(z)P⊥j+1|Nj (i > j), and we
have

ϕij(z)− ϕi+1,j+1(z) ∈ qi+1(z)H∞(z) (i > j).
Further we have ϕi0(z)− ϕi+k,k(z) ∈ qi+k(z)H∞(z) (k > 0). Therefore we have

P⊥i+kTϕi0(z)|Nk = P⊥i+kTϕi+k,k(z)|Nk (k > 0).

Setting ϕi(z) = ϕi0(z), we have the following:{
Aij = 0 (i < j),
Ai+k,k = P⊥i+kTϕi(z)|Nk (k > 0).

Then we have
P⊥0 Tϕ0(z)|N0 0 0 · · ·
P⊥1 Tϕ1(z)|N0 P⊥1 Tϕ0(z)|N1 0 · · ·
P⊥2 Tϕ2(z)|N0 P⊥2 Tϕ1(z)|N1 P⊥2 Tϕ0(z)|N2 · · ·

...
. . . . . . . . .

 ∼=
∞

∑
j=0

Sϕj(z)Sj
w,

in the weak operator topology. This concludes the proof.

6. EXAMPLE: RUDIN’S SUBMODULE

LetM be the submodule consisting of all functions in H2 which have a zero
of order greater than or equal to n at (αn, 0) = (1− n−3, 0) for any positive integer
n. This module was given by Rudin in [8], and he proved that this is not finitely
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generated. Let bn(z) denote the single Blaschke product which has a zero at αn,
that is, we set bn(z) = (αn − z)/(1− αnz). Then Rudin’s submodule arises from
the inner sequence defined as follows (cf. [10]):

q0(z) =
∞
∏

n=1
bn

n(z),

qj(z) = qj−1(z)/
∞
∏

n=j
bn(z) (j > 1).

LEMMA 6.1. In Rudin’s submodule, q∞(z) = 1.

Proof. Since q0(0) =
∞
∏

n=1
αn

n converges, we have the following:

0 > log qj(0) =
∞

∑
n=j+1

(n− j) log αn >
∞

∑
n=j+1

n log αn → 0 (j → +∞),

which implies that qj(0) converges to 1 as j tends to infinity. Let {qjk (z)}k be a
subsequence of {qj(z)}j converging to some function f (z) in the weak∗ topology.
Then qjk (0) converges to f (0). Hence we have f (0) = 1. By the maximum prin-
ciple, it follows that f (z) = 1. Since every qjk (z) belongs to the weak∗ closed
ideal q∞(z)H∞(z), f (z) is in q∞(z)H∞(z). Therefore we have q∞(z) = 1. This
concludes the proof.

Regarding Rudin’s submodule, the following were given by Clark (cf. [12]):

σp(Sz) = {αn : n > 1}, σc(Sz) = {1}, σr(Sz) = ∅,

Σ0 = 1 +
∞

∑
j=1

(
1−

∞

∏
n=j

(1− n−3)2
)

, Σ1 =
∞

∑
j=1

(
1−

∞

∏
n=j

(1− n−3)2
)

.

We close this paper by adding the spectrum of Sw and the Hilbert–Schmidt norm
of [S∗z , Sw] to this list as follows, by Theorems 3.5, 4.8 and Lemma 6.1:

σp(Sw) = {0}, σc(Sw) = D \ {0}, σr(Sw) = ∅,

‖[S∗z , Sw]‖2
2 =

∞

∑
j=1

(
1−

∞

∏
n=j

(1− n−3)2(n−j)
)(

1−
∞

∏
n=j

(1− n−3)2
)

.
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