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ABSTRACT. We consider bounded linear operators acting on the `2 space in-
dexed by the nodes of a homogeneous tree. Using the Cuntz relations between
the primitive shifts on the tree, we generalize the notion of the single-scale
time-varying point evaluation and introduce the corresponding reproducing
kernel Hilbert space in which Cauchy’s formula holds. These notions are then
used in the study of the Schur multipliers and of the associated de Branges–
Rovnyak spaces. As an application we obtain realization of Schur multipliers
as transfer operators of multiscale input-state-output systems.
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INTRODUCTION

In this paper we consider bounded operators acting on the Hilbert space

(0.1) `2(T ) =
{

f : T −→ C; ‖ f ‖2
`2

def= ∑
t∈T

| f (t)|2 < ∞
}

,

where T is a homogeneous tree of order q > 1, that is, an acyclic, undirected,
connected graph such that every node belongs to exactly q + 1 edges (see [26],
[18]). Such operators arise in the theory of multiscale linear systems and mul-
tiscale stochastic processes. Here we would like to mention the works [13], [12],
[14], where Basseville, Benveniste, Nikoukhah and Willsky have developed a the-
ory of stationary multiscale systems and stationary multiscale stochastic processes.
Connections of their theory with the classical setting when q = 1 and the tree T is
the tree of integers Z (what we shall call the single-scale setting) were explored in
[8] and [2]. The special case of isotropic processes was considered in [9]; a different
approach to isotropic processes uses the theory of Gelfand pairs (see [24], [10]).

In what follows we consider the general multiscale setting, without the as-
sumption of stationarity. Some of the results stated here were announced in [5].
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In order to explain our approach, let us recall that in the stationary single-
scale setting one considers a function

s(z) = s0 + zs1 + z2s2 + · · · ,

analytic and contractive in the open unit disk D, a Schur function. Then the mul-
tiplication by s(z) is a causal contractive operator acting on the Hardy space H2
of the unit disk and the kernel

(0.2) Ks(z, w) def=
1− s(z)s(w)∗

1− zw
is positive in D. The associated reproducing kernel Hilbert space H(s) has the
form

H(s) =
√
Bs H2; ‖

√
Bs f ‖H(s) = ‖(I − π) f ‖H2 ,

where Bs = I − Ms M∗
s and π is the orthogonal projection in H2 onto kerBs. The

space H(s) is called the de Branges–Rovnyak space associated with the Schur
function s; see [16], Appendix of [15] and [25]. It is invariant under the action of
the backward shift operator R0, defined by

(0.3) (R0 f )(z) def=
f (z)− f (0)

z
.

Moreover, the formulae

A f = R0 f , Bc = R0(s · c),(0.4)

C f = f (0), Dc = s(0) · c,(0.5)

where f ∈ H(s), c ∈ C, define a coisometry(
A B
C D

)
:
(

H(s)
C

)
−→

(
H(s)

C

)
.

In terms of these operators A, B, C, D the Schur function s(z) admits the represen-
tation

(0.6) s(z) = D + zC(I − zA)−1B

and the reproducing kernel Ks(z, w) can be written as

(0.7) Ks(z, w) = C(I − zA)−1(I − wA)−∗C∗.

Conversely, if H is a Hilbert space of functions analytic in the open unit disk
such that there exists a coisometry(

A B
C D

)
:
(

H
C

)
−→

(
H
C

)
,

where A and C are as in (0.4), (0.5) (in particular, the space H is R0-invariant),
then the formula (0.6) defines a Schur function s, for which the kernel Ks is given
by (0.7) and the associated de Branges–Rovnyak space coincides with H. For this
and more general results in the setting of Pontryagin spaces see Theorem 3.12
p. 85 of [6].
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The representation (0.6) implies that if a function

u(z) = u0 + zu1 + z2u2 + · · · ∈ H2

is given, then the Taylor coefficients y0, y1, y2, . . . of the function

y(z) = s(z) · u(z) = y0 + zy1 + z2y2 + · · · ∈ H2

can be recursively determined as follows:

(0.8)


x0 = 0,

xn+1 = Axn + Bun,

yn = Cxn + Dun,

where xn ∈ H(s). This fact has many important numerical applications; in the
language of system theory it means that the representation (0.6) is a coisometric re-
alization of the Schur function s(z) as the transfer function of the input-state-output
system (0.8) with the state space H(S).

In the non-stationary single-scale setting, the Hardy space is replaced by
the space of upper-triangular Hilbert–Schmidt operators, the Schur functions by
upper-triangular contractions, the complex variable by the bilateral shift Z on
`2(Z) and the constants by diagonal operators (see e.g. [3], [20]). In particular,
any upper-triangular bounded operator S can be written as a power series

(0.9) S = S[0] + ZS[1] + Z2S[2] + · · · ,

where S[j] are bounded diagonal operators. In general, a diagonal operator D
does not commute with the shift Z. However, they satisfy the commutation rela-
tion

ZD = D(1)Z,

where D(1) def= ZDZ∗ is also a diagonal operator. This fact can be used to de-
fine a point evaluation of an upper-triangular bounded operator at a diagonal
“constant”. At the same time S may be viewed as the input-output operator of a
time-varying causal linear system. In order to construct a non-stationary analogue
of the realization (0.6), it is necessary to consider square-summable sequences of
inputs rather than a single input, in other words, the operator of multiplication
by S acting on the space of upper-triangular Hilbert–Schmidt operators.

The multiscale setting considered in this paper can be viewed as the natu-
ral multidimensional generalization of the single-scale non-stationary case. Here
expansions of the form (0.9) are replaced with non-commutative powers series in
q primitive shifts, which satisfy the Cuntz relations (see [19], [17]). Just as in the
single-scale case, the coefficients of these series do not commute with the primi-
tive shifts but satisfy certain commutation relations. Thus the multiscale setting
is different from such multidimensional settings as the classical theory of formal
non-commutative power series with the coefficients which commute with the in-
determinates (see [22] and [11] for recent developments), the Arveson space of



90 DANIEL ALPAY, AAD DIJKSMA, AND DAN VOLOK

the ball in Cn (see [21]) and the quaternionic Arveson space (see [4], [7]). In par-
ticular, in the last two cases the de Branges–Rovnyak space associated to a Schur
multiplier is Gleason-invariant rather than backward shift-invariant.

The paper is organized as follows. Section 1 is of a review nature. It presents
the ordering of the homogeneous tree T as introduced by Basseville, Benveniste,
Nikoukhah and Willsky and the canonical representation of a bounded linear
operator on the Hilbert space `2(T ) as developed in [8]. Section 2 discusses causal
operators and, in particular, the algebra of constants. In Section 3 we present the
point evaluation of a causal operator at a constant. In Section 4 we study the
space of causal Hilbert–Schmidt operators which plays here the role of the Hardy
space H2 of the unit disk. In particular, we present the analogue of Cauchy’s
formula; see Theorem 4.4. Schur multipliers, associated kernels, de Branges–
Rovnyak spaces and input-state-output systems are studied in Section 5. In the
last section we present the analogue of a Blaschke factor in the present setting.

1. POWER SERIES REPRESENTATION OF BOUNDED OPERATORS ON `2(T )

We start with the ordering of the homogeneous tree T of order q > 1. Note
that, as follows from the definition (see Introduction), the tree T is infinite. For
each node t ∈ T we consider infinite paths, which begin at t. These are infinite
sequences of nodes

(t0 = t, t1, t2, . . . ),

where each pair of consecutive nodes tk, tk+1 is connected by an edge and each
two consecutive edges are distinct:

tk+1 6= tk 6= tk+2, k = 0, 1, 2, . . . .

Two such paths

(1.1) (t0 = t, t1, t2, . . . ) and (s0 = s, s1, s2, . . . ),

which begin at the nodes t and s, respectively, are said to be equivalent if they
coincide modulo finite number of edges: there exist indices m, n such that

(1.2) tm+k = sn+k, k = 0, 1, 2, . . . .

The equivalence classes of paths with respect to this relation are called the bound-
ary points of the tree T .

Let us choose and fix some boundary point of T , which will be denoted by
∞T (in the single scale case, this is −∞). Since the graph T is connected and
does not contain cycles, for each t ∈ T there exists a unique representative of the
equivalence class ∞T , which begins at the node t.

For a pair of nodes t, s, let the corresponding representatives of the bound-
ary point ∞T be given by (1.1). They coincide modulo finite number of edges,
that is, (1.2) holds for some m and n. Let us choose the minimal m and n for
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which (1.2) holds. Then we denote the node tm = sn by s ∧ t and call the number
m + n the distance dist(s, t) between the nodes s and t.

Using these notations, we define the partial ordering¹ and the equivalence
relation ³ as follows:

s ¹ t if dist(s, s ∧ t) 6 dist(t, s ∧ t).(1.3)

s ³ t if dist(s, s ∧ t) = dist(t, s ∧ t).(1.4)

The equivalence classes with respect to the relation ³ are called horocycles.
Furthermore, we choose and fix q mappings

α1, . . . , αq : T −→ T
acting on the right

{tα1, . . . , tαq} = {s ∈ T : t ¹ s, dist(t, s) = 1}.

The mappings α1, . . . , αq are called primitive shifts.
The induced left action of the primitive shifts α1, . . . , αq on the space `2(T )

(see (0.1)) is given by:

(1.5) (αj f )(t) def= f (tαj), f ∈ `2(T ), t ∈ T , j = 1, . . . , q.

Thus the primitive shifts α1, . . . , αq can be also viewed as bounded linear opera-
tors on `2(T ). The adjoint operators are given by

(1.6) (α∗j f )(t) =

{
f (s) if t is of the form t = sαj,

0 otherwise.

and satisfy the Cuntz relations:

(1.7) αiα
∗
j = δi,j · I,

q

∑
j=1

α∗j αj = I.

In other words, the operator matrix

α
def=


α1
α2
...

αq

 : `2(T ) −→ `2(T )q

is unitary:

(1.8) αα∗ = I`2(T )q , α∗α = I`2(T ).

Since T is a tree, the shifts αj form a free semigroup, which we denote by
Fq. Every element w ∈ Fq acts on the tree T on the right:

t 7→ tw,

and on the space `2(T ) on the left:

f 7→ w f , (w f )(t) = f (tw).
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The unit element ofFq will be denoted by ∅. For w ∈ Fq we also use the notation:

(1.9) |w| def=

{
0 if w = ∅,

n if w = αi1 · · · αin .

DEFINITION 1.1. A pair of elements w1, w2 ∈ Fq is said to be reducible if w1
and w2 can be represented as

w1 = αiv1, w2 = αiv2

for some v1, v2 ∈ Fq and some primitive shift αi.

REMARK 1.2. Note that a pair of elements w1, w2 ∈ Fq is irreducible if and
only if there exists t ∈ T such that

(1.10) (tw1) ∧ (tw2) = t.

In this case (1.10) holds for all t ∈ T .

Let X(T ) denote the C∗-algebra of bounded linear operators on `2(T ). The
elements of the semigroup Fq appear in the non-commutative power series rep-
resentations of elements of X(T ). The coefficients of these power series are diag-
onal operators with respect to the standard basis χt of `2(T ) :

χt(s) def=

{
1 if t = s,

0 otherwise.

The precise result can be formulated as follows:

THEOREM 1.3. Every operator S ∈ X(T ) can be represented in the form

(1.11) S = ∑
w1,w2∈Fq

′w∗1w2Sw1,w2 ,

where:
(i) Sw1,w2 are elements of X(T ) which are diagonal with respect to the standard basis

χt of `2(T ).
(ii) The notation

∑
w1,w2∈Fq

′

means that the summation is taken over all the irreducible pairs w1, w2 ∈ Fq.
(iii) Convergence is absolute pointwise: for every f ∈ `2(T ) and t ∈ T the series

∑
w1,w2∈Fq

′(w1
∗w2Sw1,w2 f )(t),

is absolutely convergent and its sum is equal to (S f )(t).
Moreover, the diagonal coefficients Sw1,w2 of the series (1.11) are partially deter-

mined by

(1.12) (Sw1,w2 χr)(r) = (Sχr)(sw1) if r ∈ T is of the form r = sw2.
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The rest of the diagonal entries of Sw1,w2 , that is, the values (Sw1,w2 χr)(r) for r 6∈ T w2,
can be assigned arbitrarily (as long as they are uniformly bounded).

Proof. Let S ∈ X(T ), f ∈ `2(T ) and t ∈ T be fixed. Then

(S f )(t) = ∑
r∈T

(Sχr)(t) · f (r),

where the series is absolutely convergent because of the Cauchy–Schwarz in-
equality.

Observe that, in view of Remark 1.2, for each r ∈ T there exists a unique
triple s ∈ T , w1, w2 ∈ Fq such that

t = sw1, r = sw2

and the pair w1, w2 is irreducible. (In particular, s = t ∧ r.) Therefore, we have

(S f )(t) = ∑
s∈T ,w1,w2∈Fq :t=sw1

′(Sχsw2)(sw1) · f (sw2).

Let now Sw1,w2 be elements of X(T ) which are diagonal with respect to the stan-
dard basis χt of `2(T ) and satisfy (1.12). Then one can rewrite the last identity as

(S f )(t) = ∑
s∈T ,w1,w2∈Fq :t=sw1

′(Sw1,w2 f )(sw2) = ∑
s∈T ,w1,w2∈Fq :t=sw1

′(w∗1w2Sw1,w2 f )(t).

But, in view of (1.6), for every w ∈ Fq and g ∈ `2(T ) we have

(1.13) (w∗g)(t) =

{
g(s) if t is of the form t = sw,

0 otherwise.

Hence the identity (1.11) holds in the sense of pointwise absolute convergence.
Furthermore, let t, s ∈ T be fixed and let S ∈ X(T ) admit (in the sense of

the pointwise absolute convergence) a representation of the form (1.11), where
the coefficients Sw1,w2 ∈ X(T ) are diagonal with respect to the standard basis χt
of `2(T ). Then

(Sχt)(s) = ∑
w1,w2∈F2

′(w1
∗w2Sw1,w2 χt)(s),

but, in view of (1.13), the terms of the series on the right-hand side satisfy the
relations

(w1
∗w2Sw1,w2 χt)(s) =

{
(Sw1,w2 χt)(t) if t = (t ∧ s)w2 and s = (t ∧ s)w1,

0 otherwise,

hence the series contains at most one non-zero term and (1.12) follows.

REMARK 1.4. In order to avoid ambiguity, we shall usually normalize the
diagonal coefficients Sw1,w2 of the representation (1.11) for an operator S ∈ X(T )
as follows:

(1.14) Sw1,w2 χr = 0, if r 6∈ T w2.
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Since the diagonal coefficients Sw1,w2 in the expansion (1.11) do not com-
mute, in general, with the shift operators w∗1w2, it is of interest to study the rep-
resentations (1.11) in the special cases when S is of the form S = Dw∗ or S = Dw,
where D ∈ X(T ) is a diagonal operator with respect to the standard basis χt of
`2(T ) and w ∈ Fq.

LEMMA 1.5. Let D ∈ X(T ) be a diagonal operator with respect to the standard
basis χt of `2(T ) and let w ∈ Fq. Then

Dw∗ = w∗D′, Dw = wD′′,

where D′, D′′ ∈ X(T ) are diagonal operators given by

D′χt = (Dχtw)(tw) · χt ∀t ∈ T ,

D′′χt =

{
(Dχs)(s) · χt if t ∈ T is of the form t = sw,

0 otherwise.

Proof. In view of (1.5), (1.6) we have

(1.15) w∗χt = χtw, wχt =

{
χs if t is of the form t = sw,

0 otherwise.

Since the operators D, D′, D′′ are diagonal, the rest of the proof is straightfor-
ward.

2. CAUSAL BOUNDED OPERATORS AND CONSTANTS

DEFINITION 2.1. Let S ∈ X(T ). Then S is said to be causal if for every node
s ∈ T and every element f ∈ `2(T ) such that

f (t) = 0 ∀t ¹ s

it holds that
(S f )(t) = 0 ∀t ¹ s.

EXAMPLE 2.2. For every w ∈ Fq the adjoint operator w∗ ∈ X(T ) is causal,
as follows from (1.15).

PROPOSITION 2.3. Let S ∈ X(T ) be represented by the pointwise absolutely con-
vergent series

S = ∑
w1,w2∈Fq

′w∗1w2Sw1,w2 ,

where the operators Sw1,w2 ∈ X(T ) are diagonal with respect to the standard basis χt of
`2(T ) and normalized by (1.14).

Then S is causal if and only if

Sw1,w2 = 0 whenever |w1| < |w2|.
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Proof. First let us assume that S is causal. Let w1, w2 ∈ Fq be an irreducible
pair such that |w1| < |w2| and let s ∈ T . Then, according to (1.3) and (1.4),

sw1 ¹ sw2 and sw1 6³ sw2.

Therefore, from Definition 2.1 and the formula (1.12) of Theorem 1.3 it follows
that

Sw1,w2 χsw2 = (Sχsw2)(sw1) · χsw2 = 0.

In view of (1.14), we conclude that Sw1,w2 = 0.
Conversely, assume that Sw1,w2 = 0 whenever |w1| < |w2|. Let s, t ∈ T be

such that t ¹ s and t 6³ s. Then there exists a unique pair of elements w1, w2 ∈ Fq
such that

t = (t ∧ s)w1, s = (t ∧ s)w2.

By definition of t ∧ s, this pair w1, w2 is irreducible. In view of (1.3) and (1.4),
|w1| < |w2|. Hence, according to the formula (1.12) of Theorem 1.3,

(Sχs)(t) = (Sw1,w2 χs)(s) = 0.

Thus (Sχs)(t) = 0 for every pair of nodes s, t ∈ T such that t ¹ s and t 6³ s.
In view of Definition 2.1, this means that S is causal.

We shall denote the algebra of causal operators S ∈ X(T ) by H(T ). Note
that, in view of Definition 2.1, the algebra H(T ) is closed in X(T ) in the pointwise
sense: if a sequence S1, S2, . . . of elements of H(T ) and an element S ∈ X(T ) are
such that for every f ∈ `2(T ) and t ∈ T lim

n→∞
(Sn f )(t) = (S f )(t), then S ∈ H(T ).

In order to study the algebra H(T ) further, we consider its subalgebra

C def= {S ∈ X(T ) : S, S∗ ∈ H(T )}.

Elements of C play the role of constants in the present setting; we note that

(2.1) S ∈ C ⇔ Sχt ∈ span{χs : s ³ t} ∀t ∈ T ,

where span denotes closed linear span. Thus the subalgebra C is closed in X(T )
in the pointwise sense.

REMARK 2.4. Note that, according to Proposition 2.3 and Theorem 1.3, an
element S of the algebra X(T ) belongs to the subalgebra C if and only if it is of
the form

S = ∑
w1,w2∈Fq ,|w1|=|w2|

′w∗1w2Sw1,w2 ,

where Sw1,w2 are diagonal operators with respect to the standard basis χt of `2(T ).

THEOREM 2.5. Let S ∈ H(T ). Then S can be represented as the pointwise abso-
lutely convergent series

(2.2) S = ∑
w∈Fq

w∗S[w],
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where S[w] ∈ C are uniquely determined by

(2.3) (S[w]χt)(s) =

{
(Sχt)(sw) if t ³ s,

0 otherwise,

and satisfy

(2.4) ‖S[w]‖ 6
∥∥∥ ∑

v∈Fq ,|v|=|w|
v∗S[v]

∥∥∥ 6 ‖S‖.

In the proof of Theorem 2.5 we shall use the following lemma:

LEMMA 2.6. Let T ∈ X(T ) and let

(2.5) T = ∑
w1,w2∈Fq

′w∗1w2Tw1,w2 , where Tw1,w2 are diagonal,

be the pointwise absolutely convergent expansion of T as in Theorem 1.3. Then the series

T[∅]
def= ∑

w1,w2∈Fq ,|w1|=|w2|

′w∗1w2Tw1,w2

converges pointwise absolutely in C and

(2.6) ‖T[∅]‖ 6 ‖T‖.

Proof. First we observe that, since the series (2.5) is pointwise absolutely
convergent, the series

(T[∅] f )(t) def= ∑
w1,w2∈Fq ,|w1|=|w2|

′(w∗1w2Tw1,w2 f )(t)

converges absolutely for each f ∈ `2(T ) and t ∈ T .
Now let

f =
n

∑
i=1

fiχti , where fi ∈ C,

let h1, . . . , hk be horocycles such that

{t1, . . . , tn} ⊂ h1 ∪ · · · ∪ hk

and let π1, . . . , πk denote the corresponding orthogonal projections in `2(T ):

πj = ∑
t∈hj

〈·, χt〉`2(T ) χt.

For each j the relations (1.15) imply

(T[∅]πj f )(t) =

{
(πjTπj f )(t) if t ∈ hj,

0 otherwise,

hence
T[∅]πj f = πjTπj f ∈ ran(πj).
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Since

f =
k

∑
j=1

πj f ,

we observe that T[∅] f ∈ `2(T ) and, moreover,

‖T[∅] f ‖2
`2(T ) =

∥∥∥ k

∑
j=1

T[∅]πj f
∥∥∥2

`2(T )
=

k

∑
j=1
‖πjTπj f ‖2

`2(T )

6
k

∑
j=1
‖T‖2 ‖πj f ‖2

`2(T ) = ‖T‖2 ‖ f ‖2
`2(T ).

Since span{χt : t ∈ T } is dense in `2(T ), we conclude that

T[∅] ∈ X(T ), ‖T[∅]‖ 6 ‖T‖.

Finally, in view of Remark 2.4, T[∅] ∈ C.

Proof of Theorem 2.5. According to Theorem 1.3 and Proposition 2.3, S ad-
mits in the sense of pointwise absolute convergence a representation of the form

S = ∑
w1,w2∈Fq ,|w1|>|w2|

′w∗1w2Sw1,w2 , where Sw1,w2 are diagonal.

Denote
S[w]

def= (wS)[∅], w ∈ Fq.

Then, as follows from (1.7), S[w] admits in the sense of pointwise absolute conver-
gence the representation

S[w] = ∑
w1,w2∈Fq ,|w1|=|w2|

′w∗1w2Sw1w,w2 .

Hence S admits the representation (2.2) and the relations (1.12) in Theorem 1.3
imply (2.3).

Finally, we note that, as follows from Lemma 1.5 and (1.7),

S[w] = w ∑
v∈Fq ,|v|=|w|

v∗S[v] and (Sw)[∅] = ∑
v∈Fq ,|v|=|w|

v∗S[v]w.

Using the identity ww∗ = I and the inequality (2.6) in Lemma 2.6, we obtain

‖S[w]‖ 6
∥∥∥ ∑

v∈Fq ,|v|=|w|
v∗S[v]

∥∥∥ = ‖(Sw)[∅]w
∗‖ 6 ‖Sw‖ 6 ‖S‖.

Thus the inequality (2.4) holds.

REMARK 2.7. Let c ∈ C, let S, T ∈ H(T ) and let

S = ∑
w∈Fq

w∗S[w], T = ∑
w∈Fq

w∗T[w], where S[w], T[w] ∈ C,
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be the pointwise absolutely convergent expansions of S, T as in Theorem 2.5.
Then

Sc + T = ∑
w∈Fq

w∗(S[w]c + T[w]),

where convergence is again pointwise absolute.

Note that the coefficients S[w] ∈ C in the expansion (2.2) do not commute, in
general, with the shift operators w∗. The following lemma deals with the special
case when S is of the form S = Cw∗, where C ∈ C.

LEMMA 2.8. Let w ∈ Fq and let C ∈ C. Then

(2.7) Cw∗ = ∑
v∈Fq ,|v|=|w|

v∗Cv, where Cv = vCw∗ ∈ C.

Proof. Let v ∈ Fq be such that |v| = |w| and consider the operator Cv =
vCw∗ ∈ X(T ). For each t ∈ T the relations (2.1) and (1.15) imply that

Cvχt = vCχtw ∈ span{vχu : u ³ tw} = span{χs : sv ³ tw} ⊂ span{χs : s ³ t}

and hence, according to (2.1), Cv ∈ C.
Furthermore, we note that the Cuntz relations (1.7) imply

(2.8) ∑
v∈Fq ,|v|=n

v∗v = I, n = 0, 1, 2, . . . .

Hence

Cw∗ = ∑
v∈Fq ,|v|=|w|

v∗vCw∗

and (2.7) follows.

3. THE POINT EVALUATION OF CAUSAL OPERATORS

In this section we define a point evaluation for the elements of H(T ) at the
"points" from C.

We consider the set of q-tuples

(3.1) B(T ) def=
{

c =
(
c1 · · · cq

)
∈ Cq : lim

n→∞
‖(cα)n‖1/n < 1

}
,

which plays the role of the unit disk in the present setting.
Let c ∈ B(T ) and let S ∈ H(T ). Let

(3.2) S = ∑
w∈Fq

w∗S[w], where S[w] ∈ C,
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be the pointwise absolutely convergent expansion of S as in Theorem 2.5. Then,
in view of the estimate (2.4), the series

(3.3) S∧(c) def=
∞

∑
n=0

(cα)n
(

∑
w∈Fq ,|w|=n

w∗S[w]

)
converges absolutely with respect to the operator norm. It follows from Lem-
ma 2.8 and the Cuntz relations (1.7) that each term of the series (3.3) belongs to
the algebra of constants C, which is closed in X(T ) in the pointwise sense. Hence
S∧(c) ∈ C.

In this way we associate with each operator S ∈ H(T ) a mapping c 7→ S∧(c)
from B(T ) to the algebra of constants C. We shall refer to this mapping as the point
evaluation of S. Its main properties are listed in the following lemma.

LEMMA 3.1. (i) Let F, G ∈ H(T ), p ∈ C, c ∈ B(T ). Then

(Fp + G)∧(c) = F∧(c) · p + G∧(c),(3.4)

(FG)∧(c) = (F∧(c) · G)∧(c).(3.5)

(ii) If S ∈ H(T ) and S∧(c) = 0 for every c ∈ B(T ), then S = 0.

Proof. (i) In view of Remark 2.7, the identity (3.4) follows immediately from
the definition (3.3) of the point evaluation. Therefore, it suffices to establish the
identity (3.5) for F, G of the form

F = w∗1 , G = w∗2 , where w1, w2 ∈ Fq.

But Lemma 2.8 implies that

(w∗1w∗2)∧(c) = (cα)(|w1|+|w2|)w∗1w∗2 = (cα)|w2|(w∗1)∧(c)w∗2

= ∑
|w|=|w2|

(cα)|w|w∗(w(w∗1)∧(c)w∗2)= ∑
|w|=|w2|

(w∗)∧(c)(w(w∗1)∧(c)w∗2)

=
(

∑
|w|=|w2|

w∗w(w∗1)∧(c)w∗2
)
∧(c) = ((w∗1)∧(c)w∗2)∧(c).

(ii) We prove that S[w] = 0 for each w ∈ Fq. We use induction on |w|. First,

S[∅] = S∧(0) = 0.

Next, assume that
S[w] = 0 ∀w : |w| 6 n

and let
wn+1 = αi1 αi2 · · · αin+1 .

We shall prove that S[wn+1] = 0.
Denote

wk = αi1 · · · αik , 1 6 k 6 n + 1, w0 = ∅.
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Fix t0 ∈ T and consider the diagonal operators cj ∈ C, 1 6 j 6 q, defined as
follows:

cjχt =

{
χt0wk if j = ik+1 and t = t0wk, 0 6 k 6 n,

0 otherwise.

We set
c =

(
c1 · · · cq

)
and observe that, as follows from (1.5),

(cα)χt =

{
χt0wk if t = t0wk+1, 0 6 k 6 n,

0 otherwise.

Hence

(cα)n+1χt =

{
χt0 if t = t0wn+1,

0 otherwise,

(cα)n+2 = 0.

In particular, c ∈ B(T ).
Furthermore, in view of (1.15), for w ∈ Fq such that |w| = n + 1 we have

(cα)n+1w∗χt = (cα)n+1χtw =

{
χt0 if t = t0 and w = wn+1,

0 otherwise.

Thus by the induction assumption

0 = S∧(c) = (cα)n+1w∗n+1S[wn+1],

which implies (see (1.15))

0 = S∗[wn+1]
wn+1(α∗c∗)n+1χt0 = S∗[wn+1]

wn+1χt0wn+1 = S∗[wn+1]
χt0 .

Since t0 ∈ T was chosen arbitrarily, S[wn+1] = 0.

4. THE SPACE OF CAUSAL HILBERT–SCHMIDT OPERATORS

In this section we consider the following spaces of Hilbert–Schmidt opera-
tors:

H2(T ) def= {F ∈ H(T ); ‖F‖2
2

def= trace(F∗F) < ∞},

C2
def= C ∩H2(T ).

As we shall see from Propositions 4.1 and 4.2 below, the space H2(T ) of
causal Hilbert–Schmidt operators plays the role of the Hardy space of the unit
disk in the present setting: elements of the algebra H(T ) act on the space H2(T )
by multiplication. The space C2 is the space of constants which appear in the
power series expansions (see Theorem 2.5) of the elements of H2(T ).
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PROPOSITION 4.1. (i) The space H2(T ) is a Hilbert space contractively included
in H(T ):

∀F ∈ H2(T ) 〈F, F〉2 6 ‖F‖2.

(ii) C2 is a closed subspace of the Hilbert space H2(T ).
(iii) For every F ∈ H2(T ) and S ∈ H(T ) the operators SF and FS belong to H2(T )

and it holds that

(4.1) max(‖SF‖2, ‖FS‖2) 6 ‖S‖ ‖F‖2.

Moreover, the multiplication operators MS, M̂S defined on H2(T ) by

(4.2) MSF def= SF, M̂SF def= FS, F ∈ H2(T ),

satisfy
‖MS‖ = ‖M̂S‖ = ‖S‖.

Proof. It is well known (see, for instance, [23]) that the space of Hilbert–
Schmidt operators on a given separable Hilbert space is a Hilbert space. In par-
ticular, the space

X2(T ) def= {F ∈ X(T ); ‖F‖2
2

def= trace(F∗F) < ∞}

is a Hilbert space. For every F ∈ X2(T ) and f ∈ `2(T ) it holds that

‖F f ‖2
`2(T ) = ∑

t∈T
|F f (t)|2 = ∑

t∈T

∣∣∣ ∑
s∈T

Fχs(t) · f (s)
∣∣∣2

6 ∑
t,s∈T

|Fχs(t)|2 ‖ f ‖2
`2(T ) = ‖F‖2

2 ‖ f ‖2
`2(T ),

hence the space X2(T ) is contractively included in X(T ).
The space H2(T ) is the intersection

(4.3) H2(T ) = X2(T ) ∩H(T ).

Since the algebra H(T ) is closed in X(T ) in the pointwise sense, it is also closed
with respect to the operator norm. It follows that H2(T ) is a closed (with respect
to the Hilbert–Schmidt norm ‖ · ‖2) subspace of the Hilbert space X2(T ), which
proves the statement (i).

The proof of the statement (ii) is analogous: it uses the fact that the alge-
bra of constants C is closed in H(T ) in the pointwise sense and hence also with
respect to the operator norm.

In order to prove the statement (iii), we observe that for every S ∈ X(T )
and F ∈ X2(T ) it holds that

‖SF‖2
2 = ∑

t∈T
‖SFχt‖2

`2(T ) 6 ‖S‖2 ∑
t∈T

‖Fχt‖2
`2(T ) = ‖S‖2 ‖F‖2

2;

‖FS‖2
2 = ‖S∗F∗‖2

2 6 ‖S∗‖2 ‖F∗‖2
2 = ‖S‖2 ‖F‖2

2.
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In particular, taking into account (4.3) and the fact that H(T ) is an algebra,
we may conclude that

∀S ∈ H(T ), ∀F ∈ H2(T ) SF, FS ∈ H2(T )

and (4.1) holds.
Let f ∈ span{χt} and choose t0 ∈ T such that f (t) = 0 ∀t ¹ t0. Consider

the operator F defined by

(4.4) Fu = u(t0) · f , u ∈ `2(T ).

Then
‖F‖2

2 = ∑
t∈T

‖Fχt‖2
`2(T ) = ‖ f ‖2

`2(T ),

hence F ∈ X2(T ). According to Definition (2.1), the operator F is causal, hence
F ∈ H2(T ).

Furthermore, let S ∈ H(T ). Then

‖SF‖2
2 = ∑

t∈T
‖SFχt‖2

`2(T ) = ‖S f ‖2
`2(T ).

Since span{χt} is dense in `2(T ), we conclude that the left multiplication oper-
ator MS satisfies ‖MS‖ > ‖S‖. On the other hand, (4.1) implies ‖MS‖ 6 ‖S‖,
hence ‖MS‖ = ‖S‖.

The proof of the equality ‖M̂S‖ = ‖S‖ for the right multiplication operator
M̂S is analogous.

PROPOSITION 4.2. Let F ∈ H(T ) and let

(4.5) F = ∑
w∈Fq

w∗F[w],

where F[w] ∈ C, be the pointwise absolutely convergent expansion for F, as in Theo-
rem 2.5. Then F ∈ H2(T ) if and only if

(4.6) ∀w ∈ Fq F[w] ∈ C2 and ∑
w∈Fq

‖F[w]‖2
2 < ∞.

In this case the expansion (4.5) converges in the H2(T )-norm and

(4.7) ‖F‖2
2 = ∑

w∈Fq

‖F[w]‖2
2.

Proof. (⇒) Assume that F ∈ H2(T ). Then, as follows from the relations
(2.3) in Theorem 2.5 and the statement (iii) of Proposition 4.1, we have

‖F‖2
2 = ‖w‖ ‖F‖2

2 > ‖wF‖2
2 = ∑

t,s∈T
|(wFχt)(s)|2

> ∑
t,s∈T
t³s

|(wFχt)(s)|2 = ∑
t,s∈T

|(F[w]χt)(s)|2 = ‖F[w]‖2
2,

hence F[w] ∈ C2.
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Furthermore, since F is causal,

‖F‖2
2 = ∑

s,t∈T , s¹t
|(Fχs)(t)|2 = ∑

s,t∈T , s³t
∑

w∈Fq

|(Fχs)(tw)|2(4.8)

= ∑
s,t∈T , s³t

∑
w∈Fq

|(F[w]χs(t)|2 = ∑
w∈Fq

‖F[w]‖2
2.

Thus (4.7) holds.
As a consequence, we obtain the convergence of the expansion (4.5) in the

following sense: if we order somehow the countable set Fq, say

Fq = {wj}∞
j=0,

then, according to (4.6) and the statement (iii) of Proposition 4.1, for each n =

0, 1, 2, . . . the finite sum
n
∑

j=0
w∗j F[wj ] belongs to H2(T ) and it holds that

∥∥∥F−
n

∑
j=0

w∗j F[wj ]

∥∥∥2

2
=

∞

∑
j=n+1

‖F[wj ]‖
2
2 → 0 as n → ∞.

(⇐) Assume that F ∈ H(T ) and that the coefficients F[w] of the expansion
(4.5) satisfy the conditions (4.6). Then it suffices to reverse the computation (4.8)
in order to show that F ∈ H2(T ).

Our next goal is to demonstrate that the space H2(T ) has a reproducing ker-
nel structure with respect to the point evaluation defined in the previous section
(see (3.3)).

LEMMA 4.3. Let F ∈ H2(T ) have the expansion (4.5), where F[w] ∈ C2, and let
c ∈ B(T ). Then the following series converges absolutely in C2:

(4.9) F∧(c) =
∞

∑
n=0

(cα)n
(

∑
w∈Fq ,|w|=n

w∗F[w]

)
.

Proof. It follows from the identity (4.7) in Proposition 4.2 that∥∥∥ ∑
w∈Fq ,|w|=n

w∗F[w]

∥∥∥
2

6 ‖F‖2, n = 0, 1, 2 . . . .

Hence, in view of the definition (3.1) of B(T ) and the estimate (4.1) in Proposi-
tion 4.1, the series (4.9) converges absolutely in H2(T ). Since each term of the
series belongs to C, the desired conclusion follows.

THEOREM 4.4. Let c ∈ B(T ). Then the operator I − α∗c∗ is invertible in H(T )
and its inverse

(4.10) Kc
∧

def= (I − α∗c∗)−1

satisfies

(4.11) 〈F∧(c), k〉2 = 〈F, Kc
∧ k〉2, ∀F ∈ H2(T ), ∀k ∈ C2.
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Proof. In view of the definition (3.1) of B(T ), Kc
∧ is the sum of the absolutely

convergent series

(4.12) Kc
∧ =

∞

∑
n=0

(α∗c∗)n.

Since each term of the series belongs to H(T ), so does Kc
∧. Let us now choose and

fix an element k ∈ C2 and an element F ∈ H2(T ) with the expansion (4.5), where
F[w] ∈ C2. Then, according to the statement (iii) of Proposition 4.1,

Kc
∧ k =

∞

∑
n=0

(α∗c∗)nk ∈ H2(T ),

where convergence is absolute with respect to the H2(T )-norm. Since, in view of
the identity (2.8),

(4.13) (α∗c∗)n = ∑
w∈Fq ,|w|=n

w∗w(α∗c∗)n = ∑
w∈Fq ,|w|=n

w∗(w∗)∧(c)∗,

Proposition 4.2 and Lemma 4.3 imply that

〈F, Kc
∧ k〉2 =

∞

∑
n=0

〈F, (α∗c∗)nk〉2 =
∞

∑
n=0

〈
∑

w∈Fq ,|w|=n
w∗F[w], (α∗c∗)nk

〉
2

=
∞

∑
n=0

〈
(cα)n ∑

w∈Fq ,|w|=n
w∗F[w], k

〉
2

= 〈F∧(c), k〉2.

REMARK 4.5. Note that Theorem 4.4 and the statement (ii) of Lemma 3.1
imply that

span{Kc
∧ k : c ∈ B(T ), k ∈ C2} = H2(T ).

We close this section with the description of the counterparts of the back-
ward shift operator R0 in the stationary single-scale setting (see the formula (0.3)
in Introduction).

PROPOSITION 4.6. Let the operators Aj : H2(T ) −→ H2(T ), j = 1, . . . , q, be
defined by

(4.14) AjF
def= (F− F∧(0))αj, F ∈ H2(T ), j = 1, . . . , q.

Then:
(i) The operator Aj is the adjoint of the right multiplication operator M̂α∗j

:

Aj = M̂∗
α∗j

, j = 1, . . . , q.

(ii) For i, j = 1, . . . , q the following relations hold:

Aj M̂α∗i
= M̂α∗i αj , M̂α∗i

Aj =

{
(I − C∗C) if i = j,

0 otherwise,
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where

(4.15) CF def= F∧(0).

(iii) Let F ∈ H2(T ) with the expansion (4.5), where F[w] ∈ C2, be given. Then for
every pair w, v ∈ Fq such that |v| = |w| it holds that

F[w] = w · (CAvF) · v∗,

where

(4.16) Aαi1
···αik

def= Aik · · · Ai1 , A∅ def= I.

Proof. Consider F ∈ H2(T ) with the expansion (4.5), where F[w] ∈ C2. Then,
in view of Proposition 4.2,

AjF = (F− F[∅])αj = ∑
w∈Fq ,|w|>1

w∗F[w]αj ∈ H2(T )

and for every G ∈ H2(T ) it holds that

〈F, Gα∗j 〉2 = 〈F− F[∅], Gα∗j 〉2 = trace(αjG∗(F− F[∅]))

= trace(G∗(F− F[∅])αj) = 〈AjF, G〉2.

This proves the statement (i) of the proposition. The statement (ii) follows imme-
diately from the Cuntz relations (1.7).

In order to prove the statement (iii), let us fix a sequence of indices i1, i2, . . . ,
such that 1 6 in 6 q. Then

F = F[∅] + (F− F[∅]) = CF + (Ai1 F)α∗i1
= CF + (CAi1 F)α∗i1 + (Ai2 Ai1 F)α∗i2 α∗i1 = · · ·

=
m

∑
n=0

(CAvn F)v∗n + (Avm+1 F)v∗m+1, m = 0, 1, 2, . . .

where v0 = ∅, vn = αi1 · · · αin . Now it follows from the identity (2.3) in Theo-
rem 2.5 that

∑
|w|=n

w∗F[w]d = (CAvn F)v∗n ∀n

and hence

F[w] = w(CAv|w|F)v∗|w| ∀w.

Since the sequence of indices i1, i2, i3, . . . was chosen arbitrarily, this completes
the proof.
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5. SCHUR MULTIPLIERS AND DE BRANGES–ROVNYAK SPACES

DEFINITION 5.1. Let S ∈ H(T ) be such that ‖S‖ 6 1. Then S is said to be a
Schur multiplier.

THEOREM 5.2. Let a mapping s : B(T ) 7→ C be given. Then there exists a Schur
multiplier S ∈ H(T ) such that

s(c) = S∧(c) ∀c ∈ B(T )

if and only if the kernel Ks : B(T )×B(T ) → C defined by

(5.1) Ks(c, d) def=
∞

∑
n=0

(cα)n(I − s(c)s(d)∗)(dα)n∗, c, d ∈ B(T ),

is positive: for any m > 0, c0, . . . , cm ∈ B(T ), k0, . . . , km ∈ C2, it holds that
m

∑
i,j=0

〈Ks(ci, cj)k j, ki〉2 > 0.

In this case Ks(c, d) = (Kd
S)∧(c), where

(5.2) Kd
S

def= (I − SS∧(d)∗)Kd
∧, d ∈ B(T ).

In the proof of Theorem 5.2 we shall use the following lemma:

LEMMA 5.3. (i) Let T : H2(T ) −→ H2(T ) be a bounded linear operator. Then
T is of the form T = MS for some S ∈ H(T ) if and only if

∀Q ∈ H(T ) TM̂Q = M̂QT.

(ii) Let T : C2 −→ C2 be a bounded linear operator. Then T is of the form T = Mc for
some c ∈ C if and only if

∀d ∈ C TM̂d = M̂dT.

Proof. We shall prove only the statement (i) of the proposition; the proof of
the statement (ii) is completely analogous.
(⇒). The "only if" direction is clear: for every S, Q ∈ H(T ) and F ∈ H2(T ) it
holds that

MS M̂QF = SFQ = M̂Q MSF.

(⇐). Assume that an operator T, which commutes with every M̂Q, is given. For
each t ∈ T let us consider the projection πt ∈ C2,

πtu
def= u(t)χt, u ∈ `2(T ),

and define an operator S on span{χt} by

Sχt = (Tπt)χt.

Let f ∈ span{χt} and choose t0 ∈ T such that f (t) = 0 ∀t ¹ t0. Consider
F ∈ H2(T ) defined by

Fu = u(t0) · f , u ∈ `2(T ),
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as in the proof of Proposition 4.1 (see (4.4)). Then

F = ∑
t∈T

f (t) · Ft0
t , where Ft0

t u = u(t0)χt, u ∈ `2(T ).

Note that Ft0
t = πtF

t0
t = Ft0

t πt0 ∈ H2(T ), hence for every u ∈ `2(T ) we have

(TF)u = u(t0) ∑
t∈T

f (t)(TFt0
t )χt0 = u(t0) ∑

t∈T
f (t)(Tπt)Ft0

t χt0

= u(t0) ∑
t∈T

f (t)(Tπt)χt = u(t0)S f = SFu.

It follows that

‖S f ‖`2(T ) 6 ‖TF‖ 6 ‖TF‖2 6 ‖T‖ · ‖F‖2 = ‖T‖ · ‖ f ‖`2(T )

and (S f )(t) = 0 ∀t ¹ t0. Since

span{χt : t ∈ T } = `2(T ) and span{Fs
t : t, s ∈ T , s ¹ t} = H2(T ),

we conclude that
S ∈ H(T ) and T = MS.

Proof of Theorem 5.2. Let us assume first that s(c) = S∧(c), where S is a Schur
multiplier. According to Theorem 4.4, for k ∈ C2 and F ∈ H2(T ) we have

〈Kd
∧ k, SF〉2 = 〈Kd

∧ k, S∧(d)F〉2 = 〈S∧(d)∗Kd
∧ k, F〉2,

hence

M∗
S(Kd

∧ k) = S∧(d)∗Kd
∧ k,(5.3)

Kd
S k = (I − MS M∗

S)(Kd
∧ k).(5.4)

Furthermore, it follows from the identities (4.12) and (4.13), the definition (3.3) of
the point evaluation and the statement (i) in Lemma 3.1 that

(Kd
S)∧(c) = (Kd

∧)∧(c)− (s(c)s(d)∗Kd
∧)∧(c)

=
∞

∑
n=0

(cα)n(I − s(c)s(d)∗)(α∗d∗)n = Ks(c, d).

Now, given c0, . . . , cm ∈ B(T ), k0, . . . , km ∈ C2, we observe that
m

∑
i,j=0

〈Ks(ci, cj)k j, ki〉2 =
〈
(I − MS M∗

S)
( m

∑
j=0

K
cj
∧k j

)
,

m

∑
i=0

Kci
∧ki

〉
2

> 0,

because the operator I − MS M∗
S is positive. Thus the kernel Ks(c, d) is positive.

Conversely, assume that the kernel Ks(c, d) is positive and define on

span{Kd
∧k : d ∈ B(T ), k ∈ C2}

an operator T by
T(Kd

∧k) = s(d)∗Kd
∧k.
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Then T is a well-defined contraction, because∥∥∥T
m

∑
j=0

K
cj
∧ k j

∥∥∥2

2
=
∥∥∥ m

∑
j=0

K
cj
∧ k j

∥∥∥2

2
−

m

∑
i,j=0

〈Ks(ci, cj)k j, ki〉2 6
∥∥∥ m

∑
j=0

K
cj
∧ k j

∥∥∥2

2
.

Hence, in view of Remark 4.5, T can be extended as a contraction on H2(T ).
The adjoint operator has the property

(5.5) (T∗F)∧(c) = (s(c)F)∧(c) ∀F ∈ H2(T ), ∀c ∈ B(T ).

In view of the statement (i) in Lemma 3.1, for every Q ∈ H(T ), F ∈ H2(T ),
c ∈ B(T ) we have

(T∗M̂QF)∧(c) = (s(c)FQ)∧(c) = ((s(c)F)∧(c)Q)∧(c)

= ((T∗F)∧(c)Q)∧(c) = (M̂QT∗F)∧(c),

which, according to the statement (ii) of the same Lemma 3.1, implies

T∗M̂Q = M̂QT∗ ∀Q ∈ H(T ).

Now it follows from Lemma 5.3 that there exists a Schur multiplier S such that
T∗ = MS. In view of (5.5) and Lemma 3.1, this Schur multiplier S satisfies

S∧(c) = s(c) ∀c ∈ B(T ).

We recognize in the kernel (5.1) an analogue of the kernel (0.2), mentioned in
Introduction. As in the single-scale case, we consider the associated de Branges–
Rovnyak space defined below.

DEFINITION 5.4. Let S ∈ H(T ) be a Schur multiplier, let

BS
def= I − MS M∗

S

and let πS denote the orthogonal projection in H2(T ) onto kerBS. The Hilbert
space H(S), defined by

H(S) =
√
BS H2(T ); ‖

√
BS F‖H(S) = ‖(I − πS)F‖H2(T ),

is said to be the de Branges–Rovnyak space associated with S.

In the sequel we shall use the following terminology:

DEFINITION 5.5. Let H be a Hilbert space of elements of H2(T ). The space
H is said to be right C-invariant if for every F, G ∈ H and c ∈ C it holds that

Fc ∈ H, ‖Fc‖H 6 ‖F‖H ‖c‖, 〈Fc, G〉H = 〈F, Gc∗〉H.

PROPOSITION 5.6. Let S ∈ H(T ) be a Schur multiplier. Then the de Branges–
Rovnyak space H(S), associated with S, is a right C-invariant Hilbert space.

Furthermore, for every F ∈ H(S), k ∈ C2, c ∈ B(T ) it holds that

(5.6) Kc
Sk ∈ H(S) and 〈F, Kc

Sk〉H(S) = 〈F∧(c), k〉2,
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where Kc
S is as in (5.2). In particular,

(5.7) H(S) = span{Kc
Sk : k ∈ C2, c ∈ B(T )}.

Proof. Let c ∈ C. Since the adjoint of the right multiplication operator M̂c
in H2(T ) is given by M̂∗

c = M̂c∗ , Lemma 5.3 implies that the operators M̂c and
BS commute. Hence, in view of Definitions 5.4, 5.5 and the statement (iii) of
Proposition 4.1, the space H(S) is right C-invariant.

Furthermore, as follows from (5.4) and Definition 5.4, for every k ∈ C2 Kc
Sk ∈

H(S). Moreover, for every F ∈ H(S) we have

〈F, Kc
Sk〉H(S) = 〈F, Kc

∧ k〉2.

Thus the identity (4.11) in Theorem 4.4 implies (5.6) and the statement (ii) in
Lemma 3.1 implies (5.7).

THEOREM 5.7. Let S ∈ H(T ) be a Schur multiplier and let H(S) be the associ-
ated de Branges–Rovnyak space. Set

AjF = (F− F∧(0))αj, Bjd = (S− S∧(0))dαj,

CF = F∧(0), Dd = S∧(0)d,
(5.8)

where 1 6 j 6 q, F ∈ H(S), d ∈ C2. Then the following statements hold true:
(i) The formulae (5.8) define a bounded linear operator

Vj =
(

Aj Bj
C D

)
:
(

H(S)
C2

)
−→

(
H(S)
C2

)
,

which satisfies

(5.9) VjV∗
j =

(
M̂α∗j αj 0

0 I

)
.

In particular, the space H(S) is Aj-invariant for j = 1, . . . , q.
(ii) The operators Aj, Bj, C, D satisfy the relations

A`F = (AjF)α∗j α`, B`d = (Bjd)α∗j α`,(5.10)

Aj(Fc) = (AjF)α∗j cαj, Bj(dc) = (Bjd)α∗j cαj,(5.11)

C(Fc) = (CF)c, D(dc) = (Dd)c(5.12)

for every F ∈ H(S), c ∈ C, d ∈ C2, 1 6 j, ` 6 q.
(iii) Let

(5.13) S = ∑
w∈Fq

w∗S[w], where S[w] ∈ C

be the pointwise absolutely convergent expansion of S as in Theorem 2.5. Then for every
d ∈ C2 it holds that

(5.14) S[w]d =

{
Dd if w = ∅,

w(CAvBjd)v∗α∗j ∀w, v ∈ Fq : |w| = |v|+ 1, ∀j : 1 6 j 6 q,
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where

(5.15) Aαi1
···αik

def= Aik · · · Ai1 , A∅ def= I.

Proof. (i) By the idea of Theorem 2.3 in [4], we define a linear operator

V̂j : span
{(

Kc
Sd
e

)
: c ∈ B(T ), d, e ∈ C2

}
−→ H(S)⊕ C2

by

(5.16) V̂j

(
Kc

Sd
e

)
=
(
BS

CM∗
S

)
(Kc

∧dα∗j + e).

We claim that the operator V̂j is well-defined and contractive; moreover, for

every F1, F2 ∈ span
{(

Kc
Sd
e

)
: c ∈ B(T ), d, e ∈ C2

}

(5.17) 〈V̂jF1, V̂jF2〉H(S)⊕C2
=

〈(
M̂α∗j αj 0

0 I

)
F1, F2

〉
H(S)⊕C2

.

Indeed, denote for the moment by C∗ the adjoint of C in H2(T ) (that is, the
injection of C2 into H2(T )). Then, in view of Definition 5.4 and the statements (i)
and (ii) in Proposition 4.6, we obtain〈

V̂j

(
Kc1

S d1
e1

)
, V̂j

(
Kc2

S d2
e2

)〉
H(S)⊕C2

=
〈(

BS
CM∗

S

)
(Kc1

∧ d1α∗j + e1),
(
BS

CM∗
S

)
(Kc2

∧ d2α∗j + e2)
〉
H(S)⊕C2

= 〈(BS + MSC∗CM∗
S)(Kc1

∧ d1α∗j + e1), Kc2
∧ d2α∗j + e2〉2

= 〈(I − MS M̂α∗j
Aj M∗

S)(Kc1
∧ d1α∗j + e1), Kc2

∧ d2α∗j + e2〉2

= 〈(I − M̂α∗j
MS M∗

S Aj)(Kc1
∧ d1α∗j + e1), Kc2

∧ d2α∗j + e2〉2

= 〈Aj M̂α∗j
Kc1
∧ d1, Kc2

∧ d2〉2 + 〈e1, e2〉2 − 〈Aj M̂α∗j
MS M∗

S Aj M̂α∗j
Kc1
∧ d1, Kc2

∧ d2〉2

= 〈M̂α∗j αjBSKc1
∧ d1, Kc2

∧ d2〉2 + 〈e1, e2〉2

= 〈M̂α∗j αj K
c1
S d1, Kc2

S d2〉H(S) + 〈e1, e2〉2.

Thus (5.17) holds. Since, according to Proposition 5.6, the space H(S) is
right C-invariant and ‖α∗j αj‖ = 1, we conclude that V̂j is well-defined and con-

tractive. Since the span of Kc
Sk is dense in H(S) (see (5.7)), V̂j can be extended as

a contraction on H(S)⊕ C2, which satisfies

V̂∗
j V̂j =

(
M̂α∗j αj 0

0 I

)
.
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In order to complete the proof of statement (i), it suffices to observe that
Vj = V̂∗

j .
(ii) The identities (5.10)–(5.12) follow immediately from (5.8) and the Cuntz

relations (1.7).
(iii) The proof parallels the proof of the statement (iii) in Proposition 4.6. Let

us fix a sequence of indices j = i0, i1, i2, i3, . . . , 1 6 in 6 q. Then for d ∈ C2 we
have

Sd = Dd + (S− S[∅])d = Dd + (Bjd)α∗j = Dd + (CBjd)α∗j + (Ai1 Bjd)α∗i1 α∗j = · · ·

= Dd +
m

∑
n=0

(CAµn Bjd)µ∗nα∗j + (Aµm+1 Bjd)µ∗m+1α∗j , m = 0, 1, 2, . . .

where µ0 = ∅, µn = αi1 · · · αin . Now it follows from the identity (2.3) in Theo-
rem 2.5, applied to Sd, that

∑
|w|=n+1

w∗S[w]d = (CAµn Bjd)µ∗nα∗j ∀n > 0

and hence

S[w]d = w(CAµ|w|−1 Bjd)µ∗|w|, |w| > 1.

Since the sequence of indices i0, i1, i2, i3, . . . was chosen arbitrarily, we obtain
(5.14).

A result which is converse to Theorem 5.7 can be formulated as follows:

THEOREM 5.8. Let H be a right C-invariant Hilbert space included in H2(T ).
Assume that for some j, 1 6 j 6 q, there exists a bounded linear operator

Vj =
(

Aj Bj
C D

)
:
(

H
C2

)
−→

(
H
C2

)
,

for which the relations (5.11), (5.12) and (5.9) hold true. Then:
(i) The series

(5.18) S = ∑
w∈Fq

w∗S[w],

where the coefficients S[w] ∈ C are determined by

(5.19) ∀d ∈ C2 S[w]d =

{
Dd if w = ∅,

w(CAn−1
j Bjd)αn∗

j if |w| = n > 1,

defines (in the sense of pointwise absolute convergence) a Schur multiplier S ∈ H(T ).
(ii) The series

(5.20) EcF =
∞

∑
n=0

(cα)n · (CAn
j F) · αn∗

j , F ∈ H, c ∈ B(T )
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converges absolutely in C2 and defines a bounded linear operator Ec from H to C2. This
operator Ec and the kernel Kc

S defined in (5.2) satisfy

(5.21) (Kd
S)∧(c)k = EcE∗d k ∀c, d ∈ B(T ), k ∈ C2.

(iii) If the operators Aj and C are as in (5.8), then H is the de Branges–Rovnyak space
associated with the Schur multiplier S:

H = H(S).

Proof. Let c ∈ B(T ). Then, as follows from (5.9) and (3.1), the series (5.20) is
absolutely convergent in the C2-norm and defines a bounded linear operator Ec
from H to C2.

Let us consider the linear operator s(c) : C2 −→ C2, defined by

(5.22) s(c)k def= Dk +
∞

∑
n=1

(cα)n · (CAn−1
j Bjk) · αn∗

j , k ∈ C2.

Here, in view of (5.9) and (3.1), the series is absolutely convergent in the C2-norm
and the operator s(c) is bounded. Moreover, as follows from (5.11) and (5.12),
the operator s(c) commutes with M̂d for every d ∈ C. Hence, according to the
statement (ii) of Lemma 5.3, s(c) ∈ C.

Next we observe that(
(Mcα M̂α∗j

)Ec I
)

Vj =
(
Ec s(c)

)
.

Note that, as follows from (5.11) and (5.12), the self-adjoint operator M̂α∗j αj com-
mutes with Ed for every d ∈ C. From (5.9) we obtain(

Ec s(c)
)(

Ed s(d)
)∗

=
(
(Mcα M̂α∗j

)Ec I
)

VjV∗
j

(
(Mdα M̂α∗j

)Ed I
)∗

=(Mcα M̂α∗j
)Ec M̂α∗j αj E

∗
d(Mα∗d∗ M̂αj)+ I =(Mcα M̂α∗j

)EcE∗d(Mα∗d∗ M̂αj)+ I,

hence
I − s(c)s(d)∗ = EcE∗d − (Mcα M̂α∗j

)EcE∗d(Mα∗d∗ M̂αj).

Therefore, for every k ∈ C2 the kernel Ks(c, d), which appears in the equa-
tion (5.1) of Theorem 5.2, satisfies

Ks(c, d)k

=
∞

∑
n=0

(cα)n(I − s(c)s(d)∗)(α∗d∗)nk

=
∞

∑
n=0

(cα)n((I − s(c)s(d)∗)((α∗d∗)nkαn
j ))αn∗

j

=
∞

∑
n=0

(cα)n(EcE∗d(α∗d∗)nkαn
j )αn∗

j −
∞

∑
n=0

(cα)n+1(EcE∗d(α∗d∗)n+1kαn+1
j )α

(n+1)∗
j = EcE∗d k.
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In particular, the kernel Ks(c, d) is positive. Now, according to Theorem 5.2, there
exists a Schur multiplier S ∈ H(T ) such that

s(c) = S∧(c) ∀c ∈ B(T )

and the identity (5.2) implies (5.21).
Furthermore, in view of (5.22) and the statement (ii) of Lemma 3.1, we ob-

tain the formulae (5.19) for the coefficients S[w] of the pointwise absolutely con-
vergent expansion (5.18) of S. This completes the proof of the statements (i) and
(ii) of the theorem.

In order to prove the statement (iii), we note that if the operators Aj and
C are as in (5.8), then, according to the statement (iii) of Proposition 4.6 and the
definition (3.3) of the point evaluation,

EcF = F∧(c) ∀F ∈ H, c ∈ B(T ).

Therefore, the identity (5.21) implies

Kc
Sk = E∗c k ∈ H ∀c ∈ B(T ), k ∈ C2;

〈F, Kc
Sk〉H = 〈F∧(c), k〉2, ∀F ∈ H, c ∈ B(T ), k ∈ C2.

In view of Proposition 5.6 and the statement (ii) of Lemma 3.1,

H = span{Kc
Sk : k ∈ C2, c ∈ B(T )} = H(S) and ‖ · ‖H = ‖ · ‖H(S).

The formulae (5.14) in Theorem 5.7 play the role of the backward shift real-
ization (0.6) in the present setting: they allow to represent a given Schur multi-
plier S as the transfer operator of a multiscale input-state-output system, as de-
scribed in the following theorem.

THEOREM 5.9. Let S ∈ H(T ) be a Schur multiplier and let H(S) be the associ-
ated de Branges–Rovnyak space. Let the operators

Vj =
(

Aj Bj
C D

)
:
(

H(S)
C2

)
−→

(
H(S)
C2

)
, 1 6 j 6 q,

be defined by (5.8) as in Theorem 5.7. Let U ∈ H2(T ),

U = ∑
w∈Fq

w∗U[w], where U[w] ∈ C2,

and let Y = SU ∈ H2(T ). Then the coefficients Y[w] ∈ C2 of the expansion

Y = ∑
w∈Fq

w∗Y[w]

satisfy the recurrent relations

(5.23)


X∅ = 0,

Xwαj = AjXw + BjUw,

Y[w] = w(CXv + DUv)v∗ ∀v ∈ Fq : |v| = |w|,
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where
Uw

def= ∑
v: |v|=|w|

v∗U[v]w.

Proof. The case w = ∅ is trivial, so let us assume n = |w| > 1. Let v =
αi1 · · · αin and denote

vk = αi1 · · · αik , vk = αik+1
· · · αin , v0 = vn = ∅.

As follows from (5.14),

∑
u∈Fq ,|u|=n

u∗Y[u] = ∑
µ,ν∈Fq ,|µ|+|ν|=n

µ∗S[µ]ν
∗U[ν]

=
n−1

∑
k=0

∑
u∈Fq ,|u|=k

CAvk+1 Bik+1
(u∗U[u]vk)v∗+ ∑

u∈Fq ,|u|=n
D(u∗U[u]v)v∗

=
(

C
n−1

∑
k=0

Avk+1 Bik+1
Uvk + DUv

)
v∗,

hence, according to (1.7),

Y[w] = w
(

C ∑
06k6n−1

Avk+1 Bik+1
Uvk + DUv

)
v∗.

Denote

Xv = ∑
06k6|v|−1

Avk+1 Bik+1
Uvk , v ∈ Fq, |v| > 1.

Then
Xvαj = ∑

06k6|v|−1
Aj A

vk+1 Bik+1
Uvk + BjUv = AjXv + BjUv.

In the case v = αj we have

Xαj = BjU∅ = AjX∅ + BjU∅.

Thus the relations (5.23) hold.

6. THE BLASCHKE FACTORS

In this section we present an important example of Schur multiplier, which
plays a role in interpolation. We follow the ideas of [3], p. 86–90. Let c ∈ B(T )
and consider the operator

Rc
def=

∞

∑
n=0

(cα)n(α∗c∗)n = (Kc
∧)∧(c) ∈ C.

Then Rc > 0 and, moreover,

(6.1) Rc = I + c(αRcα∗)c∗.
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Hence Rc > I. Next we define

Lc
def= α(Rc − Rcα∗c∗R−1

c cαRc)α∗ ∈ Cq×q.

PROPOSITION 6.1. The following holds:

Lc > 0,(6.2)

L−1
c = c∗c + αR−1

c α∗ = I + c∗c− αcLcc∗α∗,(6.3)

cLc = R−1
c cαRcα∗.(6.4)

Proof. Taking into account (6.1),

Lc(c∗c + αR−1
c α∗) = αRcα∗c∗c + I − αRcα∗c∗R−1

c cαRcα∗c∗c− αRcα∗c∗R−1
c c

= αRcα∗c∗c + I − αRcα∗c∗R−1
c (Rc − I)c− αRcα∗c∗R−1

c c = I.

Since c∗c + αR−1
c α∗ is positive definite, this means

Lc = (c∗c + αR−1
c α∗)−1 > 0.

The rest of the identities follow from (6.1) analogously.

Note that

(Lcc∗α∗)n = (αRcα∗c∗R−1
c α∗)n = αRcα∗c∗(α∗c∗)n−1R−1

c α∗,

hence αLcc∗α∗ ∈ B(T ).

DEFINITION 6.2. Let c ∈ B(T ). The operator

Bc = (α∗ − c)(1− Lcc∗α∗)−1√Lc ∈ H(T )

is called the Blaschke factor, corresponding to the constant c.

PROPOSITION 6.3. The operator Bc is unitary. In particular, the multiplication
operator MBc : H2(T )q −→ H2(T ) is an isometry.

Proof. We have

(I − αcLc)L−1
c (I − Lcc∗α∗) = (α− c∗)(α∗ − c),

hence B∗c Bc = I and MBc is an isometry. Furthermore,

(α∗ − c) = α∗(I − αc)

has a bounded inverse (not causal), hence Bc is also invertible and unitary.

THEOREM 6.4. Let F ∈ H2(T ), c ∈ B(T ). Then F∧(c) = 0 if and only if F is of
the form

F = Bc · G,

where G ∈ H2(T )q, ‖G‖2 = ‖F‖2.
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Proof. First, let us assume that F = Bc · G, where G ∈ H2(T )q. Then ‖F‖2 =
‖G‖2 by Proposition 6.3. Furthermore, as follows from Lemma 3.1, B∧c (c) = 0
and F∧(c) = (BcG)∧(c) = 0.

Conversely, assume that F has the expansion F = ∑
w∈Fq

w∗F[w] and that

F∧(c) = 0. Then F is represented by the series

F = F− F∧(c) = ∑
w∈Fq

(w∗ − (w∗)∧(c))F[w].

Denote G′ def= (I − αc)−1αF. Then F = (α∗ − c)G′, G′ ∈ X2(T )q and, moreover,

G′ = ∑
w∈Fq

(I − αc)−1α(w∗ − (w∗)∧(c))F[w]

= ∑
w∈Fq ,|w|>1

α(I + cα + (cα)2 + · · ·+ (cα)|w|−1)w∗F[w].

Since each term of the last series is causal, G′ ∈ H2(T )q. It remains to define

G def=
√

L−1
c (I − Lcc∗α∗)G′

to complete the proof.
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