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1. INTRODUCTION

We say that a topological group G is amenable if every affine continuous
action of G on a compact convex set has a fixed point. One would perhaps ex-
pect this property to hold primarily in the case of locally compact groups, but
there exist non-locally-compact groups which are amenable in this sense. For
instance, if U (H) is the group of unitaries over a separable infinite-dimensional
Hilbert space, then U (H), with the strong topology, is an amenable topological
group which is not locally compact. De la Harpe proved that a von Neumann
algebra M is injective if and only if the unitary group U (M) of M, given the
weak*-topology, is an amenable topological group [5]. Paterson, building on pre-
vious work, proved that a unital C∗-algebra A is nuclear if and only if the unitary
group U (A) of A, given the relative weak topology, is an amenable topological
group [14]. In general, it is interesting to find connections between properties of
an operator algebra and amenability of an associated unitary group. In particular,
there has been very little attention paid to amenability with respect to the strict
topology of a multiplier algebra (we define these terms shortly) and this paper is
a contribution towards filling the gap.

The multiplier algebraM(B) of a C∗-algebra B is the largest C∗-algebra in-
side which the C∗-algebra B is an essential ideal. Naturally, the multiplier algebra
M(B) plays an important role in the extension theory (and hence, KK-theory) of
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B. In particular, there is a one-to-one correspondence between extensions of B and
∗-homomorphisms into M(B)/B (the latter is the Busby invariant of the corre-
sponding extension). Moreover, for the purposes of extension theory, we are often
interested in the case where the canonical ideal B (ofM(B)) is a stable C∗-algebra.
Among other things, stability of B implies that M(B) contains two isometries
generating a unital copy of O2. A construction based on these isometries then
allows us to add two extensions of B (the so-called BDF-sum of extensions — this
is, of course, only well-defined up to appropriate unitary equivalence). This pa-
per (and future ones) will explore the connections between extension theory (i.e.,
KK-theory), the properties of operator algebras, and the properties of associated
unitary groups.

The multiplier algebraM(B) has a natural norm topology, extensively used
in C∗-algebra theory, the weak topology inherited from B∗∗ (used by Paterson)
and another natural topology, the strict topology. In fact,M(B) could, with due
care, be defined to be a closure of B with respect to the strict topology; see Propo-
sition 2.3.5 of [16]. In the case of function algebras on a topological space, the
weak topology coincides with the strong topology and is the topology of point-
wise convergence, the norm topology is the topology of uniform convergence,
and the strict topology is the topology of uniform convergence on compact sub-
sets.

If B is stable, the unitary group of M(B) cannot be amenable in the norm
topology (since this would imply the existence of a tracial state — which is ruled
out by the existence of the copy of O2 mentioned in the previous paragraph).

The strict topology onM(B) is the initial topology with respect to the family
of maps Lb, Rb : M(B) −→ B, given by elements b ∈ B. (Here, Lb and Rb are left
and right multiplications by b respectively.) In other words, the strict topology is
the weakest topology onM(B) with respect to which the left and right product
maps fromM(B) to B with the norm topology are continuous.

There are natural inclusions B ⊆ M(B) ⊆ B∗∗; and the strict topology
on the unit ball of M(B) is in general stronger than the usual strong and weak
topologies, but weaker than the norm topology. The strict topology coincides
with the norm topology if and only if the C∗-algebra B is unital. For B = K(H),
the C∗-algebra of compact operators on a Hilbert space H, the multiplier alge-
bra is the C∗-algebra of bounded operators B(H) and the strict topology coin-
cides with the strong topology. The strict topology has been studied primarily
on bounded subsets of a C∗-algebra, for in this case (if the C∗-algebra B has a
countable approximate unit {bn}∞

n=1) then the strict topology, on bounded sub-
sets of the multipliers, is determined by the norm m 7→ ‖bm‖+ ‖mb‖, where b is
a strictly positive element of B. In other words, the strict topology is in this case
metrizable on bounded subsets — and in fact, it seems fair to say that the strict
topology on unbounded subsets of a C∗-algebra is not well understood (however,
we only shall need to consider the unit ball).
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In this paper, we investigate amenability with respect to the strict topology
for the unitary group of the multiplier algebra of a stable C∗-algebra. Our main
result is the following, where an AH-algebra is defined to be the unital direct limit
of certain unital building blocks — each building block being the finite direct
sum of C∗-algebras of the form P(C(X) ⊗ Mn)P where X is a compact, second
countable, metric space, and where P is a projection in C(X)⊗Mn.

THEOREM 1.1. Let A be a unital AH-algebra, and let G := U (M(A⊗K)) be
the unitary group of the multiplier algebra of A⊗K, given the strict topology. Then G
is an amenable topological group.

We note that amenability in this sense implies amenability in the usual C∗-
algebraic sense, as is proven in Proposition 3.1.

A key step in the proof of Theorem 1.1 is a stabilization result (Lemma 1.2)
which more or less follows from the results of Dadarlat, Eilers, Elliott and Gong.

Our stabilization result is basically the following construction from KK-
theory as applied to the classification program: Given a ∗-homomorphism φ :
C(X)⊗Mn −→ A, where X is a finite CW complex, and A is a unital separable
C∗-algebra, it is well-known that we can add on a ∗-homomorphism ξ into some
abstract matrix algebra Mm−1(A) such that φ ⊕ ξ : C(X) ⊗ Mn −→ Mm(A) is
trivial in KK-theory. In fact, this idea can be pushed further. The map ξ can be
chosen so that φ⊕ ξ will be homotopy trivial in the sense of Elliott and Gong ([6],
Lemma 2.9). This means that there is a ∗-homomorphism ψ homotopic to φ⊕ ξ
that has finite-dimensional range: ψ(C(X)⊗Mn) ⊆ Mm(C1A) ⊆ Mm(A). Since
KK is a homotopy invariant (bi)functor, this finite-dimensional map ψ will have
the same KK-class as φ⊕ ξ. Now, by the main result of Dadarlat and Eilers ([3],
Theorem 4.5), we have that given an arbitrary finite set in C(X)⊗Mn and ε > 0,
there exists an integer l > 0 and a unitary u in Mm+`(A) such that

(1.1)
∥∥∥∥u

(
φ( f )⊕ ξ( f )

κ`( f )

)
u∗ −

(
ψ( f )

κ`( f )

)∥∥∥∥ < ε,

for all f in the given finite set. The homomorphism κ` is a cutdown of an arbi-
trary absorbing quasidiagonal representation κ : C(X)⊗Mn −→ 1A ⊗M(K) ⊆
M(A⊗K), which we can take to be the GNS representation found by Kasparov
[12] and proven by him to be absorbing (the so-called Kasparov extension). Note
that Kasparov’s construction is just to take an appropriate full ∗-representation
into M(K) = B(H) and tensor it by 1A. Hence, since C(X)⊗ Mn is residually
finite dimensional, we can take κ to be an appropriate l∞-direct sum of finite-
dimensional ∗-representations of C(X)⊗Mn (the image of each summand should
give finite rank operators over the Hilbert space of the representation κ). Hence,
we can take κl be a finite-dimensional ∗-homorphism of C(X) ⊗ Mn into some
matrix algebra of the form Mn1(C1A). We thus immediately obtain the following
result:
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LEMMA 1.2. Let X be a finite CW complex, and let A be a unital C∗-algebra.
Suppose that φ : Mn(C(X)) → A is a unital ∗-homomorphism. We have that given
an arbitrary finite set in Mn(C(X)) and ε > 0, there exists an integer N, a unitary
u ∈ MN(A), and ∗-homomorphisms ϑ, Ψ into appropriate matrix algebras over A, with
Ψ having finite-dimensional range MN(C1A), and, for all f in the finite set,∥∥u( φ( f )⊕ ϑ( f )) u∗ −Ψ( f )

∥∥ < ε.

The main result of our paper is easily shown when the canonical ideal is
an AF-algebra (indeed, we can even show extreme amenability for this special
case), and the above result gives us approximating maps Ψ that are maps into
AF-algebras. This type of “stabilized norm approximation” is exactly what we
need, since we will be dealing with the strict topology on multiplier unitaries.

Indeed, the strategy of the proof of our main result (see Lemma 3.8) is to
exploit the fact that the group of constant unitaries — the group of unitaries in
1⊗M(K) — is most definitely not a normal subgroup of the unitary group of
M(C(X) ⊗ K)! In fact, Lemma 1.2 will be used to approximate, in the strict
topology, finite sets of multiplier unitaries by conjugates of elements of U (1 ⊗
M(K)). Since the unitary group of 1⊗M(K) is known to be amenable (notice
that the strict and strong topologies coincide), this will do the job. The main steps
in the proof are Lemmas 1.2 and 3.6.

Perhaps there might eventually be a characterization of stably finite nuclear
C∗-algebras in terms of some sort of generalized stabilization that is similar to the
above lemma.

2. THE STRICT AND STRONG TOPOLOGIES ON U (M(A⊗K))

Given that the multiplier algebra ofK is B(H), and that the unitary group of
B(H) has the property that the strict, strong, and weak topologies all coincide, it
is reasonable to wonder if unitary groups of multiplier algebrasM(A⊗K) might
not always have the property that the strict and strong topologies coincide.

In this section, we show that for a primitive, separable C∗-algebra A that
is not of type I, the strict topology on U (M((A ⊗ K))) is not the same as the
restricted strong topology. Since on U ((A ⊗ K)∗∗), the strong topology is the
same as the w*-topology, this shows that amenability of U ((A ⊗ K)∗∗) in the
w*-topology does not immediately imply amenability of U (M(A ⊗ K)) in the
strict topology. Furthermore, note that since simple C∗-algebras are automatically
primitive, we immediately have this result for the case where A is simple and
nontype I.

PROPOSITION 2.1. Let A be a primitive separable C∗-algebra that is not of type I.
Let G := U (M(A)) be the unitary group of the multiplier algebra of A. Then the strict
and strong topologies on G are distinct.
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Proof. Since A is primitive, we take it to be faithfully and irreducibly repre-
sented on a separable Hilbert space H. This representation extends to a represen-
tation of the multipliers of A with the same properties.

Since A is not of type I, there exists a positive element s whose spectrum
contains an interval. We can as well assume that the element has norm 1 and
that 1 is in the continuous spectrum. Considering approximate eigenvectors with
respect to points of the continuous spectrum, which we can do since s is posi-
tive ([11], Section 31), we see that the image s(H1) of the unit ball of H contains
infinitely many orthogonal vectors ξi of norm greater than 1 − ε. The Kadison
transitivity theorem ([15], 2.7.5) lets us find unitaries Um ∈ M(A) that act as the
unit on the first m vectors of a basis forH but map some ξi to approximately −ξi.
These unitaries converge strongly to 1M(A) but for each m there is a ξi such that
(Ums− s)ξi has norm greater than 1. Since this in particular shows that (Um− 1)s
does not go to zero, it follows that Um does not go to zero strictly. It follows that
the strong and strict topologies are distinct, as claimed.

We want to show that the strict topology on G is distinct from the strong
topology on G.

Let p be a nonzero projection in A⊗K. Let 1 be the unit of the multiplier
algebraM(A⊗K). Consider the strictly open neighbourhood N of 1 in G, given
by N := {V ∈ G : ‖Vp− p‖ < ε}, where ε is a real number such that 0 < ε < 1.

We will show that N is not an open set in the strong topology restricted to G.
Suppose, to the contrary, that N is an open set in the strong topology restricted to
G. Let h1, h2, . . . , hn be vectors in the Hilbert space H, and let δ > 0 be a positive
real number such that for every unitary V ∈ G, if ‖Vhi − hi‖ < δ for every i,
then V is an element of N. Let O be the (strongly) open set consisting of V as in
the hypothesis of the previous conditional (i.e., ‖Vhi − hi‖ < δ for all i). Hence,
O ⊆ N.

Since A is simple and not type I, if q is a nonzero projection in A⊗K then q
sits as an infinite-dimensional projection on H. Hence, there is a nonzero vector
h in pH such that h is orthogonal to hi for 1 6 i 6 n. Hence, since A is simple,
nontype I and real rank zero, and since A⊗K sits faithfully and irreducibly on
H, let r be a nonzero projection in p(A⊗K)p such that for each i, rhi has (Hilbert
space) norm strictly less than γ.

Let W be the unitary inM(A⊗K), given by W = (1− r)− r. (In particular,
W ∈ G.)

Now for every i, ‖Whi − hi‖ = ‖ − rhi − rhi‖ = 2‖rhi‖ < 2γ. Also,
‖W p− p‖ = ‖ − r− r‖ = 2‖r‖ = 2. Hence, if γ was chosen so that 2γ is strictly
less than δ, then W is an element of O and W is not an element of N. This is a
contradiction.
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3. AMENABILITY

We first show that the type of amenability under discussion implies ordi-
nary C∗-algebraic amenability, at least for unital separable C∗-algebras.

PROPOSITION 3.1. Let A be a unital, separable C∗-algebra. Let G := U (M(A⊗
K)) be the unitary group of the multiplier algebra of A⊗K, given the strict topology. If
this topological group is amenable then A is a nuclear C∗-algebra.

Proof. Let U ((A⊗K)∗∗) be the unitary group of the second dual of A⊗K,
given the weak*-topology.

Suppose that α is an affine weak*-continuous action of U ((A⊗K)∗∗) on a
compact convex set Y. Then, restricting α to G = U (M(A ⊗ K)) still gives us
a continuous action (with respect to the weak*-topology restricted to G). Since
the strict topology on G is stronger than the restricted w*-topology, α|G must also
be continuous with respect to the restricted strict topology. Hence, since G is
amenable with respect to the strict topology, let y0 ∈ Y be a fixed point of α|G.

Since G = U (M(A ⊗ K)) is w*-dense in U ((A ⊗ K)∗∗), this fixed point
is also a fixed point for the unitary group of the double dual in the w*-topology.
Therefore U ((A⊗K)∗∗) is an amenable group with respect to the weak*-topology
— which is well known to imply [5], [2] that (A⊗K)∗∗ is an injective von Neu-
mann algebra and that A⊗K is a nuclear C∗-algebra.

We now proceed towards our main result. We first state two lemmas, whose
proofs are short exercises in topology.

LEMMA 3.2. Let G be a topological group with metric d. Let X be a compact
convex set, and let O be an open neighbourhood of zero in the topological vector space
containing X. Suppose that α : G → Aut(X) is an affine continuous action of G on
X. Then for every g0 ∈ G, there exists δ > 0 such that if d(g0, g) < δ then α(g0)x −
α(g)x ∈ O for every x ∈ X.

LEMMA 3.3. Let V be a topological vector space, and let O1 be an open neighbour-
hood of zero in V. There is an open neighbourhood O2 of zero in V such that the closure
O2 ⊆ O1.

LEMMA 3.4. Let G be a topological group with metric d, and let X be a compact
convex subset of a locally convex seminormed space. Suppose that α : G → Aut(X) is
an affine continuous action of G on X. Then for any open neighbourhood N(α(g0)x0) of
α(g0)x0 in X, there exists a neighbourhood Nδ(g0) of g0 ∈ G such that for every x0 ∈ X,
the natural map β : G× X → X : (g, x) 7→ α(g)x maps Nδ(g0)× {x0} into N(g0x0).

Proof. Given a neighbourhood N as above, choose a basis element in N, con-
taining α(g0)x0. The basis element is defined by some finite set F of seminorms.
The compactness of X implies that the group action is continuous with respect to
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the semimetric

d(g, g′) := sup
f∈F ,x∈X

‖αg(x)− αg′(x)‖ f

on G and the usual topology on X. It follows that given x0 ∈ X, there is a δ such
that β maps Nδ(g0)× {x0} into N(g0x0). Using the compactness of X one more
time, we can find one δ that will work for all x0 ∈ X.

The next lemma is related to Lemma 2.20 in [8]. Let G be a topological
group, with topology given by a metric. We say that a net of subgroups {Hλ}λ∈Λ

of G is pointwise dense in G if for every finite set {gi}n
i=1 in G, there is a λ0 ∈ Λ

such that for λ > λ0 and for 1 6 i 6 n, dist(gi, Hλ) < ε.

LEMMA 3.5. Let G be a topological group with metric d. If G has a pointwise
dense net {Hλ}λ∈Λ consisting of amenable subgroups, then G is amenable.

Proof. Suppose that α : G → Aut(Y) is an affine continuous action of G
on a compact convex set Y. For each λ, α restricts to an affine continuous action
of Hλ on Y. Since the Hλs are amenable topological groups, the corresponding
restrictions of α all have fixed points. From this and Lemma 3.2, it follows that
for every nonempty finite set F in G, and for every open neighbourhood O of
zero in the topological vector space containing Y, the set Υ(F ,O) := {y ∈ Y :
α(g)y− y ∈ O, ∀g ∈ F} is nonempty. Note that Υ(F ,O) is a closed subset of Y
(in the definition, we took the closure of O).

Also, if F1,F2 are nonempty finite subsets of G, and if O1,O2 are open
neighbourhoods of zero in the topological vector space containing Y, it follows
that Υ(F1,O1) ∩ Υ(F2,O2) ⊇ Υ(F1 ∪ F2,O1 ∩ O2) must be nonempty. Hence,
the family of all sets of the form Υ(F ,O) (where F is a nonempty finite subset of
G and O is an open neighbourhood of zero in the topological vector space con-
taining Y) is a family of closed subsets of Y, with the finite intersection property.
Hence, since Y is compact, this family must have a nonempty intersection. Let y0
be a point in this intersection. Then, by Lemma 3.3, y must be a fixed point of the
action α.

The next lemma lets us approximate, in the strict topology, a multiplier uni-
tary by a sequence of “appropriate” multiplier unitaries by controlling what hap-
pens inside an ascending sequence of unital hereditary subalgebras of the canon-
ical ideal.

LEMMA 3.6. Let A0 be a unital separable C∗-algebra. Let U be a unitary in
M(A0 ⊗ K), and let { p̃i}∞

i=1 be an approximate unit for A0 ⊗ K, consisting of a se-
quence of projections. Given an integer M > 0, there exists an integer M2 > M and
a unitary u in p̃M2(A0 ⊗ K) p̃M2 with up̃M approximating Up̃M in norm within any
specified error δ.
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Proof. Let v be a partial isometry with initial projection p̃M that approxi-
mates Up̃M within δ in norm. We may suppose, since we are only looking for an
approximation, that the range projection is majorized by p̃M1 for some M1 > M.

Hence, p̃M1 − v∗v and p̃M1 − vv∗must give the same element in the Grothen-
dieck K-theory group K0(A0). By the definition of equivalence in a Grothendieck
group, there exists a projection q ∈ A0 ⊗K such that ( p̃M1 − v∗v) + q is Murray-
von Neumann equivalent to ( p̃M1 − vv∗) + q in A0 ⊗K. We can moreover sup-
pose that q is majorized by p̃M2 − p̃M1 for some M2 > M1.

Let w be a partial isometry in A0 ⊗K that implements this equivalence. In
other words,

w∗w = ( p̃M1 − v∗v) + q, ww∗ = ( p̃M1 − vv∗) + q.

Let
u := v + w + ( p̃M2 − p̃M1 − q).

The cross-terms in uu∗ and u∗u are zero, and u is thus a unitary in p̃M2(A0 ⊗
K) p̃M2 such that up̃M = v is within δ in norm of Up̃M.

The next lemma is a key step. It is a proof that the family {gHg−1 : g ∈ G},
where H is an appropriate amenable subgroup of G, gives a pointwise dense net
in G.

In more detail: Let X be a finite CW complex. Let G = U (M(C(X)⊗K)) be
the unitary group of the multiplier algebra of C(X)⊗K, given the strict topology.
Let H be the subgroup of G given by H := U (1C(X) ⊗M(K)). Let b be a strictly
positive element of C(X)⊗K such that ‖b‖ 6 1, and let d be the strict topology
metric on G given by d(U, V) := ‖Ub−Vb‖+ ‖bU − bV‖ for U, V ∈ G. We will
show that with respect to d, the conjugates of H give a pointwise dense net for G.

LEMMA 3.7. Let G, H and d be as in the previous paragraph. Then for any finite
set (Ui)N

1 in G, there exist g ∈ G and hi ∈ H such that for 1 6 i 6 N, Ui can be
approximated by ghig−1 in d within any given specified error.

Proof. We first define some notation.
Let {pm}∞

m=1 be a sequence of pairwise orthogonal projections in C(X)⊗K

such that 1M(C(X)⊗K) =
∞
∑

m=1
pm, where the sum converges in the strict topology

inM(C(X)⊗K). Since C(X) is unital, we can certainly assume that for each m,
pm has the form 1C(X) ⊗ r, where r is a rank one projection in K. (Hence, each pm
also has rank one.) Finally, the partial sums naturally form an approximate unit
for C(X)⊗K, which we denote by { p̃m}∞

m=1.
We can now begin the proof:
Let ε > 0 and an element U of G be given. Fix an integer M > 1 such that:

(i) The element p̃Mb is within δ of b and Up̃Mb is within δ of Ub.
By Lemma 3.6 there is a unitary u in p̃M2(C(X)⊗K) p̃M2 such that:

(ii) up̃M =: v is within δ of Up̃M.
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Applying Lemma 1.2 to the identity map p̃M2(C(X)⊗K) p̃M2−→ p̃M2(C(X)
⊗K) p̃M2 , and the finite set {u}, we obtain a map ϑ : p̃M2(C(X) ⊗ K) p̃M2 −→
p̃M3(C(X) ⊗ K) p̃M3 and a unitary y such that y(u ⊕ ϑ(u))y∗ is close to Ψ(u),
where Ψ : p̃M2(C(X) ⊗ K) p̃M2 −→ p̃M4(C(X) ⊗ K) p̃M4 has finite-dimensional
range.

Actually, the map Ψ has image contained inside 1 ⊗ K. (This is true by
Lemma 1.2 and the special form of the projections pm.) Thus we have shown
that:

(iii) y(u ⊕ ϑ(u))y∗ is a unitary (in p̃M4(C(X) ⊗ K) p̃M4 ) within δ in norm of a
unitary Ψ(u) in p̃M4(1C(X) ⊗K) p̃M4 ⊂ 1C(X) ⊗K.

Let ũ be the unitary in 1⊗M(K) given by ũ = Ψ(u) + (1H − p̃M4). This is
thus an element of the subgroup H in G. Let ỹ ∈ G be the unitary y + 1− pM4 .

Using first (i), then the fact that ỹ∗ũỹ p̃M = y∗Ψ(u)yp̃M, and then (iii) and
(ii), we have that:

Ub− ỹ∗ũỹb ≈2δ Up̃Mb− ỹ∗ũỹ p̃Mb = Up̃Mb− ỹ∗Ψ(u)ỹ p̃Mb

≈δ Up̃Mb− (u⊕ ϑ(u)) p̃Mb = Up̃Mb− up̃Mb ≈δ 0.

We have here introduced the notation ≈ε to indicate that two expressions differ
by at most ε in norm. Since all the approximations can equally be made over
finite sets of unitaries — with the conjugating unitary ỹ chosen to be dependent
only on the finite set (independent of specific element in the finite set) — we see
that we have the same approximation if {U} is replaced by {U, U∗} or for that
matter by {Ui, U∗i : i = 1, . . . , n} where {U1, . . . , Un} is a given finite set. Thus,
d(Ui, ỹ∗ũi ỹ) < 12δ for finitely many i, where d is the strict metric on G as defined
before the statement of this theorem.

LEMMA 3.8. Let X be a compact, second countable, metric space and let G =
U (M(C(X) ⊗K)) be the unitary group of the multiplier algebra of C(X)⊗ K, given
the strict topology. Then G is an amenable topological group.

Proof. First, we look at the case where X is a finite CW complex.
Let H be the subgroup of G given by H := 1C(X)⊗U (M(K)), with the strict

topology. Since all choices of the strictly positive element b in the definition of the
metric are equivalent, we may as well pick b := 1⊗ k, where k is strictly positive
inK— implying that H is isomorphic to the unitary group of B(H) with the strict
topology. In this case, the strict and strong topologies coincide, and the subgroup
H is therefore an amenable topological group (c.f. [5], [10], [8]). By Lemma 3.7,
the subgroups {gHg−1 : g ∈ G} are a pointwise dense net, in G, with respect
to an appropriate directed set (defined implicitly in Lemma 3.7). Therefore, by
Lemma 3.5, the group G is amenable.

Now suppose that X is an arbitrary compact second countable metric space.
By [7], let {Xn, ρn}∞

n=1 be an inverse system consisting of finite CW-complexes,
such that X is the inverse limit X = lim←Xn. This gives direct limits C(X) =
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lim→C(Xn) and C(X) ⊗ K = lim→(C(Xn) ⊗ K). Now, for each n, the induced
map C(Xn) ⊗ K → C(X) ⊗ K brings approximate units to approximate units.
Hence, for each n, we naturally have a map ∆n : M(C(Xn)⊗K) → M(C(X)⊗
K). Note that for each n, ∆n is continuous with respect to the strict topology on
bounded subsets. Hence, by the first part of this proof, we have that for each
n, ∆n(U (M(C(Xn)⊗ K))) is an amenable subgroup of G = U (M(C(X)⊗ K))
(where the subgroup is given the strict topology from G). Moreover, the (in-

creasing) union
∞⋃

n=1
Φ(U (M(C(Xn)⊗K))) is dense in G with the strict topology.

Hence, G, with the strict topology, is an amenable topological group.

LEMMA 3.9. Let B be a separable, stable C∗-algebra. Suppose that P is a projection
in B. Then the projection 1M(B) − P, inM(B), is Murray–von Neumann equivalent to
1M(B).

Proof. Since P is contained in B, and since B is stable, let S be an isometry
inM(B), such that S∗pS has norm strictly less than ε. Hence, S∗(1M(B) − P)S is
within ε of 1M(B), implying that r∗(1− P)r = 1 for some r, and hence 1M(B) is
Murray–von Neumann equivalent to a subprojection of 1M(B) − p. Hence, by a
well-known result originally due to Mingo, 1M(B) − p is Murray–von Neumann
equivalent to the unit ofM(B).

THEOREM 3.10. Let G be the unitary group of the multiplier algebra of a separable
stable AH-algebra, with the strict topology. Then G is amenable.

Proof. A general AH-algebra can be taken to be the unital direct limit of
certain unital building blocks — each building block being the finite direct sum of
C∗-algebras of the form P(C(X)⊗Mn)P where X is a compact, second countable,
metric space, and where P is a projection in C(X)⊗Mn.

Let the building blocks be denoted by An, and let the limit algebra be A. The
connecting maps φn : An −→ A are assumed to be both unital and injective (since
a quotient of a building block is still a building block). Stabilizing, we have an
inductive limit of the form A⊗K = lim

n→∞
(An ⊗K), where the connecting maps

φn ⊗ 1 : An ⊗ K → A ⊗ K map an approximate unit to an approximate unit.
Hence, these connecting maps extend naturally to (unital) ∗-homomorphisms
Φn : M(An ⊗ K) → M(A ⊗ K) of the multipliers. Note that these maps are
strictly continuous on bounded subsets. We thus get strictly continuous topo-
logical group homomorphisms (where the groups are given the strict topology)
U (M(An ⊗K))→ U (M(A⊗K)).

Now for each n, An ⊗ K has the form C(Zn) ⊗ K, where Zn is a compact,
second countable, metric space. Hence, by Lemma 3.8, for each n the unitaries
U (M(An⊗K)) are an amenable topological group. Happily, a topological group
quotient (by a continuous homomorphism) of an amenable group is an amenable
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group. Hence, it follows that for each n, the group Gn := Φn(U (M(An ⊗K))) is
an amenable topological subgroup of G.

Since the union
⋃

Φn(An ⊗K) is norm-dense in A⊗K, the unitary group
of

⋃
Φn(M(An ⊗ K)) is strictly dense in the unitary group of M(A⊗ K). By a

suitable form of the Kaplansky density theorem, it follows that the unitaries
⋃

Gn
are dense in G. By Lemma 3.5 (or by Lemma 2.20 in [8]) the amenability of the Gn
implies the amenability of G.

Claim. G =
∞⋃

n=1
Gn, where the closure is in the topology of G (the strict

topology ofM(C(X)⊗K), restricted to G).

Suppose that U is an element of G (i.e., U is a unitary in U (M(C(X)⊗K))).
Let {pn}∞

n=1 be a sequence of pairwise orthogonal projections in C(X)⊗K, such

that 1M(C(X)⊗K) =
∞
∑

m=1
pm, where the sum converges in the strict topology in

M(C(X)⊗K). We may assume that each pm has the form 1C(X) ⊗ q, where q is

a projection in K. Hence, U =
∞
∑

m=1
Upm, where the sum converges in the strict

topology inM(C(X)⊗K). Also, for each m′, we let p̃m′ :=
m′

∑
m=1

pm.

Now let δ > 0 be given and fix an integer M > 1. We consider the partial

isometry Up̃M in C(X)⊗ K. Since, C(X)⊗ K =
∞⋃

n=1
φn(C(Xn)⊗K) (where the

closure is in the norm topology), let N > M be a positive integer and let vM,δ be a
partial isometry in p̃N(φN(C(XN)⊗K)) p̃N such that vM,δ is within δ of Up̃M. Let
q1 and q2 be the initial and range projections, respectively, of vM,δ. Since q1 and q2
are elements of φN(C(XN)⊗K), it follows, by Lemma 3.9, that 1M(C(X)⊗K) − q1
and 1M(C(X)⊗K) − q2 are both Murray–von Neumann equivalent to 1M(C(X)⊗K)
in M(C(XN) ⊗ K) (note that 1ΦN(M(C(X)⊗K)) = 1M(C(X)⊗K)). Hence, let WM,δ
be a partial isometry in ΦN(M(C(XN)⊗K)), such that WM,δ has initial projec-
tion 1M(C(XN)) − q1 and range projection 1M(C(XN)) − q2. We thus get a unitary
UM,δ := vM,δ + WM,δ in ΦN(M(C(XN)⊗K)). And it is clear that as M→ ∞ and
δ → 0, UM,δ converges to U in the strict topology inM(C(X)⊗K). This proves
the claim.

Now suppose that α : G → Aut(Y) is an affine continuous action of G on
a compact convex set Y. For each n, α restricts to an affine continuous action
of Gn = Φn(U (M(C(Xn) ⊗ K))) on Y. Now for each n, let Yn := {y ∈ Y :
α(g)y = y, ∀g ∈ Gn}. Since each Gn is amenable, each Yn is nonempty. Also,
since Gn ⊆ Gm for n 6 m, the family {Yn}∞

n=1 satisfies the finite intersection

property. Hence, by compactness of Y, let y0 ∈ Y be such that y0 ∈
∞⋂

n=1
Yn. Hence,

since the union of the Gns is dense in G, we must have that y0 is a fixed point
of α.
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Inspired by the existing results on extreme amenability [8], and noting that
M(K) is extremely amenable, by modifying the argument of Theorem 3.10, we
get the following result (which is itself close to extreme amenability):

THEOREM 3.11. Suppose that A is a unital AH-algebra, and let G := U (M(A⊗
K)) be the unitary group of the multiplier algebra of A⊗ K, given the strict topology.
Then every continuous action of G, on a compact metric space, has a fixed point.

Proof. The proof is the same as that of Theorem 3.10. The main difference
is in Lemmas 3.2 and 3.5. There, we need to replace expressions like α(g0)x −
α(g)x ∈ O and α(g)y− y ∈ O by expressions of the form ρ(α(g0)x, α(g)x) < δ
and ρ(α(g)y, y) < δ respectively, where ρ is the metric on the compact metric
space.
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