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ABSTRACT. Let CR be the set of all bounded linear operators between Hilbert
spaces H,K with closed range. This paper is devoted to the study of the topo-
logical properties of CR if certain natural metrics are considered on it. We
also define an action of the group GH ×GK on CR and determine the orbits of
this action. These orbits, which are strongly related to the connected compo-
nents for the topology defined by the metrics mentioned above, determine a
stratification of the set of Fredholm and semi-Fredholm operators. Finally, we
calculate the distance, with respect to some of the metrics mentioned above,
between different orbits of CR.
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1. INTRODUCTION

Given Hilbert spaces H and K, let CR be the set of all bounded linear op-
erators from H to K with closed range. This paper is devoted to study a natural
homogeneous structure on CR. By this, we mean a topology on CR and a topo-
logical group acting continuously on it. Such structure provides many home-
omorphisms on CR which are of great help in order to understand the topol-
ogy and, eventually, the geometry of different parts of the set. Many subsets
of CR have been studied from a topological or geometrical viewpoint: idem-
potents [17], [18], orthogonal projections [46], partial isometries [29], [42], [1],
Fredholm and semi-Fredholm operators [6], [26], [39], [40], [49], many classes of
invertible operators [4], [5], [19]. Paradoxically, the main obstruction to study CR
as a whole, with the usual norm topology, is that it is a path connected space:
the curve t 7→ tA connects every A ∈ CR with the zero operator. Thus, the
norm topology is not suitable to separate closed range operators which natu-
rally belong to very different families. Therefore, we study CR with the metric
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dR(A, B) = (‖A − B‖2 + ‖PR(A) − PR(B)‖2)1/2, where R(C) denotes the range
of the operator C and PS denotes the orthogonal projection onto the closed sub-
space S and also another metric related to the nullspaces. These metrics are finer
than the one defined by the operator norm and the map A → PR(A), which is
obviously not continuous for the norm topology, is continuous under these met-
rics. After collecting some notations and preliminary results in Section 2, the
third section of the paper is devoted to show many possible choices of equiv-
alent metrics with those properties. Some notions like the reduced minimum
modulus of an operator or the Moore–Penrose generalized inverse, naturally en-
ter into the discussion. The fourth section surveys many known (and not so
known) topological properties of CR and its subsets, using the norm topology
and the one defined by dR. The fifth section contains a complete description
of the homogeneous structure of CR by the left action GH × GK × CR → CR
which is defined by ((G, H), A) → GAH−1, for G ∈ GH, H ∈ GK, A ∈ CR.
Here GH is the group of invertible operators on H, and similarly for K. The orbit
OA = {GAH−1 : G ∈ GH, H ∈ GK} is characterized by three cardinal numbers,
namely, the nullity n(A) = dimension of the nullspace N(A), the rank r(A) = di-
mension of R(A) and the defect d(A) = dimension of R(A)⊥. This characterization
follows the ideas of P. R. Halmos and J. McLaughlin [29]. Even when they did not
look at any homogeneous structure for the set PI(H,K) of all partial isometries
from H to K, they proved that the connected components of PI(H,K) are deter-
mined by the same cardinal numbers, and their proofs show that the connected
components coincide with the orbits of the action of UH ×UK, the product of the
unitary groups ofH andK, onPI(H,K). The polar decomposition defines a nat-
ural retraction CR(H,K) → PI(H,K) which is also studied in Section 5. A main
result in this section is the computation of the distance, for dR and dN , between
two different orbits of CR. In the last section, we consider the simpler structure
of the subset CRS of all A ∈ CR(H,K) such that R(A) is a fixed closed subspace
S . As it is usual in this type of problems, the existence of continuous local sec-
tions of the maps involved, is a relevant question. Its affirmative answer for the
map GH × GK → OA, (G, H) → GAH−1 is a key part in the theorem which ex-
hibits OA as a homogeneous space. Some results of [2] are of great help in order
to define a local section. Also, the well known geometry of the unitary orbit of
an orthogonal projection or the congruence orbit of a closed range positive oper-
ator, are useful here. The reader is referred to [46], [18], [15] for details on these
matters. We intend to proceed with the differential geometry of CR elsewhere.

2. PRELIMINARIES

Throughout this paper,H,K denote (complex separable) Hilbert spaces and
L(H,K) is the Banach space of bounded linear operators from H to K, with the
uniform operator norm. If H = K we write L(H) instead of L(H,H); GH is the
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group of invertible operators inL(H), the subgroup of GH of all unitary operators
is UH, the cone of positive (respectively, positive invertible) operators on H is
L(H)+ (respectively, G+

H). The range or image of C ∈ L(H,K) is denoted by
R(C) and its nullspace by N(C). A partial isometry from H to K is an operator
V ∈ L(H,K) such that its restriction to N(V)⊥ is an isometry; equivalently, V∗V
is idempotent; it follows that V∗V is the orthogonal projection onto N(V)⊥ (the
initial space of V) and VV∗ is the orthogonal projection onto R(V) (the final space
of V). PI = PI(H,K) denotes the set of all partial isometries from H to K and
PH (respectively PK) the set of orthogonal projections on H (respectively K). If
S is a closed subspace of H (or K), PS denotes the orthogonal projection onto S .

For A ∈ L(H,K), the reduced minimum modulus of A is γ(A) = inf{‖Ax‖ :
x ∈ N(A)

⊥
, ‖x‖ = 1}. It is well known that γ(A) > 0 if and only if R(A) is closed.

It holds γ(|A|)2 = γ(A)2 = γ(AA∗) = γ(A∗A) = γ(A∗)2 = γ(|A∗|)2. Also if
R(A) is closed and A† is the Moore–Penrose inverse of A, then γ(A) = ‖A†‖−1.
Recall the definition and main properties of A†, because this notion plays a central
role in all what follows. R. Penrose [44] proved that A† is uniquely determined
by the four identities AA† A = A, A† AA† = A†, AA† = PR(A), A† A = PR(A∗);
the range of A† is N(A)⊥ = R(A)∗ and its nullspace is R(A)⊥ = N(A∗).

The following remark will be useful in several proofs of the next sections.

REMARK 2.1. In Sections 3 and 4 we study the continuity of the mapping
A → A† where different metrics are considered on the set CR(H,K). In order
to do this it is necessary to estimate ‖A† − B†‖. The next identity is due to G.W.
Stewart [50], and has been used several times in works concerning perturbations
of the Moore–Penrose inverse:

A†−B† =−A†(A−B)B†+A† A∗
†
(A∗−B∗)(I−BB†)+(I−A† A)(A∗−B∗)B∗

†
B†.

Therefore

‖A† − B†‖ 6 (‖A†‖‖B†‖+ ‖A†‖2 + ‖B†‖2)‖A− B‖.

Next, we review a notion of angle between closed subspaces. Let M and N
be closed subspaces of a Hilbert space H. Define

c0(M,N )=sup{|〈x, y〉| : x ∈ M, y ∈ N , ‖x‖ = ‖y‖ = 1},

c(M,N )=sup{|〈x, y〉| : x∈M∩(M∩N )⊥, y∈N∩(M∩N )⊥, ‖x‖=‖y‖=1}.

The angle α(M,N ) is the number α ∈ [0, π
2 ] such that c(M,N ) = cos α. It

holds that c(M,N ) = ‖PM − PN⊥‖. Observe that c(M,N ) = c0(M∩ (M∩
N )⊥,N ∩ (M∩N )⊥). It holds c0(M,N ) < 1 if and only if M +N is closed
and M∩N = {0}. Also, M + N is closed if and only if c(M,N ) < 1, or
equivalently, if ‖PM − PN⊥‖ < 1, see [20], and also the paper by D. Buckholtz
[10]. The next results will be useful in the main theorem of Section 4.

PROPOSITION 2.2. If M and N are closed subspaces of H then H = M+N if
and only if c0(M⊥,N⊥) < 1.
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Proof. If H = M+N , then M+N is obviously closed; then M⊥ +N⊥ is
closed (see Theorem 2.13 of [20]; or Theorem 4.8 of [33]); but also, M⊥ ∩N⊥ =
(M +N )⊥ = {0}, so that c0(M⊥,N⊥) < 1. Conversely, if c0(M⊥,N⊥) < 1
then M⊥ + N⊥ is closed, and then M + N is closed; also M⊥ ∩ N⊥ = {0}.
Then H = (M⊥ ∩ N⊥)⊥ = M +N (the last equality holds precisely because
M+N is closed; see Lemma 2.11 of [20], or Theorem 4.8 of [33].

PROPOSITION 2.3. Given two operators B, C ∈ CR the following conditions are
equivalent:

(i) ‖PN(B) − PN(C)‖ < 1;
(ii) H = N(C) + R(B†);

(iii) c0(N(B), R(C†)) < 1;
(iv) N(B) = PN(B)(N(C)).

Proof. (i)=⇒(ii): If (i) holds then G = I − PN(B) + PN(C) is invertible so that
H = R(G) = N(C) + R(B†).

(ii)=⇒(i): IfH = N(C)+ R(B†) then N(C)+ R(B†) is closed, so that c(N(C),
R(B†)) = ‖PN(C) − P

R(B†)⊥
‖ < 1 or equivalently ‖PN(C) − PN(B)‖ < 1.

(ii)⇐⇒(iii) is a corollary of the above proposition.
(ii)⇐⇒(iv): If H = N(C) + R(B†) then N(C) = PN(B)(N(C) + R(B†)) =

PN(B)(N(C)). The converse is similar.

3. THE NORM TOPOLOGY ON CR

In this section we collect several known results about the norm topology on
CR and include a new result (Theorem 3.8). Recall, from the introduction, that
CR is a path connected space. We define two different metrics on CR which will
be the main tools for the study of the continuity properties of the Moore–Penrose
inverse mapping and other related mappings, in this and the next sections.

Given A, B ∈ L(H,K), define

dR(A, B) = (‖PR(A) − PR(B)‖
2 + ‖A− B‖2)1/2,

dN(A, B) = (‖PN(A) − PN(B)‖2 + ‖A− B‖2)1/2.

From now on, we write dX whenever a result is valid for both dN and dR.

REMARK 3.1. Observe that dR and dN are metrics in L(H,K) such that:
(i) dN(A∗, B∗) = dR(A, B) and dN(A, B) = dR(A∗, B∗);

(ii) dN(A, B) 6 ‖PR(A∗) − PR(B∗)‖+ ‖A− B‖.

The following lemma relates the reduced minimum moduli of two opera-
tors with the distances dN and dR between them. It plays a key role in many
computations of the following section.
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LEMMA 3.2. Consider A, B ∈ L(H,K). Then

γ(B) 6
√

1 + γ(B)2dX(A, B) + γ(A).

Proof. If γ(B) = 0 both inequalities are trivial. Suppose that γ(B) > 0. Con-
sider first the case X = N. Let u ∈ N(A)

⊥
. Observe that γ satisfies γ(B)‖x‖ 6

‖Bx‖, for x ∈ N(B)⊥. The inequality holds, in particular, for v = (I − PN(B))u ∈
N(B)⊥. Then

γ(B)‖u‖ 6 γ(B)‖u− v‖+ γ(B)‖v‖ 6 γ(B)‖u− v‖+ ‖Bv‖
6 γ(B)‖u− v‖+ ‖Au− Bv‖+ ‖Au‖
6 (γ(B)‖PN(A) − PN(B)‖+ ‖A− B‖)‖u‖+ ‖Au‖

6
√

1 + γ(B)2(‖PN(A) − PN(B)‖2 + ‖A− B‖2)1/2‖u‖+ ‖Au‖

=
√

1 + γ(B)2dN(A, B)‖u‖+ ‖Au‖.

Therefore γ(B) 6
√

1 + γ(B)2dN(A, B) + γ(A) and the inequality holds in the
case X = N.

For the case X = R, observe that, by Remark 3.1 it holds

γ(B) = γ(B∗) 6
√

1 + γ(B)2dN(A∗, B∗) + γ(A∗),

so that γ(B) 6
√

1 + γ(B)2dR(A, B) + γ(A), which ends the proof.

COROLLARY 3.3. Let B ∈ CR and consider A ∈ L(H,K) such that dX(A, B) <
1

2
√

1+‖B†‖2
then A ∈ CR and ‖A†‖ 6 2‖B†‖.

Proof. If B ∈ CR and dX(A, B) < 1
2
√

1+‖B†‖2
then, since γ(B) = ‖B†‖−1,

dX(A, B)
√

1 + γ(B)2 < γ(B)
2 . Thus, applying Lemma 3.2, it follows that γ(A) >

0. Therefore A ∈ CR and γ(A) = ‖A†‖−1. In this case, also from Lemma 3.2,

1 6
√

1 + ‖B†‖2 dX(A, B) + ‖B†‖
‖A†‖ 6 1

2 + ‖B†‖
‖A†‖ , then ‖A†‖ 6 2‖B†‖.

The following inequality is similar to that of Lemma 3.2, but it is symmetric
in A and B:

COROLLARY 3.4. If A, B ∈ CR, then

|γ(B)− γ(A)| 6
√

1 + γ(B)2
√

1 + γ(A)2dX(A, B).

Proof. By Lemma 3.2, it follows that γ(B) − γ(A) 6
√

1 + γ(B)2dX(A, B)
and, multiplying by 1 6

√
1 + γ(A)2, we get that

γ(B)− γ(A) 6
√

1 + γ(B)2
√

1 + γ(A)2 dX(A, B).

The result follows by changing the roles of A and B.
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PROPOSITION 3.5. Consider B ∈ CR and B′ ∈ L(K,H) such that BB′B = B.
Then:

(1) γ(B) > 1
‖B′‖ .

(2) ‖B†‖ 6 ‖B′‖.
(3) If A ∈ CR and A′ ∈ L(K,H) satisfy AA′A = A then:

(i) ‖B†B− A† A‖ 6 ‖B′B− A′A‖;
(ii) ‖BB† − AA†‖ 6 ‖BB′ − AA′‖.

Proof. (1) Consider u ∈ H such that u /∈ N(B) and write u = (I − B′B)u +
B′Bu. Then d(u, N(B)) = d(B′Bu, N(B)) 6 ‖B′‖‖Bu‖, so that 1

‖B′‖ 6 ‖Bu‖
d(u,N(B)) =

γ(B), for every u /∈ N(B). Then 1
‖B′‖ 6 γ(B).

(2) Since γ(B) = 1
‖B†‖ , it follows, from (1), that 1

‖B†‖ > 1
‖B′‖ , or ‖B†‖ 6 ‖B′‖.

(3) Both inequalities are particular cases of the following result of Mbekhta
([38], 1.10): if S , T are closed subspaces of H, P is a projection onto S and Q is a
projection onto T , then ‖P−Q‖ > ‖PS −QT ‖.

We introduce a subset Rk of CR which has nice properties, in the norm
topology, with respect to the Moore–Penrose inverse operation.

For any positive integer k define

Rk = Rk(H,K) =
{

A ∈ L(H,K) : γ(A) >
1
k

}
.

It is easy to prove the following properties:

(1) CR =
⋃{Rk : k ∈ N}.

(2) A ∈ Rk if and only if A∗ ∈ Rk.
(3) For every k ∈ N, the set Rk is closed.

Define M = M(H,K) = {A ∈ CR : N(A) = 0 or R(A) = K}, i.e., M
consists of all injective operators with closed range and of all surjective operators.

THEOREM 3.6. The set M consists of all operators which belong to the interior of
some Rk:

M =
⋃
{ intRk : k ∈ N}.

Proof. If A /∈ M then there exist u ∈ N(A) and v ∈ N(A∗) such that ‖u‖ =
‖v‖ = 1. Define An = A + 1

n u⊗ v. Then ‖An− A‖ = 1
n and γ(An) 6 1

n ; therefore,
A /∈ ⋃{ intRk}. Recall that the set of all surjective bounded linear operators and
the set of all injective operators with closed range are both open with the norm
topology. Then, it is easy to prove that γ : M→ R+ is continuous (the reader will
find a more general treatment about the continuity points of γ in the next section).
Therefore, given A ∈ M there exist δ > 0 and k0 ∈ N such that γ(B) > 1

k0
for all

B ∈ L(H,K) with ‖A− B‖ < δ. Thus A ∈ intRk0 .
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REMARK 3.7. By a known result of perturbation theory ([26], [40]), the in-
terior of the set CR in L(H,K) is the set of all semi-Fredholm operators, a class
which is much larger than M.

LEMMA 3.8. For every A, B ∈ Rk it holds:
(1) ‖A† A− B†B‖ 6 k‖A− B‖;
(2) ‖AA† − BB†‖ 6 k‖A− B‖;
(3) if ‖A− B‖ < 1

k then |γ(A)− γ(B)| 6 ‖A− B‖;

The proof of these facts can be found in [38].

COROLLARY 3.9. For every A, B ∈ Rk it holds ‖A− B‖ 6 dX(A, B) 6 (1 +
k2)1/2‖A− B‖.

For B ∈ L(H,K) consider the polar decomposition B = VB|B|, where |B| =
(B∗B)1/2 and VB is the partial isometry such that N(VB) = N(B) and R(VB) is the
closure of R(B). It holds that VB is uniquely determined by these properties. We
also consider the reverse polar decomposition B = |B∗|W, where W is a partial
isometry which is uniquely determined by the conditions N(W) = N(B) and
R(W) = R(B). It turns out that W = VB (see [48]). We shall study now the
continuity properties of the mappings α : L(H,K) → L(K)+, α(B) = |B|, υ :
L(H,K) → CR, υ(B) = VB, and µ : CR → CR(K,H), µ(C) = C†.

LEMMA 3.10. For every A, B ∈ Rk it holds ‖A† − B†‖ 6 3k2‖A − B‖. In
particular, the function µ : Rk → CR(K,H) is Lipschitz.

Proof. Since γ(C) = ‖C†‖−1, it holds ‖A†‖ 6 k and ‖B†‖ 6 k. The inequal-
ity follows immediately from Remark 2.1.

The following results establish the continuity points of µ and υ. The next
theorem is due to Labrousse and Mbekhta ([35], 2.19):

THEOREM 3.11. The mapping µ : CR → CR(K,H) is continuous at B if and
only if B is injective or surjective.

THEOREM 3.12. (i) Let B ∈ L(H,K). If υ : L(H,K) → CR is continuous at B
then B has a closed range.

(ii) If B ∈ CR, then υ : CR → CR is continuous at B if and only if µ : CR →
CR(K,H) is continuous at B.

(iii) If B ∈ CR, then υ : CR → CR is continuous at B if and only if B is injective or
surjective.

Proof. (i) Suppose that B ∈ L(H,K), and R(B) is not closed. In this case
γ(B) = 0, so that, given ε > 0 there exists x0 ∈ N(B)⊥ such that ‖x0‖ = 1 and
‖Bx0‖ < ε. Consider the orthogonal projection P onto the subspace spanned by
x0, Px = 〈x, x0〉x0, for x ∈ H. If B = |B∗|VB, define W = VB(I − 2P) and B̃ =
|B∗|W. It is easy to see that W is a partial isometry such that R(W) = R(VB) =
R(B) so that VB̃ = W; also ‖B − B̃‖ = ‖|B∗|(VB − W)‖ = ‖|B∗|(2VBP)‖ =
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2‖BP‖ 6 2ε. But ‖VB −W‖ = 2‖2VBP‖ = 2 which proves that υ is not con-
tinuous at B.

(ii) Suppose first that υ : CR → CR is continuous at B and let lim
n→∞

‖Bn −
B‖=0. Then, by hypothesis, lim

n→∞
‖VBn−VB‖=0, and also we have that lim

n→∞
‖V∗

Bn
VBn

−V∗
B VB‖ = 0. But V∗

Bn
VBn = I−PN(Bn) and V∗

B VB= I−PN(B), so that lim
n→∞

dN(Bn, B)

= 0. Applying Remark 2.1 we get ‖B†
n − B†‖ 6 (‖B†

n‖‖B†‖+ ‖B†
n‖2 + ‖B†‖2)‖Bn

−B‖. Moreover, since dN(Bn, B) → 0, applying Corollary 3.3, consider n such that
dN(Bn, B) < 1

2
√

1+‖B†‖2
, then ‖B†

n‖ 6 2‖B†‖ so that ‖B†
n − B†‖ 6 K‖B†‖‖Bn −

B‖ n→∞−−−→ 0. The converse is obvious from the identity υ(B) = VB = (B∗)†|B|.
(iii) It suffices to combine (ii) with the theorem by Labrousse and Mbekhta

([35], Theorem 2.19).

REMARK 3.13. Many perturbation results on the Moore–Penrose inverse
can be found in the papers by P.O. Wedin [52], G.W. Stewart [50] and S. Izumino
[32]. See also the book by Ben-Israel and Greville [7].

4. CR WITH THE dX TOPOLOGY

In this section we study the topological properties of CR with the metrics
dX and the continuity of µ, α and υ with the topology induced by them. We also
state several equivalent conditions to the convergence of a sequence Bn with dX .

As a corollary of Lemma 3.2 we have that

PROPOSITION 4.1. The set CR is open in (L(H,K), dX).

Proof. Let B ∈ CR; consider A ∈ L(H,K) such that dX(A, B) < γ(B)
2
√

1+γ(B)2
;

then, applying Lemma 3.2, γ(A) > γ(B)
2 > 0, so that A ∈ CR.

We start the study of the continuity properties of µ, υ and α with the metrics
dX . Observe that the continuity of α is obvious for both the norm topology and
the topology induced by dX .

THEOREM 4.2. The mapping µ : (CR, dX) → (CR, ‖ · ‖) is continuous.

Proof. From Remark 2.1 ‖A† − B†‖ 6 (‖A†‖‖B†‖ + ‖A†‖2 + ‖B†‖2)‖A −
B‖. Then, from Corollary 3.3, it follows that, if dX(A, B) < 1

2
√

1+‖B†‖2
then

‖A†‖ 6 2‖B†‖2. Thus, ‖A† − B†‖ 6 K‖A − B‖, for a constant K that depends
only on ‖B†‖.

COROLLARY 4.3. The mapping γ : (CR, dX) → R+ is continuous.

Proof. The well known formula γ(T) = ‖T†‖−1, combined with the theo-
rem above, proves the assertion.
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REMARK 4.4. The mapping γ : (CR, ‖ · ‖) → R+ is upper semicontinuous
and γ is continuous at B ∈ CR(H,K) if and only if B is surjective or injective. A
proof of these facts can be found in [33], [29] and [30].

THEOREM 4.5. The mapping υ : (CR, dX) → (CR, ‖ · ‖) is continuous.

Proof. By the properties of the polar decomposition, υ(B) = VB = (B∗)†|B|
so that the continuity of υ follows from the continuity of α mentioned before and
that of µ proved in Theorem 4.2.

As a corollary we obtain the equivalence between dR and dN :

COROLLARY 4.6. The identity map id : (CR, dX) → (CR, dY) is continuous.

Proof. Suppose X = R and Y = N. By Theorem 4.2, µ : (CR, dR)→ (CR, ‖ · ‖)
is continuous. Then given ε > 0 there exists δ > 0 such that ‖PN(A) − PN(B)‖ =
‖A† A − B†B‖ 6 ‖A†‖‖A − B‖ + ‖A† − B†‖‖B‖ < ε if dR(A, B) < δ. The case
X = N and Y = R is analogous.

COROLLARY 4.7. The mapping µ : (CR, dX) → (CR(K,H), dY) is continuous.

In [32], S. Izumino extended several known results on the continuity of the
map µ : A 7→ A† on matrices to closed range operators between Hilbert spaces.
In particular, he proved that, if An, A ∈ CR and ‖An− A‖ → 0 then the following
conditions are equivalent:

(1) ‖A†
n − A†‖ → 0;

(2) ‖An A†
n − AA†‖ → 0;

(3) ‖A†
n An − A† A‖ → 0;

(4) sup ‖A†
n‖ < ∞.

These results have been rediscovered many times and several authors have
found other equivalent conditions. As a sample, let us mention two, one discov-
ered in [39] (condition (5)) and the other found in [12]:

(5) γ(An) → γ(A);
(6) for n large it holds R(An) ∩ N(A†) = 0.

In the next theorem we collect these and other equivalent conditions.

THEOREM 4.8. Given B and {Bn}n∈N in CR, then the following conditions are
equivalent:

(i) lim
n→∞

dN(Bn, B) = 0;

(ii) lim
n→∞

dR(Bn, B) = 0;

(iii) lim
n→∞

dN(B†
n, B†) = 0;

(iv) lim
n→∞

dR(B†
n, B†) = 0;

(v) lim
n→∞

‖Bn − B‖ = 0 and lim
n→∞

‖B†
n − B†‖ = 0;

(vi) lim
n→∞

‖Bn− B‖=0 and there exists M>0 such that for n large enough, ‖B†
n‖6 M;
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(vii) lim
n→∞

‖Bn − B‖ = 0 and there exist M > 0 and B′n ∈ CR(K,H) such that

BnB′nBn = Bn and ‖B′n‖ 6 M;
(viii) lim

n→∞
‖Bn− B‖ = 0 and there exists K >0 such that for n large enough γ(Bn)>K;

(ix) lim
n→∞

‖Bn − B‖ = 0 and lim
n→∞

γ(Bn) = γ(B);

(x) lim
n→∞

‖Bn − B‖ = 0 and for n large enough, H = N(Bn) + R(B†);

(xi) lim
n→∞

‖Bn − B‖ = 0, and for n large enough c0(R(B†
n), N(B)) < 1 ;

(xii) lim
n→∞

‖Bn − B‖ = 0 and for n large enough N(B) = (I − B†B)N(Bn);

(xiii) lim
n→∞

‖Bn − B‖ = 0 and for n large enough R(Bn) ∩ N(B†) = {0}.

Proof. (i) ⇐⇒ (ii) and (iii) ⇐⇒ (iv) follow from Corollary 4.6.
(i)⇒ (iii) is a consequence of Corollary 4.7. On the other hand, since (B†)† =

B, we have that (iv) → (ii). Then (i), (ii), (iii) and (iv) are equivalent.
(i) ⇒ (v) if dN(BN , B) → 0 then ‖Bn − B‖ → 0; also, (i) ⇒ (iii) implies that

dN(B†
n, B†) → 0, so that ‖B†

n − B†‖ → 0.
(v) ⇒ (i) Observe that ‖PN(Bn) − PN(B)‖ = ‖B†

nBn − B†B‖ 6 ‖B†
n‖‖Bn −

B‖+ ‖B†
n − B†‖‖B‖ which tends to zero if Bn → B and B†

n → B†.
(v) ⇒ (vi) Since ‖B†

n − B†‖ → 0 there exists M > 0 such that ‖B†
n‖ 6 M.

(vi) ⇒ (v) follows from the proof of Theorem 4.2.
(vi) ⇒ (vii) Take B′n = B†

n.
(vii) ⇒ (viii) If B′n satisfies BnB′nBn = Bn and ‖B′n‖ 6 M, for M > 0, apply-

ing (1) of Proposition 3.5, γ(Bn) > 1
‖B′n‖

> 1
M .

(vi) ⇐⇒ (viii) because γ(B) = ‖B†‖−1.
(v) ⇒ (ix) follows from the continuity of ‖ · ‖ and f (x) = x−1 in R−> 0.
(ix) ⇒ (viii) If γ(Bn) → γ(B), let M > 0 such that γ(B) > M, then γ(Bn) >

M
2 for n large enough.

Then, (i), (v), (vi), (vii), (viii) and ix) are equivalent.
The equivalence between (i), (x), (xi) and (xii) follows from Proposition 2.4.
(xii)⇒ (xiii) Suppose that (xii) holds and consider y ∈ R(Bn)∩N(B†). Then

y = Bnx, for x ∈ H, and B†y = B†Bnx = 0, so that B(I + B†(Bn − B))x =
Bx + BB†(Bn − B)x = BB†Bnx = 0. Therefore, (I + B†(Bn − B))x ∈ N(B). Since
N(B) = (I− B†B)(N(Bn)), there exists w ∈ N(Bn) such that (I + B†(Bn− B))x =
(I − B†B)w = [I + B†(Bn − B)]w. But, for n large enough, I + B†(Bn − B) is
invertible and then x = w ∈ N(Bn). In this case y = Bnx = 0 so that (xiii) holds.

(xiii) ⇒ (vii) If Bn → B then, for n large enough, the operators G1 = I +
B†(Bn − B) and G2 = I + (Bn − B)B† are invertible. Set An = G−1

1 B† = B†G−1
2 .

Then N(An) = N(B†), R(An) = R(B†) and ‖An‖ 6 2‖B†‖, if ‖Bn − B‖ < 1
2‖B†‖ .

Since B†BG1 = B†Bn, we have that B†B = B†BnG−1
1 . Therefore, B† = B†BB† =

B†BnG−1
1 B† = B†Bn An. Hence, AnBn An = G−1

1 B†Bn An = G−1
1 B† = An and

then AnBn An = An. On the other hand, if x ∈ H, yn = (Bn − Bn AnBn)x =
Bn(I − AnBn) ∈ R(Bn) and yn = (I − Bn An)Bnx ∈ N(An) = N(B†). Then
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yn ∈ R(Bn) ∩ N(B†) = {0} so that Bn = Bn AnBn and An is a generalized inverse
of Bn, such that ‖An‖ 6 2‖B†‖.

REMARK 4.9. By interchanging N with R, many other equivalent conditions
can be added. Observe also that the angle condition can be stated in a uniform
way, in the sense that there exists c, 0 6 c < 1 such that c0(N(B), R(B†

n)) 6 c
for n large enough. On the other hand, the hypothesis of the theorem can be
relaxed using the fact that (CR, dX) is an open set of (L(H,K), dX). In fact if
dX(Bn, B) → 0 and B has closed range, then every Bn, for n large enough, has
also a closed range.

5. CR AS A HOMOGENEOUS SPACE

This section is devoted to study a homogeneous structure on CR. For this,
consider the action L : GK × GH × CR → CR defined by the following, where
G ∈ GK, H ∈ GH, and A ∈ CR:

L((G, H), A) = L(G,H)A = GAH−1.

For any A ∈ CR, the orbit of A by the action L is

OA = {GAH−1 : G ∈ GK, H ∈ GH}.

Observe thatOA = OB if B ∈ OA, because each orbit is an equivalence class: two
operators are equivalent if they belong to the same orbit. By elementary spectral
theory, the groups GH and GK are connected, moreover they are path connected.
(Indeed, they are contractible; however, we do not need this deep result due to
N. Kuiper [34].) Therefore, each orbit OA is path connected. We are going to
prove that OA is the connected component of A in (CR, dX).

The group UK×UH acts onPI by restriction of the action L. More precisely,
L′ : UK ×UH ×PI → PI , defined by

L′((U, W), V) = UVW∗, U,∈ UK, W ∈ UH, V ∈ PI ,

is a left action on PI . The orbits for this action are called unitary orbits. Thus, the
unitary orbit of V ∈ PI is the set

UOV = {UVW∗ : U ∈ UK, W ∈ UH}.

The next results characterize the orbits of CR and PI . For k, `, m ∈ N ∪
{0, ∞} such that k + ` = ∞ and ` + m = ∞ define the sets:

Ak,`,m = {A ∈ CR : dim N(A) = k, dim R(A) = `, codim R(A) = m},

Vk,`,m = {V ∈ PI : dim N(V) = k, dim R(V) = `, codim R(V) = m}.

THEOREM 5.1. Let H and K be infinite dimensional separable Hilbert spaces, and
let A ∈ Ak,`,m and V ∈ Vk,`,m. Then OA = Ak,`,m and UOV = Vk,`,m.
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Proof. Consider A, B ∈ Ak,`,m. Therefore, dim R(A) = dim R(B) so that
dim N(A)⊥ = dim N(B)⊥ so that there exists an isomorphism U : N(A)⊥ →
N(B)⊥. Consider W : R(A) → R(B) defined by W = BUA−1 where A−1 =
{A|N(A)⊥}−1 : R(A) → N(A)⊥. Then W is an isomorphism. Since codim R(A) =
codim R(B), there exists an isomorphism V′ : R(A)⊥ → R(B)⊥. Define G =
WPR(A) + V′(I − PR(A)); it holds G ∈ GK. In the same way, since dim N(A) =
dim N(B), there exists an isomorphism U′ : N(A) → N(B), and if H = UPR(A∗) +
U′(I− PR(A∗)), then H ∈ GH. Finally, GAx = WPR(A)Ax = WAx = BUA−1 Ax =
BUPR(A∗)x = B(UPR(A∗)x + U′(I − PR(A∗)x) = BHx, because U′(I − PR(A∗))x ∈
N(B), for all x ∈ H. Therefore GA = BH, or, GAH−1 = B, as claimed.

Conversely, if B ∈ OA, then there exists G ∈ GK and H ∈ GH such that
GA = BH. Then G(R(A)) = R(B) and H(N(A)) = N(B). Also A∗G∗ = H∗B∗,
so that R(B)⊥ = G∗−1

(R(A)⊥). The proof for the partial isometries is analo-
gous.

An operator B ∈ CR is called semi-Fredholm if dimN(B) is finite or codim
R(B) is finite. Denote SF+ = {T ∈ CR : dim N(T) < ∞} and SF− = {T ∈ CR :
codim R(T) < ∞}. For k < ∞ or m < ∞, denote SFk,m = {B ∈ CR : dim N(B) =
k, codim R(B) = m}.

For B ∈ SF, the set of all semi-Fredholm operators in L(H,K), define the
index of B

ind(B) = dim N(B)− codim R(B).

As it was pointed out in Remark 3.7 the interior of the set CR with the norm
topology, in L(H,K), is exactly SF. On the other hand, the set SF is dense in
L(H,K), with the norm topology: in fact, the setM, defined in Section 3, verifies
M ⊂ SF ⊂ L(H,K) and M is dense in L(H,K), (see [28]). Observe that, a
fortiori, CR is dense in L(H,K).

The connected components of SF are Fn = {B ∈ SF : ind(B) = n}, with
n ∈ Z ∪ {−∞, +∞}, (see [11]). Moreover, the boundary of Fn in L(H,K), ∂Fn,
does not depend on n. In fact, it coincides with L(H,K) \ SF, see [39].

REMARK 5.2. If A ∈ SFk,m then OA = SFk,m.

The next two results provide other characterization of OA. Both are based
in techniques used in [14] and [15], where the main goal is the study of the con-
gruence orbit of a positive operator.

PROPOSITION 5.3. Let A, B ∈ CR; consider the (reverse) polar decompositions
of A and B, A = |A∗|VA, B = |B∗|VB. Then the following statements are equivalent:

(i) B ∈ OA;
(ii) PR(B) ∈ UOPR(A)

and PR(B∗) ∈ UOPR(A∗)
;

(iii) VB ∈ UOVA .
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Proof. (i)=⇒ (ii) If B ∈ OA then there exist G ∈ GK, H ∈ GH such that B =
GAH−1. Then R(B) = GR(A). Applying Theorem 3.1 of [25], there exists U ∈ UK
such that R(B) = UR(A) (and then R(B)⊥ = U(R(A)⊥)). Let Q = UPR(A)U∗;
then Q ∈ L(K) is the orthogonal projection onto R(B), i.e., Q = PR(B) ∈ UOPR(B)

.

In a similar way, since B∗ = H−1∗A∗G∗ there exists W ∈ UH such that R(B∗) =
WR(A∗). Then PR(B∗) = WPR(A∗)W∗ so that PR(B∗) ∈ UOPR(A∗)

.
(ii) =⇒ (i) Conversely, suppose that, for B ∈ CR, PR(B) ∈ UOPR(A)

and
PR(B∗) ∈ UOPR(A∗)

. Then there exist U ∈ UK, W ∈ UH such that UPR(A)U∗ =
PR(B) and WPR(A∗)W∗ = PR(B∗). Consider G = A†U∗B + (I− PR(A∗))W∗; it holds
UAG = UPR(A)U∗B = PR(B)B = B. It is easy to see that if H = B†UA + W(I −
PR(A∗)) then H = G−1. Therefore, B ∈ OA.

(i) ⇐⇒ (iii) In the same way, it is easy to see that if V, V0 ∈ PI , then V ∈
UOV0 if and only if PR(V) ∈ UOPR(V0)

and PR(V∗) ∈ UOPR(V∗0 )
. But PR(VB) = PR(B)

and PR(V∗
B ) = PR(B∗). Using again part (i) it follows that B ∈ OA if and only if

VB ∈ UOVA .

COROLLARY 5.4. If A∈CR has polar decomposition A=|A∗|VA then OA=OVA .

Proof. Consider G = |A†∗ | + I − PR(A). Then G ∈ GK, G−1 = |A∗| + I −
PR(A) and also GA = VA; therefore, VA ∈ OA, so that OA = OVA .

For a fixed A ∈ CR, consider the mapping ϕ : CR → PK ×PH defined by

ϕ(B) = (ϕ1(B), ϕ2(B)) = (BB†, B†B) = (PR(B), PR(B∗)).

Then we have the following fact:

PROPOSITION 5.5. The image of ϕ is the product UOPR(A)
×UOPR(A∗)

.

Proof. By the above proposition ϕ(OA) ⊂ UOPR(A)
× UOPR(A∗)

. Conversely,
if (P, Q) ∈ UOPR(A)

× UOPR(A∗)
there exist U ∈ UK, W ∈ UH such that P =

UPR(A)U∗ and Q = WPR(A∗)W∗. Let B = UAW∗; then B ∈ OA, B† = WA†U∗,
PR(B) = P and PR(B∗) = Q. Therefore, (P, Q) = ϕ(B).

Consider also the mappings

πA :GK × GH → OA, πA(G, H) = L(G,H)A = AGH−1, G ∈ GK, H ∈ GH,

ΠA : GK×GH→UOPR(A)
×UOPR(A∗)

, ΠA(G, H)=(PG(R(A)), PH(N(A))⊥), G∈GK, H∈GH.

It is apparent that the following diagram is commutative:

GK × GH
πA−→ OA

ΠA ↘
yϕ

UOPR(A)
×UOPR(A∗)
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Notice that with the norm topology onOA, the mapping ϕ is not continuous
and πA does not have continuous local sections. However, the following result
permits a finer understanding of the structure of each orbit.

PROPOSITION 5.6. The mapping ϕ : (OA, dR)→UOPR(A)
×UOPR(A∗)

is continuous.

Proof. The result follows from the equivalence of dR and dN stated in Corol-
lary 4.6.

PROPOSITION 5.7. The map πA : (GK × GH, ‖ · ‖) → (OA, dR) is continuous
and it admits continuous local cross sections.

Proof. Observe that the continuity of πA : (GK × GH, ‖ · ‖) → (OA, dR) is
equivalent to the continuity of πA : (GK × GH, ‖ · ‖) → (OA, ‖ · ‖), which is
evident, and that of ΠA : (GK × GH, ‖ · ‖) → (UOPR(A)

× UOPR(A∗)
, ‖ · ‖). The

orthogonal projection onto G(R(A)) is given by the formula

PG(R(A)) = GPR(A)G−1(GPR(A)G−1)∗(I − (GPR(A)G−1 − (GPR(A)G−1)∗)2)−1;

this shows that PG(R(A)) depends continuously on G, see [1]. In the same way the
orthogonal projection onto H(N(A))⊥ = H−1(N(A)⊥) depends continuously on
H; therefore ΠA(G, H) = (PG(N(A)), PH(N(A))⊥) is continuous.

In order to prove that πA admits local cross sections, observe that there
exists a neighbourhood N of A in OA, such that if B ∈ N and

σ(B) = (BA† + (I − PR(B))(I − PR(A)), PR(B†)PR(A†) + (I − PR(B∗))(I − PR(A∗)))

then σ : (N , dR) → GK × GH is continuous. Also πA(σ(B)) = B, for all B ∈ N .
See 2.1 of [2] for details. Therefore σ is a continuous local cross section of πA in
N .

REMARK 5.8. Suppose that the topological group G acts over the topological
space X on the left, with the property that each x0 ∈ X has a open neighborhood
W with a continuous section σ : W → G of πx0 (here πx0(G) = G · x0 = LGx0 for
each G ∈ G). Then every orbit Ox0 = {LGx0 : G ∈ G} is open and closed in X ;
it is open because of the existence of the local section σ, and if every orbit is open
then it is automatically closed. From these comments, the next two results follow
easily.

COROLLARY 5.9. The connected component of A in (CR, dX) is OA.

COROLLARY 5.10. For every A ∈ CR, the orbit OA, with the dX-topology, is a
homogeneous space of GH × GK.

We finish the section with a computation of the distance between different
orbits. Mbekhta and Skhiri [42], following the characterization of Halmos and
McLaughlin [29] of the components of PI(H,K), have computed the distance
between the orbits of PI with the operator norm. Here we follow the same pro-
gram for the orbits of CR with the dR and dN metrics.
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THEOREM 5.11. Consider A, B ∈ CR such that B /∈ OA. Then

dR(OA,OB) =

{
0 if dim R(A) = dim R(B) and codim R(A) = codim R(B),
1 if dim R(A) 6= dim R(B) or codim R(A) 6= codim R(B).

Proof. First observe that dR(OA,OB) = inf{‖PR(A′) − PR(B′)‖ A′ ∈ OA, B′ ∈
OB}: in fact, if d = inf{‖PR(A′) − PR(B′)‖ A′ ∈ OA, B′ ∈ OB}, it holds d 6
dR(OA,OB). To prove the converse inequality consider ε > 0, then there exist
A′ ∈ OA and B′ ∈ OB such that d 6 ‖PR(A′) − PR(B′)‖ < d + ε. Consider

A′′ =
ε

2(‖A′‖+ ‖B′‖) A′ and B′′ =
ε

2(‖A′‖+ ‖B′‖) B′.

Then A′′ ∈ OA and B′′ ∈ OB; also d2
R(A′′, B′′) = ‖A′′ − B′′‖2 + ‖PR(A′′) −

PR(B′′)‖2 6 ε2

4 + (d + ε)2 6 d2 + εk, for a constant k. Therefore dR(OA,OB) 6 d.
Suppose that dim R(A) = dim R(B) and codim R(A) = codim R(B). Then

dim N(B) 6= dim N(A). Define B′ ∈ L(H,K) as follows: B′|N(B)⊥ : N(B)⊥ →
R(A) is an isomorphism, N(B′) = N(B). Then R(B′) = R(A) so that B′ ∈
CR; moreover B′ ∈ OB, by its construction, and PR(B′) = PR(A). Therefore,
dR(OA,OB) = 0, by the remark at the beginning of the proof.

If there exist A′ ∈ OA and B′ ∈ OB such that ‖PR(A′) − PR(B′)‖ < 1 it
easily follows that dim R(A′) = dim R(B′) and codim R(A′) = codim R(B′).
If dim R(A′) 6= dim R(B′) or codim R(A′) 6= codim R(B′), it holds ‖PR(A′) −
PR(B′)‖ = 1 and the theorem follows.

COROLLARY 5.12. Consider A, B ∈ CR such that B /∈ OA. Then

dN(OA,OB) =

{
0 if dim N(A) = dim N(B) and codim N(A) = codim N(B),
1 if dim N(A) 6= dim N(B) or codim N(A) 6= codim N(B).

Proof. The result follows easily applying Theorem 5.11 to A∗ and B∗ and
observing that dN(A, B) = dR(A∗, B∗).

REMARK 5.13. It is possible to estimate the dX-distance between unitary
orbits of partial isometries, using the results obtained in [42] by Mbekhta and
Skhiri to compute the distance between these orbits, with the operator norm.

6. THE SET CRS

In this section S is a fixed closed subspace ofK and CRS denotes the subset
of CR of all operators with range S .

Observe, first, that CRS = ϕ−1
1 ({PS}), where ϕ1(B) = BB†. Also the metric

dR obviously coincides with the metric given by the uniform operator norm on
CRS because R(A) = R(B) = S for every A, B ∈ CRS . In what follows, GS shall
be identified with the subgroup of GK consisting of all operators in L(K) of the
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form G′(x + y) = Gx + y, for G ∈ GK and x ∈ S , y ∈ S⊥. Consider the restriction
of the action L, defined in Section 5, where G ∈ GS , H ∈ GH and B ∈ CRS :

LS : GS × GH × CRS → CRS ,

((G, H), B) → GBH−1.

For B ∈ CRS , denote by OB,S the orbit of B given by the action LS , i.e.,
(where obviously, OB,S is a subset of OB):

OB,S = {GBH−1 : G ∈ GS , H ∈ GH}.

PROPOSITION 6.1. Consider B ∈ CRS . If dim N(B) = k ∈ N∪ {∞}, then

OB,S = {C ∈ CRS : dim N(C) = k}.

Proof. If C ∈ CRS and dim N(C) = k then C ∈ OB: in fact dim R(C) =
dim S = dim R(B) and codim R(C) = codimS = codim R(B). Therefore there
exist G ∈ GK and H ∈ GH such that C = GBH−1. Observe that G(S) = R(C) = S
and defined if G′ = GP + I − P, where P = PS , then G′ ∈ GS and C = G′BH−1,
which shows that C ∈ OB,S .

Conversely, if C ∈ OB,S , it follows that C ∈ OB so that, by Proposition 4.1,
dim N(C) = k.

Observe that

σ(C) = (CB† + I − P, PR(C∗)PR(B∗) + (I − PR(C∗))(I − PR(B∗)))

is a continuous local cross section in a neighbourhood of B ∈ CRS (see the proof
of Proposition 5.10), because dN defines the norm topology in CRS .

In what follows we characterize CRS as a product space of two homoge-
neous spaces; this characterization naturally induces a different structure of ho-
mogeneous space on CRS .

For A ∈ L(K)+ the Thompson component of A is defined as

CA = {B ∈ L(K)+ : A 6 βB and B 6 αA, for α, β > 0}.

This notion, introduced by A.C. Thompson [51], has been extremely useful in the
analytical study of cones in Banach spaces. The reader is referred to the paper by
R. Nussbaum [43] for many applications of Thompson components.

If A ∈ CR(K)+ has closed range, then CA = {B ∈ L(K)+ : R(B) = R(A)},
see [14], [15], so that the component of A only depends on the range of A. Observe
that the map µ is continuous on each component CA.

Denote PIS = {V ∈ CR : VV∗ = P} where P = PS , i.e., PIS is the set of
partial isometries with fixed range S .

PROPOSITION 6.2. CRS is homeomorphic to CP ×PIS .

Proof. Let B ∈ CRS and let B = |B∗|V be the reverse polar decomposition
of B. Then R(V) = R(|B∗|) = S , so that V ∈ PIS .
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Define f : CRS → CP × PIS , f (B) = (|B∗|, |B∗|†B). Then f is continu-
ous because |B∗| ∈ CP and the Moore–Penrose pseudoinverse is continuous on
every Thompson component. Observe that for every A ∈ CP, V ∈ PIS it holds
f−1(A, V) = AV, which is continuous. Then f is a homeomorphism which al-
lows the identification of both sets.

The subsets CP and PIS of CR(K) and CR, respectively, have been both
studied as homogeneous spaces of certain subgroups of GK, and GH, respectively,
see [14], [1]. More precisely, the subgroup GS defined before is a subgroup of GK
acting on CP: define L1 : GS × CP → CP, L1(G, B) = GBG∗, G ∈ GS , B ∈ CP. The
unitary group UH acts on PIS : define L2 : UH ×PIS → PIS , L2(U, V) = VU∗,
V ∈ PIS , U ∈ UH. The pairs (GS , CP) and (UH,PIS ) are both homogeneous
spaces (see [14], [16], [1], [2]).

Then CRS admits a natural structure of homogeneous space of GS × UH:
consider the identification of CRS with CP ×PIS and define the action

L′ : (GS ×UH)× (CP ×PIS ) → CP ×PIS

by

L′((G, U), (A, V)) = L′(G,U)(A, V) = (L1(G, A), L2(U, V)) = (GAG∗, VU∗),

for G ∈ GS , U ∈ UH, (A, V) ∈ CP × PIS . The action L′ is locally transitive
because L1 and L2 are both locally transitive. In fact, since L1 is transitive on CP,
the orbit of a pair (B, V) ∈ CP × PIS is CP ×OV , where OV is the orbit of V by
the action L2. In fact:

PROPOSITION 6.3. Consider B ∈ CRS with dim N(B) = k. Then the orbit O′
B

of B by the action L′ coincides with OB,S .

Proof. Consider C ∈ O′
B = C|B∗ | × OVB . Then, there exist G ∈ GS and

U ∈ U such that C = G|B∗|G∗VBU∗. It is easy to see that N(C) = UN(B), so that
dim N(C) = dim N(B) = k. The converse follows as in Proposition 5.1.

Fix the pair (P, W) ∈ CP ×PIS and define, for G ∈ GS , U ∈ UH,

π : GS ×UH → CP ×PIS , π(G, U) = L′(G,U)(P, W) = (GPG∗, WU∗).

The map π admits local cross sections. In fact, let (B, V) ∈ CP ×PIS ; there
exists a neighbourhood N of W in PIS such that σ(B, V) = (B1/2 + I− P, V∗W +
(I −V∗V)(I −W∗W)), is well defined, σ : CP ×N → GS ×UH and π(σ(B, V)) =
(B, V), for (B, V) ∈ CP ×N (see [2] for details).

REMARK 6.4. The homogeneous structure is extremely useful in the differ-
ential geometry of the orbits and also of CRS . This study will be done elsewhere.
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