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ABSTRACT. The corona factorization property is connected with the KK-theory
and the behaviour of stability for C∗-algebras. We show that there exists a sim-
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1. INTRODUCTION

The corona factorization property characterizes stable separable C∗-algebras
B whose Kasparov KK1(A, B) groups can be described in a certain elegant form,
and moreover implies good behaviour with respect to formation of extensions by
stable separable C∗-algebras.

A quarter-century ago, Kasparov showed [9] that the now well-known and
important KK1(A, B) group — a bivariant form of K-theory for nuclear separable
C∗-algebras — could be written as the group of absorbing full extensions of A
by B, modulo a suitable form of unitary equivalence. (Recall that an extension
τ : A −→ M(B)/B is defined to be absorbing if τ + σ is unitarily equivalent
to τ for all trivial extensions σ.) Kasparov’s theorem is useful in proportion to
our ability to decide which extensions of a given A by a given B are absorbing.
It is generally very difficult to decide this problem by direct application of the
definition of the absorption property.

Elliott and Kucerovsky [6] gave the first algebraic criterion for a given ex-
tension to be absorbing, but this criterion was applicable to a single (nuclear)
extension at a time. We should mention that Kasparov’s original definition of
KK1(A, B) has been slightly modified by Skandalis by shifting the nuclearity con-
dition from the algebras to the Busby maps, so that the proof of Kasparov’s theo-
rem needs to be modified slightly. With or without this modification, Kasparov’s
theorem becomes maximally useful in the case that all full (nuclear) extensions of



228 D. KUCEROVSKY AND P.W. NG

A by B are absorbing. An injective extension is said to be full if the image does
not nontrivially intersect any ideal of the corona. Kucerovsky and Ng [15] stud-
ied the case of Rørdam’s group KL1(A, B), and proved the following equivalence
of three conditions:

THEOREM 1.1. Let A and B be separable nuclear C∗-algebras, and let B be stable.
The following are equivalent:

(i) Every norm-full projection in M(B) is Murray–von Neumann equivalent to
1M(B).

(ii) KK1(A, B) is equal to the set of full extensions τ : A −→ M(B)/B modulo
unitary equivalence.

(iii) KL1(A, B) is equal to the set of full extensions τ : A −→ M(B)/B modulo a
form of approximate unitary equivalence.

The implications (i) =⇒ (ii) and (ii) =⇒ (iii) are easy applications of the
abovementioned Elliott–Kucerovsky result, and the implication (iii) =⇒ (i) rests
on a careful study of the class of the identity in KL1 and some results of Scho-
chet’s. Property (i) in the above list is defined to be the corona factorization prop-
erty.

The above theorem can be viewed as giving an algebraic characterization of
the basically topological property of having a “nice” KK-group (in the sense of
property (ii) of the theorem). We moreover found a connection between the KK-
theoretical corona factorization property and the C∗-algebraic property of stabil-
ity. Recall that a C∗-algebra is said to be stable if B is isomorphic to B⊗K, where
K is a copy of the usual compact operators on an infinite-dimensional separable
Hilbert space. It is known that, due to the pioneering work of Rørdam [22], [21],
that if Mn(B) is stable, B need not be stable, and that if A and B in a short exact
sequence 0 −→ B −→ C −→ A −→ 0 are both stable, the extension algebra C
need not be stable. We have found that if B has the corona factorization property,
then neither of these problems occur.

In [14], we prove the following:

THEOREM 1.2. Suppose that B is a separable, stable C∗-algebra. Then the follow-
ing are equivalent:

(i) B has the corona factorization property.
(ii) Suppose that D is a full, hereditary subalgebra of B. Suppose that there is an

integer n > 1 such that Mn(D) is stable. Then D itself is stable.

THEOREM 1.3. Suppose that J, E and A are separable C∗-algebras, such that J ⊗
K has the corona factorization property. Suppose that we have an exact sequence of the
form

0→ J → E → A→ 0.

Then E is stable if and only if J and A are stable.
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If X is a finite-dimensional, compact metric space, then C(X) ⊗ K has the
corona factorization property. More generally, if B0 is a separable C∗-algebra with
finite decomposition rank, then B0 ⊗K has the corona factorization property.

Finally, we mention Rørdam’s stronger notion of regularity, which fits nat-
urally into the subject — though many questions remain.

DEFINITION 1.4. Let B be a separable, stable C∗-algebra. Then B is said to
be regular, if whenever D is a full, hereditary subalgebra of B with no nonzero
unital quotients and no nonzero bounded traces, D is stable.

Presently, all examples of C∗-algebras that are known to have the corona
factorization property also have regularity, and vice versa.

Among other things, there is the following result:

PROPOSITION 1.5. Suppose that B is a separable, stable C∗-algebra that is regular.
Then

(i) B has the corona factorization property.
(ii) B is either stably finite or purely infinite.

Part (ii) is due to Rørdam, and part (i) is straightforward.
In view of these results, it is natural to wonder if C∗-algebras with the

corona factorization property can have perforation.
In this paper, we prove the following:

THEOREM 1.6. There exists a simple C∗-algebra with perforation and the corona
factorization property.

2. A SIMPLE C∗-ALGEBRA WITH PERFORATION AND CORONA FACTORIZATION

The C∗-algebra that we work with is a form of Villadsen’s example of a
simple, unital AH-algebra with higher stable rank [26]. His algebra is in fact an
inductive limit of blocks of the form pi(C(Xi) ⊗ K)pi, where Xi is a connected
finite CW-complex and where pi is a (necessarily constant rank) projection in
C(Xi) ⊗ K. It is well-known that such building blocks can also be regarded as
an algebra generated by sections of a vector bundle, with the vector bundle being
trivial if and only if pi is equivalent to a constant projection in C(Xi)⊗K. More
generally, stable isomorphism classes of vector bundles correspond to K0-classes
of projections in C(Xi)⊗ K. The connecting maps φi,i+1 : pi(C(Xi)⊗ K)pi −→
pi+1(C(Xi+1)⊗K)pi+1 have the property that they map a projection of rank k to
a projection of rank k · (i + 2). The Xi are in our case the topological spaces

I2 ×CP1·1! ×CP2·2! × · · · ×CPi·i!,

where I is the unit interval (hence, I2 is the unit square) and CPk denotes com-
plex projective k-space. Thus Xi has dimension 2(i + 1)!. Finally, the map π1

i+1 is
simply the natural projection from Xi+1 to Xi.
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One may wonder why complex projective spaces appear. In order to obtain
interesting behaviour, it is desirable to use vector bundles with a great deal of
twist. It is known from the study of Grassmannians in differential topology that
the tautological line bundle γ over CP∞ is the maximally twisted line bundle
[2]: that is, every line bundle over a manifold of finite type is the pullback of a
line bundle over CP∞. This point of view is used effectively in, for example, the
counterexample to Conjecture 7 of [13].

We now give more detail, for the reader’s convenience, on the construction
of Villadsen’s algebra [25], [26].

For each integer k > 1, let σ(k) := k · k!. Let, X0 = I2, and Xi+1 = Xi ×
CPσ(i+1). Let

π1
i+1 : Xi+1 → Xi, π2

i+1 → CPσ(i+1)

denote the natural coordinate projections. Let γk be the universal line bundle
over CPk and let ζi := π2∗

i (γσ(i)). Choose a dense sequence {sl
i}∞

l=1 in Xi, and
choose for each j = 1, 2, . . . , i + 1 a point ti,j ∈ Xi such that ti,i+1 = s1

i , ti,i = s2
i ,

and π1
j+1 ◦π1

j ◦ · · · ◦π1
i (ti,j) = si−j+2

j for 1 6 j 6 i− 1. The sequences {sl
i}∞

l=1 (1 6
i < ∞) have to be chosen simultaneously to satisfy both a density condition and
the appropriate compatibility conditions, used to obtain simplicity of the algebra
constructed. Now for each i, let qi be a projection in C(Xi) ⊗ K corresponding
to the vector bundle ζi. Let qi,1, qi,2, . . . , qi,i be pairwise orthogonal projections in
C(Xi)⊗K, such that for each j, qi,j is Murray–von Neumann equivalent to qi in
C(Xi) ⊗ K. Now let φ̃i : C(Xi) ⊗ K → C(Xi+1) ⊗ K be the ∗-homomorphism
given by

φ̃i := (idC(Xi+1) ⊗ α) ◦ (˜̃φi ⊗ idK),

where α is some isomorphism of K⊗K with K and

˜̃φi : C(Xi)→ C(Xi+1)⊗K : f 7→ ( f ◦ π1
i+1)θi+1 +

i+1

∑
j=1

f (ti,j)qi+1,j.

Here θi+1 is a projection in C(Xi+1)⊗K corresponding to the (complex) one-dimen-
sional trivial bundle over Xi+1, such that θ1 is orthogonal to qi+1,j for every j.

Now let p0 ∈ C(X0)⊗K be a projection which corresponds to the (complex)
one-dimensional trivial bundle; and for each i > 1, let pi := φ̃i,0(p0). For each
i > 0, let Ai := pi(C(Xi)⊗K)pi and let φi,i+1 : Ai → Ai+1 be the restriction of φ̃i.
Now let A denote the inductive limit C∗-algebra A := lim

→
(Ai, φi,i+1).

In [26], Villadsen has proven that:

THEOREM 2.1. A is a unital, simple AH-algebra with perforation and stable rank 2.

Let B := A⊗K be the stabilization of A. We first give the properties of A
and B that we shall need.

(i) The algebra A is simple, unital, and has a unique tracial state, τA. Thus,
B has a unique (up to a scalar multiple) semicontinuous trace, τA ⊗ τK. Also, τA
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can be extended, by a construction with approximate units, to τ on the positive
elements of the multiplier algebraM(A⊗K). Since on positive elements these
traces are in fact the same except for domain (if we regard A as the e11 corner
inside B), we may as well denote all of them by τ.

(ii) The dimension of Xi is 2(i + 1)!.
(iii) The rank of pi is (i + 1)!.

We shall use a couple of results from topological K-theory. Recall that one
of the main notions of this theory is stable equivalence of vector bundles: Two
vector bundles over a compact metric space X are said to be stably equivalent or
stably isomorphic, if they become isomorphic after addition (to both) of some trivial
vector bundle. The following result is from Section 8.1 of [8], Theorem 1.2 and
Theorem 1.5:

LEMMA 2.2. Let ξ2 and ξ2 be stably isomorphic complex vector bundles, of fibre

dimension r, over some finite CW complex of topological dimension d. Let k :=
⌈

d
2

⌉
(the

least integer greater than or equal to d
2 ). Then:

(i) ξi is isomorphic to ηi ⊕ θi where ηi has fibre dimension at most k and θi is trivial.
(ii) If r > k, then ξ1 and ξ2 are actually isomorphic.

Lemma 2.2 implies a sharpened version (with estimates) of Swan’s Theo-
rem. We provide a short proof for the convenience of the reader.

LEMMA 2.3. Let X be a connected finite CW complex with topological dimension

d. Let k :=
⌈

d
2

⌉
(the least integer greater than or equal to d

2 ). Let ξ be a vector bundle
of constant fibre dimension r over X. Then there is a vector bundle γ over X, with fibre
dimension k, such that ξ ⊕ γ is a trivial vector bundle.

Proof. By the properties of K-theory, there is a vector bundle γ′ over X, with
fibre dimension greater than k, such that ξ ⊕ γ′ is a trivial bundle. By Lemma 2.2
(i), γ′ = γ⊕ θ where γ is a vector bundle with fibre dimension k and θ is a trivial
vector bundle. Then ξ⊕ γ is a vector bundle over X which is stably isomorphic to
a trivial bundle. But ξ ⊕ γ has fibre dimension greater than or equal to k. Hence
by Lemma 2.2 (ii), ξ ⊕ γ is a trivial bundle.

Villadsen points out that his algebra A cannot have the strict comparability
property for projections even though there is a unique trace. However, the above
results on stable isomorphism yield the following very weak form of comparabil-
ity for projections:

LEMMA 2.4. Suppose that p is a projection in B. Then there is a positive real
number L, dependent only on p, such that for any projection q ∈ B, whenever L 6 τ(q)
then p is Murray–von Neumann equivalent in B to a subprojection of q.

Proof. We will show that we can take L = τ(p) + 2.
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Suppose that τ(q) > τ(p) + 2. First perturb p and q into a block. Since pro-
jections which are close in norm are Murray–von Neumann equivalent, we can
regard p and q as elements of An⊗Mm for some n and m. Let d be the topological

dimension of the base space Xn of An and let k :=
⌈

d
2

⌉
, the least integer greater

than or equal to d
2 .

By Lemma 2.3, there is a projection s ∈ An ⊗ K ∼= C(Xn) ⊗ K, such that
s ⊥ p, s has rank k, and p⊕ s corresponds to a trivial vector bundle over Xn. The
fact that An and C(Xn) are stably isomorphic comes from work of Dixmier and
Douady, see for example [19] for an exposition. Also notice that p⊕ s corresponds
to a trivial vector bundle with fibre dimension rank(p) + k.

Recall that 1An ⊗ e1,1 is a projection with rank (n + 1)! in C(Xn)⊗K, and Xn
has topological dimension 2(n + 1)! > 2k. Hence, since τ(q) > τ(p) + 2 = τ(p) +
2τ(1An ⊗ e1,1), q corresponds to a vector bundle over Xn with fibre dimension
greater than or equal to rank(p) + 2k. Hence, by Lemma 2.2 (i), q can be realized
as an orthogonal direct sum q = q1 ⊕ q2, such that q1 is a projection of rank k in
C(Xn)⊗K, and such that q2 corresponds to a trivial vector bundle (over Xn) with
fibre dimension at least rank(p) + k. From this and the previous paragraph, we
have that p⊕ s is Murray–von Neumann equivalent (in B) to a subprojection of
q. Hence, p is Murray–von Neumann equivalent in B to a subprojection of q as
required.

Rørdam has proven that many Villadsen algebras have the SP property —
every hereditary subalgebra contains a projection. For this particular algebra A,
we can do somewhat better.

LEMMA 2.5. Let c be a positive element of A⊗Mn, with norm 1. The hereditary
subalgebra c(A⊗Mn)c of A⊗Mn contains a projection, q, and we can choose q so that
τ(q) is arbitrarily close to lim

k→∞
τ(c1/k).

Proof. Note that since A⊗Mn is unital, lim
k→∞

τ(c1/k) is a finite (nonnegative)

real number. Choose l so large that τ(c1/l) is within δ of lim
k→∞

τ(c1/k). There exists

a positive element b in the algebraic direct limit such that ‖b‖ = 1 and b is within
δ of c1/l . A factoring argument, (for example, apply Lemma 2.2 in [12]) shows
that (b − δ)+ = rc1/lr∗ for some contraction r, and then in particular, (b − δ)+
is Murray–von Neumann equivalent (in a generalized sense) to some element
of c(A⊗Mn)c. Now since (b − δ)+ is within δ of b, and since b is within δ of
c1/l , (b − δ)+ is within 2δ of c1/l . Hence, τ((b − δ)+) is within 2nδ of τ(c1/l).
Hence τ((b− δ)+) is within 2nδ + δ of lim

k→∞
τ(c1/k). Of course, n is fixed and δ is

arbitrary.
Hence, we have reduced to the case where the generator, which we again

denote c, is in the algebraic direct limit. Let ε > 0 be given. Choose l > 0 such
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that τ(c1/l) is within ε of lim
k→∞

τ(c1/k). We may write c1/l = φi,∞(e) (= (φi,∞ ⊗
IdMn)(e)), where e is a positive element with norm one contained in the building
block Ai ⊗ Mn. Moreover, by increasing i if necessary, we can suppose that e is
nowhere zero, as pointed out by Villadsen in [25], page 111, as part of his proof
that his algebras are simple. Thus, we can suppose that none of the e(tij) are zero.

Applying the connecting map N times, we notice that φi,i+N(e) (= (φi,i+N ⊗
idMn)(e)) must have the form

(e(π1
i π1

i+1· · ·π1
i+N(x))⊗θ)⊕(e(ti,1)⊗q1)⊕(e(ti,2)⊗q2)⊕· · ·⊕(e(ti,K(N))⊗qK(N))

where θ, q1, q2, . . . , qK(N) are pairwise orthogonal projections with equal rank in
Ai+N ⊗Mn. Moreover, as N → ∞, K(N) → ∞. Hence, we may assume that N is
sufficiently large so that 1

K(N)+1 < ε.
Next, note that since A = lim

→
Ak is an inductive limit where the connect-

ing maps are unital, the tracial state space T(A) can be expressed as T(A) =
lim
←

T(Ak), an inverse limit.

Note also that for each j, e(ti,j) is a finite linear combination of pairwise or-
thogonal projections in piKpi ⊗Mn, where the scalars are nonnegative real num-
bers. Fix j. Let

e(ti,j) = rj,1 pj,1 + rj,2 pj,2 + · · ·+ rj,m(j)pj,m(j)

where each rj,s is a strictly positive real number (with absolute value less than
or equal to one) and the pj,s are pairwise orthogonal nonzero projections. Now

consider the projection q :=
K(N)

∑
j=1

m(j)
∑

s=1
pj,s ⊗ qj in Mn ⊗ Ai+N ⊆ Mn ⊗ A. q is in the

hereditary subalgebra of A which is generated by c. Hence,

τ(c1/l) 6 τ(q) + εn 6 lim
k→∞

τ(c1/k) + εn.

The second inequality is since q is a projection in the hereditary subalgebra gen-
erated by c. But τ(c1/l) is within ε of lim

k→∞
τ(c1/k). Hence, τ(q) is within ε + 2εn

of lim
k→∞

τ(c1/k). Since n is fixed and since ε is arbitrary, we are done.

The next lemma is implicit in the proof of Theorem 3.1 in [5]. We present
the short argument for the convenience of the reader.

LEMMA 2.6. Let A be a separable unital C∗-algebra. Let c be an element of
M(A⊗K). Then there are diagonal elements c0, c1 and c2 ofM(A⊗K), and there is
an element b of A⊗K, such that

c = c0 + c1 + c2 + b.

The diagonal elements are each with respect to possibly different approximate units of
1⊗K.

Moreover, if c is positive, then the ci can all be taken to be positive.
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Proof. Let {en}∞
n=1 be a countable approximate unit for A⊗K, consisting of

an increasing sequence of projections. Let 1M(A⊗K) be the unit of the multiplier
algebra A⊗K. Note that for any projection p in A⊗K, the norm ‖(1M(A⊗K) −
em)cp‖ approaches zero as m approaches infinity. Hence, replacing {en}∞

n=1 by a
subsequence if necessary, we may assume that

∞

∑
n=1
‖(1M(A⊗K) − en+1)c(en − en−1)‖

is finite, and similarly for
∞

∑
n=1
‖(1M(A⊗K) − en+1)c∗(en − en−1)‖.

For each n > 1, let fn := en − en−1. Hence,

c = c0 + c1 + c2 + b,

where for i = 0, 1, 2,

ci :=
∞

∑
n=0

( f3n+i−1 + f3n+i + f3n+i+1)c f3n+i.

This completes the first part of the lemma.
Now suppose that c is positive. As in the first part of this argument, de-

compose c1/2 = c0 + c1 + c2 + b, where the ci’s are diagonal and where b is an
element of A⊗K. Note that by our construction above, cic∗j = 0 for i 6= j. Hence,
c = c0c∗0 + c1c∗1 + c2c∗2 + b, where b is an element of A ⊗ K. Now each cic∗i is a
positive diagonal element ofM(A⊗K), as required.

LEMMA 2.7. Let B be a separable, stable C∗-algebra. Suppose that c is a norm-full
positive element of M(B)/B, and x is an element of M(B)/B, such that 1M(B)/B =
xcx∗. Suppose that d is a positive lift of c toM(B). Then there exists an element y in
M(B) such that 1M(B) = ydy∗.

Proof. Lifting x to x̃ in M(B) we have that x̃dx̃∗ = 1M(B) + b for some
b ∈ B. Since b is stable, there is a copy of O∞ in the multipliers, and in particular,
multiplier isometries vi such that ∑ viv∗i converges strictly to 1. Thus, given ε > 0
there exists an i such that ‖v∗i bvi‖ = ‖v∗i b(viv∗i )vi‖ < ε. It follows that for a
sufficiently large i, the positive element v∗i x̃dx̃∗vi = 1M(B) + v∗i bvi is invertible.
Denoting the inverse by r, let y := r1/2v∗i x̃.

We now proceed to prove our result.

THEOREM 2.8. There exists a simple AH-algebra with stable rank two, perfora-
tion, and the corona factorization property.

Proof. Let A be the unital simple AH-algebra described just before Theo-
rem 2.1. We use the same notation as thence.

Let B := A⊗K be the stabilization of A.
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We are to show that every full element c ∈ M(B) is quasi-invertible (i.e.
1 = rcr∗).

First, we reduce to the case where c is diagonal with respect to some ap-
proximate unit of 1⊗K and has trace τ(c) = ∞.

Let Jτ be the proper ideal ofM(B) that is generated by τ. This means that Jτ

is the smallest ideal inM(B) that contains all positive elements a ∈ M(B) with
τ(a) < ∞. See [20].

Since Jτ contains B and since c is norm-full in M(B), it is clear that in the
decomposition c = c1 + c2 + c3 + b of Lemma 2.6, not all the ci can belong to the
ideal Jτ . Thus, at least one of the ci, say c1, is not contained in Jτ . Hence, τ(c1) =
∞. To complete the reduction, we show that if 1 = rc1r∗, then there is some r′

with 1 = r′cr′∗. Since c1 + c2 + c3 > c1, we have that r(c1 + c2 + c3)r∗ > 1, and
thus that r(c1 + c2 + c3)r∗ is invertible. It follows that c = c1 + c2 + c3 + b is quasi-
invertible in the coronaM(B)/B, so that by Lemma 2.7 the original element c is
quasi-invertible in the multipliersM(B)/B. This concludes the reduction.

Now fix a nonzero projection θ in B. By Lemma 2.4, let L be a real number
such that for a projection q ∈ B, L 6 τ(q) implies that θ is Murray–von Neumann
equivalent to a subprojection of q.

We are given that c :=
∞
∑
1

ci, where the sum is in the strict topology, and

all the ci are pairwise orthogonal positive elements of B. We are also given that
τ(c) = ∑ τ(ci) is infinite. Now for δ > 0, let fδ : [0, ‖c‖ + 1] → R be fδ(λ) :=
(λ− δ)+. Since Jτ is norm-closed, the complement is open, and thus there exists
a δ′ > 0 such that fδ′(c) is not an element of Jτ . Hence, τ( fδ′(c)) = ∞. To simplify
notation, let d := fδ′(c) and let dn := fδ′(cn) for all n. These elements have the
following properties:

(i) the dn are pairwise orthogonal positive elements of B,

(ii) d =
∞
∑

n=1
dn, where the sum converges in the strict topology inM(B),

(iii) 0 6 d 6 c and 0 6 dn 6 cn for all n, and

(iv) τ(d) =
∞
∑

n=1
τ(dn) = ∞.

Because the series
∞
∑

n=1
τ(dn) diverges, it follows from Lemmas 2.5 and 2.4

that there is a sequence {Nl}∞
l=1 of increasing positive integers such that L + 2 6

Ni+1

∑
n=Ni

τ(dn), and in particular, θ is equivalent to a projection pi in the heredi-

tary subalgebra Her
( Ni+1

∑
n=Ni

dn

)
of B that is generated by

Ni+1

∑
n=Ni

dn. We thus have

a sequence pi of pairwise orthogonal equivalent projections, and it is clear that

P :=
∞
∑
1

pi is properly infinite. The projection P is in the hereditary subalgebra
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Her(d) of M(B) that is generated by d. It follows, for example by Cohen’s fac-
torization theorem [4], that there exists a positive function g with g(0) = 0, such
that P 6 g(d). Since g ◦ fδ′ is a real-valued function that is zero in a neighbour-
hood of 0, there is some constant α > 0 such that (g ◦ fδ′)(λ) 6 αλ. But then
P 6 g(d) 6 αc. From the fact that P is a full and properly infinite projection, it
follows that rPr∗ = 1 for some r. Hence αrcr∗ is invertible, and so is rcr∗ as was
to be shown.

From the proof of the above, we have a corollary indicating that the ideal
structure of the multipliers of a Villadsen algebra is partially controlled by the
traces:

REMARK 2.9. A positive element of the multiplier algebra of the (stabilized)
Villadsen algebra of Theorem 2.8 is full if and only if the (extended) trace is finite
on the element.

COROLLARY 2.10. Suppose that B be the stabilization of the algebra of Theo-
rem 2.8. Then B is regular.

Proof. We freely use the notation of the proof of Theorem 2.8.
Suppose that D is a full, hereditary subalgebra of B, with no nonzero unital

quotients and no nonzero bounded traces.
Let {ei,j}16i,j<∞ be a system of matrix units forK. Let 1D⊗ e1,1 be the projec-

tion inM(D⊗K), such that 1D ⊗ e1,1 is the strict limit of an (and hence, any) ap-
proximate unit forD⊗ e1,1. Hence, (1D⊗ e1,1)(D⊗K)(1D⊗ e1,1) = D⊗ e1,1

∼= D.
Hence, since D ⊗ K is ∗-isomorphic to B, there is a projection P in M(B), such
that PBP is ∗-isomorphic to D (though not necessarily equal).

Now note that (using notation as in Theorem 2.8) since D has no nonzero
bounded traces, τ(P) = ∞. Hence, since P is a projection, P cannot be an element
of Jτ . Hence, using the same argument as that of Theorem 2.8, we can show that
P is Murray–von Neumann equivalent to the unit ofM(B). (We note that if A is
an element ofM(B) that is not in Jτ , then for every b ∈ B, A + b is also not in Jτ .)

Since P is Murray–von Neumann equivalent to the unit of M(B), D ∼=
PBP ∼= B. Hence, D is stable.

Acknowledgements. We thank an anonymous referee for going over and above the
call of duty, in particular with respect to our Theorem 2.8 and Lemma 2.5.
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