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ABSTRACT. We derive a result on the boundedness of the multiplicity of the
singular values for Hankel operator, whose symbol is of the form

F(z) :=
∫ dλ(t)

z− t
+ R(z),

where λ is a complex measure with infinitely many points in its support which
is contained in the interval (−1, 1), and whose argument has bounded varia-
tion there, while R is a rational function with all its poles inside of the unit
disk. For that we use results on the zero distribution of polynomials satisfying
the orthogonality relations of the form∫

tjqn(t)Q(t)
wn(t)
q̃2

n(t)
dλ(t) = 0, j = 0, . . . , n− s− 1,

where Q is the denominator of R, s =deg(Q), q̃n(z)=znqn(1/z) is the reciprocal
polynomial of q, and {wn} is the outer factor of an n-th singular vector of HF.
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1. INTRODUCTION

In the most general setting a Hankel operator is an operator acting on `2
given in the canonical basis by a matrix of the form {αj+k}j,k>0 with αj ∈ C. Such
a definition admits numerous realizations which, in turn, imply a wide range
of applications of Hankel operators. In particular, they appeared to be an ex-
tremely important class of operators in approximation theory. The elaboration of
the properties of Hankel operators from the approximation view point initiated
with the celebrated AAK-Theory that showed the link between meromorphic ap-
proximation of L∞ functions and singular numbers of the corresponding Hankel
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operators ([1], see also Chapter 4 of [16]). Later, this theory was generalized to Lp

functions on the unit circle, 2 6 p 6 ∞ (see [5], [20], and [8]), and to more gen-
eral domains of approximation (see [19]). Moreover, these methods turned out
to be instrumental for investigating the degree of rational approximation of ana-
lytic functions (see [17], [12], and [21]) and helped to describe classes of analytic
functions in the disk (Besov spaces) in terms of the rate of rational approximation
(see [14], [15], [13], and [22]). In another connection, Hankel operators also play
a significant role in operator theory. In particular, G. Pisier [18] (see also Theo-
rem 15.3.1 in [16]) showed that there are polynomially bounded operators on a
Hilbert space that are not similar to a contraction by using Hankel operators tech-
niques. Further, it was shown that geometric problems in the theory of stationary
Gaussian processes can be reduced to the question of describing those bounded
linear operators on a Hilbert space that are unitarily equivalent to Hankel opera-
tors. A program of N.K. Nikolski to characterize such bounded linear operators
in spectral terms (see [10]) was successfully completed in the self-adjoint case
(see [9]). In the course of the proof it was shown that the absolute value of the
difference of the multiplicities of symmetric eigenvalues of a Hankel operator
(self-adjoint or not) is bounded by one. Nevertheless the question of the bound-
edness of the multiplicities themselves remained open. The modest objective of
the present paper is to prove that the multiplicities of the singular values of Han-
kel operators whose symbol is the Cauchy transform of a complex measure with
argument of bounded variation is bounded in terms of that variation. If moreover
the measure is sufficiently nonvanishing, the singular values are asymptotically
simple.

This paper is organized as follows. In the next section we introduce some
notation and state the main results. The third section is devoted to known results
that are crucial for the proofs that are given in the last section.

2. STATEMENTS OF THE RESULTS

Denote by Hol(D) the set of analytic functions on a domain D ⊂ C. Among
these functions we shall distinguish some special classes, namely, the Hardy
spaces. Let Lp(Tr) stand for the space of p-summable functions on Tr := {|z| =
r : z ∈ C}, r > 0, with the usual norm

‖h‖p
p,r :=

1
2π

∫
T

|h(rξ)|p|dξ| < ∞, if p ∈ [1, ∞),

‖h‖∞,r := ess. sup
ξ∈T

|h(rξ)| < ∞, if p = ∞.

Hereafter, we shall omit the subindex r for the case of the unit circle, T. The Hardy
space of exponent p, p ∈ [1, ∞], of the open unit disk, D, and the complement of
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the closed unit disk, C \D, are defined as

Hp :=
{

h ∈ Hol(D) : sup
r<1

‖h‖p,r < ∞
}

,(2.1)

Hp :=
{

h ∈ Hol(C \D) : sup
r>1

‖h‖p,r < ∞
}

,

respectively. Sometimes it is necessary to consider only those functions from Hp

that vanish at infinity. We shall denote this subspace of Hp by Hp
0 .

By the Fatou theorem any function from Hp or Hp, p ∈ [1, ∞], has nontan-
gential boundary values almost everywhere on T, which define the trace function.
The trace of any such function belongs to Lp(T) for the corresponding index p,
uniquely defines the function, and has the Lp(T) norm equal to the supremum in
(2.1). Therefore we may treat Hardy spaces as special classes of integrable func-
tions on T. In particular, we have that H2, H2 ⊂ L2(T) and L2(T) = H2 ⊕ H2

0.
Throughout the paper the capital letters H and K shall be reserved for the

notation of Hilbert spaces. Further, L(H; K) will stand for the space of linear
operators from H to K.

Now we are ready to give a formal definition of Hankel operators acting on
the Hardy class H2. Let f ∈ L∞(T). The Hankel operator with symbol f , denoted by
H f ∈ L(H2; H2

0), is defined by the rule

H f (h) := P−( f h),

where P− is the antianalytic projection, i.e. the projection of L2(T) onto H2
0.

For n ∈ Z+, the n-th singular number of the operator H f is defined as

sn(H f ) := inf{‖H f −O‖ : O : H2 → H2
0 a linear operator of rank 6 n},

where ‖ · ‖ stands for the operator norm between two Hilbert spaces. Clearly
{sn(H f )}n∈N is nonincreasing sequence. By s∞(H f ) we shall denote the distance
from H f to compact operators, i.e.

s∞(H f ) = lim
n→∞

sn(H f ).

By the well-known theory of E. Schmidt (Theorem 7.1.1, Vol. I of [11]), s is a singu-
lar number of a compact operator O ∈ L(H; K) if and only if s2 is an eigenvalue
of the operator O∗O, where O∗ is the adjoint operator to O.

Although {sn(H f )} is nonincreasing, it is not necessarily strictly decreasing.
Let µn(H f ) stand for the multiplicity of sn(H f ), i.e. µn(H f ) is an integer such that
there exist constants k, m ∈ Z+ for which µn(H f ) = m− k− 1 and

sk(H f ) > sk+1(H f ) = · · · = sn(H f ) = · · · = sm−1(H f ) > sm(H f ).

The main objective of this paper is to investigate the behavior of the sequence
{µn(H f )} for Hankel operators whose symbol assumes some special form.
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The starting point for the investigation of the question above is the cele-
brated theorem of V.M. Adamyan, D.Z. Arov, and M.G. Krein, also known as the
AAK Theorem, ([1], see also Chapter 4 of [16], and [5]) which establishes a connec-
tion between Hankel operators and problems of approximation by meromorphic
functions. The set of meromorphic functions in L∞(T) with at most n poles in D is
defined as

H∞
n := H∞B−1

n ,
where Bn is the set of Blaschke products of degree at most n, i.e. the set of rational
functions of the form

b(z) = eic
m

∏
j=1

z− zj

1− zjz
, m 6 n, zj ∈ D, c ∈ R.

This way of writing b−1
n g = h ∈ H∞

n is just a trick to express that h is the ratio of
an analytic function which is bounded in D and a polynomial of degree at most
n, while ‖g‖∞ = ‖h‖∞ since |b| = 1 everywhere on T.

The AAK Theorem states that for any f ∈ L∞(T) and n ∈ Z+ we have

inf
g∈H∞

n
‖ f − g‖∞ = sn(H f )

and this infimum is attained for some function gn ∈ H∞
n . Further, assume that

sn(H f ) > s∞(H f ) (in particular, this holds whenever f belongs to the Douglas
algebra H∞ + C(T), where C(E) stands for the space of continuous functions on a
compact set E), then gn is unique,

| f − gn| = sn(H f ) a.e. on T,(2.2)

f − gn =
H f (vn)

vn
,(2.3)

where vn is an arbitrary eigenvector of H∗
fH f associated to sn(H f ). Any such

function vn, normalized to have unit norm in H2, is called a singular vector associ-
ated to gn. We point out that each best approximant gn may have several associ-
ated singular vectors, but there always exists one with inner-outer factorization

(2.4) vn(z) = bn(z)wn(z), z ∈ D,

where bn is a Blaschke product of exact degree n and wn is an outer function.
Here, one should recall the well-known fact [7] that any nonzero function in Hp

can be uniquely factored as f = jw, where

w(z) = exp
{ 1

2π

∫
ξ + z
ξ − z

log | f (ξ)||dξ|
}

belongs to Hp and is called the outer factor of f , while j has modulus 1 a.e. on T
and is called the inner factor of f . The latter may be further decompose as j = bS,
where b is a Blaschke product, while

S(z) = exp
{
−

∫
ξ + z
ξ − z

dν(ξ)
}
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is the singular inner factor associated with ν, a positive measure on T which is
singular with respect to the Lebesgue measure. For simplicity, we often say that a
function is outer (respectively inner) if it is equal to its outer (respectively inner)
factor. Equation (2.4) means, in particular, that vn has no singular inner factor
and that its inner factor is a Blaschke product of degree n.

Summarizing the preceding discussion we can see that the AAK Theorem
not only describes the error of best approximation of an L∞(T) function by mero-
morphic ones, but also provides a way to construct best approximants.

As mentioned before, we are going to consider only symbols of Hankel op-
erators of some special type, namely Cauchy transform of complex Borel mea-
sures. Let ν be such a measure with supp(ν) ⊂ (−1, 1) that consists of an infinite
number of points. We shall assume that ν has an argument of bounded variation, i.e.
the Radon-Nikodym derivative with respect to |ν| is of bounded variation, where
|ν| stands for the total variation of ν. In other words, ν is of the form

dν(x) = ei arg(ν;x)d|ν|(x),

for some real-valued argument function arg(ν; ·) such that

V(arg(ν; ·); supp(ν)) := sup
{ N

∑
j=1
| arg(ν; xj)− arg(ν; xj−1)|

}
< ∞,

where the supremum is taken over all finite sets of points x0 < x1 < · · · < xN
from supp(ν) as N ranges over N. Note that we may extend arg(ν; ·) to the whole
convex hull of supp(ν), say [c, d], without increasing the variation. This is easy to
see if we extend arg(ν; ·) linearly in each component of [c, d] \ supp(ν). In other
words, we may arrange the extension of arg(ν; ·) so that

V(arg(ν; ·); supp(ν)) = V(arg(ν; ·); [c, d]).

Let u ∈ C(E). We put

arg(u; z) = −i log
( u(z)
|u(z)|

)
, z ∈ E.

Clearly, arg(u; ·) is a multi-valued function which is defined everywhere on E
except at the zeros of u. Thus, we shall specify which branch is used on each
particular occasion.

Now, we are ready to state the main theorems.

THEOREM 2.1. Let F ∈ C(T) be of the form

(2.5) F(z) :=
∫ dλ(x)

z− x
+ R(z),

where the measure λ has infinitely many points in its support contained in the interval
(−1, 1) and an argument of bounded variation, while R = P/Q is a rational function
with no poles on T. Then the sequence of multiplicities of singular values of the Hankel
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operatorHF, {µn(HF)}n∈Z+ , is uniformly bounded. More precisely, the following upper
bound holds for any n ∈ Z+:

µn(HF)6
2
π

[V(arg(λ; ·); [a, b])+V(arg(Q; ·); [a, b])+πdeg(Q)+VW ]+NW+1,(2.6)

where [a, b] is the convex hull of supp(λ),

NW := max
n∈Z+

#{ξ ∈ T : wn(ξ) = 0},(2.7)

VW := sup
n∈Z+

V(arg(wn; ·); [a, b]),(2.8)

and wn is the outer factor of a singular vector vn with exactly n zeros in D associated to
gn, the best meromorphic approximant to F of order n given by the AAK-Theory.

The finiteness of the constants NW and VW will be shown during the proof
of the theorem.

It is worth noting that in the case where F is just a Markov function, i.e. the
Cauchy transform of a positive measure supported on the real line, all the singu-
lar values of the corresponding Hankel operator are simple (see [4]). This phe-
nomenon is due to the positivity of the measure and cannot be expected to hold
in the complex case. Nevertheless, in the case where F is the Cauchy transform of
a complex measure supported on an interval that has a Dini-continuous nonva-
nishing Radon-Nykodim derivative with respect to the logarithmic equilibrium
distribution on this interval, it is possible to deduce more detailed information
on the sequence of outer factors {wn}, which, in turn, can be used to show that
singular values of the corresponding Hankel operator are asymptotically simple.

THEOREM 2.2. Let F∈C(T) be of the form (2.5), where the measure λ is such that

(2.9) dλ(x) =
`(x)dx

(x− a)α(b− x)β
, α, β ∈ (0, 1/2], x ∈ [a, b] ⊂ (−1, 1),

with ` being a complex-valued Dini-continuous nonvanishing function on [a, b] having
an argument of bounded variation, while R is a rational function with no poles on T or
[a, b]. Then

(2.10) lim
n→∞

µn(HF) = 1.

The proofs of the theorems rely on two known results that are significant
on their own. For the ease of the reader we present them separately in the next
section.

3. KERNELS OF TOEPLITZ OPERATORS AND MEASURES ORTHOGONAL TO POLYNOMIALS

This section is devoted to known results on the spectrum of Toeplitz oper-
ators and on the size of the variation of an argument of a measure orthogonal to
polynomials up to some fixed degree.
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Before we state these results we need to introduce several additional con-
cepts. Let, as before, f ∈ L∞(T). Recall that the Toeplitz operator with symbol f ,
T f ∈ L(H2), is defined as

T f (h) := P+( f h).

It is easy to see that

T f +H f = M f ,

where M f : H2 → L2(T) is the operator of multiplication by f . Recall also
that an operator O ∈ L(H) is called Fredholm if it is invertible modulo compact
operators. The index of a Fredholm operator O is defined by

ind(O) := dim ker(O)− dim ker(O∗).

The essential spectrum, σe(O), of a bounded operator O is, by definition,

σe(O) := {z ∈ C : O − zI is not Fredholm}.

The next notion that we need is the notion of the winding number with respect
to the origin of a continuous function on T. Let u ∈ C(T) and assume that u does
not vanish on T. Further, let arg(u; ·) be any continuous branch of the argument
of u. Then the winding number of u with respect to the origin is defined by

wind(u) :=
1

2π
[arg(u; 2π)− arg(u; 0)].

Clearly wind(u) does not depend on the choice of the branch of the argument
of u.

In general, let u be an invertible function in H∞ + C(T), i.e. 1/u ∈ H∞ +
C(T). Denote also by u the harmonic extension of u into D. Then it is known (see
Theorem 3.3.5 in [16]) that there exists r0 ∈ (0, 1) such that |u| is bounded away
from zero on the annulus {z : r0 < |z| < 1} and the functions ur(ξ) := u(rξ),
ξ ∈ T, have the same winding number for any r ∈ (r0, 1). Thus, for any invertible
function u in H∞ + C(T) we define the winding number as

wind(u) := wind(ur), r ∈ (r0, 1).

Now we can describe the essential spectrum of a Toeplitz operator (see Theo-
rem 3.3.8 in [16]).

THEOREM P. Let u ∈ H∞ + C(T). Then for any z0 /∈ σe(Tu)

(3.1) ind(Tu − z0I) = −wind(u− z0).

Moreover, if u is a continuous function then σe(Tu) = u(T).

We continue this section with the result on a size of the variation of a mea-
sure. It was stated in Lemma 3.1(a) in [6] and shown in the course of the proof of
Lemma 3.2 in [2].
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LEMMA B. Let ν be a measure with an argument of bounded variation, [c, d]
be the convex hull of supp(ν), and ψ be a real-valued function of bounded variation on
[c, d]. Suppose further that for some l ∈ N holds∫

xjeiψ(x)dν(x) = 0, j = 0, . . . , l − 1.

Then

(3.2) V(ψ + arg(ν; ·); [c, d]) > lπ.

Recall that any branch of the argument of ν can be continued to the whole
interval [c, d] without increasing its variation and therefore V(ψ + arg(ν; ·); [c, d])
is well-defined.

4. PROOFS

For the upcoming proofs we need to define one more concept, namely, the
angle in which an interval is seen at a point. For any ξ 6= 0 ∈ C, we let Arg(ξ) ∈
(−π, π] be the principal branch of the argument and for ξ = 0 we set Arg(0) = π.
Under such a definition, Arg(·) becomes a left continuous function on R. Now,
for any interval [a, b] ⊂ R we define the angle in which this interval is seen at
ξ ∈ C by

Angle(ξ, [a, b]) := |Arg(a− ξ)−Arg(b− ξ)|.
It is easy to see that for any ξ /∈ D and any [a, b] ⊂ (−1, 1) there holds

Angle(ξ, [a, b]) 6
π

2
.

Proof of Theorem 2.1. Fix an arbitrary n ∈ Z+. Without loss of generality
we may assume that sn−1(HF) > sn(HF). Denote by gn the best meromorphic
approximant to F on T out of H∞

n (recall that gn is unique by the compactness of
HF). Then, by the circularity property (2.2), the function

un := sn(HF)−1(F− gn)

is unimodular almost everywhere on the unit circle. It is known (Theorem 4.1.7
in [16]) that in this case

dim ker(Tun) = 2n + µn(HF).

It is also known (Theorem 3.1.4 in [16]) that either ker(Tu) = {0} or ker(T ∗u ) =
{0} for any nonzero function from L∞(T). Thus,

(4.1) ind(Tun) = dim ker(Tun) = 2n + µn(HF).

Therefore, upon showing that un is a continuous and nonvanishing function on
T, we will obtain from (4.1) and (3.1) that

(4.2) µn(HF) = −2n−wind(un).
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Indeed, in this case zero does not belong to σe(Tun) = u(T) and we may apply
Theorem P. To show continuity of un recall from (2.3) that by the AAK Theorem
there exists a singular vector vn ∈ H2 with the inner-outer factorization

(4.3) vn = bnwn,

where bn is a Blaschke product of exact degree n and wn is an outer function, such
that

(4.4) un =
HF(vn)

vn
.

Moreover, it is known (see e.g. Sections 8 and 9 in [5]) thatHF(vn) has the follow-
ing representation, where jn is some inner function:

(4.5) HF(vn)(z) =
sn(HF)

z
(jnbnwn)

(1
z

)
, z ∈ C \D.

In another connection, by the definition of Hankel operators and (2.5) we
have that

HF(vn)(z) = P−(Fvn)(z) =
1

2πi

∫
T

F(ξ)vn(ξ)
z− ξ

dξ

=
1

2πi

∫
T

∫ vn(ξ)
(z− ξ)(ξ − x)

dλ(x)dξ +
1

2πi

∫
T

R(ξ)vn(ξ)
z− ξ

dξ

=
∫ vn(x)

z− x
dλ(x) +

1
2πi

∫
T

P(ξ)vn(ξ)
z− ξ

dξ

Q(ξ)
, z ∈ C \D,(4.6)

where R = P/Q. Note that the second integral in (4.6) is, in fact, a rational
function with denominator Q by the Cauchy integral formula. Combining (4.5)
and (4.6) we get that

(4.7) (jnbnwn)(z)= sn(HF)−1
(∫ vn(x)

1−xz
dλ(x)+

1
2πi

∫
T

P(ξ)vn(ξ)
1− ξz

dξ

Q(ξ)

)
, z∈D.

Observe that the right-hand side of (4.7) is well-defined for z ∈ Ω, where

(4.8) Ω := C \
({

z ∈ C : Q
(1

z

)
= 0

} ⋃ {
z ∈ C :

1
z
∈ supp(λ)

})
.

In other words, equation (4.7) provides an analytic continuation of the product
jnbnwn outside of the unit disk. In particular, this means that jn is a finite Blaschke
product and the number of zeros of wn on T is finite. Let {ζ j,n} be the set of zeros
of wn on T. Then wn can be written as

(4.9) wn(z) = w#
n(z)Pn(z), Pn(z) := ∏

j
(z− ζ j,n),
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where w#
n is an analytic and zero-free function in some neighborhood of D. Then

(4.4) with the help of (4.3), (4.5), and (4.9) yields

un(ξ)=
sn(HF)

ξ

(jnbnw#
n)(ξ)

(bnw#
n)(ξ) ∏

j

( −1
ζ j,nξ

)
=

sn(HF)
ξ(jnb2

n)(ξ)
w#

n(ξ)
w#

n(ξ)∏
j

( −1
ζ j,nξ

)
, ξ∈T.(4.10)

Equation (4.10) shows that un is a continuous nonvanishing function on T which,
in turn, validates equation (4.2).

Denote by Qn the numerator of the Blaschke product jn. Then we obtain
from (4.10) that

(4.11) wind(un) = −1− deg(Pn)− deg(Qn)− 2n,

since w#
n is zero-free and analytic in some neighborhood of D. Combining (4.11)

and (4.2) we get that

(4.12) µn(HF) = deg(Qn) + deg(Pn) + 1 6 deg(Qn) + NW + 1,

where NW was defined in (2.7). Thus, to prove (2.6) it remains to show that

(4.13) kn :=deg(Qn)6
2
π

(V(arg(λ; ·); [a, b])+V(arg(Q; ·); [a, b])+π deg(Q)+VW )

and that the constants NW and VW are finite. Recall that VW was defined in (2.8).
It is known (Lemma 3.4 in [6], Proposition 6.3 in [3], and Theorem 10.1 in [5])

that the sequence {wm}m∈Z+ forms a normal family in Ω, where Ω was defined in
(4.8). Moreover, the zero function is not a limit point of this family, since ‖wm‖2 =
1 for each m ∈ Z+. This proves the finiteness of NW .

Now, recall that jn can be represented as jn = Qn/Q̃n, where we set p̃(z) =
zk p(1/z), k = deg(p), for any polynomial p. Similarly we can write bn = qn/q̃n,
where qn is a monic polynomial with all zeros in D and of exact degree n. Let
z0 ∈ D be such that (qnQn)(z0) = 0. Then we deduce from (4.7) that

(4.14)
∫ vn(x)

1− xz0
dλ(x) +

1
2πi

∫
T

P(ξ)vn(ξ)
1− ξz0

dξ

Q(ξ)
= 0.

By taking linear combinations of equation (4.14) with different roots of qn and Qn
we obtain that

(4.15)
∫ p(x)vn(x)

q̃n(x)Q̃n(x)
dλ(x) +

1
2πi

∫
T

p(ξ)P(ξ)vn(ξ)
q̃n(ξ)Q̃n(ξ)

dξ

Q(ξ)
= 0

for any polynomial p of degree at most n + kn − 1. It can be readily verified that
equation (4.15) and the Cauchy integral theorem imply the following orthogonal-
ity relations

(4.16)
∫ xjQ(x)vn(x)

q̃n(x)Q̃n(x)
dλ(x) = 0, j = 0, . . . , n + kn − deg(Q)− 1.
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By using the inner-outer factorization (4.3) we can rewrite (4.16) in the form

(4.17)
∫

xjqn(x)
Q(x)wn(x)
q̃2

n(x)Q̃n(x)
dλ(x) = 0, j = 0, . . . , n + kn − deg(Q)− 1.

Then the bound (3.2) of Lemma B together with orthogonality relations (4.17)
yields

(4.18) (n + kn − deg(Q))π 6 V
(

arg
( qn(x)Q(x)wn(x)

q̃2
n(x)Q̃n(x)

; ·
)

+ arg(λ; ·); [a, b]
)

,

where [a, b] is the convex hull of the measure λ. It follows from the normality
of the family {wm}m∈Z+ in Ω that the sequence {V(wm; [a, b])}m∈Z+ is uniformly
bounded, i.e. VW is finite. Therefore by (4.18) and the sublinearity of V(·; [a, b])
we obtain

(n + kn)π 6 V(arg(λ; ·); [a, b]) + V(arg(Q; ·); [a, b]) + π deg(Q) + VW

+ V
(

arg
( qn

q̃2
n

; ·
)

; [a, b]
)

+ V(arg(Q̃n; ·); [a, b]).(4.19)

Write qn(z) =
n
∏
j=1

(z− ξ j,n). It was shown in Lemma 5.2 of [2] that

(4.20) V
(

arg
( qn

q̃2
n

; ·
)

, [a, b]
)

6
n

∑
j=1

Angle(ξ j,n, [a, b]).

By writing the polynomial Qn in the form Qn(z) =
kn
∏
j=1

(z− ηj,n) we obtain from

the monotonicity of Angle(·, [a, b]) that

V(arg(Q̃n; ·); [a, b])6
kn

∑
j=1

V
(

arg
(
·; −1

η j,n

)
, [a, b]

)
=

kn

∑
j=1

Angle
( 1

η j,n
, [a, b]

)
6

knπ

2
,(4.21)

since ηj,n ∈ D for all j = 1, . . . , kn. Combining (4.19), (4.20), and (4.21) we get that

n

∑
j=1

(π −Angle(ξ j,n, [a, b])) +
knπ

2

6 V(arg(λ; ·); [a, b]) + V(arg(Q; ·); [a, b]) + π deg(Q) + VW .(4.22)

The last inequality proves (4.13) and therefore the assertion of the theorem.

Proof of Theorem 2.2. Let F be given by equation (2.5) and Λ be a subse-
quence of natural numbers defined by the rule

Λ := {n ∈ N : sn−1(HF) > sn(HF)},

where sn(HF) stands, as before, for the n-th singular value of the Hankel operator
with symbol F. It is obvious that we may apply the preceding theorem for a
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measure of the form (2.9). Namely, it can be deduced from equations (4.9) and
(4.12) that

(4.23) µn(HF) 6 deg(Qn) + #{ξ ∈ T : wn(ξ) = 0}+ 1, n ∈ Λ,

where jn = Qn/Q̃n and wn were defined in (4.3)–(4.5), with vn being a singular
vector with exactly n poles associated to the best meromorphic approximant to F
of order n.

It is shown in Theorem 1 of [23] that in the case where the measure λ is of
the form (2.9), the sequence {jnwn} is not only a normal family in Ω, where Ω
was defined in (4.8), but also is locally uniformly convergent to the function

w(z) =
c√

(1− az)(1− bz)
,

where c is some positive constant. This, in particular, means that

lim
n→∞

#{ξ ∈ T : wn(ξ) = 0} = 0

and for n large enough jn ≡ 1. Combining equation (4.23) with these two obser-
vations we get (2.10). This proves the theorem.
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