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ABSTRACT. In this paper we study the invariant subspaces of the shift op-
erator acting on the vector-valued L2 space of an annulus, following an ap-
proach which originates in the work of Sarason. We obtain a Wiener-type
result characterizing the reducing subspaces, and we give a description of all
the invariant and doubly-invariant subspaces generated by a single function.
We prove that every doubly-invariant subspace contained in the Hardy space
of the annulus with values in Cm is the orthogonal direct sum of at most m
doubly-invariant subspaces, each generated by a single function. As a corol-
lary we prove that a doubly-invariant subspace that is also the graph of an
operator is singly generated.
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1. INTRODUCTION

The purpose of this paper is to study the shift operator (multiplication by
the independent variable) on certain Hardy spaces, consisting of vector-valued
analytic functions on the annulus A = {r0 < |z| < 1}, where r0 is a positive real
number less than unity. In the scalar case, significant contributions to the theory
have been made by several authors, including Sarason [9], Royden [8], Hitt [4],
Yakubovich [10] and Aleman–Richter [1].

The vectorial case has not been much considered, and presents difficulties
of its own. We shall consider questions to do with reducing subspaces and singly
and doubly-invariant subspaces, which are defined below. One important special
case is when the functions take values in C2, and there is then the question of
characterizing graphs of closed (possibly unbounded) shift-invariant operators.

We now introduce some necessary definitions and notation, after which we
shall summarise the main contributions of the paper.
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The boundary ∂A of A consists of two circles T = {z ∈ C : |z| = 1} and r0T.
We let D denote the open unit disc {z ∈ C : |z| < 1} and Ω0 the set {z∈C : r0 <
|z|}∪{∞}, so that A = D∩Ω0. For 1 6 p < ∞, let Lp(∂A) be the complex Banach
space of Lebesgue measurable functions f on ∂A that are pth-power integrable
with respect to Lebesgue measure, the norm of f being defined by

‖ f ‖p =
( 1

2π

2π∫
0

| f (eit)|pdt +
1

2π

2π∫
0

| f (r0eit)|pdt
)1/p

.

The complex Banach space L∞(∂A) is the set of bounded Lebesgue measurable
functions f on ∂A. Obviously, for 1 6 p 6 ∞, we have:

Lp(∂A) = Lp(T)⊕ Lp(r0T),

where Lp(T) and Lp(r0T) are endowed with normalized Lebesgue measure. For
1 6 p < ∞ the Hardy space Hp(∂A) denotes the closure in Lp(∂A) of R(A), the
set of rational functions with poles off A = {z ∈ C : r0 6 |z| 6 1} (it is convenient
to employ an abuse of language by saying that a function in Lp(∂A) “belongs to
R(A)” if it is a restriction of a function in R(A)). These functions are analytic in
A, and so we shall also use the notation Hp(A) when we wish to emphasise this.
A useful characterization of functions in Hp(∂A) is the following (see Lemma 1
in [9]): a function f ∈ Lp(∂A) belongs to Hp(∂A) if and only if, for all n ∈ Z:

(1.1)
2π∫
0

f (r0eit)e−intdt = rn
0

2π∫
0

f (eit)e−intdt.

As for the Hardy spaces on D, there exists an inner-outer factorization for func-
tions in the Hardy spaces defined on A. Following Royden [8], the inner functions
in H2(A) are the holomorphic functions u such that |u| is constant on each circle,
whereas the outer functions in H2(A) are the holomorphic functions φ such that

log |φ(z)| = 1
2π

∫
∂A

log |φ(ξ)|∂g(ξ, z)
∂n

ds(ξ)

for z ∈ A, where g is the Green’s function (normalized so that the constant 2π is
correct). The units are the functions that are both inner and outer, e.g. zk. Con-
trary to the case of the unit disc, if f ∈ H2(∂A), we cannot always find an outer
function φ with |φ| = | f | on ∂A. The best we can do is to define v on A in the
following way:

v(z) =
1

2π

∫
∂A

log | f (ξ)|∂g(ξ, z)
∂n

ds(ξ).

Now v is real and harmonic so that we can find a constant c and a real harmonic
function h such that ψ(z) := v(z)− c log |z|+ ih(z) is holomorphic (we need the
log |z| term as the annulus is not simply connected). Now φ(z) := exp(ψ(z)) is
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an outer function whose non-tangential boundary values satisfy |φ(ξ)| = | f (ξ)|
|ξ|c ,

and then f
φ is inner since |u| is constant on each circle.

As usual supp( f ) denotes the support of the function f .
Denote by S the operator of multiplication by z on Lp(∂A). A closed sub-

space M in L2(∂A) is said to be invariant for S if SM ⊂ M, doubly invariant for S
if M is both invariant for S and S−1 and reducing for S if M is both invariant for S
and S∗.

For f ∈ L2(∂A),

(i) IS[ f ] will denote the smallest closed subspace M in L2(∂A) containing f
and invariant for S.

(ii) DS[ f ] will denote the smallest closed subspace M in L2(∂A) containing f
and doubly invariant for S.

(iii) RS[ f ] will denote the smallest closed subspace M in L2(∂A) containing f
and reducing for S.

In other words

IS[ f ] = Span{Sn f : n > 0},
DS[ f ] = Span{Sn f : n ∈ Z},
RS[ f ] = Span{p(S, S∗) f : p ∈ C[z1, z2]},

where Span is the closed linear hull.
If N is a set of functions IS(N), (respectively DS(N) and RS(N)) denotes the

smallest closed subspace containing IS( f ) (respectively DS( f ) and RS( f )) for all
f ∈ N.

Note that for f = f1 ⊕ f0 ∈ L2(T)⊕ L2(r0T),

S f = g1 ⊕ g0 where g1(eit) = eit f1(eit) and g0(r0eit) = r0eit f0(r0eit),
S−1 f = h1 ⊕ h0 where h1(eit) = e−it f1(eit) and h0(r0eit) = 1

r0
e−it f0(r0eit),

S∗ f = k1 ⊕ k0 where k1(eit) = e−it f1(eit) and k0(r0eit) = r0e−it f0(r0eit).

It follows that the operators S, S∗ and S−1 commute and then

RS[ f ] = Span{SnS∗m f : n, m > 0}.

We employ an analogous notation for subspaces of L2(∂A, Cm); in general
we use lower case letters for scalar functions and capital letters for vector-valued
functions.

The characteristic function associated with a measurable set E will be de-
noted by χE.

In Section 2 we obtain a Wiener-type result (Theorem 2.3) characterizing the
reducing subspaces M ⊂ L2(∂A, Cm). In Section 3 we give a description of all the
invariant and doubly-invariant subspaces M ⊂ L2(∂A, Cm) generated by a single
function. Some tables at the end of this section summarise our results. Finally,
in Section 4 we establish the main result of this paper, Theorem 4.7. We prove
that every doubly-invariant subspace M ⊂ H2(∂A, Cm) is the orthogonal direct
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sum of at most m doubly-invariant subspaces, each generated by a single func-
tion. As a corollary we prove that a doubly-invariant subspace in H2(∂A, Cm)
that is also the graph of a (not necessarily bounded) operator is singly generated
(Theorem 4.8). The use of analyticity is essential in the proof of our main result
and hence the description of doubly-invariant subspaces of L2(∂A, Cm) remains
open. We give a partial result in this direction (Theorem 4.9) for operator graphs.

2. REDUCING SUBSPACES

In the scalar case, Sarason characterized reducing subspaces for S on L2(∂A)
by making use of the Wiener theorem that every doubly-invariant subspace of
L2(T) has the form χEL2(T) for some measurable set E ⊂ T (see [3], [6], [7]).

THEOREM 2.1 ([9], p. 52). A closed subspace M of L2(∂A) is reducing for S if
and only if M = χEL2(∂A) for some measurable set E ⊂ ∂A.

We now move on to a discussion of the vector-valued case. Instead of a
function taking values in the set {0, 1} almost everywhere, we now need to deal
with functions whose values are orthogonal projections. Accordingly, we say
that P : rT → L(Cm) is a measurable projection-valued function if it satisfies the
following:

(i) P(reiw) is the orthogonal projection onto some closed subspace I(reiw) of
Cm for almost all reiw ∈ rT.

(ii) The mappings w → 〈P(reiw)x, y〉 are measurable for every x, y ∈ Cm.

Since P(reiw) can be regarded as an m×m matrix-valued function, the sec-
ond property just says that P ∈ L∞(rT,L(Cm)). The vectorial version of the
Wiener theorem is the following (see for example Theorem 3.1.6 of [7] and [3]).

LEMMA 2.2. Let r > 0, let M be a closed subspace of L2(rT, Cm) and let S be de-
fined by S f (reit) = reit f (reit) on L2(rT, Cm). Then M is doubly invariant or reducing
on L2(rT, Cm) if and only if M = PL2(rT, Cm) where P is a measurable projection-
valued function on rT.

Proof. The space L2(rT) is unitarily equivalent to L2(T) by a simple change
of variables, from which the operator S on L2(rT) is seen to be unitarily equiv-
alent to the operator rS on L2(T). This has the same reducing subspaces as the
bilateral shift on L2(T), and the result follows from Wiener’s theorem.

We obtain the following result for L2(∂A, Cm).

THEOREM 2.3. A closed subspace M of L2(∂A, Cm) is reducing for S if and only
if M = PL2(∂A, Cm), where P is a measurable projection-valued function on ∂A.
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Proof. It is clear that PL2(∂A, Cm) is a reducing subspace for S. Now, note
that, for F1 ⊕ F0 ∈ L2(T, Cm)⊕ L2(r0T, Cm), we have:

r2
0Id− SS∗

r2
0 − 1

(F1 ⊕ F0) = F1 ⊕ 0 and
SS∗ − Id

r2
0 − 1

(F1 ⊕ F0) = 0⊕ F0.

In other words, PL2(T,Cm) ⊕ 0 and 0⊕ PL2(r0T,Cm) (where PL2(rT,Cm) is the orthogo-
nal projection from L2(∂A, Cm) onto L2(rT, Cm), for r ∈ {r0, 1}) are linear combi-
nations of Id and SS∗. In particular PL2(rT,Cm)M is also a reducing subspace for S
on L2(rT, Cm), for r∈{r0, 1}. It follows that if M is a reducing subspace for S then

PL2(T,Cm)M⊕ PL2(r0T,Cm)M ⊂ M.

Since the converse inclusion is true for any subspace M, it follows that if M is a
reducing subspace for S then

PL2(T,Cm)M⊕ PL2(r0T,Cm)M = M.

By Lemma 2.2, for r = r0 and r = 1, PL2(rT,Cm)M = PrL2(rT, Cm) for some mea-
surable projection-valued functions Pr defined on rT. Therefore M = PL2(∂A)
where P(reiw) = Pr(reiw) for r = r0 and r = 1.

COROLLARY 2.4. Let F ∈ L2(∂A, Cm). Then

RS(F) = {G ∈ L2(∂A, Cm) : G(ξ) ∈ CF(ξ) for a.e. ξ ∈ ∂A}.

Proof. This follows from Theorem 2.3, on observing that the range of P(ξ)
must equal the subspace spanned by F(ξ), for almost all ξ.

3. INVARIANT AND DOUBLY-INVARIANT SUBSPACES GENERATED BY ONE FUNCTION

The log-integrability of the functions that we consider is at the centre of our
classification.

DEFINITION 3.1. Let r > 0 and F ∈ L2(rT, Cm). We say that F is log-

integrable on rT if
2π∫
0

log ‖F(reit)‖Cm dt exists.

The next propositions show how we are allowed to modify the generators
of singly generated invariant and doubly-invariant subspaces, provided that they
are log-integrable.

PROPOSITION 3.2. Let F1 ⊕ F0 ∈ L2(T, Cm)⊕ L2(r0T, Cm) such that F1 is log-
integrable on T. Then we have:

IS(F1 ⊕ F0) = IS

( F1

u1
⊕ F0

u1

)
and DS(F1 ⊕ F0) = DS

( F1

u1
⊕ F0

u1

)
,
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where u1 is an outer function in H2(D) such that |u1(eit)| = ‖F1(eit)‖Cm almost ev-
erywhere on T.

Proof. Since u1 is an outer scalar function in H2(D), applying Beurling’s
theorem, there exists a sequence of polynomials (pn)n such that

lim
n→∞

‖u1 pn − 1l‖L2(T) = 0,

where 1l is the function identically equal to 1 on ∂A. Since F1
u1
∈ L∞(T, Cm), it

follows that ∥∥∥(u1 pn − 1l)
F1

u1

∥∥∥
L2(T,Cm)

=
∥∥∥pnF1 −

F1

u1

∥∥∥
L2(T,Cm)

tends to 0 as n tends to infinity. Moreover, lim
n→∞

‖u1 pn − 1l‖L2(T) = 0 implies

that lim
n→∞

‖u1 pn − 1l‖L∞(r0T) = 0. Now, since u1 is outer, 1
u1
∈ L∞(r0T) and so

lim
n→∞

∥∥∥ u1 pn−1l
u1

∥∥∥
L∞(r0T)

= 0. It follows that

∥∥∥(u1 pn − 1l
u1

)
F0

∥∥∥
L2(r0T)

=
∥∥∥pnF0 −

F0

u1

∥∥∥
L2(r0T)

tends to 0 as n tends to infinity. Therefore we have

IS

( F1

u1
⊕ F0

u1

)
⊂ IS(F1 ⊕ F0) and DS

( F1

u1
⊕ F0

u1

)
⊂ DS(F1 ⊕ F0).

In order to prove the converse inclusions, note that since u1 ∈ H2(D), there exists
a sequence of polynomials (qn)n such that lim

n→∞
‖u1 − qn‖L2(T) = 0. Since F1

u1
∈

L∞(T, Cm), we get∥∥∥(u1 − qn)
F1

u1

∥∥∥
L2(T,Cm)

=
∥∥∥F1 − qn

F1

u1

∥∥∥
L2(T,Cm)

tends to 0 as n tends to infinity. Moreover, lim
n→∞

‖u1 − qn‖L2(T) = 0 implies that

lim
n→∞

‖u1 − qn‖L2(r0T) = 0, and then lim
n→∞

∥∥∥ u1−qn
u1

∥∥∥
L2(r0T)

= 0 since u1 is bounded

below on r0T. It follows that∥∥∥(u1 − qn

u1

)
F0

∥∥∥
L2(r0T)

=
∥∥∥F0 −

qnF0

u1

∥∥∥
L2(r0T)

tends to 0 as n tends to infinity. This proves the converse inclusions and ends the
proof of the proposition.

The natural dual version of the above proposition is the following.

PROPOSITION 3.3. Let F1 ⊕ F0 ∈ L2(T, Cm)⊕ L2(r0T, Cm) be such that F0 is
log-integrable on r0T. Then we have:

IS−1(F1 ⊕ F0) = IS−1

( F1

u0
⊕ F0

u0

)
and DS(F1 ⊕ F0) = DS

( F1

u0
⊕ F0

u0

)
,
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where u0 is an outer function in H2(Ĉ\r0D) with |u0(r0eit)| = ‖F0(r0eit)‖Cm almost
everywhere on r0T.

Proof. Set G1(eit) = F0(r0e−it) and G0(r0eit) = F1(e−it). Considering the
unitary map Ψ : L2(∂A, Cm) → L2(∂A, Cm) defined by Ψ(F1 ⊕ F0) = G1 ⊕ G0,
along the same lines as the proof of the previous proposition, we get the desired
equalities.

Combining those two first results we get the following theorem.

THEOREM 3.4. Let F1 ⊕ F0 ∈ L2(T, Cm) ⊕ L2(r0T, Cm) such that F1 is log-
integrable on T and F0 is log-integrable on r0T. Then there is a function W1 ⊕W0 ∈
L∞(T, Cm)⊕L∞(r0T, Cm) such that ‖W1(eit)‖Cm =1 almost everywhere on T, 1

‖W0‖Cm

∈ L∞(r0T) and satisfying

DS(F1 ⊕ F0) = DS(W1 ⊕W0) = H2(∂A)(W1 ⊕W0).

Proof. Using Proposition 3.3, the doubly-invariant subspace for S generated
by F1 ⊕ F0 is equal to the one generated by F1

u0
⊕ F0

u0
, where u0 is a scalar outer

function in H2(Ĉ\r0D) such that |u0(r0eit)| = ‖F0(r0eit)‖Cm almost everywhere
on r0T. Note that, since u0 is outer, F1

u0
is also log-integrable on T whenever F1 is.

Using Proposition 3.2, the doubly-invariant subspace for S generated by F1
u0
⊕ F0

u0

is equal to the one generated by W1 ⊕W0 where W1 = F1
u0u1

and W0 = F0
u0u1

, with

u1 a scalar outer function on T satisfying |u1(eit)| = ‖F1(eit)‖Cm
|u0(eit)| almost everywhere

on T. Since u1 and 1
u1

belong to L∞(r0T), W0 satisfies the desired hypothesis.
It remains to prove that DS(W1 ⊕W0) = H2(∂A)(W1 ⊕W0). Obviously a

reformulation of (1.1) is H2(∂A) = DS(1l). Therefore

H2(∂A)(W1 ⊕W0) ⊂ DS(W1 ⊕W0).

Now consider T : L2(∂A) → L2(∂A, Cm) defined by T f = f (W1 ⊕W0). Since
‖W1‖Cm and ‖W0‖Cm are essentially bounded above and below on T and r0T, the
linear mapping T is both bounded and bounded below. Therefore TH2(∂A) =
H2(∂A)(W1⊕W0) is a closed subspace of L2(∂A, Cm). It follows that the previous
inclusion is, by the definition of DS, an equality.

In the case where we only have information on F1, we have the following
result on the smallest closed invariant subspace for S generated by F1 ⊕ F0.

PROPOSITION 3.5. Let F1 ⊕ F0 ∈ L2(T, Cm)⊕ L2(r0T, Cm).
(i) If F1 is log-integrable on T, then

IS(F1 ⊕ F0) = H2(D)
( F1

u1
⊕ F0

u1

)
,

where u1 is a scalar outer function on T satisfying |u1(eit)| = ‖F1(eit)‖Cm almost
everywhere on T.
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(ii) If F1 is not log-integrable on T, then

IS(F1 ⊕ F0) = RS(F1)⊕ IS(F0).

Proof. (i) We have IS(F1 ⊕ F0) = IS

(
F1
u1
⊕ F0

u1

)
by Proposition 3.2. Since

F1
u1
∈ L∞(T, Cm) and f|r0T ∈ L∞(r0T) whenever f ∈ H2(D), IS

(
F1
u1
⊕ F0

u1

)
contains

the invariant subspace for S defined by H2(D)
(

F1
u1
⊕ F0

u1

)
. Moreover, the subspace

H2(D)
(

F1
u1
⊕ F0

u1

)
is closed in L2(∂A, Cm) as the image of the closed subspace

H2(D) by the bounded-below operator T defined by T : H2(D) → L2(∂A, Cm),

T f = f
(

F1
u1
⊕ F0

u1

)
. It follows that

IS(F1 ⊕ F0) = IS

( F1

u1
⊕ F0

u1

)
= H2(D)

( F1

u1
⊕ F0

u1

)
.

(ii) Let H1 ⊕ H0 in L2(T, Cm) ⊕ L2(r0T, Cm) be orthogonal to IS(F1 ⊕ F0). In
other words,

(3.1) 〈H1, eintF1〉T + 〈H0, rn
0 eintF0〉r0T = 0, n > 0.

Therefore, 〈H1, eintF1〉T = O(rn
0 ), n > 0. If one denotes by f1 the scalar function

on T defined by 〈F1, H1〉T, then f1 extends to a function in H1(T ∪ rT) where
r0 < r < 1. Indeed, denote by fr the function in L2(rT) (and thus in L1(rT))
defined by fr(reit) = ∑

n∈Z
rn f̂1(n)eint. Then f1 ⊕ fr ∈ H1(T∪ rT) using (1.1). This

implies that f1 = 〈F1, H1〉T is log-integrable, and therefore, since log | f1(eit)| 6
log ‖F1(eit)‖Cm + log ‖H1(eit)‖Cm , this forces F1 to be log-integrable, a contradic-
tion. So f1 is identically equal to 0 and then

〈H1, znF1〉T = 0, n ∈ Z.

By (3.1), we have also 〈H0, znF0〉T = 0 for all n > 0. Thus H1 ⊕ H0 is orthogonal
to RS(F1) ⊕ IS(F0), and then RS(F1) ⊕ IS(F0) ⊂ IS(F1 ⊕ F0). Since the converse
inclusion is always true, we get the desired equality.

The natural dual version of the above proposition is the following. We omit
the proof, which can be deduced along the same lines as Proposition 3.5 via the
changes detailed in the proof of Proposition 3.3.

PROPOSITION 3.6. Let F1 ⊕ F0 ∈ L2(T, Cm)⊕ L2(r0T, Cm).
(i) If F0 is log-integrable on r0T, then

IS−1(F1 ⊕ F0) = H2(Ĉ \ r0D)
( F1

u0
⊕ F0

u0

)
,

where u0 is a scalar outer function on r0T satisfying |u0(r0eit)| = ‖F0(r0eit)‖Cm almost
everywhere on r0T.

(ii) If F0 is not log-integrable on r0T, then IS−1(F1 ⊕ F0) = IS−1(F1)⊕ RS(F0).
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We are now ready to describe the invariant subspaces for S generated by a
single function.

THEOREM 3.7. Let F1 ∈ L2(T, Cm) and F0 ∈ L2(r0T, Cm). Then we have:
(i) If F1 is not log-integrable on T and if F0 is log-integrable on r0T, then

IS(F1 ⊕ F0) = P1L2(T, Cm)⊕ H2(r0D)
F0

u0

where u0 is an outer function in H2(r0D) with |u0(r0eit)| = ‖F0(r0eit)‖Cm almost
everywhere on r0T and where P1 is a measurable projection-valued function on T.

(ii) If F0 is not log-integrable on r0T and if F1 is log-integrable on T, then

IS−1(F1 ⊕ F0) = H2(Ĉ \D)
F1

u1
⊕ P2L2(r0T, Cm)

where u1 is an outer function in H2(D) such that |u1(eit)| = ‖F1(eit)‖Cm almost ev-
erywhere on r0T and where P2 is a measurable projection-valued function on r0T.

(iii) If neither F0 nor F1 are log-integrable, then

IS(F1 ⊕ F0) = PL2(∂A, Cm) = IS−1(F1 ⊕ F0)

where P is a measurable projection-valued function on ∂A.

Proof. (i) The second assertion of Proposition 3.5 implies that IS(F1 ⊕ F0) =
RS(F1)⊕ IS(F0). By Lemma 2.2, RS(F1) = P1L2(T, Cm) where P1 is a measurable

projection-valued function on T. Since F0 is log-integrable, then IS(F0) = IS

(
F0
u0

)
where u0 is an outer function in H2(r0D) such that |u0(r0eit)|=‖F0(r0eit)‖Cm al-

most everywhere on r0T. Since IS

(
F0
u0

)
contains H2(r0D) F0

u0
and since this last

subspace is closed as the range of a bounded-below operator, it follows that

IS

(
F0
u0

)
= H2(r0D) F0

u0
.

(ii) If F0 is not log-integrable, the second assertion of Proposition 3.6 implies
that IS−1(F1 ⊕ F0) = IS−1(F1) ⊕ RS(F0). Since F1 is log-integrable, IS−1(F1) =
H2(Ĉ \ D) F1

u1
, where u1 is an outer function in H2(Ĉ \ D) such that |u1(eit)| =

‖F1(eit)‖Cm almost everywhere on T. Since IS−1

(
F1
u1

)
contains H2(Ĉ \D) F1

u1
, and

since this last subspace is closed as the range of a bounded below operator, it
follows that IS−1(F1 ⊕ F0) = H2(Ĉ \D) F1

u1
⊕ P2L2(r0T, Cm).

(iii) Since F1 is not log-integrable, IS(F1 ⊕ F0) = RS(F1)⊕ IS(F0). It remains to
prove that if F0 is not log-integrable then IS(F0) = DS(F0). To prove this, it is
sufficient to check that whenever H0 ⊥ IS(F0), then H0 ⊥ DS(F0). Now, H0 ⊥
IS(F0) implies that the negative Fourier coefficients of the scalar L1(r0T)-function
f0 := 〈F0, H0〉 are equal to 0. Therefore, f0 extends to a function in H1(r0D)
and thus f0 is log-integrable. This forces F0 to be log-integrable, a contradiction.
Thus we have f0 identically equal to 0 and then H0 ⊥ DS(F0). By Lemma 2.2,
DS(F0) = RS(F0) = P0L2(r0T, Cm) where P0 is a measurable projection-valued
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function on r0T. Now, taking P = P1 ⊕ P0, we get the desired result. Using
similar arguments we easily prove that IS−1(F1) = DS(F1) whenever F1 is not
log-integrable. The last equality follows.

It remains to describe the doubly-invariant subspace for S generated by F =
F1 ⊕ F0 in the case where F1 or F0 is not log-integrable.

THEOREM 3.8. Let F1 ∈ L2(T, Cm) and F0 ∈ L2(r0T, Cm). Suppose that F1 or
F0 is not log-integrable. Then

DS(F1 ⊕ F0) = DS(F1)⊕ DS(F0) = PL2(∂A, Cm)

where P is a measurable projection-valued function on ∂A.

Proof. Suppose that F1 is not log-integrable. The second assertion of Propo-
sition 3.5 asserts that IS(F1 ⊕ F0) = DS(F1)⊕ IS(F0). In particular 0⊕ IS(F0) ⊂
IS(F1 ⊕ F0). Therefore DS(F1 ⊕ F0) contains 0 ⊕ IS(F0) and then contains 0 ⊕
DS(F0). Then we get DS(F1 ⊕ F0) = DS(F1)⊕DS(F0) since DS(F1 ⊕ F0) is always
contained in DS(F1) ⊕ DS(F0). If F0 is not log-integrable, the second assertion
of Proposition 3.6 asserts that IS−1(F1 ⊕ F0) = IS−1(F1)⊕ DS(F0). As previously,
since DS−1(F1 ⊕ F0) = DS(F1 ⊕ F0), we get DS(F1 ⊕ F0) = DS(F1)⊕ DS(F0). The
vector-valued Wiener theorem implies the existence of P a measurable projection-
valued function on ∂A such that DS(F1)⊕ DS(F0) = PL2(∂A, Cm).

We may summarise the structure theorems that we have derived, by means
of the following tables.

Description of IS(F) and IS−1 (F), where F = F1 ⊕ F0 :

F1 F0 is log-integrable :

log-int. Yes No

Yes IS(F) = H2(D)F/u1 IS−1 (F) = H2(Ĉ \D)( F1
u1

)⊕ P2L2(r0T)

IS−1 (F) = H2(Ĉ \ r0D)F/u0 IS(F) = H2(D)F/u1

No IS(F) = P1L2(T, Cm)⊕ H2(r0D)( F0
u0

) IS(F) = IS−1 (F)

IS−1 (F) = H2(Ĉ \ r0D)F/u0 = PL2(∂A, Cm)

Description of DS(F1 ⊕ F0) :

F1 F0 is log-integrable :

log-int. Yes No

Yes H2(∂A)(W1 ⊕W0) PL2(∂A, Cm)

No PL2(∂A, Cm) PL2(∂A, Cm)
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The following result is a simple consequence of the above classification the-
orem. We write σp(T) for the point spectrum of an operator T, i.e., the set of
eigenvalues.

COROLLARY 3.9. For each doubly-invariant subspace M ⊂ L2(∂A, Cm) one has

σp((S|M)∗) ⊂ A.

Proof. This is equivalent to the statement that (S − λId)M is dense in M
whenever λ 6∈ A, which follows since then DS((S− λId)F) = DS(F) for all F ∈
M.

4. DOUBLY-INVARIANT SUBSPACES

4.1. COMPLETELY NON-REDUCING SUBSPACES.

DEFINITION 4.1. A closed subspace M in L2(∂A, Cm) is called completely
non-reducing if it contains no trivial reducing subspaces.

LEMMA 4.2. Let M be a doubly-invariant subspace for S and let M1 be a reducing
subspace for S. Then M2 := M ∩ M⊥

1 is doubly invariant for S.

Proof. First we check that M2 is invariant for S. Indeed, for F1 ∈ M1 and
F2 ∈ M2, we have:

〈SF2, F1〉 = 〈F2, S∗F1〉 = 0,

since M1 is reducing. Therefore SM2 ⊂ M2. Now we check that M2 is invari-
ant for S−1, that is that M2 ⊥ (S−1)∗M1. Since M1 is reducing for S, using
the vector-valued Wiener theorem, there exists a measurable projection-valued
function P such that for almost all ξ ∈ ∂A, P(ξ) : Cm → I(ξ) where I(ξ) =
{F(ξ) : F ∈ M1}. Since (S−1)∗F(eit) = eitF(eit) ∈ P(eit)Cm and (S−1)∗F(r0eit) =
eit

r0
F(r0eit) ∈ P(r0eit)Cm, (S−1)∗F ∈ PL2(∂A, Cm) = M1 for F ∈ M1, and thus we

get the desired result.

Using Lemma 4.2, in the sequel we study the doubly-invariant subspaces
that are completely non-reducing.

LEMMA 4.3. In the scalar case the doubly-invariant subspaces that are completely
non-reducing coincide with the doubly-invariant subspaces that are non-reducing.

Proof. Suppose that M is doubly invariant but contains a nontrivial reduc-
ing subspace M1. It follows, via Wiener’s theorem, that M1 = χEL2(∂A) where
E and its complement are of positive measure. Now for any f ∈ M, write f =
χE f + χ∂A\E f , where χE f ∈ M1 ⊂ M. Then, χ∂A\E f ∈ M and DS(χ∂A\E f ) ⊂ M
for all f ∈ M. Since χE f and χ∂A\E f are not log-integrable, we get DS(χ∂A\E f ) =
RS(χ∂A\E f ) and DS(χE f ) = RS(χE f ). Therefore the subspace M is reducing.
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It is easily seen by taking direct sums that the above result does not hold in
L2(∂A, Cm) when m > 1.

4.2. ANALYTIC DOUBLY-INVARIANT SUBSPACES. In this section we restrict our-
selves to closed subspaces of analytic functions in the Hardy spaces H2(∂A, Cm).
In [8], Royden proved that the nontrivial closed subspaces of H2(∂A) that are
doubly invariant for S have the form φH2(∂A), where φ ∈ H∞(∂A) and is in-
ner (constant in modulus on each component of ∂A). His proof is based on the
inner-outer factorization of functions in Hardy spaces of multiply connected do-
mains (cf. [5]). Note that it follows from Sarason’s result that every non-reducing
doubly-invariant subspace M of L2(∂A) has the form H2(∂A)(w1 ⊕ w0), where
w1 is unimodular on T and w0 is bounded and bounded below on r0T (scalar
version of Theorem 3.4). Obviously, if M ⊂ H2(∂A), then (w1 ⊕ w0) ∈ H∞(∂A)
and φ is obtained by taking its inner factor.

First of all we prove that if M is a nontrivial closed subspace in H2(∂A, Cm)
(with m > 2), then there exist at most m functions in M “generating” the smallest
closed reducing subspace containing M. Recall that, in the scalar case, using
Wiener’s theorem, every function f in M \ {0} satisfies RS( f ) = M = L2(∂A).

THEOREM 4.4. Let M be a nontrivial closed subspace in H2(∂A, Cm). Then, there
exists a set of functions G1, . . . , Gk in M with k 6 m, such that

RS(M) = RS(G1) + · · ·+ RS(Gk).

Proof. Let G1 =

 g1
1
...

g1
m

 be a nonconstant function in M. For any G2 =

 g2
1
...

g2
m

 in M, consider the H1(∂A)-functions hj = g1
j g2

1 − g1
1g2

j for 2 6 j 6 m.

Then either every hj is identically equal to 0, and then RS(G2) ⊂ RS(G1), or
else there exists a function hj0 with 2 6 j0 6 m which is nonzero almost every-
where on ∂A, and then we consider the reducing subspace RS(G1) + RS(G2) =
P2L2(∂A, Cm), where for almost all ξ ∈ ∂A, the rank of P2(ξ) is equal to 2. Either

RS(M) = RS(G1) + RS(G2), or we take a third function G3 =

 g3
1
...

g3
m

 ∈ M.

Then we consider the H2/3(∂A)-functions

hj =

∣∣∣∣∣∣∣
g1

1 g2
1 g3

1
g1

j0
g2

j0
g3

j0
g1

j g2
j g3

j

∣∣∣∣∣∣∣



INVARIANT SUBSPACES FOR SHIFTS ON THE ANNULUS 325

for 2 6 j 6 m, j 6= j0. Then either every hj is identically equal to 0, and then
RS(G3) ⊂ RS(G1) + RS(G2), or else there exists a function hj with 3 6 j 6 m
which is nonzero almost everywhere on ∂A, and then we consider the reducing
subspace RS(G1) + RS(G2) + RS(G3) = P3L2(∂A, Cm), where for almost all ξ ∈
∂A, the rank of P3(ξ) is equal to 3. We continue in this way, until either RS(M) =
RS(G1) + · · ·+ RS(Gk) for some k < m, or there exist m− 1 functions in M such
that RS(Gl) does not belong to RS(G1) + · · · + RS(Gl−1) for all 2 6 l 6 m − 1.
Then RS(G1) + · · ·+ RS(Gm−1) = Pm−1L2(∂A, Cm), where for almost all ξ ∈ ∂A,

the rank of Pm−1(ξ) is equal to m− 1. Take Gm =

 gm
1
...

gm
m

 ∈ M, and consider

the H2/m(∂A)-functions

h =

∣∣∣∣∣∣∣
g1

1 · · · gm
1

...
...

...
g1

m · · · gm
m

∣∣∣∣∣∣∣ .

Then either h is identically equal to 0, and then

RS(Gm) ⊂ RS(G1) + · · ·+ RS(Gm−1),

or else the function h is nonzero almost everywhere on ∂A, and then we consider
the reducing subspace RS(G1) + · · · + RS(Gm) = PmL2(∂A, Cm), where for al-
most all ξ ∈ ∂A, the rank of Pm(ξ) is equal to m. It follows that Pm is the identity
map and thus

RS(G1) + · · ·+ RS(Gm) = L2(∂A, Cm).
Note that the analyticity has been used to show that the rank of a measurable
projection-valued function of ξ is almost everywhere independent of ξ.

PROPOSITION 4.5. Let F ∈ H2(∂A, Cm) \ {0}. Then there exists a positive con-
stant c and W ∈ H∞(∂A, Cm) satisfying ‖W(ξ)‖Cm = 1 a.e. on T and ‖W(ξ)‖Cm = c
a.e. on r0T, such that we have

DS(F) = H2(∂A)W and RS(F) = L2(∂A)W.

Proof. Since F ∈ H2(∂A, Cm) \ {0}, it follows that log ‖F‖ ∈ L1(∂A). Then
we define the function v on A by

v(z) =
∫

∂A

log ‖F(ξ)‖Cm
∂g(z, ξ)

∂n
ds(ξ).

Then, although A is not simply connected, there exist a constant s and a real
harmonic function h such that

ψ(z) = v(z)− s log |z|+ ih(z)

is holomorphic. Now φ(z) := exp(ψ(z)) is an outer function whose non-tangent-
ial boundary values satisfy |φ(ξ)| = ‖F(ξ)‖Cm

|ξ|s . Set W = F
φ and observe that W ∈
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H∞(∂A, Cm) with ‖W(ξ)‖Cm = 1 a.e. on T and ‖W(ξ)‖Cm = rs
0 a.e. on r0T. Since

φ ∈ H2(∂A), φ is the L2-norm limit of a sequence of trigonometric polynomials
(pn)n. Since

‖F− pnW‖2
2 = ‖(φ− pn)W‖2

2 6 max(c2, 1)‖φ− pn‖2
2

with c = rs
0, it follows that ‖F − pnW‖2 tends to 0 as n tends to ∞. Therefore

we have DS(F) ⊂ DS(W). Moreover, since φ is outer, there exists a sequence of
trigonometric polynomials (qn)n such that lim

n→∞
‖qnφ− 1‖2 = 0. It follows that

‖qnF−W‖2
2 = ‖(qnφ− 1)W‖2

2 6 max(c2, 1)‖qnφ− 1‖2
2,

and thus ‖qnF −W‖2 tends to 0 as n tends to ∞. Therefore we have DS(W) ⊂
DS(F), and then DS(W) = DS(F).

We can also check that RS(F) = RS(W). By Corollary 2.4 RS(F) = {G ∈
L2(∂A, Cm) : G(ξ) ∈ CF(ξ) for a.e. ξ ∈ ∂A}. Since F = φW, where φ(ξ) 6= 0 a.e.
on ∂A, RS(F) = {G ∈ L2(∂A, Cm) : G(ξ) ∈ CW(ξ) for a.e. ξ ∈ ∂A} = RS(W).
Since W is bounded and bounded below, L2(∂A)W is closed and thus equal to
RS(W).

REMARK 4.6. Following Wiener’s theorem, there exists a projection-valued
function P such that RS(F) = PL2(∂A, Cm). A natural choice for P is J1/cW ⊗ e1
where e1 is the first vector of the canonical orthonormal basis of Cm and where

J1/c =
(

PL2(T,Cm) +
1
c

PL2(r0T,Cm)

) (
=

( r2
0Id− SS∗

r2
0 − 1

+
1
c

SS∗ − Id
r2

0 − 1

))
.

The proof of the next result is based on the proof used by Sarason [9] in
the scalar case. Using Theorem 4.4, we can prove that given a nontrivial doubly-
invariant subspace M in H2(∂A, Cm), there exists a finite set of functions in M
“generating” M.

THEOREM 4.7. Let M be a nontrivial doubly-invariant subspace (completely not
reducing) in H2(∂A, Cm). Then there exists a finite set of at most m bounded functions
in M, say F1, . . . , Fr, such that

M = DS(F1)⊕⊥ · · · ⊕⊥ DS(Fr).

Moreover, if RS(M) = PL2(∂A, Cm) where P is a projection-valued function, the rank
of P(ξ) is constant and equal to r, for all ξ ∈ ∂A.

Proof. First we claim that there exists λ0 ∈ A such that Mª (S− λ0Id)M 6=
{0}. Indeed, if not, for all λ ∈ A and all e ∈ Cm, we have PM(kλe) = 0, where
PM is the orthogonal projection onto M and where kλ is the reproducing kernel in
H2(A) at λ. Since Span{(kλe) : λ ∈ A, e ∈ Cm} is equal to H2(∂A, Cm), it follows
that M = {0}, a contradiction.

Take F1 ∈ M ª (S − λ0Id)M. By Proposition 4.5, there exists a function
W1 ∈ H∞(∂A, Cm) such that ‖W1(ξ)‖Cm is constant almost everywhere on each
circle of ∂A and such that DS(F1) = H2(∂A)W1 and RS(F1) = L2(∂A)W1. Now,
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consider M1 := M ∩ RS(F1) which contains N1 := DS(F1), and take N2 :=
DS∗((S∗ − λ0Id)F1). Since S∗mSn is a linear combination of Sn−m and S∗(m−n)

for n 6= m in Z, and S∗nSn is a linear combination of Id and S∗S, it follows that

RS(F1) ⊂ N1 + N2 + CS∗SF1.

Since N2 ⊂ RS(F1) ∩ M⊥, it follows that M1 ⊂ N1 + M ∩ CS∗SF1. We get that
dim(M1 ª DS(F1)) 6 1. In other words,

M ∩ RS(F1) = DS(F1) or M ∩ RS(F1) = DS(F1) + CS∗SF1.

Now, let us check that there exists a function G1 in M such that M1 = DS(G1).
If dim(M1 ª DS(F1)) = 0, take G1 = F1. It remains to consider the case when
M1 = DS(F1) + CS∗SF1, i.e., when

(4.1) dim(M1 ª DS(F1)) = 1.

Take G ∈ M1 ª DS(F1), with G 6= 0. Then PM1 S∗G ⊥ DS(F1), and since
dim(M1 ª DS(F1)) = 1, there exists a unique µ0 ∈ C such that PM1 S∗G = µ0G;
equivalently, µ0 ∈ σp((S|M1

)∗). By Corollary 3.9, we see that µ0 ∈ A.
Now DS(F1) = H2(∂A)W1 as in Proposition 4.5, and so

(4.2) dim(DS(F1)ª (S− µ0Id)DS(F1)) = 1

(note that the operator S − µ0Id is bounded below, and so (S − µ0Id)DS(F1) is
closed). We also have

(4.3) dim((S− µ0Id)M1 ª (S− µ0Id)DS(F1)) = 1,

given that dim(M1 ª DS(F1)) = 1.
We summarise these observations in the following diagram.

M1 = M ∩ RS(F1)
↙ ↘ 1

(S− µ0Id)M1 DS(F1) = H2(∂A)W1
1 ↘ ↙ 1

(S− µ0Id)DS(F1)

Now it follows from (4.1), (4.2) and (4.3) that

dim(M1 ª (S− µ0Id)M1) = 1,

with G ∈ M1 ª DS(F1) and G ∈ M1 ª (S− µ0Id)M1.
Hence (S − µ0Id)M1 = DS(F1), and so F1(µ0) = 0; also F1 is analytic,

(S− µ0Id)−1F1 ∈ M1, and then M1 = DS(G1), with G1 = (S− µ0Id)−1F1.
At this stage we have proved that there exists a function G1 ∈ M such that

M = DS(G1) ⊕⊥ M′, where M′ = M ∩ RS(F1)⊥ is still doubly invariant, by
Lemma 4.2.

By induction we may arrive at an expression

M = DS(G1)⊕⊥ DS(G2)⊕⊥ · · · ⊕⊥ DS(Gr)⊕⊥ M′′,



328 I. CHALENDAR, N. CHEVROT, AND J.R. PARTINGTON

for functions G1, . . . , Gr ∈ M and where M′′ is also doubly invariant for S. We
wish to show that this procedure terminates with M′′ = {0} for some r 6 m.

Using Proposition 4.5, there exist functions W1, . . . , Wr in H∞(∂A, Cm) such
that ‖Wk(ξ)‖Cm is 1 on T and equal to a positive constant ck on r0T, such that{

M = H2(∂A)W1 ⊕⊥ · · · ⊕⊥ H2(∂A)Wr ⊕⊥ M′′,
RS(M) = L2(∂A)W1 + · · ·+ L2(∂A)Wr + RS(M′′).

By Remark 4.6, taking J1/c = PL2(T,Cm) + 1
c PL2(r0T,Cm), we have

RS(M) = J1/c1(L2(∂A)W1) + · · ·+ J1/cr (L2(∂A)Wr) + RS(M′′).

Now we consider the operator-valued function Q defined almost everywhere on
∂A by

Q(ξ) = r−1/2(J1/c1W1(ξ), . . . , J1/cr Wr(ξ)).

By construction we easily check that Q(ξ) is an orthogonal projection and then

RS(M) = QL2(∂A, Cm) + RS(M′′),

where the rank of Q(ξ) is equal to r for almost all ξ ∈ ∂A. Using Wiener’s the-
orem, there exists a measurable projection-valued function P such that RS(M) =
PL2(∂A, Cm). Note that, by Theorem 4.4, since the rank k of P(ξ) is independent
of ξ and is less or equal than m, necessarily we have r 6 k 6 m; thus the induction
must terminate with M′′ = {0} at some stage with r 6 m. As a consequence we
also get RS(M) = QL2(∂A, Cm), which implies that k = r.

4.3. OPERATOR GRAPHS. One application of the study of shift-invariant sub-
spaces is to the study of closed shift-invariant operators. For the Hardy space
of the disc, this idea is due to Georgiou and Smith [2], who gave applications
to control theory. Now for the annulus we have the following particular case of
Theorem 4.7.

THEOREM 4.8. Let M be a nontrivial closed subspace in H2(∂A, C2). If M is both
doubly invariant and the graph of a (not necessarily bounded) operator, then there exists
a bounded function Θ ∈ M such that

M = DS(Θ) = H2(∂A)Θ.

Proof. By Theorem 4.7, the only case to consider is the case when there exist

two functions
(

f1
g1

)
,
(

f2
g2

)
in M such that

M = DS

(
f1
g1

)
⊕⊥ DS

(
f2
g2

)
,

with | f1|2 + |g1|2 and | f2|2 + |g2|2 equal to 1 on T and equal to a positive constant
on r0T.
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Note that

f1

(
f2
g2

)
− f2

(
f1
g1

)
=

(
0

f1g2 − f2g1

)
∈ M.

Since M is the graph of an operator, necessarily

(4.4) f1g2 − g1 f2 = 0.

Moreover, since DS

(
f1
g1

)
⊥ DS

(
f2
g2

)
, we have also

(4.5) f1 f2 + g1g2 = 0.

Multiplying (4.5) by f2 and using (4.4), we obtain:

f1| f2|2 + f1|g2|2 = 0.

It follows that f1 = 0 and then g1 = 0 since M is the graph of an operator.
Therefore M is “singly” generated.

An analogous result holds for L2(∂A), under slightly stronger hypotheses,
but using more elementary methods. Note that using the analyticity was essential
for us to deduce Theorem 4.7.

THEOREM 4.9. Let M be a nontrivial closed subspace of L2(∂A, C2). If M is both
doubly invariant and the graph of a (not necessarily bounded) operator T whose spectrum
is not the whole plane, then there exists a bounded function Θ ∈ M such that

M = DS(Θ) = L2(∂A)Θ.

Proof. Take λ ∈ C not in the spectrum of T. Then consider the bounded
operator V = (T − λId)−1 which commutes with S. Let V(1 ⊕ 0) = h1 ⊕ h2,
so V(Sn(1 ⊕ 0)) = Sn(h1 ⊕ h2) for all n ∈ Z. Since V is bounded it implies
that h2 = 0 and h1 ∈ L∞(T) because V( f ⊕ 0) = h1 f ⊕ 0 for f ∈ L2(T) (see
Chapter 3 of [7]). Similarly, there exists h′2 ∈ L∞(r0T) such that V(0 ⊕ g) =

(0⊕ h′2g) for g ∈ L2(r0T). Thus the graph of V is
{(

f
h f

)
: f ∈ L2(∂A)

}
, where

h = h1 ⊕ h′2 ∈ L∞(∂A). Now y = Tx if and only if (T − λId)−1(y− λx) = x, so

M = L2(∂A)
(

h
1 + λh

)
.
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