GENERATORS AND RELATIONS FOR CERTAIN SPLITTING TREE ALGEBRAS

ZHUANG NIU

Communicated by Kenneth R. Davidson

Abstract

A splitting tree algebra which splits into copies of \mathbb{C} at each singular point is shown to be the universal C^{*}-algebra generated by finitely many projections with respect to certain relations. Moreover, these generators and relations are described explicitly.

KEYWORDS: Generators and relations for C^{*}-algebras, splitting tree algebras.
MSC (2000): 46L35, 46L99.

1. INTRODUCTION

Generating sets and relations for C^{*}-algebras play an important role in the classification program of amenable C^{*}-algebras (to show the existence of certain $*$-homomorphisms from building block C^{*}-algebras to either other building blocks or more general (even simple) C^{*}-algebras, see, for example, [2] and [5]), and it has been studied extensively by several authors (see the monograph [4] of T. Loring, for example).

Splitting tree algebras (first considered by H. Su in [6]) are certain unital sub-C^{*}-algebras of homogeneous C^{*}-algebras with 1-dimensional spectra. More precisely, let T be a tree (as a topological space) with finitely many vertices $\left\{v_{i}\right\}_{i=1}^{n}$, k be a natural number, and $\left\{\left\{k_{i 1}, \ldots, k_{i j_{i}}\right\}\right\}_{i=1}^{n}$ be n partitions of k; then a splitting tree algebra A is defined to be

$$
A:=\left\{f \in M_{k}(C(T)): f\left(v_{i}\right) \in M_{k_{i 1}}(\mathbb{C}) \oplus \cdots \oplus M_{k_{i j i}}(\mathbb{C}) \text { for all } i\right\}
$$

We call the vertices $\left\{v_{i}\right\}$ the singular points of A. In the case T only consists of two vertices, we also call A a splitting interval algebra. (The most special case of this - beyond just an ordinary interval algebras - is well known as the universal unital C^{*}-algebra generated by two projections.)

Certain classes of inductive limits of splitting tree algebras were shown to be classified by their K-theory information by $S u$ in [6], and X. Jiang and $S u$ in [3].

Splitting tree algebras also play an important role in the present author's Ph.D. Dissertation [5], in which a certain class of tracially approximated splitting tree algebras is classified by the Elliott invariant.

In [1], the authors studied a large class of sub-homogeneous C^{*}-algebras, including splitting tree algebras, and showed that they are finitely presented with respect to stable relations without giving concrete descriptions of generators and relations. In this paper, based on the universal unital C^{*}-algebra generated by two projections, we give explicit sets of generators and relations for the splitting tree algebras which have direct sums of \mathbb{C} at their singular points, i.e. $k_{i j}=1$ for all i and j, and moreover, the generating sets are shown to consist of minimal projections. These sets of generators and relations has been used in [5] to prove the existence theorem for the homomorphisms from splitting interval algebras to certain abstract algebras. (Another approach to the existence theorem, which is more direct, was found when the author was finishing writing the thesis.)

2. GENERATORS AND RELATIONS FOR CERTAIN SPLITTING TREE ALGEBRAS

Let us start with the elementary case when the tree T only consists two vertices and the functions split into two copies of \mathbb{C} at these two vertices. It is well known that this C^{*}-algebra is the universal unital C^{*}-algebra generated by two projections. For the convenience of readers, a proof is given below.

Lemma 2.1. The C^{*}-algebra $S_{2}=\left\{f \in M_{2}(C[0,1]): f(0) \in \mathbb{C} \oplus \mathbb{C}, f(1) \in\right.$ $\mathbb{C} \oplus \mathbb{C}\}$ is the universal unital C^{*}-algebra generated by two projections.

Proof. Set

$$
p^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad q^{\prime}=\left(\begin{array}{cc}
t & \sqrt{t(1-t)} \\
\sqrt{t(1-t)} & 1-t
\end{array}\right) .
$$

Then p^{\prime} and q^{\prime} are projections in S_{2}. It is easy to see that, together with the identity, p^{\prime} and q^{\prime} generate S_{2}.

Let us consider the universal unital C^{*}-algebra \mathcal{A} generated by two projections p and q. Let us prove that \mathcal{A} is isomorphic to S_{2} by calculating the irreducible representations of \mathcal{A}, and showing that any irreducible representation of \mathcal{A} factors through the concrete C^{*}-algebra S_{2}.

Let π be an irreducible representation of \mathcal{A}. To save notation, still denote by p and q the images of the two generators respectively. One can verify that $(p-q)^{2}$ belongs to the center of the image of \mathcal{A} under π, and therefore we get

$$
(p-q)^{2}=(1-t) I
$$

for some $t \in[0,1]$.
In the case $t \neq 0,1$, consider the operator $v^{\prime}=(p q-p q p)$. A calculation shows that $v^{\prime} v^{\prime *}=t(1-t) p$ and $v^{\prime *} v^{\prime}=t(1-t)(I-p)$. Therefore,
$v:=v^{\prime} / \sqrt{t(1-t)}$ is a partial isometry with

$$
v v^{*}=p, \quad v^{*} v=I-p
$$

So, the C^{*}-algebra generated by $\{p, v\}$ is isomorphic to the 2×2 matrix algebra. Moreover, we also have

$$
\begin{aligned}
t p+(1-t)(I-p)+\sqrt{t(1-t)} v+\sqrt{t(1-t)} v^{*} & =p q-p q p+q p-p q p+t p+(1-t)(I-p) \\
& =p q+q p-2 p q p+(p-q)^{2}-2(p-q)^{2} p=q
\end{aligned}
$$

Therefore, we conclude that π is a 2-dimensional representation, which maps p to $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and q to $\left(\begin{array}{cc}t & \sqrt{t(1-t)} \\ \sqrt{t(1-t)} & 1-t\end{array}\right)$. It agrees with the point evaluation of S_{2} at the point t.

In the case $t=1$, we have that $(p-q)^{2}=0$. Therefore, $p=q$, and p and q are in the center of the image of the algebra. Hence $p=q=0$ or 1 . It agrees with the point evaluation of S_{2} at 0 and projection onto the lower-right corner or the upper-left corner, respectively.

A similar argument shows that the case $t=0$ gives us the point evaluation of S_{2} at 1 and projection onto the lower-right corner or the upper-left corner. Therefore, the irreducible representations of the quotient S_{2} of \mathcal{A} exhaust the irreducible representations of \mathcal{A}. Hence the canonical surjective map from \mathcal{A} to S_{2} is an isomorphism. This shows that S_{2} is the universal unital C^{*}-algebra generated by two projections.

REMARK 2.2. From the proof of the previous lemma, one has that if two projections p and q satisfy the relation

$$
(p-q)^{2}=(1-t) I
$$

then the unital C^{*}-algebra generated by p and q is isomorphic to $M_{2}(\mathbb{C})$ via the map

$$
p \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right), \quad q \mapsto\left(\begin{array}{cc}
t & \sqrt{t(1-t)} \\
\sqrt{t(1-t)} & 1-t
\end{array}\right) .
$$

Using the elementary splitting interval algebra above, we have the generators and relations for a the splitting interval algebras which split into several copies of \mathbb{C} at the singular points.

Lemma 2.3. The C^{*}-algebra

$$
S_{n}=\{f \in M_{n}(C[0,1]): f(0) \in \underbrace{\mathbb{C} \oplus \cdots \oplus \mathbb{C}}_{n \text { copies }}, f(1) \in \underbrace{\mathbb{C} \oplus \cdots \oplus \mathbb{C}}_{n \text { copies }}\}
$$

is the universal C^{*}-algebra generated by the projections $\left\{p_{i}\right\}_{i=1}^{n}$ and $\left\{p_{1 i}\right\}_{i=2}^{n}$ with the following relations

$$
\begin{aligned}
& p_{1}+\cdots+p_{n}=I \\
& p_{1 i}\left(p_{1}+p_{i}\right)=p_{1 i} \quad \text { for any } 2 \leqslant i \leqslant n \\
& p_{1} p_{1 i} p_{1}=p_{1} p_{1 j} p_{1} \quad \text { for any } 2 \leqslant i, j \leqslant n
\end{aligned}
$$

Proof. Set

$$
p_{i}=\operatorname{diag}\{\underbrace{0, \cdots 0,1}_{i}, 0, \cdots, 0\}
$$

and

$$
p_{1 i}=\left(\begin{array}{cccccccc}
t & 0 & \cdots & 0 & \sqrt{t(1-t)} & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\sqrt{t(1-t)} & 0 & \cdots & 0 & 1-t & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0
\end{array}\right) .
$$

Then one can verify that these projections satisfy the relations of the lemma, and also generate S_{n}.

On the other hand, let \mathcal{A} denote the universal unital C^{*}-algebra generated by these elements subject to the relations of the lemma. Let us verify that the sum

$$
c:=\left(p_{1}-p_{12}\right)^{2}+\sum_{i=3}^{n} p_{i} p_{1 i} p_{i}
$$

belongs to the center of \mathcal{A}. Indeed, it is easy to verify that c commutes with $\left\{p_{i}\right\}$ and p_{12}. For any projection $p_{1 k}$ with $k=3, \ldots, n$, in order to show that it commutes with c, it is enough to verify that $p_{1 k}$ commutes with $\left(p_{1}-p_{12}\right)^{2}+$ $p_{k} p_{1 k} p_{k}$. Using the identity $p_{1} p_{12} p_{1}=p_{1} p_{1 k} p_{1}$, one can conclude

$$
p_{1}\left(p_{1}-p_{12}\right)^{2} p_{1}=p_{1}\left(p_{1}-p_{1 k}\right)^{2} p_{1}
$$

Together with the observation that $p_{k}\left(=\left(p_{1}+p_{k}\right)-p_{1}\right)$ commutes with $\left(p_{1}-\right.$ $\left.p_{1 k}\right)^{2}$, we have

$$
\begin{aligned}
\left(p_{1}-p_{12}\right)^{2}+p_{k} p_{1 k} p_{k} & =p_{1}\left(p_{1}-p_{12}\right)^{2} p_{1}+p_{2}\left(p_{1}-p_{12}\right)^{2} p_{2}+p_{k} p_{1 k} p_{k} \\
& =p_{1}\left(p_{1}-p_{1 k}\right)^{2} p_{1}+p_{2}\left(p_{1}-p_{12}\right)^{2} p_{2}+p_{k}\left(p_{1}-p_{1 k}\right)^{2} p_{k} \\
& =\left(p_{1}-p_{1 k}\right)^{2}+p_{2} p_{12} p_{2}
\end{aligned}
$$

It is clear that $p_{1 k}$ commutes with $\left(p_{1}-p_{1 k}\right)^{2}+p_{2} p_{12} p_{2}$. In particular, $p_{1 k}$ commutes with $\left(p_{1}-p_{12}\right)^{2}+p_{k} p_{1 k} p_{k}$ and hence commutes with c.

Since c is a sum of mutually orthogonal elements with norm at most one, the norm of c is at most one. Therefore, for any irreducible representation π of \mathcal{A}, we have

$$
\pi(c)=\pi\left(\left(p_{1}-p_{12}\right)^{2}+\sum_{i=3}^{n} p_{i} p_{1 i} p_{i}\right)=(1-t) I
$$

for some $t \in[0,1]$. For simplicity, let us use the same notation for the images of the generators under π.

In the case $t=1$, we have that $p_{i} p_{1 i} p_{i}=0$ for $i \geqslant 3$, and $p_{1}=p_{12}$. It follows that the image of \mathcal{A} is a commutative C^{*}-algebra. Therefore, π is a 1 -dimensional representation, and only one of the p_{i} 's, say p_{m}, is non-zero. This projection must be the unit of the image. If $m=1$, then we have

$$
p_{1} p_{1 i}=p_{1 i}, \quad p_{1} p_{1 i} p_{1}=p_{1} p_{1 j} p_{1}
$$

and hence $p_{1 i}=p_{1 j}$. In particular, $p_{1 i}=p_{12}=p_{1}=1$. If $m \neq 1$, then we have that $p_{1 m}=p_{m} p_{1 m}=0$ and $p_{1 i}=p_{1 i}\left(p_{1}+p_{i}\right)=0$ if $i \neq m$. Therefore, π agrees with the point evaluation of S_{n} at $t=1$ and projection onto the $\mathrm{m} t h$ coordinate.

In the case $t=0$, we have

$$
\left(p_{1}-p_{12}\right)^{2}+\sum_{i=3}^{n} p_{i} p_{1 i} p_{i}=1
$$

Therefore, one concludes that

$$
p_{1}=\left(\left(p_{1}-p_{12}\right)^{2}+\sum_{n=3}^{n} p_{i} p_{1 i} p_{i}\right) p_{1}=\left(p_{1}-p_{12}\right)^{2} p_{1}=p_{1}+p_{1} p_{1 i} p_{1}, \quad 1 \leqslant i \leqslant n,
$$

which implies $p_{1} p_{1 i} p_{1}=0$. Hence the projections p_{1} and $p_{1 i}$ are orthogonal. Moreover, the projections $p_{1 i}$ and $p_{1 j}$ are also orthogonal if $i \neq j$. The image of \mathcal{A} is then a commutative C^{*}-algebra, and only one of $\left\{p_{1}, \ldots, p_{m}\right\}$ is non-zero (and hence to be the identity). Denote this non-zero projection by p_{m}. Using an argument similar to the case of $t=1$, we can show that π agrees with the point evaluation of S_{n} at $t=0$ and projection onto the $\mathrm{m} t h$ coordinate.

If $t \neq 0,1$, consider the element $v_{i}^{\prime}:=p_{1} p_{1 i}-p_{1} p_{1 i} p_{1}$. A calculation shows that $v_{i}^{\prime} v_{i}^{\prime *}=t(1-t) p_{1}$ and $v_{i}^{\prime *} v_{i}^{\prime}=t(1-t) p_{i}$. Then by setting $e_{1 i}=v_{i}^{\prime} / \sqrt{t(1-t)}$, one gets a system of matrix units $\left\{e_{i j}: i, j=1, \ldots, m\right\}$ such that $p_{1}=e_{1 i} e_{1 i}^{*}=e_{11}$, $p_{i}=e_{1 i}^{*} e_{1 i}=e_{i i}$ and

$$
p_{1 i}=t e_{11}+(1-t) e_{i i}+\sqrt{t(1-t)} e_{1 i}+\sqrt{t(1-t)} e_{1 i}^{*} .
$$

Therefore, the representation π is n-dimensional, and we have

$$
p_{i} \mapsto \operatorname{diag}\{\underbrace{0, \ldots 0,1}_{i}, 0, \ldots, 0\}
$$

and

$$
p_{1 i} \mapsto\left(\begin{array}{cccccccc}
t & 0 & \cdots & 0 & \sqrt{t(1-t)} & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\sqrt{t(1-t)} & 0 & \cdots & 0 & 1-t & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

in this system of matrix units. It agrees with the point evaluation of S_{n} at the point t. Hence, the irreducible representations of the quotient S_{n} of \mathcal{A} exhaust the irreducible representations of \mathcal{A}, and therefore the concrete C^{*}-algebra S_{n} is isomorphic to \mathcal{A}. In other words, S_{n} is the universal C^{*}-algebra of the generators and relations of the lemma.

In the following, let us consider certain splitting tree algebras with more than two singular points. Let us first consider the special case when the tree is the interval $[0, n]$ with integers $i, 0 \leqslant i \leqslant n$, as vertices. For a natural number n, denote by A_{n} the C^{*}-algebra

$$
A_{n}:=\left\{f \in M_{2}(C[0, n]): f(i) \in \mathbb{C} \oplus \mathbb{C} \text { for all } i \in \mathbb{Z}, 0 \leqslant i \leqslant n\right\}
$$

Then we have the following lemma.
Lemma 2.4. The C^{*}-algebra A_{n} defined above is the universal C^{*}-algebra generated by the projections $\left\{p, q, p_{i}: i=0, \ldots, n-1\right\}$ with the relations

$$
\begin{aligned}
& p+q=1 \\
& \left(p-p_{i}\right)\left(q-p_{j}\right)=0 \quad \text { for any } j>i
\end{aligned}
$$

Proof. Let p denote the projection in A_{n} which is the constant function

$$
p=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

and let q denote its complement. Denote by p_{i} the projection in A_{n} which takes the constant $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ between 0 and i, takes value

$$
\left(\begin{array}{cc}
t-i & \sqrt{(t-i)(i+1-t)} \\
\sqrt{(t-i)(i+1-t)} & i+1-t
\end{array}\right)
$$

at the point t between i and $i+1$ and takes $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ between $i+1$ and n. Then $p, q, p_{0}, \ldots, p_{n-1}$ generate A_{n} and satisfy the relations of the lemma.

On the other hand, denote by \mathcal{A}_{n} the universal C^{*}-algebra generated by the generators and relations of the lemma. For each $i=0, \ldots, n-1$, let us show that
$\left(p-p_{i}\right)^{2}$ commutes with $\left\{p, q, p_{j}: j=0, \ldots, n-1\right\}$. For any projection p_{j} with $j>i$, since $\left(p-p_{i}\right)\left(q-p_{j}\right)=0$, we have

$$
\left(p-p_{i}\right) q=\left(p-p_{i}\right) p_{j}
$$

Therefore

$$
\left(p-p_{i}\right)^{2} p_{j}=\left(p-p_{i}\right)^{2} q=q\left(p-p_{i}\right)^{2}=p_{j}\left(p-p_{i}\right)^{2}
$$

and hence the projection p_{j} commutes with $\left(p-p_{i}\right)^{2}$. For any projection p_{j} with $j<i$, a similar argument shows p_{j} commutes with $\left(q-p_{i}\right)^{2}$. Since $\left(p-p_{i}\right)^{2}=$ $1-\left(q-p_{i}\right)^{2}$, we have that p_{j} commutes with $\left(p-p_{i}\right)^{2}$. Therefore, the element $\left(p-p_{i}\right)^{2}$ is a central element of \mathcal{A}.

Consider the central elements $\left\{\left(p-p_{i}\right)^{2}\left(1-\left(p-p_{i}\right)^{2}\right): i=0, \ldots, n-1\right\}$. Let us first show that they are orthogonal to each other. In fact, for any pair of elements $\left(p-p_{i}\right)^{2}\left(1-\left(p-p_{i}\right)^{2}\right)$ and $\left(p-p_{j}\right)^{2}\left(1-\left(p-p_{j}\right)^{2}\right)$ with $i<j$, since $1-\left(p-p_{j}\right)^{2}=\left(q-p_{j}\right)^{2}$ and $\left(p-p_{i}\right)\left(q-p_{j}\right)=0$, we have

$$
\begin{aligned}
\left(p-p_{i}\right)^{2}\left(1-\left(p-p_{i}\right)^{2}\right) & \cdot\left(p-p_{j}\right)^{2}\left(1-\left(p-p_{j}\right)^{2}\right) \\
& =\left(1-\left(p-p_{i}\right)^{2}\right)\left(p-p_{i}\right)^{2}\left(q-p_{j}\right)^{2}\left(p-p_{j}\right)^{2}=0
\end{aligned}
$$

Let π be a irreducible representation of \mathcal{A}_{n}. For simplicity of notation, let us use the same notation for the images of the generators under π. Since π is irreducible, any central element must be a scalar multiple of 1 . Moreover, since $\left\{\left(p-p_{i}\right)^{2}\left(1-\left(p-p_{i}\right)^{2}\right): i=0, \ldots, n-1\right\}$ are mutually orthogonal central elements, at most one of them, say $\left(p-p_{k}\right)^{2}\left(1-\left(p-p_{k}\right)^{2}\right)$, is non-zero. Note that if $\left(p-p_{i}\right)^{2}\left(1-\left(p-p_{i}\right)^{2}\right)=0$, then $\left(p-p_{i}\right)^{2}$ is a projection. Moreover, since $\left(p-p_{i}\right)^{2}$ is a scalar multiple of 1 , it must be the trivial projection, i.e., $\left(p-p_{i}\right)^{2}$ must be 0 or 1 .

If $\left(p-p_{k}\right)^{2}=(1-t) 1$ with $t \in(0,1)$, since $\left(p-p_{i}\right)\left(q-p_{j}\right)=0$ for any pair i, j with $j>i$ and $\left(p-p_{k}\right)^{2}=1-\left(q-p_{k}\right)^{2}$, we have that $\left(p-p_{i}\right)^{2}=0$ for all $i<k$, and $\left(q-p_{i}\right)^{2}=0$ for all $i>k$. Therefore, we have that $p_{i}=p$ if $i<k$, and $p_{i}=1-p=q$ if $i>k$. The image of \mathcal{A}_{n} is then generated by the projections p and p_{k} with the relation $\left(p-p_{k}\right)^{2}=(1-t) 1$. By Remark 2.2 , the image of \mathcal{A}_{n} is isomorphic to $M_{2}(\mathbb{C})$ with the map

$$
p \mapsto\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad p_{k} \mapsto\left(\begin{array}{cc}
t & \sqrt{t(1-t)} \\
\sqrt{t(1-t)} & 1-t
\end{array}\right) .
$$

Hence π agrees with the point evaluation of the concrete algebra A_{n} at the point $i+t$.

$$
\text { If }\left(p-p_{i}\right)^{2}\left(1-\left(p-p_{i}\right)^{2}\right)=0 \text { for any } i=0, \ldots, n-1 \text {, then }\left(p-p_{i}\right)^{2}=0 \text { or }
$$ 1. Set

$$
k=\min \left\{i:\left(p-p_{i}\right)^{2}=1\right\}
$$

and set $k=n$ if $\left(p-p_{i}\right)^{2}=0$ for any $i=0, \ldots, n-1$. Then we assert that $\left(q-p_{i}\right)^{2}=0$ for any $i>k$. Indeed, since $\left(p-p_{k}\right)^{2}=1$ by the choice of k, for any
$i>k$, we have

$$
\left(q-p_{i}\right)^{2}=\left(q-p_{i}\right)^{2}\left(p-p_{k}\right)^{2}=0
$$

Also by the choice of k, we have that $\left(p-p_{i}\right)^{2}=0$ for any $i<k$. Hence, one has that $p_{i}=p$ for any $i<k$, and $p_{i}=q$ for all $i \geqslant k$. Therefore, the image of \mathcal{A}_{n} is generated by p and q. Since π is irreducible and p and q are orthogonal, one of the projections p and q must be 0 under π, and π is one-dimensional. Therefore the irreducible representation π of \mathcal{A}_{n} coincides with the point evaluations of A_{n} at k and projection onto the coordinate corresponding to the non-zero projection of $\{p, q\}$.

This shows that the irreducible representations of A_{n} exhaust the irreducible representations of \mathcal{A}_{n} which implies that \mathcal{A}_{n} is isomorphic to the concrete algebra A_{n}.

Based on the argument above, we have the generators and relations for the splitting tree algebra $A_{n, m}$ defined as follows:

$$
A_{n, m}:=\{f \in M_{m}(C[0, n]): f(i) \in \underbrace{\mathbb{C} \oplus \cdots \oplus \mathbb{C}}_{\text {m copies }} \text { for all } i \in \mathbb{Z}, 0 \leqslant i \leqslant n\} .
$$

THEOREM 2.5. The C^{*}-algebra $A_{n, m}$ is the universal algebra generated by the projections $\left\{p_{k}\right\}_{k=1}^{m}$ and $\left\{p_{i j}\right\}$, where $0 \leqslant i \leqslant n-1$ and $2 \leqslant j \leqslant m$, with the relations:

$$
\begin{aligned}
& p_{1}+\cdots+p_{m}=1, \\
& p_{i j}\left(p_{1}+p_{j}\right)=p_{i j}, \quad \text { for any } i, j, \\
& p_{1} p_{i j_{1}} p_{1}=p_{1} p_{i j_{2}} p_{1} \quad \text { for any } i, j_{1}, j_{2}, \text { and } \\
& \left(p_{1}-p_{i_{1} j_{1}}\right)\left(p_{j_{2}}-p_{i_{2} j_{2}}\right)=0 \quad \text { for any } i_{1}<i_{2} .
\end{aligned}
$$

Proof. We only sketch the proof here. Denote by p_{k} the constant-valued function

$$
\operatorname{diag}\{\underbrace{0, \ldots, 0,1}_{k}, 0, \ldots, 0\} .
$$

Let $p_{i j}$ denote the function which takes the constant value

$$
\operatorname{diag}\{\underbrace{0, \ldots, 0,1}_{j}, 0, \ldots, 0\}
$$

between 0 and i, takes the value

$$
\left(\begin{array}{cccccccc}
t-i & 0 & \cdots & 0 & \sqrt{(t-i)(i+1-t)} & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\sqrt{(t-i)(i+1-t)} & 0 & \cdots & 0 & i+1-t & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

at the point t between i and $i+1$, and takes the constant value

$$
\operatorname{diag}\{1, \ldots, 0,0,0, \ldots, 0\}
$$

between $i+1$ and n. These projections generate the C^{*}-algebra $A_{n, m}$ and satisfy the relations of the theorem.

On the other hand, consider the universal algebra $\mathcal{A}_{n, m}$ generated by the generators and relations of the theorem. For each $0 \leqslant i \leqslant n-1$, set

$$
b_{i}=\left(p_{1}-p_{i 2}\right)^{2}+\sum_{j=3}^{m} p_{j} p_{i j} p_{j}
$$

and let us verify that b_{i} is a central element. Indeed, it is clear that b_{i} commutes with $\left\{p_{k}\right\}$ and $p_{i 2}$. In order to show the projection $p_{j k}$ commutes with b_{i}, it is enough to verify that $p_{j k}$ commutes with $\left(p_{1}-p_{i 2}\right)^{2}+p_{k} p_{i j} p_{k}$.

The same argument as Lemma 2.3 shows

$$
\left(p_{1}-p_{i 2}\right)^{2}+p_{k} p_{i j} p_{k}=\left(p_{1}-p_{i k}\right)^{2}+p_{2} p_{i 2} p_{2}
$$

Therefore, the projections $\left\{p_{i j}: j=2, \ldots, m\right\}$ commutes with b_{i}. For any projection $p_{j k}$ with $j>i$, since $\left(p_{1}-p_{i k}\right)\left(p_{k}-p_{j k}\right)=0$, we have

$$
\left(p_{1}-p_{i k}\right) p_{k}=\left(p_{1}-p_{i k}\right) p_{j k}
$$

Hence

$$
p_{j k}\left(p_{1}-p_{i k}\right)^{2}=p_{k}\left(p_{1}-p_{i k}\right)^{2}=\left(p_{1}-p_{i k}\right)^{2} p_{k}=\left(p_{1}-p_{i k}\right)^{2} p_{j k}
$$

Therefore $p_{j k}$ commutes with b_{i}. A similar argument shows that $p_{j k}$ commutes with b_{i} for any $j<i$. Therefore, b_{i} is a central element. Moreover, if we set $c_{i}=b_{i}\left(1-b_{i}\right)$, then $\left\{c_{i}\right\}$ are mutually orthogonal.

Let π be an irreducible representation of $\mathcal{A}_{n, m}$, and let us still use the same notation for the image under π. Since π is irreducible, each b_{i} and c_{i} must be a scale multiple of 1 , and at most one of $\left\{c_{i}\right\}$, say c_{k}, is non-zero. Note that if $c_{i}=0$, then $b_{i}=0$ or $b_{i}=1$. In each case, similar arguments as of Lemma 2.3 show that $p_{i j}$ is in the C^{*}-algebra generated by $\left\{p_{1}, \ldots, p_{m}\right\}$.

$$
\text { If } b_{k}=\left(p_{i}-p_{k 2}\right)^{2}+\sum_{j=3}^{m} p_{j} p_{k j} p_{j}=(1-t) 1 \text { for some } t \in(0,1) \text {, a calculation }
$$

as that of Lemma 2.3 shows that π agrees with the point evaluation map of $A_{n, m}$ at $k+t$.

$$
\text { If } \begin{aligned}
b_{i}=0 \text { or } b_{i}=1 \text { for any } i & =0, \ldots, n-1, \text { then set } \\
k & :=\min \left\{i: b_{i}=1\right\}
\end{aligned}
$$

and set $k=n$ if $b_{i}=0$ for any $i=0, \ldots, n-1$. Similar arguments as those of Lemma 2.3 and Lemma 2.4 show that π agrees with the point evaluation map of $A_{n, m}$ at k and projection onto the coordinate corresponding to the non-zero projection of $\left\{p_{1}, \ldots, p_{m}\right\}$.

Therefore, the C^{*}-algebra $A_{n, m}$ is the universal C^{*}-algebra of the generators and relations of the theorem.

Let us study the generating sets for certain splitting tree algebras over a general tree. Let T be a rooted tree, and denote by $\left\{v_{i}\right\}_{i=1}^{n}$ its vertices. Then there is a natural partial order on the vertices defined as the following.

Fix one vertex, say v_{1}, as the root of the tree. Then, for any two vertices v_{i} and v_{j}, we define $v_{i}>v_{j}$ if the the minimal path between v_{j} and v_{1} contains the minimal path between v_{i} and v_{1}. We say v_{j} is a child of v_{i}, or v_{i} is an ancestor of v_{j}. It is clear that v_{1} is the maximal element, and any finite subset of $\left\{v_{i}\right\}_{i=1}^{n}$ has a unique minimal upper bound.

On the other hand, for any partial order on a finite set $\left\{v_{i}\right\}_{i=1}^{n}$ with a maximal element v_{1}, if it has the property that the minimal upper bound of any subset is unique, then there is a canonical way to construct a rooted tree T which has $\left\{v_{i}\right\}_{i=1}^{n}$ as its vertices and the partial order induced by T is the given order. It can be described as follows. To construct such a tree with vertices $\left\{v_{i}\right\}_{i=1}^{n}$, it is enough to determine edges connecting the vertices. For a vertex v_{i}, define the set E_{i} to be
$E_{i}=\left\{v_{j}: v_{j}<v_{i}\right.$ and there does not exist a vertex v_{k} such that $\left.v_{j}<v_{k}<v_{i}\right\}$.
In other words, E_{i} is the set of the closest children of v_{i}. Then one can put an edge between v_{i} and each point of E_{i}. Starting with the maximal element v_{1}, one can get a graph which is determined by E_{i} and therefore by the given partial order. This graph is actually a tree, since the minimal upper bound of any subset is unique. Denote by $\left[v_{i}, v_{j}\right]$ the edge connecting v_{i} and v_{j} if there exists one.

LEMMA 2.6. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a partially ordered set with the partial order induced by a rooted tree T, i.e., there exists a maximal element, say v_{1}, and the minimal upper bound of any subset is unique. Then the C^{*}-algebra

$$
A:=\left\{f \in M_{2}(C(T)): f\left(v_{i}\right) \in \mathbb{C} \oplus \mathbb{C}, i=1, \ldots, n\right\}
$$

is the universal C^{*}-algebra generated by the projections $\left\{p, q, p_{i}: i=2, \ldots, n\right\}$ with respect to the following relations:

$$
\begin{aligned}
& p+q=1 \\
& \left(p-p_{i}\right)\left(p-p_{j}\right)=0 \quad \text { if } v_{j} \text { and } v_{i} \text { can not be compared, } \\
& \left(p-p_{i}\right)\left(q-p_{j}\right)=0 \quad \text { if } v_{i}<v_{j}
\end{aligned}
$$

Proof. The proof goes along the same line as that of Lemma 2.4 by calculating the irreducible representations. Let p be the projection in A which is the constant function

$$
p=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

and let q be its complement.
For each vertex $v_{i}, i=2, \ldots, n$, denote by v_{i}^{\prime} the closest ancestor of v_{i}. Denote by E_{i} the set consisting of v_{i} itself and all the children of v_{i}, and denote by D_{i} the set of the vertices which are not in E_{i}. (Note that the only edge connecting D_{i} and E_{i} is the edge $\left[v_{i}^{\prime}, v_{i}\right]$.) Let us define the projection p_{i} in A piecewisely. The
projection p_{i} takes the constant value $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ on the edges connecting vertices in D_{i}, takes the value $\left(\begin{array}{cc}1-t & \sqrt{t(1-t)} \\ \sqrt{t(1-t)} & t\end{array}\right)$ at the point t on edges connecting v_{i}^{\prime} and v_{i} (regarding the edge $\left[v_{i}^{\prime}, v_{i}\right]$ as the interval $[0,1]$), and takes the constant value $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ on the remaining edges. In the construction of p_{i}, the values of p_{i} agree with each other on the vertex v_{i}^{\prime} (which corresponds to $t=0$) and the vertex v_{i} (which corresponds to $t=1$), therefore p_{i} is a continuous projection valued function on T. Moreover, the set of projections $\left\{p, q, p_{2}, \ldots, p_{n}\right\}$ generates A and satisfies the relations of the lemma.

On the other hand, let \mathcal{A} be the universal C^{*}-algebra generated by

$$
\left\{p, q, p_{i}: i=2, \ldots, n\right\}
$$

with respect to the relations of the lemma. We shall show that $\left(p-p_{i}\right)^{2}$ is a central element of \mathcal{A} for all i.

Fix $\left(p-p_{i}\right)^{2}$. It is clear that $\left(p-p_{i}\right)^{2}$ commutes with the projections p, q, and p_{i}. For any $v_{j}>v_{i}$, we have $\left(p-p_{i}\right)\left(q-p_{j}\right)=0$. Therefore,

$$
\left(p-p_{i}\right) q=\left(p-p_{i}\right) p_{j}
$$

Hence we have

$$
\left(p-p_{i}\right)^{2} p_{j}=\left(p-p_{i}\right)^{2} q=q\left(p-p_{i}\right)^{2}=p_{j}\left(p-p_{i}\right)^{2}
$$

and therefore the projection p_{j} commutes with $\left(p-p_{i}\right)^{2}$. Interchanging p_{i} with p_{j}, the same argument shows that any projection p_{j} with $v_{j}<v_{i}$ commutes with $\left(q-p_{i}\right)^{2}$. Since $\left(p-p_{i}\right)^{2}=1-\left(q-p_{i}\right)^{2}$, we have that $\left(p-p_{i}\right)^{2}$ commutes with p_{j} for any child v_{j} of v_{i}. If v_{i} and v_{j} are not comparable, then we have $\left(p-p_{i}\right)\left(p-p_{j}\right)=0$, and hence

$$
\left(p-p_{i}\right) p=\left(p-p_{i}\right) p_{j}
$$

A direct calculation also shows that $\left(p-p_{i}\right)^{2}$ commutes with p_{j}. Thus the element $\left(p-p_{i}\right)^{2}$ commutes with all projections $\left\{p, q, p_{i}: i=2, \ldots, n\right\}$, and it is a central element of \mathcal{A}.

Consider any pair of elements $\left(p-p_{i}\right)^{2}\left(1-\left(p-p_{i}\right)^{2}\right)$ and $\left(p-p_{j}\right)^{2}(1-$ $\left.\left(p-p_{j}\right)^{2}\right)$. Note that $\left(p-p_{j}\right)^{2}=1-\left(q-p_{j}\right)^{2}$. If $v_{j}<v_{i}$ or $v_{i}<v_{j}$, we then have

$$
\begin{aligned}
\left(p-p_{i}\right)^{2}\left(1-\left(p-p_{i}\right)^{2}\right) & \cdot\left(p-p_{j}\right)^{2}\left(1-\left(p-p_{j}\right)^{2}\right) \\
& =\left(1-\left(p-p_{i}\right)^{2}\right)\left(p-p_{i}\right)^{2}\left(q-p_{j}\right)^{2}\left(p-p_{j}\right)^{2}=0
\end{aligned}
$$

If v_{i} and v_{j} can not be compared, we then have

$$
\begin{aligned}
\left(p-p_{i}\right)^{2}\left(1-\left(p-p_{i}\right)^{2}\right) & \cdot\left(p-p_{j}\right)^{2}\left(1-\left(p-p_{j}\right)^{2}\right) \\
& =\left(1-\left(p-p_{i}\right)^{2}\right)\left(p-p_{i}\right)^{2}\left(p-p_{j}\right)^{2}\left(1-\left(p-p_{j}\right)^{2}\right)=0
\end{aligned}
$$

Therefore, the positive elements $\left(p-p_{i}\right)^{2}\left(1-\left(p-p_{i}\right)^{2}\right), i=1, \ldots, n$ are orthogonal to each other.

We shall show that the irreducible representations of \mathcal{A} can be parameterized by the tree T (with splitting at the vertices.). Let π be an irreducible representation of \mathcal{A}, and let us use the same notation for the image of $\left\{p, q, p_{i}\right\}$. Since π is irreducible and $\left(p-p_{i}\right)^{2}\left(1-\left(p-p_{i}\right)^{2}\right), i=1, \ldots, n$ are mutually orthogonal central elements, we have that at most one of them, say $\left(p-p_{k}\right)^{2}\left(1-\left(p-p_{k}\right)^{2}\right)$, is non-zero. Note that if $\left(p-p_{i}\right)^{2}\left(1-\left(p-p_{i}\right)^{2}\right)=0$ for some i, then the central element $\left(p-p_{i}\right)^{2}$ is a projection, and hence must be 0 or 1 by the irreducibility of π.

If $\left(p-p_{k}\right)^{2}=t 1$ with $t \in(0,1)$, since $\left(p-p_{i}\right)\left(q-p_{k}\right)=0$ for all $v_{k}>$ v_{i}, and $\left(p-p_{i}\right)\left(p-p_{k}\right)=0$ if v_{i} and v_{k} can not be compared, we have that $\left(p-p_{i}\right)^{2}=0$ for any v_{i} that is not comparable to v_{k} or is an ancestor of v_{k}, and $\left(q-p_{i}\right)^{2}=0$ for any child v_{i} of v_{k}. Therefore, we get $p_{i}=p$ for any v_{i} that is not comparable to v_{k} or is an ancestor of v_{k}, and $p_{i}=1-p=q$ for any child v_{i} of v_{k}. Hence the image of \mathcal{A} is generated by the projections p and p_{k}. with the relation $\left(p-p_{k}\right)^{2}=t 1$. By Remark 2.2, the representation π agrees with the point evaluation of A at the point t between v_{k}^{\prime} and v_{k} (recall that we regard the edge $\left[v_{k}^{\prime}, v_{k}\right]$ as $\left.[0,1]\right)$.

If $\left(p-p_{i}\right)^{2}=0,1$ for all v_{i}, denote by

$$
S:=\left\{v_{i}:\left(p-p_{i}\right)^{2}=1\right\}
$$

We assert that if $v_{k} \in S$, then any ancestor of v_{k} belongs to S, and $\left(p-p_{i}\right)^{2}=0$ for any v_{i} which is not comparable to v_{k}. Indeed, if $v_{k} \in S$, then $\left(p-p_{k}\right)^{2}=1$. One has

$$
\left(p-p_{i}\right)^{2}=1-\left(q-p_{i}\right)^{2}=1-\left(q-p_{i}\right)^{2}\left(p-p_{k}\right)^{2}=1
$$

for all $v_{i}>v_{k}$, and

$$
\left(p-p_{i}\right)^{2}=\left(p-p_{i}\right)^{2}\left(p-p_{k}\right)^{2}=0
$$

for all v_{i} which can not be compared with v_{k}. Therefore, if the set S is non-empty, the minimal element of the set S exists and is unique. Let us denote by v_{k} this minimal element if it exists, and set $v_{k}=v_{1}$ if S is empty. Then one has

$$
\left(p-p_{i}\right)^{2}=0
$$

for any v_{i} a child of v_{k} or v_{i} is not comparable to v_{k}, and

$$
\left(q-p_{i}\right)^{2}=1-\left(p-p_{i}\right)^{2}=0
$$

otherwise. Therefore, we have that $p_{i}=p$ if v_{i} is a child of v_{k} or v_{i} is not comparable to v_{k}, and $p_{i}=q$ otherwise. Hence the image of \mathcal{A} under π is generated by the orthogonal projections p and q. Since π is irreducible, one of the projections p and q must be sent to zero. Then the irreducible representation π of \mathcal{A} coincides with the point evaluation of A at v_{k} and projection onto the coordinate corresponding to the non-zero projection of $\{p, q\}$.

Therefore the irreducible representations of A exhaust the irreducible representation of \mathcal{A}, and hence \mathcal{A} is isomorphic to A, as desired.

Based on the lemma above, we have the following description of the generators and relations for a splitting tree algebra which splits into copies of \mathbb{C} at the singular points.

THEOREM 2.7. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a partially ordered set with the partial order induced by a rooted tree T, i.e., there exists a maximal element, say v_{1}, and the minimal upper bound of any subset is unique. Let m be a natural number. Then the C^{*}-algebra

$$
A:=\{f \in M_{m}(C(T)): f\left(v_{i}\right) \in \underbrace{\mathbb{C} \oplus \cdots \oplus \mathbb{C}}_{m \text { copies }}, i=1, \ldots, n\}
$$

is the universal C^{*}-algebra generated by the projections $\left\{p_{k}\right\}_{k=1}^{m}$ and $\left\{p_{i j}\right\}$, where $2 \leqslant$ $i \leqslant n$ and $2 \leqslant j \leqslant m$, with respect to the following relations:

$$
\begin{aligned}
& p_{1}+\cdots+p_{m}=1, \\
& p_{i j}\left(p_{1}+p_{j}\right)=p_{i j}, \quad \text { for any } i, j, \\
& p_{1} p_{i j_{1}} p_{1}=p_{1} p_{i j_{2}} p_{1} \quad \text { for any } i, j_{1}, j_{2}, \\
& \left(p_{1}-p_{i_{1} j_{1}}\right)\left(p_{1}-p_{i_{2} j_{2}}\right)=0 \quad \text { if } v_{i_{1}} \text { and } v_{i_{2}} \text { can not be compared, } \\
& \left(p_{1}-p_{i_{1} j_{1}}\right)\left(p_{j_{2}}-p_{i_{2} j_{2}}\right)=0 \quad \text { if } v_{i_{1}}<v_{i_{2}} .
\end{aligned}
$$

Proof. The proof is the routine calculation of the irreducible representations. We only sketch it here.

Set p_{k} to be the projection of A which is the constant function

$$
p_{k}=\operatorname{diag}\{\underbrace{0, \ldots, 0,1}_{k}, 0, \ldots, 0\}
$$

For each vertex $v_{i}, i=2, \ldots, n$, denote by v_{i}^{\prime} be the closest ancestor of v_{i}. Denote by E_{i} the set consisting of v_{i} itself and all the children of v_{i}, and denote by D_{i} the set of the vertices which are not in E_{i}. (Note that the only edge connecting D_{i} and E_{i} is the edge $\left[v_{i}^{\prime}, v_{i}\right]$.) Let us define the projection $p_{i j}$ in A piecewisely. The projection $p_{i j}$ takes the constant value

$$
\operatorname{diag}(1,0, \ldots, 0)
$$

on the edges connecting vertices in D_{i}, takes the value

$$
\left(\begin{array}{cccccccc}
1-t & 0 & \cdots & 0 & \sqrt{t(1-t)} & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\sqrt{t(1-t)} & 0 & \cdots & 0 & t & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

at the point t between v_{i}^{\prime} and v_{i} (regarding the edge $\left[v_{i}^{\prime}, v_{i}\right]$ as the interval $[0,1]$), and takes the constant value

$$
\operatorname{diag}\{\underbrace{0, \ldots, 0,1}_{j}, 0, \ldots, 0\}
$$

on the remaining edges. Since the values of $p_{i j}$ agree with each other on the vertex $v_{i}^{\prime}($ which corresponds to $t=0)$ and the vertex v_{i} (which corresponds to $t=1$), $p_{i j}$ is a well defined continuous projection valued function on T. A direct calculation together with the Stone-Weierstrass theorem show that the projections $\left\{p_{k}, p_{i j}\right\}_{i, j, k}$ satisfy the relations of the theorem and generate A.

On the other hand, denote by \mathcal{A} the universal C^{*}-algebra of the generators and relations of the theorem. Let us show that the element

$$
b_{i}:=\left(p_{1}-p_{i 2}\right)^{2}+\sum_{j=3}^{m} p_{j} p_{i j} p_{j}
$$

is a central element of \mathcal{A} for each $2 \leqslant i \leqslant n$. It is clear that b_{i} commutes with $p_{i 2}$ and each $p_{k}, k=1, \ldots, m$. For any $2 \leqslant k \leqslant m$ and $2 \leqslant j \leqslant n$, in order to show that the projection $p_{j k}$ commutes with b_{i}, it is enough to verify that $p_{j k}$ commutes with $\left(p_{1}-p_{i 2}\right)^{2}+p_{k} p_{i k} p_{k}$.

With a similar argument as that of Lemma 2.3, we have

$$
\left(p_{1}-p_{i 2}\right)^{2}+p_{k} p_{i k} p_{k}=\left(p_{1}-p_{i k}\right)^{2}+p_{2} p_{i 2} p_{2}
$$

If $j=i$, it is clear that $p_{j k}$ commutes with $\left(p_{1}-p_{i k}\right)^{2}+p_{2} p_{i 2} p_{2}$, and hence commutes with b_{i}. If v_{j} is not comparable to v_{i}, since $\left(p_{1}-p_{j k}\right)\left(p_{1}-p_{i k}\right)=0$, we have

$$
p_{1}\left(p_{1}-p_{i k}\right)=p_{j k}\left(p_{1}-p_{i k}\right)
$$

Therefore, $p_{j k}$ commutes with $\left(p_{1}-p_{i k}\right)^{2}$ and hence commutes with b_{i}. A similar argument also shows that $p_{j k}$ commutes with b_{i} if v_{j} is a child of v_{i} or v_{i} is a child of v_{j}. Therefore, the elements $\left\{b_{i}: i=2, \ldots, n\right\}$ are central in \mathcal{A}.

Moreover, it can be verified that the elements $c_{i}:=b_{i}\left(1-b_{i}\right), i=2, \ldots, n$, are mutually orthogonal. Thus, for any irreducible representation π of \mathcal{A}, the images of $\left\{c_{i}: i=2, \ldots, n\right\}$ are scalar multiples, and we have at most one of them is non-zero.

If c_{k} is non-zero, then $b_{k}=t 1$ for some $t \in(0,1)$. Arguments similar to those of Lemma 2.3 and Lemma 2.6 show that π coincides with the point evaluation of A at the point t in $\left[v_{k}^{\prime}, v_{k}\right]$ (recall we regard the edge $\left[v_{k}^{\prime}, v_{k}\right]$ as the unit interval $[0,1]$).

If c_{k} is zero for any $k=2, \ldots, n$, denote by

$$
S=\left\{v_{i}: b_{i}=1\right\} .
$$

An argument similar to that of Lemma 2.6 shows that S has a unique minimal element if S is non-empty. Set v_{k} to be the minimal element of S if it exists, and set
$v_{k}=v_{1}$ if S is empty. Then it can be verified that the image of A under π is generated by $\left\{p_{1}, \ldots, p_{m}\right\}$, and π agrees with the evaluation of A at v_{k} and projection onto the coordinate corresponding to the non-zero projection of $\left\{p_{1}, \ldots, p_{m}\right\}$.

Therefore, the irreducible representations of A exhaust all the irreducible representations of \mathcal{A}, and hence A is isomorphic to \mathcal{A}, as desired.

Acknowledgements. The author would like to thank the referee for the valuable comments and suggestions on the original version of the paper.

REFERENCES

[1] S. Eilers, T. Loring, G.K. Pedersen, Stability of anticommutation relations: an application of noncommutative CW complexes, J. Reine Angew. Math. 499(1998), 101143.
[2] C. IvANESCU, On the classification of continuous trace C^{*}-algebras with spectrum homeomorphic to the closed interval [0,1], in Advances in Operator Algebras and Mathematical Physics, Theta Ser. Adv. Math., vol. 5, Theta, Bucharest 2005, pp. 109-135.
[3] X. Jiang, H. Su, A classification of simple limits of splitting interval algebras, J. Funct. Anal. 151(1997), 50-76.
[4] T. LORING, Lifting solutions to perturbing problems in C*-algebras, Fields Inst. Monogr., vol. 8, Amer. Math. Soc., Providence, RI 1997.
[5] Z. NiU, A classification of certain tracially approximately subhomogeneous C*algebras, Ph.D. Dissertation, University of Toronto, Toronto 2005.
[6] H. Su, On the classification of C^{*}-algebras of real rank zero: inductive limits of matrix algebras over non-Hausdorff graphs, Mem. Amer. Math. Soc. 114(1995), no. 547.

[^0]Received October 2, 2006; revised November 20, 2006.

[^0]: ZHUANG NIU, Department of Mathematics and Statistics, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada, T2N 1N4

 E-mail address: zniu@math.ucalgary.ca

