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ABSTRACT. Let (G, G+) be a quasi-lattice ordered group, Ω be the collection
of hereditary and directed subsets of G+, and Ω∞ be the collection of the maxi-
mal elements of Ω. For any H ∈ Ω, let S(H) be the closed θ-invariant subset of
Ω generated by H, and denote by T GH the associated Toeplitz algebra, where
GH = G+ · H−1. In this paper, the concrete structure of S(H) is clarified. As a
result, it is proved that the induced ideals of the Toeplitz algebra T G+ studied
by Laca, Nica et al. can be expressed as the intersections of such kernels as
KerγGH ,G+ for some H ∈ Ω, where γGH ,G+ is the natural morphism from the
Toeplitz algebra T G+ onto T GH . A condition is given under which the Toeplitz
algebras T GH (H ∈ Ω∞) become purely infinite simple. When applied to the
free groups with finite or countably infinite generators, this gives a unified
proof that the simplicity of the Cuntz algebras On (n > 2), O∞ implies the
purely infinite simplicity of their tensor products.
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INTRODUCTION

More than a decade ago, Nica [10] initiated the study of Toeplitz opera-
tors or Wiener–Hopf operators on quasi-lattice ordered groups. Since then much
progress has been made, and the theory of the Toeplitz algebras associated with
quasi-lattice ordered groups has been applied to quite a few fields of modern
mathematics. For instance, these Toeplitz algebras serve as typical examples of
crossed products of C∗-algebras by semigroups of endomorphisms [7], and of
topologically graded C∗-algebras in the context of Hilbert C∗-modules [4].

The purpose of this paper is to give a detailed description of certain aspects
of Toeplitz algebras on quasi-lattice ordered groups. In Section 1, we will recall
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some facts about quasi-lattice ordered groups. Basic examples of quasi-lattice or-
dered groups are (Zn, Zn

+) (n > 2) and the free groups. Apart from these known
examples, it might be a rather tough work to find out other kinds of concrete
quasi-lattice ordered groups. By choosing certain 2 by 2 upper triangular invert-
ible matrices, we have managed to construct an example of non-commutative
quasi-lattice ordered group (see Example 1.4). A special class of quasi-lattice or-
dered groups are ordered groups. Let (G, G+) be an ordered group, denote by
T G+ the corresponding Toeplitz algebra. It was proved in [8] that T G+ contains
a smallest ideal if and only if there exists a smallest semigroup of G strictly con-
taining G+. An ordered group with such a property is also constructed in this
section (see Example 1.7).

Let (G, G+) be a quasi-latticed ordered group, Ω be the collection of hered-
itary and directed subsets of G+, and Ω∞ be the collection of the maximal ele-
ments of Ω. Given such a pair (G, G+), two C∗-algebras, namely T G+ and DG+

can be induced, and it was shown in [6] and [10] that there is a close relation-
ship between the closed θ-invariant subsets of Ω, α-invariant ideals of DG+ and
the induced ideals of T G+ . In Sections 2 and 3, we focus on the study of the
θ-invariant subsets of Ω. Among other things, we have clarified the detailed
structure of the closed θ-invariant subset S(H) generated by an element H ∈ Ω

(see Theorem 2.2). As a result, in Section 4 we prove that the induced ideals of the
Toeplitz algebra T G+ studied by Laca, Nica et al. all can be expressed as the in-
tersections of such kernels as KerγGH ,G+ for some H ∈ Ω, where GH = G+ · H−1

and γGH ,G+ is the natural morphism from the Toeplitz algebra T G+ onto T GH (see
Corollary 4.6). In Sections 5, 6, we study the maximal ideals and the largest ideals
of the Toeplitz algebra T G+ respectively. Specifically, a condition is given under
which the Toeplitz algebras T GH (H ∈ Ω∞) become purely infinite simple. When
applied to the free groups with finite or countably infinite generators, this gives
a unified proof that the simplicity of the Cuntz algebras On(n > 2), O∞ implies
the purely infinite simplicity of their tensor products.

1. SOME EXAMPLES OF QUASI-LATTICE ORDERED GROUPS AND QUASI-ORDERED GROUPS

The classical Toeplitz algebra T on the Hardy space H2(T) can be viewed as
the Toeplitz algebra defined on the ordered group (Z, Z+), where Z is the integer
group and Z+ is the semigroup consisting of non-negative integers. The pair
(Z, Z+) has been generalized in a number of different directions, and the most
relevant to this paper are quasi-lattice ordered groups and quasi-ordered groups.
The relationship between these “ordered groups” can be roughly described with
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the following diagram:

Abelian ordered groups→ ordered groups→ quasi-ordered groups

↓
quasi-lattice ordered groups.

The concept of quasi-lattice ordered group was first introduced by Nica [10]
in the study of Wiener–Hopf operators or Toeplitz operators on discrete groups.
Let G be a discrete group, G+ a subset of G such that

e ∈ G+, G+ · G+ ⊆ G+ and G+ ∩ G−1
+ = {e},

where e is the unit of G and G−1
+ = {g−1 : g ∈ G+}. For any x, y ∈ G+, we define

a partial order on G by

x 6 y⇐⇒ x−1y ∈ G+.

Note that the order defined above is left invariant in the sense that

x 6 y =⇒ tx 6 ty for any x, y, t ∈ G.

DEFINITION 1.1. The pair (G, G+) is said to be a quasi-lattice ordered group
if every finite subset of G with an upper bound in G+ has a least upper bound
in G+.

Equivalently, (G, G+) is a quasi-lattice ordered group if and only if every
element of G having an upper bound in G+ has a least such, and every two ele-
ments in G+ having a common upper bound have a least common upper bound
([10], Section 2.1).

If (G, G+) is a quasi-lattice ordered group and x1, x2, . . . , xn (n > 2) in G
have a common upper bound in G+, then their least common upper bound is
denoted by x1 ∨ x2 ∨ · · · ∨ xn. Note for any x ∈ G, x has an upper bound in G+
if and only if x ∈ G+ · G−1

+ , and when x ∈ G+ · G−1
+ (so does for x−1), its least

upper bound in G+ will be denoted by σ(x). Following the notation as in [10]
and [6], we also let τ(x) be the least upper bound of x−1 in G+; in other words,
τ(x) = σ(x−1) for x ∈ G+ · G−1

+ . It is easy to check that for any x ∈ G+ · G−1
+ , we

have

(1.1) τ(x) = x−1σ(x) and x = σ(x) · τ(x)−1.

EXAMPLE 1.2. For any n ∈ N, (Zn, Zn
+) is a quasi-lattice ordered group.

EXAMPLE 1.3. Let Fn be the free group with n generators a1, a2, . . . , an, and
denote by F+

n the semigroup generated by a1, a2, . . . , an, then (Fn, F+
n ) is a non-

abelian quasi-lattice ordered group ([10], Section 2.3).

Another non-abelian quasi-lattice ordered group, which serves as a model
throughout this paper, will be constructed by choosing certain matrices of order
2 over the real line R, and the details are as follows:
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EXAMPLE 1.4. Let G=
{(

a11 a12
0 a22

)
: a11 > 0, a22 > 0, a12 ∈ R

}
be a class

of invertible 2 by 2 upper triangular matrices over the real line R, and put

G+ =
{(

a11 a12
0 a22

)
: a11 > 1, a22 > 1, a12 > 0

}
.

Then (G, G+) is a quasi-lattice ordered group.

Proof. It is obvious that G is a group, e = diag(1, 1) ∈ G+ and G+ is a

semigroup. For any x =
(

x11 x12
0 x22

)
∈ G, we have x−1 =

(
1

x11
− x12

x11x22

0 1
x22

)
. It

follows that G+ ∩ G−1
+ = {e}, and for any x = (xij), y = (yij) ∈ G,

(1.2) x 6 y⇐⇒ x−1y ∈ G+ ⇐⇒ x11 6 y11, x22 6 y22 and
x12

x22
6

y12

y22
.

Therefore, every two elements x = (xij), y = (yij) in G have a least common
upper bound z = (zij) in G+ with

(1.3) z11=max(1, x11, y11), z22=max(1, x22, y22), z12=max
(
0, z22

x12

x22
, z22

y12

y22

)
,

so (G, G+) is a quasi-lattice ordered group.
Let us consider E = [1, ∞)× [1, ∞)× [0, ∞), a subset of Euclidean space R3,

endowed with the usual order, and define ∧ : G+ → E by

(1.4) ∧
(

a11 a12
0 a22

)
=
(

a11, a22,
a12
a22

)
.

Then by (1.2) we know that ∧ is an order-preserving isomorphism of sets in the
sense that for any x, y ∈ G+,

∧(x) 6 ∧(y)⇐⇒ x 6 y and (∧(x)) ∨ (∧(y)) = ∧(x ∨ y).

We are somehow surprised to find that when we deal with the same kind
of matrices of higher order, the method employed in the above example however
fails to work as illustrated down below:

EXAMPLE 1.5. Let n ∈ N, n > 3, then (Gn, (Gn)+) is not a quasi-lattice or-
dered group, where

Gn =




a11 a12 · · · a1n
0 a22 · · · a2n
...

...
...

0 0 · · · ann

 :
aii > 0 (1 6 i 6 n),
aij = 0 (i > j),

 ,

(Gn)+ =




a11 a12 · · · a1n
0 a22 · · · a2n
...

...
...

0 0 · · · ann

 :
aii > 1 (1 6 i 6 n),
aij = 0 (i > j),
aij > 0 (i < j),

 .
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Proof. Since Gn can be embedded into Gm through x → diag(x, Im−n) for
n < m, where Im−n is the identity matrix of order m− n over the real line R, we
may as well assume that n = 3. Let

A =

 a11 a12 a13
0 a22 a23
0 0 a33

 ∈ G3,

then

A−1 =


1

a11
− a12

a11a22
− a13a22−a12a23

a11a22a33

0 1
a22

− a23
a22a33

0 0 1
a33

 .

So for any A = (aij), B = (bij) ∈ (G3)+,

A 6 B⇐⇒


aii 6 bii, 1 6 i 6 3;
a12
a22

6 b12
b22

, a23
a33

6 b23
b33

;
b13
b33
− a13

a33
> a12

a22

(
b23
b33
− a23

a33

)
.

As in Example 1.4, we can define an isomorphism of sets ∧ from (G3)+ onto
[1, ∞)3 × [0, ∞)3 such that

∧(aij) =
(

a11, a22, a33,
a12

a22
,

a23

a33
,

a13

a33

)
for (aij) ∈ (G3)+.

Thereby a partial order on [1, ∞)3 × [0, ∞)3 can be induced as

(x1, x2, x3, x4, x5, x6) 6 (y1, y2, y3, y4, y5, y6)⇐⇒
{

xi 6 yi, 1 6 i 6 5;
y6 − x6 > x4(y5 − x5).

Now let x = (1, 1, 1, 0, 1, 10), y = (1, 1, 1, 1, 0, 0) ∈ [1, ∞)3 × [0, ∞)3, we
prove that x, y have no least common upper bound in [1, ∞)3 × [0, ∞)3. Sup-
pose on the contrary that the least common upper bound of x and y exists in
[1, ∞)3 × [0, ∞)3, let x ∨ y = (u1, u2, u3, u4, u5, u6), then

ui > 1 (1 6 i 6 5), u6 − 10 > 0 · (u5 − 1), u6 − 0 > 1 · (u5 − 0),

or

(1.5) ui > 1 (1 6 i 6 5), u6 > 10, u6 > u5.

Since z1 = (1, 1, 1, 1, 1, 10) is a common upper bound of x and y, we have z1 >
x ∨ y, so

(1.6) ui 6 1 (1 6 i 6 5), 10− u6 > u4 · (1− u5).

By (1.5) and (1.6), we know that x ∨ y = (1, 1, 1, 1, 1, 10).
On the other hand, let z2 = (1, 1, 1, 1, 9, 10), then z2 is also a common upper

bound of x and y, therefore z2 > x ∨ y. It follows that 10− 10 > 1 · (9− 1), which
is a contradiction.
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DEFINITION 1.6. Let G be a discrete group, E a subset of G, we say that
(G, E) is a quasi-ordered group if

e ∈ E, E · E ⊆ E, and G = E ∪ E−1.

If in addition, E ∩ E−1 = {e}, then (G, E) is referred to as an ordered group.

By definition, every ordered group is quasi-lattice ordered, and an example
of non-abelian ordered group is as follows:

EXAMPLE 1.7. Let G be as in Example 1.4. Set G+ = G1 ∪ G2 ∪ G3, where

G1=
{(

a11 a12
0 a22

)
: a11 >1

}
, G2=

{(
1 a12
0 a22

)
: a12 >0

}
, G3=

{(
1 0
0 a22

)
: a22 >1

}
,

then (G, G+) is an ordered group with a property that

x−1y ∈ G+ for any x ∈ G3, y ∈ G1 ∪ G2.

And for any x ∈ G3, y ∈ G3 \ {e}, it is obvious that there exists n ∈ N such that
x−1(yn) ∈ G3. It follows that for any x ∈ G3 and any y ∈ G+ \ {e}, there exists
n ∈ N such that x−1(yn) ∈ G+. So if we let Gy be the semigroup of G generated
by G+ and y−1, then

x−1 = (x−1yn) · (y−1)n ⊆ G+ · (y−1)n ⊆ Gy,

hence G−1
3 ⊆ ⋂

y∈G+\{e}
Gy.

On the other hand, it is easy to check that G1 ∪G2 ∪G3 ∪G−1
3 is a semigroup

of G which contains every y−1 for y ∈ G3 \ {e}, which implies that

Gy ⊆ G1 ∪ G2 ∪ G3 ∪ G−1
3 for y ∈ G3 \ {e}.

It follows that for any x ∈ G+, if x−1 ∈ ⋂
y∈G+\{e}

Gy, then x ∈ G3. Therefore,

(1.7)
{

x ∈ G+ : x−1 ∈
⋂

y∈G+\{e}
Gy

}
= G3.

Note that
⋂

y∈G+\{e}
Gy is the smallest semigroup strictly containing G+, and the

discussion above shows that this semigroup is equal to G+ ∪ G−1
3 .

2. GENERAL CLOSED θ-INVARIANT SUBSETS OF Ω

Throughout out this section, (G, G+) denotes a quasi-lattice ordered group.
Given any x, y ∈ G+, as in Section 1, the notation x ∨ y is used for the least
common upper bound of x and y in G+, with the convention that x ∨ y = ∞
when there is no common upper bound in G+. A subset H of G+ is said to be
hereditary if for any x, y ∈ G+, x 6 y ∈ H implies x ∈ H; and H is said to be
directed if any two elements of H have a common upper bound in H. Let Ω be
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the collection of hereditary and directed subsets of G+. Then Ω is a compact
Hausdorff space when endowed with the topology inherited from {0, 1}G+ in the
following way:

Let {0, 1} be the subset of the real line R which contains only two elements
0 and 1. Denote by {0, 1}G+ the product space, that is,

{0, 1}G+ = {ϕ : G+ → {0, 1} : ∀t ∈ G+, ϕ(t) = 0 or ϕ(t) = 1}.

Since {0, 1} is a compact Hausdorff space, by Tychonoff Theorem {0, 1}G+ is also
a compact Hausdorff space when endowed with the product topology: a net
{ϕα} in {0, 1}G+ converges to ϕ if and only if ϕα(t) → ϕ(t) for any t ∈ G+.
For any ϕ ∈ {0, 1}G+ , let A = {t ∈ G+ : ϕ(t) = 1}. Then clearly, ϕ(t) =
χA(t) for any t ∈ G+, where χA is the characteristic function of A, so the prod-
uct space {0, 1}G+ can be regarded as the collection of the characteristic func-
tions of the subsets of G+. Therefore an injective morphism ρ of sets from Ω

into {0, 1}G+ can be defined by ρ(H) = χH for H ∈ Ω. It is easy to show that
the image of ρ is closed in {0, 1}G+ , which implies that Ω is a compact Haus-
dorff space when endowed with the topology: a net {Hα} in Ω converges to
H ∈ Ω⇐⇒ χHα(t)→ χH(t) for any t ∈ G+.

For any t ∈ G+ and A ∈ Ω, we consider the smallest hereditary subset of
G+ containing tA, i.e.,

[e, tA] = {x ∈ G+ : ∃a ∈ A, such that x 6 ta}.

Note that [e, tA] is also directed, for if x, y ∈ [e, tA], then there exist a1, a2 ∈ A,
such that x 6 ta1 and y 6 ta2. Since A is directed, we know that a1 ∨ a2 ∈ A,
hence x ∨ y 6 t(a1 ∨ a2) ∈ tA. Note also t ∈ [e, tA] since e is contained in A. By
Proposition 2.2 of [6] we know that for each t ∈ G+, Ωt = {B ∈ Ω : t ∈ B} is a
clopen subset of Ω, and the map θt : Ω→ Ωt defined by θt(A) = [e, tA](A ∈ Ω)
is a homeomorphism from Ω onto Ωt. Furthermore, we have θs ◦ θt = θst for any
s, t ∈ G+.

For any x, t ∈ G+ and A ∈ Ω, it is easy to verify that

(2.1) x ∈ θt(A)⇐⇒ t ∨ x ∈ G+ and t−1(t ∨ x) ∈ A,

and when A ∈ Ωt, θ−1
t (A) = {t−1(t ∨ x) : x ∈ A} has the property that

(2.2) a ∈ θ−1
t (A)⇐⇒ ta ∈ A for any a ∈ G+.

DEFINITION 2.1. Let K be a non-empty subset of Ω, K is said to be θ-invariant
if for any t ∈ G+,

θt(K) = {θt(A) : A ∈ K} ⊆ K and θt(Ω \K) = {θt(B) : B /∈ K} ⊆ Ω \K.

By definition, K is a θ-invariant subset of Ω if and only if for any t ∈ G+
and A ∈ Ω, we have

A ∈ K⇐⇒ θt(A) ∈ K.
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Clearly, if K is a θ-invariant subset of Ω, then the closure of K, cl(K) is also θ-
invariant. Note that the intersection of any family of closed θ-invariant subsets of
Ω is also θ-invariant. Therefore, for any K ⊆ Ω, there exists a smallest closed θ-
invariant subset containing it, which is denoted by S(K) and is called the closed
θ-invariant subset generated by K. In the peculiar case when K is a single point
set {H}, we denote S({H}) simply by S(H), and its detailed structure is clarified
as follows:

THEOREM 2.2. Let (G, G+) be a quasi-lattice ordered group, H be a directed and
hereditary subset of G+, and S(H) be the closed θ-invariant subset of Ω generated by
{H}. Then S(H) is the closure of D, where

(2.3) D = {θs(θ−1
t (H)) : s ∈ G+, t ∈ H}.

Proof. Let K be any closed θ-invariant subset of Ω which contains H, then
clearly D ⊆ K, therefore cl(D) ⊆ K, it follows that cl(D) ⊆ S(H). So the conclu-
sion will hold if H ∈ D and cl(D) is θ-invariant.

Step 1. If we set s = t = e, then H = θe(θ−1
e (H)) ∈ D.

Step 2. If A ∈ cl(D), then there exists a net {Bα} in D such that Bα → A. Let
Bα = θsα(θ−1

tα
(H)) for some sα ∈ G+ and tα ∈ H. So for each t ∈ G+, we have

θt(Bα) = θtsα(θ−1
tα

(H))→ θt(A),

hence θt(A) ∈ cl(D).
Step 3. If A ∈ Ω, t ∈ G+ such that θt(A) ∈ cl(D), then there exists a net

{Bα} in D which converges to θt(A). Since t ∈ θt(A), there exists an α0 such that
t ∈ Bα for any α > α0. Since {Bα} ⊆ D, we may put Bα as follows:

Bα = θsα(θ−1
tα

(H)), sα ∈ G+, tα ∈ H,

and since the morphism θ−1
t : Ωt → Ω is continuous, we have

(2.4) {θ−1
t (Bα)}α>α0

= {θ−1
t (θsα(θ−1

tα
(H)))}

α>α0
−→ θ−1

t (θt(A)) = A.

Note when α > α0,

(2.5) t ∈ θsα(θ−1
tα

(H))⇒ s−1
α (sα ∨ t) ∈ θ−1

tα
(H)⇒ tα(s−1

α (sα ∨ t)) ∈ H.

Since both sα and t belong to θsα(θ−1
tα

(H)) for α > α0, we know that sα ∨ t ∈
θsα(θ−1

tα
(H)) for α > α0. So when α > α0, by (2.5) we have

θ−1
t ◦θsα◦θ−1

tα
(H)=(θ−1

t ◦θsα∨t)◦(θ−1
sα∨t◦θsα◦θ−1

tα
)(H)

= θt−1(sα∨t)◦θ−1
s−1

α (sα∨t)
◦θ−1

tα
(H)= θt−1(sα∨t)◦θ−1

tαs−1
α (sα∨t)

(H)∈D.

By (2.4) we know A ∈ cl(D), so cl(D) is really θ-invariant.

REMARK 2.3. Let (G, G+) be a quasi-lattice ordered group, Ω be the collec-
tion of hereditary and directed subsets of G+. For any x ∈ G+, let [e, x] = {y ∈
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G+ : y 6 x}, then the closure of {[e, x] : x ∈ G+} is equal to Ω ([10], Section 6.2)
and hence S([e, x]) = Ω by Theorem 2.2.

PROPOSITION 2.4. Let (G1, G+
1 ), (G2, G+

2 ) be two quasi-lattice ordered groups,
denote by Ω1, Ω2 the collection of hereditary and directed subsets of G+

1 and G+
2 respec-

tively. Put G = G1 × G2 and G+ = G+
1 × G+

2 , then (G, G+) is a quasi-lattice ordered
group with

Ω = Ω1 ∗Ω2
def= {H1 × H2 : H1 ∈ Ω1, H2 ∈ Ω2},

where Ω is the collection of hereditary and directed subsets of G+. Furthermore, for any
H1 ∈ Ω1, H2 ∈ Ω2, we have

(2.6) S(H1 × H2) = {A× B : A ∈ S(H1), B ∈ S(H2)}.
Proof. Let us first prove that Ω = Ω1 ∗Ω2. Clearly, H1 × H2 is a hereditary

subset of G+ when H1 ∈ Ω1 and H2 ∈ Ω2, and for any (x1, y1), (x2, y2) ∈ H1 ×
H2, we have (x1, y1) ∨ (x2, y2) = (x1 ∨ x2, y1 ∨ y2) ∈ H1 × H2, therefore H1 × H2
is also directed. On the other hand, for any H ∈ Ω, let

H1 = {x ∈ G+
1 : ∃y ∈ G+

2 such that (x, y) ∈ H},
H2 = {y ∈ G+

2 : ∃x ∈ G+
1 such that (x, y) ∈ H}.

Then it is easy to show that H1 ∈ Ω1, H2 ∈ Ω2 with H = H1 × H2.
Next, we prove that S(H) = {A× B : A ∈ S(H1), B ∈ S(H2)}. For any x ∈

G+
1 , y ∈ G+

2 , H1 ∈ Ω1, H2 ∈ Ω2, s ∈ H1 and t ∈ H2, we have

θ(x,y)(H1 × H2) = θx(H1)× θy(H2), θ−1
(s,t)(H1 × H2) = θ−1

s (H1)× θ−1
t (H2).

By Theorem 2.2 we know that

S(H) = {θ(x,y) ◦ θ−1
(s,t)(H1 × H2) : x ∈ G+

1 , y ∈ G+
2 , s ∈ H1, t ∈ H2}

= {(θx(θ−1
s (H1)))× (θy(θ−1

t (H2))) : x ∈ G+
1 , y ∈ G+

2 , s ∈ H1, t ∈ H2}

⊆ {A× B : A ∈ S(H1), B ∈ S(H2)}.

On the other hand, for any A ∈ S(H1), B ∈ S(H2), there exist {xα} ⊆ G+
1 , {sα} ⊆

H1, {yβ} ⊆ G+
2 , {tβ} ⊆ H2 such that

θxα ◦ θ−1
sα

(H1)→ A, θyβ
◦ θ−1

tβ
(H2)→ B.

It follows that

θ(xα ,yβ) ◦ θ−1
(sα ,tβ)(H1 × H2) = (θxα ◦ θ−1

sα
(H1))× (θyβ

◦ θ−1
tβ

(H2))→ A× B,

therefore A× B ∈ S(H) = S(H), so {A× B : A ∈ S(H1), B ∈ S(H2)} ⊆ S(H).
Finally, we prove that {A× B : A ∈ S(H1), B ∈ S(H2)} is closed in Ω, and

thus
S(H) = {A× B : A ∈ S(H1), B ∈ S(H2)}.
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In fact, suppose E× F ∈ {A× B : A ∈ S(H1), B ∈ S(H2)} for E ∈ Ω1 and F ∈ Ω2,
then there exist Aα ∈ S(H1), Bα ∈ S(H2) such that the net {Aα × Bα} converges
to E× F in Ω.

Given any x0 ∈ E, y0 ∈ F, since χAα×Bα
(x0, y0) → χE×F(x0, y0) = 1, there

exists an α0 such that (x0, y0) ∈ Aα × Bα for all α > α0. So when α > α0, we know
for any x ∈ G+

1 ,

χAα
(x) = χAα×Bα

(x, y0)→ χE×F(x, y0) = χE(x),

hence E ∈ S(H1) = S(H1). Similarly, F ∈ S(H2). Since E and F are arbitrary, this
completes the proof.

EXAMPLE 2.5. Let G = R, G+ = R+ = [0, ∞), then
(i) Ω = {[0, x] : x ∈ R+} ∪ {[0, x) : x ∈ (0, ∞)} ∪ {G+};

(ii) ∀x ∈ R+, S([0, x]) = Ω;
(iii) ∀x ∈ (0, ∞), S([0, x)) = Ω;
(iv) S(G+) = {G+}.

Proof. (i) For any H ∈ Ω, let β = sup{x : x ∈ H}. Then

H =


[0, β] if β < ∞ and β ∈ H,
[0, β) if β < ∞ and β /∈ H,
G+ if β = ∞.

Therefore, Ω = {[0, x] : x ∈ R+} ∪ {[0, x) : x ∈ (0, ∞)} ∪ {G+}.
(ii) By Remark 2.3, we know that S([0, x]) = Ω for any x ∈ R+.

(iii) For s ∈ (0, ∞) and t ∈ R+, it is easy to verify that

θt([0, s)) = [0, s + t), θ−1
t ([0, s)) = [0, s− t) (t < s).

Therefore [0, y) = θ−1
x ◦ θy([0, x)) for x > 0 and y > 0, hence

S([0, x)) = {[0, y) : y > 0}.
Now for any a > 0, since the characteristic functions {χ[0,a+ 1

n )}
∞
n=1 converge

pointwisely to χ[0,a] on [0, ∞), we know that [0, a] ∈ {[0, y) : y > 0} = S([0, x)), it
follows that S([0, x)) ⊇ {[0, a] : a > 0} = Ω.

(iv) Since every single-point set is closed in any Hausdorff space, {G+} is a
closed subset of Ω, which is also θ-invariant, and thus S(G+) = {G+}.

EXAMPLE 2.6. Let G = Z2 and G+ = Z2
+. For any m, n ∈ Z+, put

Hm,n = {(s, t) ∈ Z2
+ : s 6 m, t 6 n}, Hm,∞ = {(s, t) ∈ Z2

+ : s 6 m},
H∞,n = {(s, t) ∈ Z2

+ : t 6 n}, H∞,∞ = Z2
+.

Then the following conclusion holds:
(i) Ω = {Hm,n, Hm,∞, H∞,n, H∞,∞ : m, n ∈ Z+};

(ii) ∀m, n ∈ N, S(Hm,n) = Ω;
(iii) ∀n ∈ N, S(Hn,∞) = {Z2

+} ∪ {Hm,∞ : m ∈ Z+};
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(iv) ∀n ∈ N, S(H∞,n) = {Z2
+} ∪ {H∞,m : m ∈ Z+};

(v) S({Z2
+}) = {Z2

+}.
Proof. Let G1 = G2 = Z, G+

1 = G+
2 = Z+ and Ωi be the collection of

hereditary and directed subsets of (Gi)+ for i = 1, 2. Obviously, Ω1 = Ω2 =
{[0, n] : n ∈ Z+} ∪ {Z+}, and S({Z+}) = {Z+}, S([0, n]) = Ω1 = Ω2 for any
n ∈ Z+. The conclusion then follows from Proposition 2.4.

EXAMPLE 2.7. Let (G, G+) be as in Example 1.4. As shown in Section 1,
there is an order-preserving isomorphism of sets ∧ : G+ → E = [1, ∞)× [1, ∞)×
[0, ∞), which satisfies

∧
(

a11 a12
0 a22

)
=
(

a11, a22,
a12

a22

)
.

Let Ω′ be∧(Ω) = {∧(H) : H ∈ Ω}, and for the sake of convenience, the elements
of Ω′ are also called hereditary and directed subsets of E = [1, ∞) × [1, ∞) ×
[0, ∞). For any H ∈ Ω′, let

α = sup{x ∈ [1, ∞) : ∃y ∈ [1, ∞), z ∈ [0, ∞), such that (x, y, z) ∈ H},
β = sup{y ∈ [1, ∞) : ∃x ∈ [1, ∞), z ∈ [0, ∞), such that (x, y, z) ∈ H},
γ = sup{z ∈ [0, ∞) : ∃x ∈ [1, ∞), y ∈ [1, ∞), such that (x, y, z) ∈ H}.

Then H = Iα × Iβ × Jγ, where

Iα =


[1, α] if α < ∞ and ∃y ∈ [1, ∞), z ∈ [0, ∞) with (α, y, z) ∈ H;
[1, α) if α < ∞, but (α, y, z) /∈ H for any y ∈ [1, ∞), z ∈ [0, ∞);
[1, ∞) if α = ∞.

Similarly, define Iβ and Jγ. For simplicity, let us put:

I(1)
α = [1, α] (1 6 α < ∞), I(2)

α = [1, α) (1 < α < ∞),

J(1)
α = [0, α] (0 6 α < ∞), J(2)

α = [0, α) (0 < α < ∞),

I∞ = I(1)
∞ = I(2)

∞ = [1, ∞), J∞ = J(1)
∞ = J(2)

∞ = [0, ∞).

Then

Ω′ = {Iα × Iβ × Jγ : 1 6 α, β 6 ∞, 0 6 γ 6 ∞}

= {I(i)
α × I(j)

β × J(k)
γ : 1 6 α, β 6 ∞, 0 6 γ 6 ∞, i, j, k ∈ {1, 2}}.

A topology on Ω′ can be induced by the bijection ∧ defined by (1.4) so that Ω′

becomes a compact Hausdorff space, and a net {Aα} in Ω′ converges to A if
and only if χAα

(x) → χA(x) for any x ∈ [1, ∞) × [1, ∞) × [0, ∞). As shown in
Example 2.5, it is easy to verify that for any i, j, k ∈ {1, 2},

(1) {I(i)
α × I(j)

β × J(k)
γ : α, β, γ < ∞} = Ω′;

(2) {I∞ × I(i)
β × J(j)

γ : β, γ < ∞} = {I∞ × Iβ × Jγ : β, γ 6 ∞};
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(3) {I(i)
α × I∞ × J(j)

γ : α, γ < ∞} = {Iα × I∞ × Jγ : α, γ 6 ∞};

(4) {I(i)
α × I(j)

β × J∞ : α, β < ∞} = {Iα × Iβ × J∞ : α, β 6 ∞};

(5) {I∞ × I∞ × J(i)
γ : γ < ∞} = {I∞ × I∞ × Jγ : γ 6 ∞};

(6) {I∞ × I(i)
β × J∞ : β < ∞} = {I∞ × Iβ × J∞ : β 6 ∞};

(7) {I(i)
α × I∞ × J∞ : α < ∞} = {Iα × I∞ × J∞ : α 6 ∞};

(8) {I∞ × I∞ × J∞} = {I∞ × I∞ × J∞}.
Let a, b, c ∈ R with 1 6 a, 1 6 b and 0 < c, put

H = ∧−1([1, a]× [1, b]× [0, c)) =
{
(xij) ∈ G+g : x11 6 a, x22 6 b,

x12

x22
< c
}

.

Take the above H for example, let us study the detailed structure of S(H).
Step 1. For any x = (xij) ∈ H, we prove that

(2.7) θ−1
x (H) = ∧−1

([
1,

a
x11

]
×
[
1,

b
x22

]
×
[
0,

x22c− x12

x11

))
.

In fact, for any y = (yij) ∈ H, we have x−1(x ∨ y) = (zij), where

z11 =
x11∨y11

x11
, z22 =

x22∨y22

x22
, z12 =

x22∨y22

x11

( x12

x22
∨ y12

y22

)
− (x22∨y22)x12

x11x22
.

Since x11 ∨ y11 6 a, x22 ∨ y22 6 b and x12
x22
∨ y12

y22
< c, we know that

z11 6
a

x11
, z22 6

b
x22

,
z12

z22
<

x22c− x12

x11
,

so

θ−1
x (H) ⊆ ∧−1

([
1,

a
x11

]
×
[
1,

b
x22

]
× [0,

x22c− x12

x11

))
.

On the other hand, for any r with 0 < r < x22c−x12
x11

, choose a natural number
n0 such that

c− 1
n0

>
x12

x22
,

x22(c− 1
n0

)− x12

x11
> r.

Let y = (yij) ∈ H with y11 = a, y22 = b, y12 =
(
c− 1

n0

)
b, denote x−1(x ∨ y) =

(zij), then

z11 =
a

x11
, z22 =

b
x22

, z12 =

(
c− 1

n0

)
b

x11
− x12b

x11x22
.

Therefore z12
z22

=
x22

(
c− 1

n0

)
−x12

x11
> r.

Now for any t = (tij) ∈ ∧−1g
([

1, a
x11

]
×
[
1, b

x22

]
×
[
0, x22c−x12

x11

)
g
)
, let r = t12

t22
,

then by the above discussion, we know there exists z = (zij) ∈ θ−1
x (H) such that

z11 =
a

x11
, z22 =

b
x22

,
z12

z22
> r,
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so t 6 z ∈ θ−1
x (H), and thus t ∈ θ−1

x (H). By the arbitrariness of t, we know that

∧−1
([

1,
a

x11

]
×
[
1,

b
x22

]
×
[
0,

x22c− x12

x11

))
⊆ θ−1

x (H).

Step 2. Similarly, we can prove that for any x = (xij) ∈ G+,

(2.8) θx(H) = ∧−1
(
[1, ax11]× [1, bx22]×

[
0,

x11c + x12

x22

))
.

Step 3. We prove that for any a, b, c ∈ R with 1 6 a, 1 6 b and 0 < c, there
exist x, y ∈ G+ such that

(2.9) ∧−1([1, a]× [1, b]× [0, c)) = θy ◦ θ−1
x (∧−1({1} × {1} × [0, 1))).

This can be verified by choosing a positive number s with 0 < s < 1, 1− s is small
enough so that bc− a(1− s) > 0, and putting

x =
(

1 s
0 1

)
, y =

(
a bc− a(1− s)
0 b

)
.

Step 4. Let H0 = ∧−1({1} × {1} × [0, 1)), then

{∧−1([1, a]× [1, b]× [0, c)) : a, b, c < ∞} = {θy ◦ θ−1
x (H0) : y ∈ G+, x ∈ H0}.

Therefore for any H = ∧−1([1, a]× [1, b]× [0, c)) ∈ Ω,

S(H) = S(H0) = {∧−1([1, r]× [1, s]× [0, t)) : r, s, t < ∞}

= ∧−1({[1, r]× [1, s]× [0, t) : r, s, t < ∞}) = ∧−1(Ω′) = Ω.

REMARK 2.8. Let (G, G+) be as in Example 1.4. For any b, c ∈ R with 1 <
b, 0 < c, set H1 = ∧−1([1, ∞)× [1, b)× [0, c)) ∈ Ω, then it can be proved that

{∧−1([1, ∞)× [1, s)× [0, t)) : s, t < ∞} = {θy ◦ θ−1
x (H1) : y ∈ G+, x ∈ H1}.

It follows that

S(H1) = {∧−1([1, ∞)× [1, s)× [0, t)) : s, t < ∞}

= ∧−1({[1, ∞)× [1, s)× [0, t) : s, t < ∞})

= ∧−1({I∞ × Iβ × Jγ : β, γ 6 ∞}).

3. THE LARGEST CLOSED θ-INVARIANT PROPER SUBSET OF Ω

As before, throughout this section, (G, G+) is a quasi-lattice ordered group,
and Ω is the collection of hereditary and directed subsets of G+. Let F be a closed
θ-invariant proper subset of Ω, we say that F is the largest if K ⊆ F holds for any
other closed θ-invariant proper subset K of Ω. In this section, we will investigate
conditions under which S(H) 6= Ω for H ∈ Ω. In the peculiar case when (G, G+)
is an ordered group, we will prove that in Ω exists a largest closed θ-invariant
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proper subset if and only if there exists a smallest semigroup of G strictly con-
taining G+ (see Theorem 3.6).

LEMMA 3.1. Let (G, G+) be a quasi-lattice ordered group, and Ω be the collection
of hereditary and directed subsets of G+. Let

(3.1) M(Ω) = {H ∈ Ω : S(H) 6= Ω},
then Ω contains a largest closed θ-invariant proper subset if and only if ∅ 6= M(Ω) ⊆
M(Ω) 6= Ω. And if this happens, M(Ω) is the largest closed θ-invariant proper subset
of Ω.

Proof. For a proof, see Proposition 5.8 of [8].

PROPOSITION 3.2. Let (G, G+) be a quasi-lattice ordered group, and Ω be the
collection of hereditary and directed subsets of G+ and M(Ω) be defined by (3.1). Then
for any H ∈ Ω, the following conditions are equivalent:

(i) ∃F = {a1, a2, . . . , an} ⊆ G+ \ {e}, such that for any s ∈ G+, t ∈ H, there exists
ai0 ∈ F which is contained in θs ◦ θ−1

t (H);
(ii) [e, e] = {e} /∈ S(H);

(iii) S(H) 6= Ω, i.e., H ∈ M(Ω).

Proof. Since S({e}) = S([e, e]) = Ω, conditions (ii) and (iii) are equivalent.
For any A ∈ Ω and any non-empty finite subset F of G+, let

N(A; F) = {B ∈ Ω : χB(x) = χA(x), ∀x ∈ F} = {B ∈ Ω : B ∩ F = A ∩ F}.(3.2)

Then {N(A; F) : ∅ 6= F ⊆ G+, F is finite} is a local base at A.
Now for any H ∈ Ω, since S(H) = {θs ◦ θ−1

t (H) : s ∈ G+, t ∈ H}, we know
[e, e] /∈ S(H)⇐⇒ ∃F = {a1, a2, . . . , an} ⊆ G+ \ {e}, such that ∀s ∈ G+, ∀t ∈ H,

N([e, e]; F) ∩ {θs ◦ θ−1
t (H) : s ∈ G+, t ∈ H} = ∅,

or equivalently, there exists ai0 ∈ F which is contained in θs ◦ θ−1
t (H), this com-

pletes the proof of the equivalence of conditions (i) and (ii).

When applied to ordered groups, Proposition 3.2 has a much simpler ver-
sion, which can be stated as follows:

COROLLARY 3.3. Let (G, G+) be an ordered group, Ω be the collection of hered-
itary subsets of G+, then for any H ∈ Ω, S(H) 6= Ω if and only if there exists some
a ∈ G+ \ {e}, such that:

(i) for any t ∈ H, ta ∈ H;
(ii) for any s ∈ G+ with s−1a ∈ G+, s−1a ∈ H.

Proof. Since (G, G+) is an ordered group, we know for any x ∈ G+ and
y ∈ H, either xy−1 ∈ G+ or yx−1 ∈ G+, which implies

θx ◦ θ−1
y (H) =

{
θxy−1(H) if xy−1 ∈ G+,
θ−1

yx−1(H) if yx−1 ∈ G+.
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Therefore, S(H) = {θs(H), θ−1
t (H) : s ∈ G+, t ∈ H}. By Proposition 3.2 we know

S(H) 6= Ω⇐⇒ [e, e] /∈ S(H)⇐⇒ ∃F = {a1, a2, . . . , an} ⊆ G+ \ {e}, such that

(3.3) N([e, e]; F) ∩ {θs(H), θ−1
t (H) : s ∈ G+, t ∈ H} = ∅.

Let a be the smallest element of F (that is, a ∈ F and a 6 ai, ∀ai ∈ F), then
condition (3.3) can be simplified as

(3.4) ∀s ∈ G+, ∀t ∈ H =⇒ a ∈ θs(H) and a ∈ θ−1
t (H).

Note that for any s ∈ G+, we have

s−1(a ∨ s) =
{

s−1a if s 6 a,
e if a 6 s.

It follows that condition (3.4) is satisfied if and only if the asserted conditions (i)
and (ii) hold.

PROPOSITION 3.4. Let (G, G+) be an ordered group, Ω be the collection of hered-
itary subsets of G+. For any H ∈ M(Ω), let

(3.5) E = {a ∈ G+ : ∀t ∈ H =⇒ ta ∈ H; ∀s ∈ G+, s−1a ∈ G+ =⇒ s−1a ∈ H}.

Then E ∈ Ω and GE
def= G+ · E−1 is a semigroup of G with

G0
E

def= GE ∩ G−1
E = E ∪ E−1 6= {e}.

Proof. Clearly, e ∈ E ⊆ H (since e ∈ H), and by Corollary 3.3 we know that
the set E defined as (3.5) is not equal to {e}.

Step 1. Suppose that e 6 x 6 y ∈ E. Then for any t ∈ H, we have e 6
tx 6 ty ∈ H, therefore tx ∈ H since H is hereditary; ∀s ∈ G+, if s−1x ∈ G+,
then s−1y = (s−1x)(x−1y) ∈ G+ · G+ = G+, hence s−1y ∈ H, which implies
that s−1x ∈ H since e 6 s−1x 6 s−1y ∈ H and H is hereditary, this completes
the proof of x ∈ E. Obviously, E is also directed since G = G+ ∪ G−1

+ , therefore
E ∈ Ω.

Step 2. Let x, y ∈ E, then for any t ∈ H, we have t(xy) = (tx)y ∈ Hy ⊆ H;
let s ∈ G+ such that s−1(xy) ∈ G+, we prove s−1(xy) ∈ H so that E will be a
semigroup of G+.

Case 1. s−1x ∈ G+. In this case, s−1x ∈ H since x ∈ E, so s−1(xy) =
(s−1x)y ∈ Hy ⊆ H.

Case 2. s−1x ∈ G−1
+ . In this case, s−1x = g−1 for some g ∈ G+. Then

g−1y = s−1(xy) ∈ G+ =⇒ g−1y ∈ H, i.e., s−1(xy) ∈ H.
Step 3. For any x, y ∈ E, we prove that x−1y ∈ E ∪ E−1. Without loss of

generality, we may suppose that x 6 y. Let s ∈ G+ with s−1(x−1y) ∈ G+, then
(xs)−1y ∈ G+ =⇒ s−1(x−1y) = (xs)−1y ∈ H; let t ∈ H, we will prove that
t(x−1y) ∈ H, therefore x−1y ∈ E.

Case 1. tx−1 ∈ G−1
+ . In this case, tx−1 = g−1 for some g ∈ G+, hence

t(x−1y) = g−1y ∈ G+ =⇒ g−1y ∈ H, i.e., t(x−1y) ∈ H.
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Case 2. tx−1 ∈ G+. Let s = tx−1 ∈ G+, then e 6 s 6 t ∈ H =⇒ s ∈ H =⇒
sy ∈ H, i.e., t(x−1y) ∈ H.

Step 4. We prove (xy−1)(st−1) ∈ G+ · E−1 for any x, s ∈ G+ and y, t ∈ E,
therefore G+ · E−1 is a semigroup of G.

Case 1. y−1s ∈ G+. In this case, (xy−1)(st−1) = x(y−1s)t−1 ∈ G+ · G+ ·
E−1 = G+ · E−1.

Case 2. y−1s ∈ G−1
+ . In this case, e 6 s 6 y ∈ E =⇒ s ∈ E =⇒ s−1y ∈ E.

Therefore, (xy−1)(st−1) = x(t(s−1y))−1 ∈ G+ · (E · E)−1 = G+ · E−1.
Step 5. Let GE = G+ · E−1 and denote by G0

E = GE ∩ G−1
E . Then G0

E is a
subgroup of G which contains both E and E−1. On the other hand, given any
x ∈ G0

E, if x ∈ G+, then x−1 = st−1 for some s ∈ G+ and t ∈ E, hence e 6 x 6 t ∈
E =⇒ x ∈ E; otherwise, x ∈ G−1

+ =⇒ x−1 ∈ G+ ∩ G0
E =⇒ x−1 ∈ E =⇒ x ∈ E−1.

So in any case, we have x ∈ E∪ E−1, this completes the proof of G0
E = E∪ E−1.

DEFINITION 3.5. Let (G, G+) be an ordered group. For any g ∈ G+ \ {e},
let Gg be the semigroup of G generated by G+ and g−1. Denote by

(3.6) F(G) =
⋂

g∈G+\{e}
Gg, F(G+) = {t ∈ G+ : t−1 ∈ F(G)}.

As in the abelian case [9], elements of F(G) are called finite elements of G.

The semigroup F(G) defined as above may equal G+; in the case when
F(G) 6= G+, F(G) will be the smallest semigroup of G strictly containing G+.
Note also F(G+) is hereditary so that F(G+) ∈ Ω. For, if e 6 x 6 y ∈ F(G+),
then for any g ∈ G+, we have

(3.7) x−1 = (x−1y)y−1 ∈ G+ · Gg = Gg.

THEOREM 3.6. Let (G, G+) be an ordered group, Ω be the collection of hereditary
subsets of G+. Then Ω contains a largest closed θ-invariant proper subset if and only if
there exists a smallest semigroup of G strictly containing G+; if and only if F(G+) 6=
{e}. And if this happens, S(F(G+)) is the largest closed θ-invariant proper subset of Ω.

Proof. Step 1. Suppose F(G+) 6= {e}, we prove that S(F(G+)) is the largest
closed θ-invariant proper subset of Ω.

Step 1.1. Choose any a ∈ F(G+) \ {e}, since F(G+) is a semigroup of G+,
we know

ta ∈ F(G+) · F(G+) = F(G+) for any t ∈ F(G+);

let s ∈ G+ and suppose s−1a ∈ G+, then for any g ∈ G+ \ {e},

(s−1a)−1 = a−1s ∈ Gg · s ⊆ Gg · G+ = Gg, so s−1a ∈ F(G+).

By Corollary 3.3 we know S(F(G+)) 6= Ω.
Step 1.2. For any H ∈ M(Ω), define the set E as (3.5). Then GE = G+ · E−1

is a semigroup of G which strictly contains G+, so F(G+)−1 ⊆ GE. It follows that
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for any a ∈ F(G+) ⊆ G+, a ∈ G0
E ∩ G+ = E, hence

(3.8) ∀t ∈ H, ∀a ∈ F(G+) =⇒ ta ∈ H.

Let us prove that H ∈ S(F(G+)) so that S(F(G+)) will be the largest closed θ-
invariant proper subset of Ω. It suffices to prove that for any open neighborhood
U of H,

U ∩ {θt(F(G+)), θ−1
s (F(G+)) : t ∈ G+, s ∈ F(G+)} 6= ∅.

Since (G, G+) is an ordered group, we might as well consider the following three
cases:

Case 1. U = N(H; {x, y}) = {B ∈ Ω : x ∈ B, y /∈ B} for some x, y ∈ G+
with x ∈ H and y /∈ H. In this case, x < y (otherwise, y < x ∈ H =⇒ y ∈ H, a
contradiction). Clearly x ∈ θx(F(G+)) and y /∈ θx(F(G+)). For, if y ∈ θx(F(G+)),
then x−1y = x−1(x ∨ y) ∈ F(G+). So by (3.8) we know y = x(x−1y) ∈ H ·
F(G+) ⊆ H, which is a contradiction. Therefore,

θx(F(G+)) ∈ U ∩ {θt(F(G+)), θ−1
s (F(G+)) : t ∈ G+, s ∈ F(G+)}.

Case 2. U = N(H; {x}) = {B ∈ Ω : x ∈ B} for some x ∈ H. In this case,

θx(F(G+)) ∈ U ∩ {θt(F(G+)), θ−1
s (F(G+)) : t ∈ G+, s ∈ F(G+)}.

Case 3. U = N(H; {y}) = {B ∈ Ω : y /∈ B} for some y ∈ G+ \ H. By (3.8)
we know F(G+) ⊆ H, hence y /∈ F(G+), so

F(G+) ∈ U ∩ {θt(F(G+)), θ−1
s (F(G+)) : t ∈ G+, s ∈ F(G+)}.

Step 2. Suppose that Ω contains a largest closed θ-invariant proper subset,
then by Lemma 3.1 we know this largest closed θ-invariant proper subset of Ω is
equal to M(Ω). In particular, M(Ω) is compact since it is closed in the compact
Hausdorff space Ω. As before, for any g ∈ G+ \ {e}, let Gg be the semigroup of
G generated by G+ and g−1, and put Hg = {t ∈ G+ : t−1 ∈ Gg}. Then Hg ∈ Ω

demonstrated as (3.7). Obviously, tg ∈ Hg for any t ∈ Hg; and if s−1g ∈ G+
for s ∈ G+, then (s−1)−1 = g−1s ∈ Gg · G+ = Gg, so s−1g ∈ Hg. It follows by
Corollary 3.3 that Hg ∈ M(Ω). Let

D = {A ⊆ M(Ω) : ∃t ∈ G+ \ {e}, such that ∀s, e < s 6 t =⇒ Hs ∈ A}.

Then it is easy to verify that D is a filter on M(Ω). Since M(Ω) is compact, D has a
cluster point H in M(Ω) ([5], Theorem 3.11). So for any open neighborhood U of
H, any A ∈ D, the intersection of U and A is always non-empty. By Corollary 3.3,
there exists an a ∈ H \ {e}, such that ∀t ∈ H implies ta ∈ H.

Now for any g ∈ G+ \ {e}, let

U = N(H; {a}) = {B ∈ M(Ω) : a ∈ B}, A = {Hs : e < s 6 g},

then there exists an s with e < s 6 g such that a ∈ Hs. Note that s−1 = (s−1)g−1 ∈
Gg, so Hs ⊆ Hg and hence a ∈ Hg, or equivalently a−1 ∈ Gg. By the arbitrariness
of g, we know a ∈ F(G+) and thus F(G+) 6= {e}.
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REMARK 3.7. (i) Let (G, G+) be an ordered group. If G is abelian, then for
any g ∈ G+, Gg = G+ −Z+g = {t− ng : t ∈ G+, n ∈ Z+}. So in this case,

F(G+) = {x ∈ G+ : ∀y ∈ G+ \ {0}, ∃n0 ∈ N, such that x 6 n0y}.

And the reader is referred to Example 1.7 for a non-abelian ordered group which
satisfies the condition stated in Theorem 3.6.

(ii) Let (G, G+) be a quasi-lattice ordered group, and Ω be the collection of
hereditary and directed subsets of G+. An element A of Ω is said to be maximal if
A ⊆ B ∈ Ω implies A = B. Let Ω∞ be the collection of the maximal elements of
Ω. It was proved in [6] that for any A ∈ Ω, there exists some B ∈ Ω∞ such that
A ⊆ B, and the closure of Ω∞ is the smallest closed θ-invariant subset of Ω. It
follows that S(H) = Ω∞ for any H ∈ Ω∞.

4. THE INDUCED IDEALS OF THE TOEPLITZ ALGEBRAS

Let (G, G+) be a quasi-lattice ordered group, H be a hereditary and directed
subset of G+. Denote by T G+ and T GH the two associated Toeplitz algebras (for
the definitions, see below), where GH = G+ · H−1. Then by Theorem 2.12 of [8]
we know there exists a natural C∗-morphism γGH ,G+ from T G+ onto T GH . In this
section, we will show that the induced ideals of T G+ studied by Laca and Nica et
al. all come from the intersection of such kernels as Ker γGH ,G+ . As an application,
conditions under which T G+ becomes simple are given.

Let us first recall some definitions about Toeplitz algebras on discrete groups.
Let G be a discrete group and {δg : g ∈ G} be the usual orthonormal basis for
`2(G). For any g ∈ G, a unitary operator ug on `2(G) is defined by ug(δh) = δgh

for h ∈ G. For any subset E of G, let `2(E) be the closed subspace of `2(G) gener-
ated by {δg : g ∈ E}; the projection from `2(G) onto `2(E) is denoted by pE. The

C∗-algebra generated by {TE
g

def= pEug pE : g ∈ G} is denoted by T E and is called
the Toeplitz algebra with respect to E.

By definition we know (TE
g )∗ = TE

g−1 for any g ∈ G, and for any T ∈ T E, let

θE(T) be the associated diagonal operator acting on `2(G) which is defined by

θE(T)δg =
{
〈Tδg δg〉δg if g ∈ E,
0 if g /∈ E.

By definition, we know for any g, h ∈ G,

(4.1) θE(TE
g TE

h−1) =

{
TE

g TE
g−1 if g = h,

0 otherwise.

The properties of T E are generally closely related to the underlying pair (G, E).
When (G, G+) is a quasi-lattice ordered group, with the convention x−1∞ = ∞
(x ∈ G+) and TG+

∞ = 0, we know from [10] that the following proposition holds:



INDUCED IDEALS AND PURELY INFINITE SIMPLE TOEPLITZ ALGEBRAS 51

PROPOSITION 4.1. Let (G, G+) be a quasi-lattice ordered group. Then:

(i) For any x ∈ G, TG+
x =

{
TG+

σ(x)TG+
τ(x)−1 if x ∈ G+ · G−1

+ ,

0 otherwise.

(ii) For any x, y ∈ G+, (TG+
x TG+

x−1) · (TG+
y TG+

y−1) = TG+
x∨y TG+

(x∨y)−1 .

(iii) For any x, y ∈ G+, TG+
x−1 TG+

y = TG+
x−1(x∨y) TG+

(y−1(x∨y))−1 .

Let

T ∞(G+) = span{TG+
g TG+

h−1 : g, h ∈ G+}, DG+ = closp{TG+
g TG+

g−1 : g ∈ G+},

then T ∞(G+) is a dense ∗-subalgebra of T G+ , whereasDG+ is a commutative C∗-
subalgebra of T G+ , and θG+ is a faithful positive compress linear operator from
T G+ onto DG+ (in other words, θG+ is a faithful conditional expectation). Since
T ∞(G+) is dense in T G+ and θG+ is continuous, by (4.1) we know the following
proposition holds:

PROPOSITION 4.2 (cf. Lemma 4.1 of [6]). Let (G, G+) be a quasi-lattice ordered
group. Then for any g ∈ G+, X ∈ T G+ and Y ∈ DG+ ,

(i) θG+(TG+
g XTG+

g−1) = TG+
g θG+(X)TG+

g−1 ;

(ii) θG+(TG+
g−1 XTG+

g ) = TG+
g−1 θG+(X)TG+

g ;

(iii) θG+(XY) = θG+(X)Y, θG+(YX) = YθG+(X).

Throughout the rest of this section, (G, G+) is a quasi-lattice ordered group,
and Ω is the collection of hereditary and directed subsets of G+. By an ideal,
we always mean it is closed, two-sided, and proper. There is a correspondence
between the induced ideals of T G+ , α-invariant ideals of DG+ and the closed θ-
invariant subsets of Ω described as follows:

Step 1. For any s ∈ G+, αs and αs−1 are two C∗-automorphisms of DG+

defined by

(4.2) αs(X) = TG+
s XTG+

s−1 , αs−1(X) = TG+
s−1 XTG+

s for X ∈ DG+.

An ideal I of DG+ is said to be α-invariant if αs(I) ⊆ I and αs−1(I) ⊆ I for every
s ∈ G+. Clearly any ideal J of T G+ can induce an α-invariant ideal I of DG+

by simply letting I = J ∩ DG+ , and it is remarkable that J ∩ DG+ is nonzero
provided that J is nonzero (for the detail, see [7] or [8]). On the other hand,
any α-invariant ideal I of DG+ can induce an induced ideal Ind I of T G+ which is
defined as

(4.3) IndI = {T ∈ T G+ : θG+(T∗T) ∈ I}
with the property that (Ind I) ∩ DG+ = I . It follows that T G+ is simple if and
only if there is no nonzero α-invariant ideal of DG+ .

Step 2. Let D̂G+ be the maximal ideal space of DG+ , and Γ be the Gelfand

transform from DG+ onto C(D̂G+). For any t ∈ G+, since TG+
t TG+

t−1 is a projection,
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γ(TG+
t TG+

t−1 ) ∈ {0, 1} for any γ ∈ D̂G+ . Let

Aγ = {t ∈ G+ : γ(TG+
t TG+

t−1 ) = 1} for γ ∈ D̂G+ .

Then Aγ ∈ Ω, and Nica showed in [10] (also demonstrated in the proof of The-
orem 4.5 down below) that ρ : γ → Aγ is a homeomorphism from the compact

Hausdorff space D̂G+ onto Ω, and thus induces an isomorphism ρ∗ : C(D̂G+) →
C(Ω) defined as

ρ∗( f ) = f ◦ ρ−1 for f ∈ C(D̂G+).
Therefore, ρ∗ ◦ Γ realizes an isomorphism fromDG+ onto C(Ω) with the property
that

(4.4) (ρ∗ ◦ Γ(TG+
t TG+

t−1 ))(A) = χA(t) for any t ∈ G+ and A ∈ Ω.

Accordingly given any ideal I ofDG+ , since (ρ∗ ◦ Γ)(I) is an ideal of C(Ω), there
exists uniquely a nonempty closed subset K of Ω such that

(4.5) I = IK
def= {T ∈ DG+ : (ρ∗ ◦ Γ(T))(A) = 0 for any A ∈ K}.

Laca showed that IK is α-invariant if and only if K is θ-invariant ([6], Proposi-
tion 3.2).

Now for any closed θ-invariant subset K of Ω, let

(4.6) JK
def= IndIK = {x ∈ T G+ : θG+(x∗x) ∈ IK}.

Let Ω∞ be the collection of the maximal elements of Ω and cl(Ω∞) be the closure
of Ω∞. Since cl(Ω∞) is the smallest closed θ-invariant subset of Ω, we know
Icl(Ω∞) is the largest α-invariant ideal ofDG+ , while Jcl(Ω∞) is the largest induced
ideal of T G+ (the reader should be aware that Icl(Ω∞) = 0 if cl(Ω∞) = Ω).

Now given H ∈ Ω, let GH = G+ · H−1. By Theorem 2.12 of [8] we know
there exists a natural C∗-morphism γGH ,G+ from T G+ onto T GH such that

γGH ,G+(TG+
g ) = TGH

g for any g ∈ G.

It follows that

T GH = γGH ,G+(T G+) = closp{TGH
g TGH

h−1 : g, h ∈ G+}

and DGH = closp{TGH
g TGH

g−1 : g ∈ G+} is a commutative C∗-subalgebra of T GH

with a faithful conditional expectation θGH : T GH → DGH satisfying

(4.7) γGH ,G+ ◦ θG+(T) = θGH ◦ γGH ,G+(T) for any T ∈ T G+ .

Upon replacing G+ by GH , the same propositions as Proposition 4.1 and Propo-
sition 4.2 also hold.

PROPOSITION 4.3. Let (G, G+) be a quasi-lattice ordered group, H be a hereditary
and directed subset of G+ and GH = G+ · H−1. Then

Ind((KerγGH ,G+) ∩DG+) = KerγGH ,G+ .
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Proof. Since θGH is faithful, we know for any T ∈ T G+ ,

T ∈ Ind((KerγGH ,G+) ∩DG+)⇐⇒ θG+(T∗T) ∈ KerγGH ,G+

⇐⇒ θGH (γGH ,G+(T∗T)) = 0⇐⇒ γGH ,G+(T∗T) = 0

⇐⇒ T∗T ∈ KerγGH ,G+ ⇐⇒ T ∈ KerγGH ,G+ .

The following proposition was established in [8]. For a proof, see Lemma 2.8
and Lemma 2.9 of [8].

PROPOSITION 4.4. Let (G, G+) be a quasi-lattice ordered group, H be a hereditary
and directed subset of G+ and GH = G+ · H−1. Then for any x, y ∈ G+ and g ∈ G,

(i) g ∈ GH ⇐⇒ g ∈ G+ · G−1
+ with τ(g) ∈ H;

(ii) x−1y ∈ G+ · G−1
+ ⇐⇒ x ∨ y 6= ∞, and if this happens,

σ(x−1y) = x−1(x ∨ y) and τ(x−1y) = y−1(x ∨ y).

The main result of this section is as follows:

THEOREM 4.5. Let (G, G+) be a quasi-lattice ordered group, Ω be the collection
of hereditary and directed subsets of G+. Let H ∈ Ω, and denote by S(H) the closed
θ-invariant subset of Ω generated by {H}. Then

(4.8) IS(H) = (KerγGH ,G+) ∩DG+ and JS(H) = KerγGH ,G+ .

Proof. Step 1. For any γ ∈ D̂GH , as in Section 6.2 of [10] we define

Aγ = {t ∈ G+ : γ(TGH
t TGH

t−1 ) = 1}.

It is easy to check that Aγ∈Ω. For any s∈G+, t∈H, let γs,t be in D̂GH defined as

γs,t(·) = 〈·δst−1 , δst−1〉.

We prove that

(4.9) Aγs,t(·) = θs ◦ θ−1
t (H).

To this end, let us first prove that for such t ∈ H,

(4.10) G+ · H−1t = G+ · (θ−1
t (H))−1.

For one direction, xh−1t = (x · (h−1(h ∨ t)))(t−1(h ∨ t))−1 ∈ G+ · (θ−1
t (H))−1

whenever x ∈ G+ and h ∈ H. By (2.2) we know ty ∈ H for y ∈ θ−1
t (H). The

reverse direction then follows as xy−1 = x(ty)−1t ∈ G+ · H−1t for such y and
x ∈ G+. Hence for any g ∈ G+,

g ∈ Aγs,t(·) ⇐⇒ γs,t(TGH
g TGH

g−1) = 1⇐⇒ g−1st−1 ∈ G+ · H−1

⇐⇒ g−1s ∈ G+ · H−1t = G+ · (θ−1
t (H))−1 ⇐⇒ τ(g−1s) ∈ θ−1

t (H)

⇐⇒ s−1(g ∨ s) ∈ θ−1
t (H)⇐⇒ g ∈ θs(θ−1

t (H)).
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Step 2. Let ρH be a morphism from D̂GH to Ω defined by ρH(γ) = Aγ for

γ ∈ D̂GH . Then ρH is continuous and one-to-one, so the compactness of D̂GH

implies that ρH(D̂GH ) is compact (and hence closed) in Ω. It follows that ρH is a

homeomorphism from D̂GH onto ρH(D̂GH ).

Next we prove that the collection of all such Aγs,t is dense in ρH(D̂GH ), so
that

ρH(D̂GH ) = {Aγs,t : s ∈ G+, t ∈ H} = {θs ◦ θ−1
t (H) : s ∈ G+, t ∈ H} = S(H).

Toward this end, it suffices to prove that for any γ ∈ D̂GH , any finite nonempty
subset F of G+, there exist s ∈ G+ and t ∈ H such that

(4.11) x ∈ Aγ⇐⇒ x ∈ θs(θ−1
t (H)) for any x ∈ F.

Case 1. F1
def= F ∩ Aγ and F2

def= F ∩ (G+ \ Aγ) both are non-empty. Let F1 =
{s1, s2, . . . , sn} and F2 = {t1, t2, . . . , tm}. Since Aγ is directed, the least common

upper bound of si, σ(s1, s2, . . . , sn) def= s0 belongs to Aγ. Note if s ∈ G+ such that
s > s0, then for any si in F1, si 6 s0 6 s ∈ θs(A) for every A ∈ Ω, accordingly
F1 ⊆ θs(θ−1

t (H)) for all such s and any t ∈ H. So it reduces to prove there exist
s > s0 and t ∈ H such that F2 ⊆ G+ \ θs(θ−1

t (H)), or equivalently, TGH
tj

TGH
t−1
j

δst−1 =

0 for any tj ∈ F2 (see (4.9)). Suppose on the contrary that

(4.12)
m

∏
j=1

(1− TGH
tj

TGH
t−1
j

)δst−1 = 0 for any t ∈ H, s ∈ G+ with s > s0,

then we show

(4.13)
( m

∏
j=1

(1− TGH
tj

TGH
t−1
j

)
)
· TGH

s0 TGH
s−1

0
= 0.

In fact, for any x ∈ G+ and y ∈ H, if TGH
s0 TGH

s−1
0

δxy−1 6= 0, then we will prove that

TGH
s0 TGH

s−1
0

δxy−1 = δst−1 for some t ∈ H and s ∈ G+ with s > s0, the conclusion

then follows by (4.12). The proof of the asserted property can be demonstrated as
follows:

TGH
s0 TGH

s−1
0

δxy−1 6= 0⇐⇒ 〈TGH
s0 TGH

s−1
0

δxy−1 , δxy−1〉 = 1

⇐⇒ s0 ∈ θx(θ−1
y (H))⇐⇒ x−1(x ∨ s0) ∈ θ−1

y (H)

⇐⇒ yx−1(x ∨ s0) ∈ H ⇐⇒ xy−1 = (x ∨ s0)t−1 for some t ∈ H.

By the definition of Aγ, we know
m
∏
j=1

(1− γ(TGH
tj

TGH
t−1
j

)) · γ(TGH
s0 TGH

s−1
0

) = 1. But by

(4.13) we also have
m
∏
j=1

(1− γ(TGH
tj

TGH
t−1
j

)) · γ(TGH
s0 TGH

s−1
0

) = 0, a contradiction.
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Case 2. F = F1, F2 = ∅. Let s0 be as in Case 1, and put s = s0, t = e, then
(4.11) holds.

Case 3. F = F2, F1 = ∅. In this case, γ(TGH
tj

TGH
t−1
j

) = 0 for all tj ∈ F (1 6 j 6

m). It follows that
m
∏
j=1

(1− γ(TGH
tj

TGH
t−1
j

)) = 1, and hence
m
∏
j=1

(1− TGH
tj

TGH
t−1
j

) 6= 0, so

there exist some s ∈ G+ and t ∈ H, such that
m

∏
j=1

(1− TGH
tj

TGH
t−1
j

)δst−1 6= 0.

It follows that tj /∈ θs ◦ θ−1
t (H) for 1 6 j 6 m.

Step 3. As before, let ρ∗H : C(D̂GH ) → C(S(H)) be the induced morphism
defined by

ρ∗H( f ) = f ◦ ρ−1
H for f ∈ C(D̂GH ).

Also, let Γ be the Gelfand transformation from DGH onto C(D̂GH ). Then it is easy
to verify that for any A ∈ S(H) and t ∈ G+,

(4.14) (ρ∗H ◦ Γ(TGH
t TGH

t−1 ))(A) = χA(t).

Since the linear span of {TG+
t TG+

t−1 : g ∈ G+} is dense in DG+ , by (4.4) and (4.14)
we know for any T ∈ DG+ and A ∈ S(H),

(4.15) (ρ∗ ◦ Γ(T))(A) = (ρ∗H ◦ Γ(γGH ,G+(T)))(A).

Thus we have the following C∗-algebras, all of which are isomorphic:

DGH ∼= C(S(H)) ∼= C(Ω)/∆S(H)
∼= DG+ /IS(H),

where

∆S(H) = { f ∈ C(Ω) : f (A) = 0, ∀A ∈ S(H)},

IS(H) = {T ∈ DG+ : (ρ∗ ◦ Γ(T))(A) = 0, ∀A ∈ S(H)}.

We are now ready to prove that IS(H) = (KerγGH ,G+) ∩ DG+ . In fact, for any
x ∈ DG+ ,

x ∈ IS(H) ⇐⇒ [x] = 0 in DG+ /IS(H) ⇐⇒ [ρ∗ ◦ Γ(x)] = 0 in C(Ω)/∆S(H)

⇐⇒ ρ∗ ◦ Γ(x)|S(H) = 0⇐⇒ ∀A ∈ S(H), ρ∗ ◦ Γ(x)(A) = 0

⇐⇒ ∀A ∈ S(H), (ρ∗H ◦ Γ(γGH ,G+(x)))(A) = 0⇐⇒ γGH ,G+(x) = 0.

The assertion that JS(H) = KerγGH ,G+ then follows from Proposition 4.3.

COROLLARY 4.6. Let (G, G+) be a quasi-lattice ordered group, Ω be the collection
of hereditary and directed subsets of G+. Let K be a closed θ-invariant subset of Ω, and
define IK and JK by (4.5) and (4.6) respectively, then
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IK =
⋂

H∈K
((KerγGH ,G+) ∩DG+) and JK =

⋂
H∈K

KerγGH ,G+ .

Proof. Obviously K =
⋃

H∈K
S(H), the conclusion then follows by the defini-

tions of IK,JK and the preceeding theorem.

COROLLARY 4.7. Let (G, G+) be a quasi-lattice ordered group, Ω be the collection
of hereditary and directed subsets of G+. Then the following conditions are all equivalent:

(i) T G+ is simple;
(ii) for any H ∈ Ω, γGH ,G+ is a C∗-isomorphism;

(iii) for any H ∈ Ω, S(H) = Ω;
(iv) cl(Ω∞) = Ω;
(v) the only closed θ-invariant subset of Ω is Ω itself;

(vi) there is no nonzero α-invariant ideal of DG+ ;
(vii) for every finite subset F of G+ \ {e}, there exists z ∈ G+ such that z ∨ x = ∞ for

all x ∈ F;
(viii) for every nonzero element A in T G+ , there exist B, C ∈ T G+ such that BAC = 1.

Proof. Since cl(Ω∞) is the smallest closed θ-invariant subset of Ω, S(H) =
cl(Ω∞) for any H ∈ cl(Ω∞). The equivalence of conditions (i) through (vi) then
follows from Theorem 4.5. For the rest, see Lemma 5.2 and Theorem 5.4 of [6].

5. THE MAXIMAL IDEALS OF THE TOEPLITZ ALGEBRAS

For n > 2, the Cuntz algebra On is the universal C∗-algebra generated by

isometries S1, S2, . . . , Sn such that
n
∑

i=1
SiS∗i = 1. It is known that for any non-zero

element A ∈ On, there exist B and C such that BAC = 1, which means On is sim-

ple, and thus if T1, T2, . . . , Tn are any n isometries such that
n
∑

i=1
TiT∗i = 1, then the

C∗-algebra generated by T1, T2, . . . , Tn is isomorphic to On. Meanwhile, the C∗-
algebra O∞ is the universal C∗-algebra generated by countably many isometries

Sk such that
n
∑

k=1
SkS∗k < 1 for all n > 1. The C∗-algebra O∞ is also simple. For the

details, the reader is referred to [2] and [3]. The purpose of this section is to give
a new look at these Cuntz algebras. We will show that they can be expressed as
certain Toeplitz algebras, and the property of purely infiniteness can be proved
in a unified way.

Throughout this section, (G, G+) is a quasi-lattice ordered group such that
G+ itself is not directed, which means there exist some x, y ∈ G+ with x ∨ y = ∞.
Since cl(Ω∞) is the smallest closed θ-invariant subset of Ω, Jcl(Ω∞) is the largest
induced ideal of T G+ , which may however fail to be the largest ideal of T G+ as
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shown in the next section. So we turn to investigate conditions under which
Jcl(Ω∞) becomes a maximal ideal of T G+ in the sense that, for any ideal J of T G+ ,
Jcl(Ω∞) ⊆ J =⇒ Jcl(Ω∞) = J . Note for any H ∈ cl(Ω∞), S(H) = cl(Ω∞),
so by Theorem 4.5 we know that Jcl(Ω∞) is maximal if and only if the Toeplitz
algebras T GH (H ∈ cl(Ω∞)) are simple. Following the same lines as [2] and [6],
in this section we study the purely infinite simpleness of the Toeplitz algebras
T GH (H ∈ cl(Ω∞)).

LEMMA 5.1 (cf. Lemma 3.9 of [10]). Let (G, G+) be a quasi-lattice ordered group,
and {L(t) : t ∈ G+} be a family of projections of a unital C∗-algebra B such that
L(e) = 1 and L(s)L(t) = L(s ∨ t) (with the convention that L(∞) = 0). Then for any
finite subset F of G+, any λx ∈ C, we have∥∥∥ ∑

x∈F
λxL(x)

∥∥∥=max
{∣∣∣ ∑

x∈A
λx

∣∣∣ : ∅ 6= A⊆F, ∏
x∈A

L(x) · ∏
y/∈A

(1− L(y)) 6=0
}

.

(Note if A = F, then the product above should be understood as ∏
x∈F

L(x).)

LEMMA 5.2 (cf. Lemma 5.1 of [6]). Let (G, G+) be a quasi-lattice ordered group
such that G+ itself is not directed. Let H be in Ω∞ and F a nonempty finite subset of G+
with F ∩ H = ∅. If a ∈ H satisfies a < x for any x ∈ F, then there exists y ∈ H with
a < y such that x ∨ y = ∞ for all x ∈ F.

THEOREM 5.3. Let (G, G+) be a quasi-lattice ordered group such that G+ itself is
not directed. Suppose for any x, y ∈ G+ with x 6= y, there exists g ∈ G+, such that

(5.1) TG+
g−1 TG+

x TG+
y−1 TG+

g = 0.

Then for any H ∈ cl(Ω∞), the Toeplitz algebra T GH is purely infinite simple.

Proof. We need to prove that for any X ∈ T GH with X 6= 0, there exist
B, C ∈ T GH such that BXC = 1, which is further reduced to find some B1 and C1
such that B1XC1 is invertible.

Step 1. Let Y ∈ T ∞(GH) def= span{TGH
g TGH

h−1 : g, h ∈ G+} with Y 6= 0. For

any g ∈ G+, denote TGH
g TGH

g−1 simply by L(g). Then there exists a finite subset F
of G+, and λx ∈ C for each x ∈ F, such that

(5.2) θGH (Y∗Y) = ∑
x∈F

λxL(x).

By Lemma 5.1, there exists A ⊆ F such that

(5.3) ∏
x∈A

L(x) · ∏
y/∈A

(1− L(y)) 6= 0, and
∥∥∥ ∑

x∈F
λxL(x)

∥∥∥ =
∣∣∣ ∑

x∈A
λx

∣∣∣.
Case 1. ∅ 6= A ⊆ F, A 6= F. Let a be the least common upper bound of

elements in A. By (5.3) and Proposition 4.1 we know a ∈ G+. Note for any x ∈ A
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and y ∈ F \ A,

(L(a)− L(a ∨ y))L(x) = L(a ∨ x)− L((a ∨ y) ∨ x) = L(a)− L(a ∨ y),

(L(a)− L(a ∨ y))L(y) = L(a ∨ y)− L(a ∨ y) = 0.

Therefore,

(5.4) Q ·
(

∑
x∈F

λxL(x)
)
·Q =

(
∑

x∈A
λx

)
Q,

where
Q def= ∏

y/∈A
(L(a)− L(a ∨ y)) = ∏

x∈A
L(x) · ∏

y/∈A
(1− L(y)) 6= 0.

Note θGH (Y∗Y) is positive, by (5.2)–(5.4) we know that
∣∣∣ ∑

x∈A
λx

∣∣∣ = ∑
x∈A

λx. There-

fore,

(5.5) Q · θGH (Y∗Y) ·Q = ‖θGH (Y∗Y)‖Q.

Since Q 6= 0 and H ∈ cl(Ω∞), we know ρ∗H · Γ(Q) 6= 0 in C(S(H)) = C(cl(Ω∞)).
By the density of Ω∞ in cl(Ω∞), there exists H1 ∈ Ω∞ such that

∏
y/∈A

(χH1
(a)− χH1

(a ∨ y)) = (ρ∗H ◦ Γ(Q))(H1) 6= 0,

which means that a ∈ H1 and a ∨ y /∈ H1 for all y /∈ A. By Lemma 5.2 there exists
z ∈ G+ with z > a and z ∨ (a ∨ y) = ∞ for all y ∈ F \ A, so that L(z)Q = L(z).
Hence,

L(z)Q · θGH (Y∗Y) ·QL(z) = ‖θGH (Y∗Y)‖L(z).
It follows that

(5.6) TGH
z−1 Q · θGH (Y∗Y) ·QTGH

z = ‖θGH (Y∗Y)‖.
Case 2. ∅ 6= A = F. In this case, let a be the least common upper bound of

elements in F, then L(a)L(x) = L(x)L(a) = L(a) for any x ∈ F. Let z = a and
Q = L(a), then (5.6) also holds.

Step 2. Suppose now that condition (5.1) is satisfied. Let xi, yi ∈ G+ with
xi 6= yi for i = 1, 2. By assumption there exists g1 ∈ G+ such that

TGH
g−1

1
TGH

x1 TGH
y−1

1
TGH

g1 = γGH ,G+(TG+
g−1

1
TG+

x1 TG+
y−1

1
TG+

g1 ) = 0.

If the operator TGH
g−1

1
TGH

x2 TGH
y−1

2
TGH

g1 6= 0, then it is equal to TGH
u TGH

v−1 for some u, v ∈
G+ with u 6= v (see Proposition 4.1). Once again there exists g2 ∈ G+ such that
TGH

g−1
2

TGH
u TGH

v−1 TGH
g2 = 0. Let g = g1g2, then TGH

g = TGH
g1 TGH

g2 , so for any λ1, λ2 ∈ C,

TGH
g−1(λ1TGH

x1 TGH
y−1

1
+ λ2TGH

x2 TGH
y−1

2
)TGH

g = 0.

The above process indicates for any T ∈ T ∞(GH), there exists g ∈ G+ such that

(5.7) TGH
g−1(T − θGH (T))TGH

g = 0.
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Step 3. Let X ∈ T GH with X 6= 0. Since θGH is faithful (in the sense that
θGH (S∗S) = 0 ⇐⇒ S = 0 for any S ∈ T GH ), we know θGH (X∗X) 6= 0. Since
T ∞(GH) is dense in T GH , we can choose a sequence {Yn} in T ∞(GH) such that
Yn → X in T GH . Then Y∗n Yn → X∗X and ‖θGH (Y∗n Yn)‖ → ‖θGH (X∗X)‖ > 0. It
follows that there exists some Y ∈ T ∞(GH) such that

(5.8) θGH (Y∗Y) 6= 0 and
‖X∗X−Y∗Y‖
‖θGH (Y∗Y)‖

< 1.

Let Q and z be as in Step 1 such that (5.6) holds. By Proposition 4.2, we know

θGH (TGH
z−1 Q(Y∗Y− θGH (Y∗Y))QTGH

z ) = 0,

therefore by (5.6) and (5.7) we know there exists g ∈ G+ such that

(5.9) TGH
g−1 TGH

z−1 Q · (Y∗Y) ·QTGH
z TGH

g = ‖θGH (Y∗Y)‖.

Then

‖‖θGH (Y∗Y)‖−1TGH
g−1 TGH

z−1 Q · (X∗X) ·QTGH
z TGH

g − 1‖

= ‖θGH (Y∗Y)‖−1 · ‖TGH
g−1 TGH

z−1 Q · (X∗X−Y∗Y) ·QTGH
z TGH

g ‖

6 ‖θGH (Y∗Y)‖−1 · ‖X∗X−Y∗Y‖ < 1.

Let
B1 = ‖θGH (Y∗Y)‖−1TGH

g−1 TGH
z−1 Q · X∗, and C1 = QTGH

z TGH
g .

Then ‖B1XC1 − 1‖ < 1, therefore B1XC1 is invertible.

By Proposition 4.1, we know TG+
g−1 TG+

x = 0 for any g, x ∈ G+ with x∨ g = ∞.
So compared with the condition (5.1) given in the preceding theorem, a stronger
condition can be stated as follows:

DEFINITION 5.4. A quasi-lattice ordered group (G, G+) is said to be ex-
tremely incomparable if for any x ∈ G+ \ {e}, there exists g ∈ G+ such that
x ∨ g = ∞.

Typical examples of extremely incomparable quasi-lattice ordered groups
are the free groups with finite or countably infinite generators presented below:

EXAMPLE 5.5. Let Fn be the free group with n(n > 2) generators a1, . . . , an,
and F+

n be the semigroup of Fn generated by a1, . . . , an. Then (Fn, F+
n ) is a quasi-

lattice ordered group with a property that

x ∨ y 6= ∞⇐⇒ x 6 y or y 6 x for any x, y ∈ F+
n .

Specifically, for any t ∈ F+
n \ {e}, there exists one and only one generator ai0 sat-

isfies ai0 6 t, which means t ∨ ai = ∞ for any i 6= i0. Let H = {e} ∪ {am
1 : m ∈ N}

and denote F+
n · H−1 simply by GH . Then H ∈ Ω∞, so by Theorem 5.3 we know

T GH is purely infinite simple. Clearly, the Toeplitz algebra T GH is generated by
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{TGH
ai : i = 1, 2, . . . , n}with

n
∑

i=1
TGH

ai TGH
a−1

i
= 1, and hence T GH ∼= On by the unique-

ness of On.

EXAMPLE 5.6. Let G be the free group with countably infinite generators
{an : n ∈ N}, and G+ be the semigroup of G generated by {an : n ∈ N}. Let
H = {e} ∪ {am

1 : m ∈ N}, then the Toeplitz algebra T GH is purely infinite simple,
which is isomorphic to O∞.

COROLLARY 5.7. Let (G1, G+
1 ) and (G2, G+

2 ) be two extremely incomparable
quasi-latticed ordered groups. Denote by Ω1 and Ω2 the collection of hereditary and
directed subsets of G+

1 and G+
2 respectively. Let Ω∞

1 and Ω∞
2 be the collection of the

maximal elements of Ω1 and Ω2 respectively. Then for any H1 ∈ Ω∞
1 and H2 ∈ Ω∞

2 ,
the spatial tensor product of C∗-algebras T GH1 ⊗ T GH2 is purely infinite simple.

Proof. Let G = G1 × G2, G+ = G+
1 × G+

2 and H = H1 × H2, then (G, G+)
is also an extremely incomparable quasi-lattice ordered group and H ∈ Ω∞ (see
Proposition 2.4). Let U be the natural unitary operator from `2(G) onto `2(G1)⊗
`2(G2) which satisfies Uδ(x,y) = δx ⊗ δy for x ∈ G1 and y ∈ G2. It is easy to verify
that

U · TGH
(x,y) ·U

∗ = T
GH1
x ⊗ T

GH2
y for any x ∈ G1, y ∈ G2.

Therefore, the spatial tensor product of C∗-algebras T GH1 ⊗ T GH2 is unitarily
equivalent to T GH . The conclusion then follows from Theorem 5.3.

EXAMPLE 5.8. For n, m > 2, the (spatial) tensor product of the Cuntz alge-
bras On ⊗Om is purely infinite simple.

6. THE LARGEST IDEALS OF THE TOEPLITZ ALGEBRAS

In this section, we will study the largest ideals of the Toeplitz algebras. Let
(G, G+), Ω and Ω∞ be as in Section 5 except that G+ itself might be directed.
We will prove, under a certain assumption, that if the condition (5.1) given in
Theorem 5.3 is not satisfied, then the largest induced ideal Jcl(Ω∞) does fail to be
the largest ideal of T G+ (see Theorem 6.5).

DEFINITION 6.1. Let B be a unital C∗-algebra. A map V from G+ to B is
said to be an isometric representation of G+ if it satisfies

V(e) = 1; V(g)∗V(g) = 1; V(g)V(h) = V(gh) for any g, h ∈ G+.

Moreover, V is said to be covariant if for any s, t ∈ G+,

V(s)V(s)∗ ·V(t)V(t)∗ =
{

V(s ∨ t)V(s ∨ t)∗ if s ∨ t ∈ G+,
0 if s ∨ t = ∞.
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DEFINITION 6.2. The pair (G, G+) is said to be amenable if every covari-
ant isometric representation V : G+ → B can be lifted as a C∗-morphism πV :
T G+ → B such that πV(TG+

g ) = V(g) for any g ∈ G+.

By Theorem 4.7 of [4] or Section 4 of [10] we know (G, G+) is amenable
provided that G is amenable. Furthermore, as in the case of the free group Fn
(n > 2), the condition of the amenability of G can be replaced by a weaker one,
which concerns certain approximation property. For the details, see Theorem 4.6
of [4] or Proposition 2 in Section 4 of [10].

PROPOSITION 6.3. Let (G, G+) be a quasi-lattice ordered group, Ω be the collec-
tion of hereditary and directed subsets of G+, and Ω∞ be the collection of the maximal
elements of Ω. Denote by H∆ =

⋂
H∈Ω∞

H, then H∆ · H−1
∆ is a subgroup of G with

(6.1) H∆ = {x ∈ G+ : ∀y ∈ G+, x ∨ y 6= ∞}.
Proof. Step 1. Suppose that x ∈ H∆. For any y ∈ G+, we can choose some

Hy ∈ Ω∞ such that [e, y] ⊆ Hy, where [e, y] = {s ∈ G+ : s 6 y}. Since x, y ∈ Hy
and Hy is directed, we know x ∨ y ∈ Hy ⊆ G+. It follows that H∆ ⊆ {x ∈ G+ :
∀y ∈ G+, x ∨ y 6= ∞}. On the other hand, suppose x ∈ G+ with x ∨ y 6= ∞ for
any y ∈ G+, then for any H ∈ Ω∞, we let

H1 =
⋃

t∈H
[e, x ∨ t].

Clearly x ∈ H1 ∈ Ω and H ⊆ H1, hence H = H1 by the maximality of H.
Accordingly x ∈ H, and therefore equation (6.1) holds.

Step 2. Let x ∈ H∆. By the definition of H∆, we know that

(ρ∗ ◦ Γ(TG+
x TG+

x−1))(A) = χA(x) = 1 for every A ∈ Ω∞.

By the density of Ω∞ in cl(Ω∞), we know ρ∗ ◦ Γ(1− TG+
x TG+

x−1) ≡ 0 on cl(Ω∞) =
S(H) for any H ∈ cl(Ω∞). By (4.14) and (4.15) we know

(6.2) 1− TGH
x TGH

x−1 = 0 for any H ∈ cl(Ω∞).

In particular for h ∈ H ∈ Ω∞, TGH
x TGH

x−1 δh−1 = δh−1 and thus (hx)−1 ∈ GH ⇐⇒
hx ∈ H. We have proved that H · x ⊆ H for any x ∈ H∆ and H ∈ Ω∞, which
means that H∆ is a semigroup of G+.

Now let x, y ∈ H∆, by (6.2) we have TGH
x TGH

x−1 δy = δy for any H ∈ Ω∞. So
x−1y ∈ GH ⇐⇒ τ(x−1y) ∈ H, and hence τ(x−1y) ∈ H∆ by the arbitrariness
of H. Exchanging x with y, we know σ(x−1y) = τ(y−1x) ∈ H∆. It follows
that x−1y = σ(x−1y)τ(x−1y)−1 ⊆ H∆ · H−1

∆ , which implies that H∆ · H−1
∆ is a

subgroup since we have already shown that H∆ is a semigroup of G+.

Let

(6.3) G∆ = {s ∈ H∆ · H−1
∆ : g−1sg ∈ H∆ · H−1

∆ for any g ∈ G+}.
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Then the set G∆ is also a (possibly non-normal) subgroup of G. Since G+ is a
semigroup, by the definition of G∆ we know that g−1 ·G∆ · g ⊆ G∆ for any g ∈ G+.

Define an equivalence relationship on G by x ∼ y ⇐⇒ x−1y ∈ G∆. For any
g ∈ G, let [g] = {s ∈ G : s ∼ g}. Put [G] = {[g] : g ∈ G} and [G+] = {[g+] : g+ ∈
G+}. Then a left action of [G] on [G+] can be defined unambiguously as

[g][g+] def= [gg+] for g ∈ G, g+ ∈ G+.

So for any [g] ∈ [G], a (generalized) Toeplitz operator T[G+ ]
[g] on `2([G+]) def=

closp{δ[g+ ] : g+ ∈ G+} can also be defined as

T[G+ ]
[g] δ[g+ ] =

{
δ[gg+ ] if [gg+] ∈ [G+],
0 otherwise.

By definition, we know (T[G+ ]
[g] )∗ = T[G+ ]

[g−1] for any g ∈ G.

PROPOSITION 6.4. Let B(`2([G+])) be the set of all bounded linear operators on
`2([G+]). If G∆ = H∆ ·H−1

∆ , then the isometric representation V : G+ → B(`2([G+]))

defined as V(g+) = T[G+ ]
[g+ ] (g+ ∈ G+) is covariant.

Proof. For any x, g+ ∈ G+, it is easy to check that

V(x)V(x)∗δ[g+ ] 6= 0⇐⇒ x ∈ g+ · G∆ · G−1
+ ⇐⇒ x 6 g+a for some a ∈ G∆.

It follows that V is covariant if and only if for any x, y, g+ ∈ G+ and a1, a2 ∈ G∆,

(6.4) x 6 g+a1, y 6 g+a2 =⇒ x ∨ y 6 g+a for some a ∈ G∆.

If G∆ = H∆ · H−1
∆ , then ai 6 σ(a1) ∨ σ(a2)

def= a ∈ H∆ ⊆ G∆, hence (6.4) holds.

THEOREM 6.5. Let (G, G+) be an amenable quasi-lattice ordered group. Suppose
that G∆ = H∆ · H−1

∆ . If the condition (5.1) stated in Theorem 5.3 is not satisfied, then
Jcl(Ω∞) fails to be the largest ideal of T G+ .

Proof. Choose any H0 ∈ cl(Ω∞) so that Ker γGH0 ,G+ = Jcl(Ω∞). Let us first

prove that Jcl(Ω∞) is the largest ideal of T G+ if and only if 1 /∈ θG+(J ) for any
ideal J of T G+ .

” =⇒ ”: Suppose that Ker γGH0 ,G+ is the largest ideal of T G+ . Then for any
ideal J of T G+ , θG+(J ) ⊆ θG+(KerγGH0 ,G+) ⊆ KerγGH0 ,G+ . Hence θG+(J ) ⊆
KerγGH0 ,G+ , therefore 1 /∈ θG+(J ).

“⇐=”: Suppose that 1 /∈ θG+(J ) for any ideal J of T G+ . Then for any ideal
J of T G+ , by Proposition 4.2 we know θG+(J ) is actually an α-invariant ideal of
DG+ , and is thus contained in (KerγGH0 ,G+) ∩ DG+ . So, x ∈ J =⇒ θG+(x∗x) ∈
(KerγGH0 ,G+)∩DG+ =⇒ x ∈ KerγGH0 ,G+ . It follows that KerγGH0 ,G+ is the largest
ideal of T G+ .
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Since G∆ = H∆ · H−1
∆ and (G, G+) is amenable, the covariant isometric

representation V : G+ → B(`2([G+])) induces a C∗-morphism πV : T G+ →
B(`2([G+])) such that πV(TG+

g+ ) = T[G+ ]
[g+ ] for any g ∈ G+. Given any x ∈ H∆ and

g+ ∈ G+, g−1
+ x−1g+ ∈ g−1

+ · H−1
∆ · g+ ⊆ g−1

+ · G∆ · g+ = G∆. So x−1g+ ∈ G+ · G∆,
or equivalently [x−1g+] ∈ [G+], and thus

(6.5) T[G+ ]
[x−1]δ[g+ ] = δ[x−1g+ ] for x ∈ H∆ and g+ ∈ G+.

We claim that

(6.6) πV(TG+
t ) = 1 for any t ∈ G∆.

In fact, for any t ∈ G∆, we have σ(t) ∈ G+ and τ(t) ∈ H∆, so by (6.5) we know
for any g+ ∈ G+,

πV(TG+
t )δ[g+ ] = T[G+ ]

[σ(t)]T
[G+ ]
[τ(t)−1]δ[g+ ] = δ[tg+ ] = δ[g+ ].

Let

M = {(x, y) : x, y ∈ G+, x 6= y, TG+
g−1 TG+

x TG+
y−1 TG+

g 6= 0, ∀g ∈ G+}.

By assumption,M is nonempty, so we can choose some (x0, y0) ∈ M. Then

TG+
g−1 TG+

x0 6= 0 and TG+
g−1 TG+

y0 6= 0 for any g ∈ G+,

so x0, y0 ∈ H∆ by (6.1), and by assumption x0y−1
0 ∈ (H∆ · H−1

∆ ) \ {e} = G∆ \ {e}.
Now let J = KerπV . By (6.6) we have 1− TG+

x0y−1
0
∈ J . But clearly, 1 =

θG+(1− TG+
x0y−1

0
) ∈ θG+(J ). The first part of the proof indicates that Jcl(Ω∞) fails

to be the largest ideal of T G+ .

REMARK 6.6. (i) Suppose that (G, G+) is an abelian quasi-lattice ordered
group. Replacing G by G+ − G+, we may assume further that (G, G+) is a par-
tially ordered group. In this case, cl(Ω∞) = {G+}, so Jcl(Ω∞) = KerγG,G+ . By
Proposition 1.2 of [11] we know KerγG,G+ is the commutator ideal of T G+ , which
definitely cannot be the largest ideal of T G+ . Meanwhile condition (5.1) is also
definitely not satisfied.

(ii) Suppose that (G, G+) is an ordered group, H is a subset of G+, then H
belongs to Ω if and only if it is hereditary. Let H ∈ Ω such that GH = G+ · H−1 is

a subgroup of G, then G0
H

def= GH ∩G−1
H = H ∪ H−1 is an order ideal of G. Suppose

further that G is abelian, then TGH
x TGH

y = TGH
y TGH

x for any x ∈ G0
H , y ∈ G, which

means that TGH
x (x ∈ G0

H) belongs to the commutant of T GH . Therefore for any
irreducible representation (π, H) of T GH , π(TGH

x ) (x ∈ G0
H) is the scalar multiple

of IH . Using this fact, one can give a shorter proof of Corollary 3.4 in [1], and
the reader is referred to [12] for the details. In the non-abelian case, things may
become much more complicated.
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