
J. OPERATOR THEORY
62:1(2009), 151–158

© Copyright by THETA, 2009

ALMOST-ORTHOGONALITY IN THE
SCHATTEN–VON NEUMANN CLASSES

ANTHONY CARBERY

Communicated by Nikolai K. Nikolski

ABSTRACT. We consider criteria for a sum of operators in the Schatten–von
Neumann class Cp to be in the same class. These criteria are expressed as
almost-orthogonality conditions. We also pose some open questions related
to this work.
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1. INTRODUCTION

In this note we consider almost-orthogonality in the Cp classes of Schatten
and von Neumann, whose definition we now briefly recall. Let H be a Hilbert
space. When 1 6 p < ∞, Cp is defined as the space of compact operators T on H
such that if λ2

j is the sequence of eigenvalues of T∗T, then

‖T‖p := ‖λj‖lp < ∞.

When p = ∞, C∞ is the space L(H) of all bounded linear operators on H with the
usual operator norm.

The basic properties of the Schatten–von Neumann classes are set out for
example in [2]. Amongst them are the following, which we shall use in what
follows without further comment:

(i) Cp is a Banach space under this norm (and a Hilbert space when p = 2).
(ii) ‖T‖p = ‖T∗‖p = ‖(T∗T)1/2‖p.

(iii) If S > 0 and pa > 1, then ‖Sa‖p = ‖S‖a
pa.

(iv) Hölder’s inequality: if 1 6 p, q, r 6 ∞, 1/r = 1/p + 1/q, S ∈ Cp and
T ∈ Cq, then ST ∈ Cr and

‖ST‖r 6 ‖S‖p‖T‖q.
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Using merely the triangle inequality for Cp, we see that if Tj ∈ Cp and
∑
j
‖Tj‖p < ∞, then ∑

j
Tj ∈ Cp and

∥∥∥∑
j

Tj

∥∥∥
p

6 ∑
j
‖Tj‖p.

In this note we shall be interested in obtaining the same conclusion ∑
j

Tj ∈

Cp, but we do not wish to make the rather strong assumption that ∑
j
‖Tj‖p < ∞.

A first indication of what we are aiming for is an instance of the Clarkson–
McCarthy inequalities (see [2] again)

2(‖S‖p
p + ‖T‖p

p) 6 ‖S + T‖p
p + ‖S− T‖p

p , 2 6 p 6 ∞,

and
2(‖S‖p

p + ‖T‖p
p) > ‖S + T‖p

p + ‖S− T‖p
p , 1 6 p 6 2;

equality holds for p 6= 2 if and only if ST∗ = S∗T = 0. So if the operators S and
T are orthogonal in the sense that ST∗ = S∗T = 0, we have (S + T)∗(S + T) =
(S− T)∗(S− T) = S∗S + T∗T, and so

‖S + T‖p = (‖S‖p
p + ‖T‖p

p)1/p,

which can also be seen in a variety of other ways. (Of course this is just the non-
commutative analogue of the statement that if on a measure space f and g have
disjoint supports, then ‖ f + g‖p = (‖ f ‖p

p + ‖g‖p
p)1/p, where ‖ · ‖p denotes the Lp

norm.)
Consequently, if we have a family of operators Tj such that for j 6= k TjT∗k =

T∗j Tk = 0 (i.e. the operators are mutually orthogonal), then∥∥∥∑
j

Tj

∥∥∥
p

=
(

∑
j
‖Tj‖

p
p

)1/p
.

In this note we wish to examine what happens if we do not have exact mu-
tual orthogonality of the operators Tj, but only some “almost-orthogonality”. For
example, what if we just know that the sizes of TjT∗k and T∗j Tk decay at some
reasonable rate as |j− k| → ∞? In the commutative case, if f j ∈ Lp are not nec-
essarily disjointly supported, but nevertheless “most of the mass” of f j lives far
from where “most of the mass” of the other fk’s lives, can we deduce that ∑

j
f j

belongs to Lp?
There are a few cases where we can give a satisfactory answer to this ques-

tion more or less directly. The first is when p = 2. Suppose that H is a Hilbert
space, xj ∈ H, and let β jk be the cosine of the angle between xj and xk, i.e.

〈xj, xk〉 = β jk‖xj‖‖xk‖.
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Then ∥∥∥∑
j

xj

∥∥∥2
= ∑

j,k
〈xj, xk〉 = ∑

j,k
β jk‖xj‖‖xk‖ 6 B ∑

j
‖xj‖2

where B is the l2-operator norm of the matrix (β jk). Since when p = 2, C2
is a Hilbert space with inner product 〈S, T〉 = trace(T∗S), we conclude that
|trace (T∗j Tk)| 6 β jk‖Tj‖2‖Tk‖2 implies∥∥∥∑

j
Tj

∥∥∥
2

6 B1/2 ∑
j
(‖Tj‖2

2)
1/2(1.1)

where B is the l2-operator norm of the matrix (β jk).
Secondly, when p = 1, the formulation of the problem does not admit any

improvement on the trivial triangle inequality bound
∥∥∥∑

j
Tj

∥∥∥
1

6 ∑
j
‖Tj‖1.

Finally, when p = ∞, this problem has already been well studied. Let us
first look at the commutative case. Suppose that f j are functions defined on some
measure space and are such that ‖ f j fk‖∞ 6 γ2

jk sup
m
‖ fm‖2

∞ for some nonnegative

γjk. Then(
∑

j
| f j(x)|

)2
= ∑

j,k
| f j(x) fk(x)| 6 ∑

j,k
| f j(x)|1/2| fk(x)|1/2γjk sup

m
‖ fm‖∞

6 Γ ∑
j
| f j(x)| sup

m
‖ fm‖∞ ,

where Γ is the l2-operator norm of the matrix (γjk). Therefore∥∥∥∑
j

f j

∥∥∥
∞

6 Γ sup
j
‖ f j‖∞.

The fact that this result continues to hold in the non-commutative setting
is the celebrated Cotlar–Stein Lemma whose elegant proof can for example be
found in [3], together with a large collection of applications in harmonic analysis.
Incidentally, in most applications, (γjk) can be taken to have exponential decay
away from the diagonal.

THEOREM 1.1 (Cotlar–Stein Lemma). Suppose Tj ∈ L(H) satisfy

‖T∗j Tk‖L(H) 6 γ2
jk sup

m
‖Tm‖2

L(H)

and
‖TjT∗k ‖L(H) 6 γ2

jk sup
m
‖Tm‖2

L(H)

for certain γjk > 0. If the l2-operator norm of (γjk) (or indeed its spectral radius with
respect to any sequence space) is denoted by Γ and is finite, then ∑

j
Tj converges in the
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strong operator topology and∥∥∥∑
j

Tj

∥∥∥
L(H)

6 Γ sup
j
‖Tj‖L(H).

REMARK 1.2. This result can of course be used to give estimates for the
operator norm of the operator T 7→ ∑

j
AjTBj where Aj, Bj ∈ L(H). It is a matter

of some interest to determine the exact operator norm of this operator in terms of
the data Aj, Bj. See for example [4] and the references therein.

Turning now to other values of p, our main result is as follows:

THEOREM 1.3. Suppose for some p > 2 and some real symmetric matrix (αjk)
with nonnegative entries the operators Tj satisfy

‖T∗j Tk‖p/2 6 α2
jk‖Tj‖p‖Tk‖p

and
‖TjT∗k ‖p/2 6 α2

jk‖Tj‖p‖Tk‖p.

Let A = supj ∑
k

αjk be the Schur norm of the matrix (αjk). Suppose that A < ∞ and

that ∑
j
‖Tj‖

p
p converges. If p is an even integer, then ∑

j
Tj ∈ Cp and

∥∥∥∑
j

Tj

∥∥∥
p

6 A1/p′
(

∑
j
‖Tj‖

p
p

)1/p
.

Note that by Hölder’s inequality we may assume that each αjk 6 1.
We make some remarks concerning the shortcomings of this theorem and

other matters in the final section.

2. PROOF OF THEOREM 1.3

The proof begins in a way reminiscent of that of the Cotlar–Stein Lemma.
The additional ingredient that we employ is multilinear interpolation. In the
proof we may assume that there are only finitely many summands (giving bounds
independent of this number).

Let p = 2k and T = ∑
j

Tj. Then

‖T‖p
p = ‖T∗TT∗T · · · T∗T‖1 6 ∑

j1,...,j2k

‖T∗j1 Tj2 T∗j3 · · · Tj2k‖1

(where there are k copies of T∗T).
Each term in the sum can be estimated via Hölder’s inequality by both

‖T∗j1 Tj2‖p/2 · · · ‖T∗j2k−1
Tj2k‖p/2
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and

‖T∗j1‖p‖Tj2 T∗j3‖p/2 · · · ‖Tj2k−2
T∗j2k−1

‖p/2‖Tj2k‖p.(2.1)

By hypothesis these are dominated respectively by

α2
j1 j2 · · · α

2
j2k−1 j2k

‖Tj1‖p · · · ‖Tj2k‖p and α2
j2 j3 · · · α

2
j2k−2 j2k−1

‖Tj1‖p · · · ‖Tj2k‖p

and hence by their geometric mean

αj1 j2 αj2 j3 · · · αj2k−1 j2k‖Tj1‖p · · · ‖Tj2k‖p.

Therefore

‖T‖p
p 6 ∑ αj1 j2 αj2 j3 · · · αj2k−1 j2k‖Tj1‖p · · · ‖Tj2k‖p.(2.2)

LEMMA 2.1. Let Ω be any measure space and K(x, y) a nonnegative symmetric
integral kernel defined on Ω ×Ω. Suppose κ is the Schur norm of the operator with
kernel K, i.e. κ = sup

x

∫
K(x, y)dy. Let p be an integer greater than 1. Then

∫
Ωp

K(x1, x2)K(x2, x3) · · ·K(xp−1, xp)
p

∏
s=1

Fs(xs)dxs 6 κp−1
p

∏
s=1
‖Fs‖p.

Proof. By symmetry and multilinear interpolation, (see for example [1]), it
is enough to show that the left hand side is dominated for each j by

κp−1‖Fj‖1 ∏
k 6=j
‖Fk‖∞.

To show this, we may assume that Fk ≡ 1 when k 6= j. The left hand side is now∫
K(x1, x2)K(x2, x3) · · ·K(xp−1, xp)Fj(xj)dx1 · · ·dxp.

Integrating in turn with respect to x1, x2, . . . , xj−1 and then xp, xp−1, . . . , xj+1 gives
a factor κ each of p− 1 times; finally integrating with respect to xj gives the re-
sult.

We apply Lemma 2.1 with counting measure on Z, K(xr, xs) = αjr js and
Fs(x) = ‖Tj‖p for all s. Then ‖Fs‖p

p = ∑
j
‖Tj‖

p
p and so (2.2) is dominated by

Ap−1 ∑
j
‖Tj‖

p
p; upon taking p’th roots we obtain what we desire.

3. CONCLUDING REMARKS AND OPEN QUESTIONS

3.1. The most striking deficiency of Theorem 1.3 is that it is only proved for even
integers p. In the commutative case, the proof given works for all integers p
because we do not then need the preliminary step ‖T‖p = ‖T∗T‖p/2. But even in
this case we do not know whether the theorem holds for other values of p > 2.
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3.2. Is it possible to formulate a meaningful question or result in the case 1 <
p < 2?

3.3. The statement of Theorem 1.3 does not formally recover the Cotlar–Stein
Lemma in the limiting case p = ∞. At the other endpoint p = 2, estimate (2.1) is
inefficient, and so neither does the statement of the theorem recover the discus-
sion of the case p = 2 (see (1.1)) from the Introduction.

In fact, the Cotlar–Stein Lemma and the discussion of the case p = 2 (see
(1.1)) actually suggest (via naïve “interpolation”) that an alternative result may
be possible. Under the hypotheses of Theorem 1.3, let Ap be the l2-operator norm

of (α
p′

jk ). Do we have ∥∥∥∑
j

Tj

∥∥∥
p

6 A1/p′
p

(
∑

j
‖Tj‖

p
p

)1/p
?(3.1)

(Note that Ap 6 A since the Schur norm is dominated by the l2-operator norm
and since we may assume via Hölder’s inequality that each αjk 6 1.) We do
not know, even in the commutative case, whether (3.1) holds, even when p is

an integer. As an easier question, what about (3.1) with the Schur norm of (α
p′

jk )
replacing the operator norm?

3.4. Applying the commutative version of Theorem 1.3 in the situation when
there are only two summands we obtain an Lp inequality: if f , g ∈ Lp and p ∈ N,
p > 2, then

‖ f + g‖p 6
[
1 +

{ ‖ f g‖p/2

‖ f ‖p‖g‖p

}1/2]
(‖ f ‖p

p + ‖g‖p
p)1/p.(3.2)

(The Schur and the operator norms of the 2× 2 symmetric matrix with 1’s on the
diagonal and α off-diagonal are both 1 + α.) However this is not in general best
possible in terms of the exponents of the curly and square brackets. For example,
if (3.1) held, we would be able to improve (3.2) to

‖ f + g‖p 6
[
1 +

{ ‖ f g‖p/2

‖ f ‖p‖g‖p

}p′/2]1/p′
(‖ f ‖p

p + ‖g‖p
p)1/p.

Even this is may not be best possible. When p = ∞ we have

‖ f + g‖∞ 6
[
1 +

‖ f g‖∞

max{‖ f ‖∞, ‖g‖∞}2

]
max{‖ f ‖∞, ‖g‖∞},(3.3)

(since a 6 A, b 6 B 6 A, ab 6 λ implies a + b 6 A + λ/A). Naïve “interpola-
tion” of (3.3) with (1.1) suggests that the inequality

‖ f + g‖p 6
[
1 +

{ ‖ f g‖p/2

‖ f ‖p‖g‖p

}]1/p′
(‖ f ‖p

p + ‖g‖p
p)1/p(3.4)

might hold for 2 6 p 6 ∞.
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PROPOSITION 3.1. If f and g are characteristic functions of sets and p > 2, then
(3.4) does indeed hold.

Proof. We see quickly that it suffices to prove the inequality

a + b + (2p − 2)c 6
[
1 +

c2/p

a1/pb1/p

]p−1
(a + b)

for 0 6 c 6 a, b. Fix λ and c and consider a, b with a + b = 2λ and λ > c. Then the
worst case is when a and b are both equal to λ, and we are reduced to showing
1 + (2p−1− 1)s 6 [1 + s2/p]p−1 for 0 6 s 6 1. This in turn follows from concavity
of s 7→ [1 + s2/p]p−1 on 0 6 s 6 1 when p > 2.

The power 1/p′ occurring in (3.4) is optimal (consider f = g) but we do not
know whether the power 1 of {‖ f g‖p/2/(‖ f ‖p‖g‖p)} is optimal. Indeed, for the
function s 7→ [1 + sγ]p−1 to be concave on [0, 1] we need that γ 6 2/p, but in
general 1 + (2p−1 − 1)s 6 [1 + sγ]p−1 for 0 6 s 6 1 holds for some γ > 2/p. For
example if p = 3 then it holds for all γ 6 3/4.

3.5. The previous remark, in particular (3.3), suggests that when p = ∞, it might
be the case that ∥∥∥∑

j
f j

∥∥∥
∞

6
(

sup
j

∑
k

α2
jk

)
sup

j
‖ f j‖∞

where ‖ f j fk‖∞ 6 α2
jk‖ f j‖∞‖ fk‖∞. If so, naïve “interpolation” with∥∥∥∑

j
f j

∥∥∥
2

6
(

sup
j

∑
k

α2
jk

)1/2
∑

j
‖ f j‖2

2

where ‖ f j fk‖1 6 α2
jk‖ f j‖2‖ fk‖2 (which follows from (1.1)) would suggest that for

p > 2 ∥∥∥∑
j

f j

∥∥∥
p

6
(

sup
j

∑
k

α2
jk

)1/p′

∑
j
‖ f j‖

p
p

where ‖ f j fk‖p/2 6 α2
jk‖ f j‖p‖ fk‖p. Again, this is open.

3.6. We state a combinatorial corollary which is obtained by applying Cheby-
shev’s inequality to the commutative version of Theorem 1.3 with f j = χEj :

COROLLARY 3.2. Suppose Ej are finite subsets of a set A and that

#(Ej ∩ Ek) 6 β jk{#Ej#Ek}1/2.

Then if p ∈ N,

#{a ∈ A : a is in at least M Ej’s} 6 Ap−1 ∑j #Ej

Mp

where A = supj ∑
k

β
1/p
jk .
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