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ABSTRACT. Let A be a finite subdiagonal algebra in Arveson’s sense. Let
Hp(A) be the associated noncommutative Hardy spaces, 0 < p 6 ∞. We ex-
tend to the case of all positive indices most recent results about these spaces,
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One new tool of the paper is the contractivity of the underlying conditional
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1. INTRODUCTION

This paper deals with the Riesz and Szegö type factorizations for noncom-
mutative Hardy spaces associated with a finite subdiagonal algebra in Arveson’s
sense [1]. Let M be a finite von Neumann algebra equipped with a normal faithful
tracial state τ. Let D be a von Neumann subalgebra of M, and let Φ : M → D be
the unique normal faithful conditional expectation such that τ ◦ Φ = τ. A finite
subdiagonal algebra of M with respect to Φ (or D) is a w*-closed subalgebra A of M
satisfying the following conditions:

(i) A + A∗ is w*-dense in M;
(ii) Φ is multiplicative on A, i.e., Φ(ab) = Φ(a)Φ(b) for all a, b ∈ A;

(iii) A∩ A∗ = D.

We should call the reader’s attention to the fact that A∗ denotes in this paper
the family of the adjoints of the elements of A, i.e., A∗ = {a∗ : a ∈ A}. The algebra
D is called the diagonal of A. It is proved by Exel [6] that a finite subdiagonal
algebra A is automatically maximal in the sense that if B is another subdiagonal
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algebra with respect to Φ containing A, then B = A. This maximality yields the
following useful characterization of A, where A0 = A∩ ker Φ (see [1]):

(1.1) A = {x ∈ M : τ(xa) = 0, ∀ a ∈ A0}.

Given 0 < p 6 ∞ we denote by Lp(M) the usual noncommutative Lp-
space associated with (M, τ). Recall that L∞(M) = M, equipped with the operator
norm. The norm of Lp(M) will be denoted by ‖ · ‖p. For p < ∞ we define Hp(A)
to be the closure of A in Lp(M), and for p = ∞ we simply set H∞(A) = A for
convenience. These are the so-called Hardy spaces associated with A. They are
noncommutative extensions of the classical Hardy spaces on the torus T. On the
other hand, the theory of matrix-valued analytic functions provides an important
noncommutative example. We refer to [1] and [14] for more examples. We will
use the following standard notation in the theory: If S is a subset of Lp(M), [S]p
will denote the closure of S in Lp(M) (with respect to the w*-topology in the
case of p = ∞). Thus Hp(A) = [A]p. Formula (1.1) admits the following Hp(A)
analogue proved by Saito [15]:

(1.2) Hp(A) = {x ∈ Lp(M) : τ(xa) = 0, ∀ a ∈ A0}, 1 6 p < ∞.

Moreover,

(1.3) Hp(A) ∩ Lq(M) = Hq(A), 1 6 p < q 6 ∞.

These noncommutative Hardy spaces have received a lot of attention since
Arveson’s pioneer work. We refer the reader notably to the recent work by Mar-
salli/West [13] and a series of newly finished papers by Blecher/Labuschagne
[2], [3], [4], whereas more references on previous works can be found in the sur-
vey paper [14]. Most results on the classical Hardy spaces on the torus have been
established in this noncommutative setting. Here we mention only two of them
directly related with the objective of this paper. The first one is the Szegö fac-
torization theorem. Already in the fundamental work [1], Arveson proved the
following factorization theorem: For any invertible x ∈ M there exist a unitary
u ∈ M and a ∈ A such that x = ua and a−1 ∈ A. This theorem is a base of all sub-
sequent works on noncommutative Hardy spaces. It has been largely improved
and extended. The most general form up to date was newly obtained by Blecher
and Labuschagne [2]: Given x ∈ Lp(M) with 1 6 p 6 ∞ such that ∆(x) > 0
there exists h ∈ Hp(A) such that |x| = |h|. Moreover, h is outer in the sense that
[hA]p = Hp(A). Here ∆(x) denotes the Fuglede–Kadison determinant of x (see
section 2 below for the definition), and |x| = (x∗x)1/2 denotes the absolute value
of x. We should emphasize that this result is the (almost) perfect analogue of the
classical Szegö theorem which asserts that given a positive measurable function
w on the torus there exists an outer function ϕ such that w = |ϕ| if and only if
log w is integrable.

The second result we wish to mention concerns the Riesz factorization, whi-
ch asserts that Hp(A) = Hq(A) · Hr(A) for any 1 6 p, q, r 6 ∞ such that 1/p =
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1/q + 1/r. More precisely, given x ∈ Hp(A) and ε > 0 there exist y ∈ Hq(A) and
z ∈ Hr(A) such that

x = yz and ‖y‖q ‖z‖r 6 ‖x‖p + ε.

This result is proved in [15] for p = q = 2, in [13] for r = 1 and independently in
[11] and in [14] for the general case as above.

Recall that in the case of the classical Hardy spaces the preceding theorems
hold for all positive indices. The problem of extending these results to the case
of indices less than one was left unsolved in these works. (We mentioned this
problem for the Riesz factorization explicitly in [14], see the remark following
Theorem 8.3 there). The main purpose of the present paper is to solve the problem
above. As a byproduct, we also extend all results on outer operators in [2] to
indices less than one.

A major obstacle to the solution of the previous problem is the use of du-
ality, often in a crucial way, in the literature on noncommutative Hardy spaces.
For instance, duality plays an important role in proving formulas (1.2) and (1.3),
which are key ingredients for the Riesz factorization in [13]. In a similar fashion,
we will see that their extensions to indices less than one will be essential for our
proof of the Riesz factorization for all positive indices.

Our key new tool is the contractivity of the conditional expectation Φ on A
with respect to ‖ · ‖p for 0 < p < 1. Consequently, Φ extends to a contractive
projection from Hp(A) onto Lp(D). This result is of independent interest and
proved in Section 2.

Section 3 is devoted to the Szegö and Riesz type factorizations. In particular,
we extend to all positive indices Marsalli/West’s theorem quoted previously. Sec-
tion 4 contains some results on outer operators, notably those in Hp(A) for p < 1.
This section can be considered as a complement to the recent work [2]. The last
section is devoted to a noncommutative Szegö formula, which was obtained in
[2] with the additional assumption that dim D < ∞.

We will keep all previous notations throughout the paper. In particular, A
will always denote a finite subdiagonal algebra of (M, τ) with diagonal D.

2. CONTRACTIVITY OF Φ ON Hp(A) FOR p < 1

It is well-known that Φ extends to a contractive projection from Lp(M) onto
Lp(D) for every 1 6 p 6 ∞. In general, Φ cannot be, of course, continuously ex-
tended to Lp(M) for p < 1. Surprisingly, Φ does extend to a contractive projection
on Hp(A).

THEOREM 2.1. Let 0 < p < 1. Then

(2.1) ∀ a ∈ A ‖Φ(a)‖p 6 ‖a‖p .
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Consequently, Φ extends to a contractive projection from Hp(A) onto Lp(D). The exten-
sion will be denoted still by Φ.

Inequality (2.1) is proved by Labuschagne [12] for p = 2−n and for opera-
tors a in A which are invertible with inverses in A too. Labuschagne’s proof is a
very elegant and simple argument by induction. It can be adapted to our general
situation.

Proof. Since {k2−n : k, n ∈ N, k > 1} is dense in (0, 1), it suffices to prove
(2.1) for p = k2−n. Thus we must show

(2.2) ∀ a ∈ A τ(|Φ(a)|k2−n
) 6 τ(|a|k2−n

).

This inequality holds for n = 0 because of the contractivity of Φ on Lk(M). Now
suppose its validity for some k and n. We will prove the same inequality with
n + 1 instead of n. To this end fix a ∈ A and ε > 0. Define, by induction, a
sequence (xm) by

x1 = (|a|+ ε)k2−n
and xm+1 =

1
2

[xm + (|a|+ ε)k2−n
x−1

m ].

Observe that all xm belong to the commutative C∗-subalgebra generated by |a|.
Then it is an easy exercise to show that the sequence (xm) is nonincreasing and
converges to (|a|+ ε)k2−n−1

uniformly (see [12]). We also have

τ(xm+1) =
1
2

[τ(xm) + τ(x−1/2
m (|a|+ ε)k2−n

x−1/2
m )]

>
1
2

[τ(xm) + τ(x−1/2
m |a|k2−n

x−1/2
m )] =

1
2

[τ(xm) + τ(|a|k2−n
x−1

m )].

Now applying Arveson’s factorization theorem to each xm, we find an invertible
bm ∈ A with b−1

m ∈ A such that

|bm| = x2n/k
m .

Let p = k2−n. Then

‖ab−1
m ‖p = ‖|a| b−1

m ‖p = ‖|a| |(b−1
m )∗|‖p

= ‖|a| |bm|−1‖p = (τ(|a|p|bm|−p))1/p = (τ(|a|p x−1
m ))1/p ,

where we have used the commutation between |a| and |bm| for the next to the
last equality. Therefore, by the induction hypothesis and the multiplicativity of Φ
on A

τ(xm+1) >
1
2
[τ(|bm|k2−n

) + τ(|ab−1
m |k2−n

)]

>
1
2
[τ(|Φ(bm)|k2−n

) + τ(|Φ(a)Φ(bm)−1|k2−n
)].

However, by the Hölder inequality

(τ(|Φ(a)|k2−n−1
))2 6 τ(|Φ(a)Φ(bm)−1|k2−n

) τ(|Φ(bm)|k2−n
).
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It thus follows that

τ(xm+1) >
1
2
[τ(|Φ(bm)|k2−n

) + (τ(|Φ(a)|k2−n−1
))2(τ(|Φ(bm)|k2−n

))−1]

> τ(|Φ(a)|k2−n−1
).

Recalling that xm → (|a|+ ε)k2−n−1
as m→ ∞, we deduce

τ((|a|+ ε)k2−n−1
) > τ(|Φ(a)|k2−n−1

).

Letting ε→ 0 we obtain inequality (2.2) at the (n + 1)-th step.

COROLLARY 2.2. Φ is multiplicative on Hardy spaces. More precisely, Φ(ab) =
Φ(a)Φ(b) for a ∈ Hp(A) and b ∈ Hq(A) with 0 < p, q 6 ∞.

Proof. Note that ab ∈ Hr(A) for any a ∈ Hp(A) and b ∈ Hq(A), where r is
determined by 1/r = 1/p + 1/q. Thus Φ(ab) is well defined. Then the corollary
follows immediately from the multiplicativity of Φ on A and Theorem 2.1.

The following is the extension to the case p < 1 of Arveson–Labuschagne’s
Jensen inequality (cf. [1], [12]). Recall that the Fuglede–Kadison determinant ∆(x)
of an operator x ∈ Lp(M) (0 < p 6 ∞) can be defined by

∆(x) = exp(τ(log |x|)) = exp
( ∞∫

0

log t dν|x|(t)
)

,

where dν|x| denotes the probability measure on R+ which is obtained by com-
posing the spectral measure of |x| with the trace τ. It is easy to check that

∆(x) = lim
p→0
‖x‖p .

As the usual determinant of matrices, ∆ is also multiplicative: ∆(xy) = ∆(x)∆(x).
We refer the reader for information on determinant to [7], [1] in the case of
bounded operators, and to [5], [9] for unbounded operators.

COROLLARY 2.3. For any 0 < p 6 ∞ and x ∈ Hp(A) we have ∆(Φ(x)) 6
∆(x).

Proof. Let x ∈ Hp(A). Then x ∈ Hq(A) too for q 6 p. Thus by Theorem 2.1

‖Φ(x)‖q 6 ‖x‖q .

Letting q→ 0 yields ∆(Φ(x)) 6 ∆(x).
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3. SZEGÖ AND RIESZ FACTORIZATIONS

The following result is a Szegö type factorization theorem. It is stated in [14]
without proof (see the remark following Theorem 8.1 there). We take this oppor-
tunity to provide a proof. It is an improvement of the previous factorization theo-
rems of Arveson [1] and Saito [15]. As already quoted in the introduction, Blecher
and Labuschagne newly obtained a Szegö factorization for any w ∈ Lp(M) with
1 6 p 6 ∞ such that ∆(w) > 0 (see the next section for more details). Note that
the property that h−1 ∈ Hq(A) whenever w−1 ∈ Lq(M) will be important for our
proof of the Riesz factorization below. Let us also point out that although not in
full generality, this result has hitherto been strong enough for applications in the
literature. See Theorem 4.8 below for an improvement.

THEOREM 3.1. Let 0 < p, q 6 ∞. Let w ∈ Lp(M) be an invertible operator such
that w−1 ∈ Lq(M). Then there exist a unitary u ∈ M and h ∈ Hp(A) such that w = uh
and h−1 ∈ Hq(A).

Proof. We first consider the case p = q = 2. The proof of this special case is
modelled on Arveson’s original proof of his Szegö factorization theorem (see also
[15]). Let x be the orthogonal projection of w in [wA0]2, and set y = w− x. Thus
y ⊥ [wA0]2; whence y ⊥ [yA0]2. It follows that

∀ a ∈ A0 τ(y∗ya) = 0.

Hence by (1.2), y∗y ∈ H1(A) = [A]1, and y∗y ∈ [A∗]1 too. On the other hand, it is
easy to see that [A]1 ∩ [A∗]1 = L1(D). Indeed, if a ∈ [A]1 ∩ [A∗]1, then τ(ab) = 0
for any b ∈ A0 + A∗0 ; so τ(ab) = τ(Φ(a)b) for any b ∈ A + A∗. It follows that
a = Φ(a) ∈ L1(D). Consequently, y∗y ∈ L1(D), so |y| ∈ L2(D).

Regarding M as a von Neumann algebra acting on L2(M) by left multipli-
cation, we claim that y is cyclic for M. This is equivalent to showing that y is
separating for the commutant of M. However, this commutant coincides with the
algebra of all right multiplications on L2(M) by the elements of M. Thus we are
reduced to prove that if z ∈ M is such that yz = 0, then z = 0. We have:

0 = τ(z∗y∗yz) = τ(|y|2 |z∗|2) = τ(|y|2 Φ(|z∗|2)) = ‖yd‖2
2 ,

where d = Φ(|z∗|2)1/2 ∈ D; whence yd = 0. Choose a sequence (an) ⊂ A0 such
that

(3.1) x = lim wan.

Then (recalling that w−1 ∈ L2(M))

0 = τ(w−1yd) = lim
n

τ(w−1(w− wan)d) = τ(d)− lim
n

τ(and) = τ(d).

It follows that d = 0, so by virtue of the faithfulness of Φ, z = 0 too. This yields
our claim. Therefore, [My]2 = L2(M). It turns out that the right support of y is
1. Since M is finite, the left support of y is also equal to 1, so y is of full support.
Consequently, [yM]2 = L2(M) too.
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Let y = u|y| be the polar decomposition of y. Then u is a unitary in M. Let
h = u∗w. We are going to prove that h ∈ H2(A). To this end we first note the
following orthogonal decomposition of L2(M):

(3.2) L2(M) = [yA0]2 ⊕ [yD]2 ⊕ [yA∗0 ]2 .

Indeed, for any a ∈ A and b ∈ A0 we have

〈ya, yb∗〉 = τ(by∗ya) = τ(|y|2ab) = 0;

so [yA0]2 ⊕ [yD]2 ⊕ [yA∗0 ]2 is really an orthogonal sum. On the other hand, by the
previous paragraph, we see that

L2(M) = [yM]2 ⊂ [yA0]2 ⊕ [yD]2 ⊕ [yA∗0 ]2 .

Therefore, decomposition (3.2) follows. Applying u∗ to both sides of (3.2), we
deduce

L2(M) = [u∗yA0]2 ⊕ [u∗yD]2 ⊕ [u∗yA∗0 ]2 = [|y|A0]2 ⊕ [|y|D]2 ⊕ [|y|A∗0 ]2 .

Since |y| ∈ L2(D), [|y|A0]2 ⊂ [A0]2, and similarly for the two other terms on the
right. Therefore,

L2(M) = [|y|A0]2 ⊕ [|y|D]2 ⊕ [|y|A∗0 ]2 ⊂ [A0]2 ⊕ [D]2 ⊕ [A∗0 ]2 = L2(M) .

Hence

(3.3) [|y|A0]2 = [A0]2, [|y|D]2 = [D]2, [|y|A∗0 ]2 = [A∗0 ]2 .

Passing to adjoints, we also have

[A0|y|]2 = [A0]2, [D|y|]2 = [D]2, [A∗0 |y|]2 = [A∗0 ]2 .

Now it is easy to show that h = u∗w ∈ H2(A). Indeed, since y ⊥ [wA0],
τ(y∗wa) = 0 for all a ∈ A0; so τ(a|y|u∗w) = 0. However, [A0|y|]2 = [A0]2.
Thus

∀ a ∈ H2
0(A) τ(ah) = 0.

Hence by (1.2), h ∈ H2(A), as desired.
It remains to show that h−1 ∈ H2(A). To this end we first observe that

Φ(h)Φ(h−1) = 1. Indeed, given d ∈ D we have, by (3.1)

τ(Φ(h)Φ(h−1)|y|d) = τ(h−1|y|dΦ(h)) = τ(w−1u|y|dΦ(h))

= lim
n

τ(w−1(w− wan)dΦ(h)) = τ(dΦ(h))

= τ(hd) = τ(u∗wd) = τ(u∗yd) = τ(|y|d),

where we have used the fact that

τ(u∗xd) = lim
n

τ(u∗wand) = lim
n

τ(hand) = 0.

Since [|y|D]2 = L2(D), we deduce our observation. Therefore, Φ(h) is invertible
and its inverse is Φ(h−1). On the other hand, by (3.1)

Φ(h) = lim
n

Φ(u∗(y + wan)) = Φ(|y|) + lim
n

Φ(han) = u∗y.
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Hence,
u = yΦ(h)−1 = yΦ(h−1).

Now let a ∈ A0. Then

τ(h−1a) = τ(w−1ua) = τ(w−1yΦ(h−1)a) = lim
n

τ(w−1(w− wan)Φ(h−1)a) = 0.

It follows that h−1 ∈ H2(A). Therefore, we are done in the case p = q = 2.
The general case can be easily reduced to this special one. Indeed, if p > 2

and q > 2, then given w ∈ Lp(M) with w−1 ∈ Lq(M), we can apply the preceding
part and then find a unitary u ∈ M and h ∈ H2(A) such that w = uh and h−1 ∈
H2(A). Then h = u∗w ∈ Lp(M), so w ∈ H2(A) ∩ Lp(M) = Hp(A) by (1.3).
Similarly, h−1 ∈ Hq(A).

Suppose min(p, q) < 2. Choose an integer n such that min(np, nq) > 2.
Let w = v|w| be the polar decomposition of w. Note that v ∈ M is a unitary. Write

w = v|w|1/n |w|1/n · · · |w|1/n = w1w2 · · ·wn,

where w1 = v|w|1/n and wk = |w|1/n for 2 6 k 6 n. Since wk ∈ Lnp(M) and
w−1

k ∈ Lnq(M), by what is already proved we have a factorization

wn = unhn

with un ∈ M a unitary, hn ∈ Hnp(A) such that h−1
n ∈ Hnq(A). Repeating this

argument, we again get a same factorization for wn−1un:

wn−1un = un−1hn−1 ;

and then for wn−2un−1, and so on. In this way, we obtain a factorization:

w = uh1 · · · hn,

where u ∈ M is a unitary, hk ∈ Hnp(A) such that h−1
k ∈ Hnq(A). Setting h =

h1 · · · hn, we then see that w = uh is the desired factorization. Hence the proof
of the theorem is complete.

REMARK 3.2. Let w ∈ L2(M) be an invertible operator such that w−1 ∈
L2(M). Let w = uh be the factorization in Theorem 3.1. The preceding proof
shows that [hA]2 = H2(A). Indeed, it is clear that [yA]2 ⊂ [wA]2. Using decom-
position (3.2), we get

[wA]2 	 [yA]2 = [wA]2 ∩ [yA∗0 ]2 .

Now for any a ∈ A and b ∈ A0,

〈wa, yb∗〉 = τ(y∗wab) = 0

since y ⊥ [wA0]. It then follows that [wA]2 	 [yA]2 = {0}, so [wA]2 = [yA]2.
Hence, by (3.3)

[hA]2 = [u∗wA]2 = [u∗yA]2 = [|y|A]2 = H2(A).

We turn to the Riesz factorization. We first need to extend (1.3) to all indices.
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PROPOSITION 3.3. Let 0 < p < q 6 ∞. Then we have the following, where
Hp

0 (A) = [A0]p:

Hp(A) ∩ Lq(M) = Hq(A) and Hp
0 (A) ∩ Lq(M) = Hq

0(A).

Proof. It is obvious that Hq(A) ⊂ Hp(A) ∩ Lq(M). To prove the converse
inclusion, we first consider the case q = ∞. Thus let x ∈ Hp(A) ∩M. Then by
Corollary 2.2,

∀ a ∈ A0 Φ(xa) = Φ(x)Φ(a) = 0.

Hence by (1.1), x ∈ A.
Now consider the general case. Fix an x ∈ Hp(A) ∩ Lq(M). Applying Theo-

rem 3.1 to w = (x∗x + 1)1/2, we get an invertible h ∈ Hq(A) such that

h∗h = x∗x + 1 and h−1 ∈ A.

Since h∗h 6 x∗x, there exists a contraction v ∈ M such that x = vh. Then v =
xh−1 ∈ Hp(A) ∩M, so v ∈ A. Consequently, x ∈ A · Hq(A) = Hq(A). Thus
we proved the first equality. The second is then an easy consequence. For this it
suffices to note that Hp

0 (A) = {x ∈ Hp(A) : Φ(x) = 0}. The later equality follows
from the continuity of Φ on Hp(A).

THEOREM 3.4. Let 0 < p, q, r 6 ∞ such that 1/p = 1/q + 1/r. Then for
x ∈ Hp(A) and ε > 0 there exist y ∈ Hq(A) and z ∈ Hr(A) such that

x = yz and ‖y‖q ‖z‖r 6 ‖x‖p + ε.

Consequently,

‖x‖p = inf{‖y‖q ‖z‖r : x = yz, y ∈ Hq(A), z ∈ Hr(A)}.
Proof. The case where max(q, r) = ∞ is trivial. Thus we assume both q

and r to be finite. Let w = (x∗x + ε)1/2. Then w ∈ Lp(M) and w−1 ∈ M. Let
v ∈ M be a contraction such that x = vw. Now applying Theorem 3.1 to wp/r,
we have: wp/r = uz, where u is a unitary in M and z ∈ Hr(A) such that z−1 ∈ A.
Set y = vwp/q u. Then x = yz, so y = xz−1. Since x ∈ Hp(A) and z−1 ∈ A,
y ∈ Hp(A). On the other hand, y belongs to Lq(M) too. Therefore, y ∈ Hq(A) by
virtue of Proposition 3.3. The norm estimate is clear.

REMARK 3.5. It is unknown at the time of this writing whether the infimum
in Theorem 3.4 is attained. We will see in Section 4 that the answer is affirmative
if additionally ∆(x) > 0.

4. OUTER OPERATORS

We consider in this section outer operators. All results below on the left
and right outers are due to Blecher and Labuschagne [2] in the case of indices not
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less than one. The notion of bilaterally outer is new. We start with the following
result.

PROPOSITION 4.1. Let 0 < p < q 6 ∞ and let h ∈ Hq(A). Then:
(i) [hA]p = Hp(A) if and only if [hA]q = Hq(A);

(ii) [Ah]p = Hp(A) if and only if [Ah]q = Hq(A);
(iii) [AhA]p = Hp(A) if and only if [AhA]q = Hq(A).

Proof. We prove only the third equivalence. The proofs of the two others are
similar (and even simpler). It is clear that [AhA]q = Hq(A) ⇒ [AhA]p = Hp(A).
To prove the converse implication we first consider the case q > 1. Let q′ be the
conjugate index of q. Let x ∈ Lq′(M) be such that

∀ a, b ∈ A τ(xahb) = 0.

Then xah ∈ H1
0(A) for any a ∈ A by virtue of (1.2) (more rigorously, its Hp

0 -
analogue as in Proposition 3.3). On the other hand, by the assumption that
[AhA]p = Hp(A), there exist two sequences (an), (bn) ⊂ A such that

lim
n

anhbn = 1 in Hp(A).

Consequently,
lim

n
xanhbn = x in Lr(M),

where 1/r = 1/q′+ 1/p. Since xanhbn = (xanh)bn ∈ H1
0(A) ⊂ Hr

0(A), we deduce

that x ∈ Hr
0(A). Therefore, x ∈ Hr

0(A)∩ Lq′(M), so by Proposition 3.3, x ∈ Hq′
0 (A).

Hence, τ(xy) = 0 for all y ∈ Hq(A). Thus [AhA]q = Hq(A).
Now assume q < 1. Choose an integer n such that np > 2. By the proof of

Theorem 3.4 and Remark 3.2, we deduce a factorization:

h = h1 h2 · · · hn ,

where hk ∈ Hnp(A) for every 1 6 k 6 n and [hkA]2 = H2(A) for 2 6 k 6 n. By
the left version (i.e., part (i)) of the previous case already proved, we also have
[hkA]np = Hnp(A) and [hkA]nq = Hnq(A) for 2 6 k 6 n. Let us deal with the first
factor h1. Using [AhA]p = Hp(A) and [hkA]np = Hnp(A) for 2 6 k 6 n, we see
that [Ah1A]p = Hp(A); so again [Ah1A]nq = Hnq(A) by virtue of the first part. It
is then clear that [AhA]q = Hq(A).

The previous result justifies the relative independence of the index p in the
following definition.

DEFINITION 4.2. Let 0 < p 6 ∞. An operator h ∈ Hp(A) is called left
outer, right outer or bilaterally outer according to [hA]p = Hp(A), [Ah]p = Hp(A) or
[AhA]p = Hp(A).

REMARK 4.3. It is easy to see that if h is left outer or right outer, h is of
full support (i.e., h is injective and of dense range). There exist, however, bilat-
erally outer operators which are not of full support. For example, consider the
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case where A = M = Mn, the full algebra of n× n complex matrices, equipped
with the normalized trace. Then every eij is bilaterally outer, where the eij are
the canonical matrix units of Mn. A less trivial case is the following. Let T be
the unit circle equipped with normalized Haar measure. Let M = L∞(T)⊗Mn =
L∞(T; Mn), and let A = H∞(T; Mn), the algebra of Mn-valued bounded analytic
functions in the unit disc of the complex plane. Let ϕ ∈ Hp(T) be an outer func-
tion. Then h = ϕ⊗ eij is bilaterally outer with respect to A.

THEOREM 4.4. Let 0 < p 6 ∞ and h ∈ Hp(A).
(i) If h is left or right outer, then ∆(h) = ∆(Φ(h)). Conversely, if ∆(h) = ∆(Φ(h))

and ∆(h) > 0, then h is left and right outer (so bilaterally outer too).
(ii) If A is antisymmetric (i.e., dim D = 1) and h is bilaterally outer, then ∆(h) =

∆(Φ(h)).

Proof. (i) This part is proved in [2] for p > 1. Assume h is left outer. Let
d ∈ D. Using Theorem 2.1, we obtain

‖Φ(h)d‖p = inf{‖hd + x0‖p : x ∈ Hp
0 (A)}.

On the other hand, [hA0]p = [[hA]pA0]p = [[A]pA0]p = [A0]p = Hp
0 (A). Therefore,

‖Φ(h)d‖p = inf{‖h(d + a0)‖p : a0 ∈ A0}.

Recall the following characterization of ∆(x) from [2]:

(4.1) ∆(x) = inf{‖xa‖p : a ∈ A, ∆(Φ(a)) > 1}.

Now using this formula twice, we obtain

∆(Φ(h)) = inf{‖Φ(h)d‖p : d ∈ D, ∆(d) > 1}
= inf{‖h(d + a0)‖p : d ∈ D, ∆(d) > 1, a0 ∈ A0} = ∆(h).

Let us show the converse under the additional assumption that ∆(h) > 0.
We will use the case p > 1 already proved in [2]. Thus assume p < 1. Choose
an integer n such that np > 1. By Theorem 3.4, there exist h1, . . . , hn ∈ Hnp(A)
such that h = h1, . . . , hn. Then ∆(h) = ∆(h1) · · · ∆(hn); so ∆(hk) > 0 for all
1 6 k 6 n. On the other hand, by Arveson–Labuschagne’s Jensen inequality [1],
[12] (or Corollary 2.3), ∆(Φ(hk)) 6 ∆(hk). However,

∆(Φ(h)) = ∆(Φ(h1)) · · · ∆(Φ(hn)) 6 ∆(h1) · · · ∆(hn) = ∆(h) = ∆(Φ(h)).

It then follows that ∆(Φ(hk)) = ∆(hk) for all k. Now hk ∈ Hnp(A) with np > 1, so
hk is left and right outer. Consequently, h is left and right outer.

(ii) This proof is similar to that of the first part of (i). We will use the follow-
ing variant of (4.1)

(4.2) ∆(x) = inf{‖axb‖p : a, b ∈ A, ∆(Φ(a)) > 1, ∆(Φ(b)) > 1}
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for every x ∈ Lp(M). This formula immediately follows from (4.1). Indeed, by
(4.1) and the multiplicativity of ∆

inf{‖axb‖p : a, b ∈ A, ∆(Φ(a)) > 1, ∆(Φ(b)) > 1}
= inf{∆(ax) : a∈A, ∆(Φ(a))>1}= inf{∆(a)∆(x) : a∈A, ∆(Φ(a))>1}=∆(x).

Now assume h ∈ Hp(A) is bilaterally outer and A is antisymmetric. Then Φ(h) is
a multiple of the unit of M. As in the proof of (i), we have

‖Φ(h)‖p = inf{‖h + x‖p : x ∈ Hp
0 (A)}(4.3)

= inf{‖h + ahb0‖p : a ∈ A, b0 ∈ A0}.

Using dim D = 1, we easily check that

(4.4) inf{‖h+ahb0‖p : a ∈ A, b0 ∈ A0}= inf{‖(1+a0)h(1+b0)‖p : a0, b0 ∈ A0}.

Indeed, it suffices to show that both sets {h + ahb0 : a ∈ A, b0 ∈ A0} and {(1 +
a0)h(1 + b0) : a0, b0 ∈ A0} are dense in {x ∈ Hp(A) : Φ(x) = Φ(h)}. The first
density immediately follows from the density of AhA0 in Hp

0 (A). On the other
hand, let x ∈ Hp(A) with Φ(x) = Φ(h) and let an, bn ∈ A such that lim

n
anhbn = x.

By Theorem 2.1,
lim

n
Φ(an)Φ(h)Φ(bn) = Φ(x).

Since Φ(x) = τ(x)1 = τ(h)1 = Φ(h) 6= 0, we deduce that lim
n

τ(an)τ(bn) = 1.

Thus replacing an and bn by an/τ(an) and bn/τ(bn), respectively, we can assume
that an = 1 + ãn and bn = 1 + b̃n with ãn, b̃n ∈ A0; whence the desired density
of {(1 + a0)h(1 + b0) : a0, b0 ∈ A0} in {x ∈ Hp(A) : Φ(x) = Φ(h)}. Finally,
combining (4.2), (4.3) and (4.4), we get ∆(Φ(h)) = ∆(h).

REMARK 4.5. The assumption that A is antisymmetric in Theorem 4.4(ii)
cannot be removed in general, as shown by the following example. Keep the
notation introduced in Remark 4.3 and consider the case where M = L∞(T; M2)
and A = H∞(T; M2). Let ϕ1 and ϕ2 be two outer functions in Hp(T), and let
h = ϕ1 ⊗ e11 + zϕ2 ⊗ e22, where z denotes the identity function on T. Then it is
easy to check that h is bilaterally outer and

∆(h) = exp
(1

2

∫
T

log |ϕ1|+
1
2

∫
T

log |ϕ2|
)

> 0.

However, Φ(h) = ϕ1(0)e11, so ∆(Φ(h)) = 0.

The following is an immediate consequence of Theorem 4.4. We do not
know, however, whether the condition ∆(h) > 0 in (i) can be removed or not.

COROLLARY 4.6. Let h ∈ Hp(A), 0 < p 6 ∞.
(i) If ∆(h) > 0, then h is left outer if and only if h is right outer.

(ii) Assume that A is antisymmetric. Then the following properties are equivalent:
(a) h is left outer;
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(b) h is right outer;
(c) h is bilaterally outer;
(d) ∆(Φ(h)) = ∆(h) > 0.

We will say that h is outer if it is at the same time left and right outer. Thus
if h ∈ Hp(A) with ∆(h) > 0, then h is outer if and only if ∆(h) = ∆(Φ(h)). Also
in the case where A is antisymmetric, an h with ∆(h) > 0 is outer if and only if it
is left, right or bilaterally outer.

COROLLARY 4.7. Let h ∈ Hp(A) such that h−1 ∈ Hq(A) with 0 < p, q 6 ∞.
Then h is outer.

Proof. By the multiplicativity of ∆, ∆(h)∆(h−1) = 1 and ∆(Φ(h))∆(Φ(h−1))
= 1. Thus by Jensen’s inequality (Corollary 2.3),

∆(h) = ∆(h−1)−1 6 ∆(Φ(h−1))−1 = ∆(Φ(h));

whence the assertion because of Theorem 4.4.

The following improves Theorem 3.1.

THEOREM 4.8. Let w ∈ Lp(M) with 0 < p 6 ∞ such that ∆(w) > 0. Then
there exist a unitary u ∈ M and an outer h ∈ Hp(A) such that w = uh.

Proof. Based on the case p > 1 from [2], the proof below is similar to the end
of the proof of Theorem 3.1. For simplicity we consider only the case where p >
1/2. Write the polar decomposition of w: w = v|w|. Applying [2] to |w|1/2 we get
a factorization: |w|1/2 = u2h2 with u2 unitary and h2 ∈ H2p(A) left outer. Since
∆(h2) > 0, h2 is also right outer; so h2 is outer. Similarly, we have: v|w|1/2u2 =
u1h1. Then u = u1 and h = h1h2 yield the desired factorization of w.

The following is the inner-outer factorization for operators in Hp(A), which
is already in [2] for p > 1.

COROLLARY 4.9. Let 0 < p 6 ∞ and x ∈ Hp(A) with ∆(x) > 0. Then there
exist a unitary u ∈ A (inner) and an outer h ∈ Hp(A) such that x = uh.

Proof. Applying the previous theorem, we get x = uh with h outer and u a
unitary in M. Let an ∈ A such that lim han = 1 in Hp(A). Then u = lim xan in
Hp(A) too; so u ∈ Hp(A) ∩M. By Proposition 3.3, u ∈ A.

REMARK 4.10. The condition ∆(x) > 0 cannot be removed in general. In-
deed, if h is outer, then h is of full support (see Remark 4.5). It follows that x is
of full support too if x admits an inner-outer factorization as above. Consider,
for instance, the example in Remark 4.5. Then for any ϕ ∈ Hp(T) the operator
x = ϕ⊗ e11 ∈ Hp(A) is not of full support.

COROLLARY 4.11. Let 0 < p 6 ∞ and h ∈ Hp(A) with ∆(h) > 0. Then h is
outer if and only if for any x ∈ Hp(A) with |x| = |h| we have ∆(Φ(x)) 6 ∆(Φ(h)).
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Proof. Assume h outer. Then by Corollary 2.3 and Theorem 4.4,

∆(Φ(x)) 6 ∆(x) = ∆(h) = ∆(Φ(h)).

Conversely, let h = uk be the decomposition given by Theorem 4.8 with k outer.
Then

∆(h) = ∆(k) = ∆(Φ(k)) 6 ∆(Φ(h));

so h is outer by Theorem 4.4.

COROLLARY 4.12. Let 0 < p, q, r 6 ∞ such that 1/p = 1/q + 1/r. Let x ∈
Hp(A) be such that ∆(x) > 0. Then there exist y ∈ Hq(A) and z ∈ Hr(A) such that

x = yz and ‖x‖p = ‖y‖q ‖z‖r .

Proof. This proof is similar to that of Theorem 3.4. Instead of Theorem 3.1,
we now use Theorem 4.8. Indeed, by the later theorem, we can find a unitary
u2 ∈ M and an outer h2 ∈ Hp/r(A) such that |x|p/r = u2h2. Once more applying
this theorem to v|x|p/q u2, we have a similar factorization: v|x|p/q u2 = u1h1,
where v is the unitary in the polar decomposition of x. Since h1 and h2 are outer,
we deduce, as in the proof of Corollary 4.9, that u1 ∈ A. Then y = u1h1 and z = h2
give the desired factorization of x.

5. A NONCOMMUTATIVE SZEGÖ FORMULA

Let w ∈ L1(T) be a positive function and let dµ = wdm. Then we have the
following well-known Szegö formula [16]:

inf
{ ∫

T

|1− f |2dµ : f mean zero analytic polynomial
}

= exp
∫
T

log wdm.

This formula was later proved for any positive measure µ on T independently by
Kolmogorov/Krein [10] and Verblunsky [18]. Then the singular part of µ with re-
spect to the Lebesgue measure dm does not contribute to the preceding infimum
and w on the right hand side is the density of the absolute part of µ (also see
[8]). This latter result was extended to the noncommutative setting in [2]. More
precisely, let ω be a positive linear functional on M, and let ω = ωn + ωs be the
decomposition of ω into its normal and singular parts. Let w ∈ L1(M) be the
density of ωn with respect to τ, i.e., ωn = τ(w ·). Then Blecher and Labuschagne
proved that if dim D < ∞,

∆(w) = inf{ω(|a|2) : a ∈ A, ∆(Φ(a)) > 1}.

It is left open in [2] whether the condition dim D < ∞ can be removed or not. We
will solve this problem in the affirmative. At the same time, we show that the
square in the above formula can be replaced by any power p.
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THEOREM 5.1. Let ω = ωn + ωs be as above and 0 < p < ∞. Then

∆(w) = inf{ω(|a|p) : a ∈ A, ∆(Φ(a)) > 1}.
Proof. Let

δ(ω) = inf{ω(|a|p) : a ∈ A, ∆(Φ(a)) > 1}.

First we show that

δ(ω) = inf{ω(x) : x ∈ M−1
+ , ∆(x) > 1},

where M−1
+ denotes the family of invertible positive operators in M with bounded

inverses. Given any x ∈ M−1
+ , by Arveson’s factorization theorem there exists

a ∈ A such that |a| = x1/p and a−1 ∈ A. Then x = |a|p, so ∆(x) = ∆(|a|p) = ∆(a)p.
Since a is invertible with a−1 ∈ A, by Jensen’s formula in [1], ∆(a) = ∆(Φ(a)). It
then follows that

δ(ω) 6 inf{ω(x) : x ∈ M−1
+ , ∆(x) > 1}.

The converse inequality is easier. Indeed, given a ∈ A with ∆(Φ(a)) > 1 and
ε > 0, set x = |a|p + ε. Then x ∈ M−1

+ and ∆(x) > ∆(a)p > ∆(Φ(a))p by virtue
of Jensen’s inequality. Since lim

ε→0
ω(|a|p + ε) = ω(|a|p), we deduce the desired

converse inequality.
Next we show that δ(ω) = δ(ωn). The singularity of ωs implies that there

exists an increasing net (ei) of projections in M such that ei → 1 strongly and
ωs(ei) = 0 for every i (see III.3.8 of [17]). Let ε > 0. Set

xi = ετ(ei)−1(ei + εe⊥i ), where e⊥ = 1− e.

Clearly, xi ∈ M−1
+ and ∆(xi) = 1. Let x ∈ M−1

+ and ∆(x) > 1. Then ∆(xixxi) =
∆(x) > 1, and xixxi → x in the w*-topology. On the other hand, note that

ωs(xixxi) = ε2τ(ei)ωs(e⊥i xe⊥i ).

Therefore,

δ(ω) 6 lim sup ω(xixxi) = ωn(x) + lim sup ωs(xixxi)

6 ωn(x) + lim sup ε2τ(ei)ωs(e⊥i xe⊥i ) 6 ωn(x) + ε2‖ωs‖ ‖x‖.

It thus follows that δ(ω) 6 δ(ωn), so δ(ω) = δ(ωn). Now it is easy to conclude
the validity of the result. Indeed, the preceding two parts imply

δ(ω) = inf{τ(wx) : x ∈ M−1
+ , ∆(x) > 1}.

By a formula on determinants from [1], the last infimum is nothing but ∆(w).
Therefore, the theorem is proved.
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REMARK 5.2. The proof above shows that the infimum in Theorem 5.1 re-
mains the same if one requires a to be invertible with a−1 ∈ A (i.e., a ∈ A−1).
Namely,

δ(ω) = inf{ω(|a|p) : a ∈ A−1, ∆(Φ(a)) > 1} = inf{ω(|a|p) : a ∈ A−1, ∆(a) > 1}.
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