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ABSTRACT. If S is a multiplicative semigroup of bounded operators on a Ba-
nach space, what is the effect of a polynomial identity on reducibility of S , i.e.,
the existence of a closed invariant subspace for S? More specifically, which
noncommutative polynomials in two variables have the property that when-
ever f (A, B) = 0, or more generally, f (A, B) is quasinilpotent for all A and
B in S , then S is reducible or possibly (simultaneously) triangularizable? A
well-known example of such polynomials that works at least for semigroups
of compact operators is f (x, y) = xy − yx. Extensions of this result are also
known for certain classes of polynomials that yield reducibility and triangu-
larizability. We study this question for arbitrary homogeneous polynomials
and present fairly general reducing and triangularizing conditions. As a corol-
lary, we obtain polynomial conditions under which every compact group is
necessarily Abelian.
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0. INTRODUCTION AND PRELIMINARIES

Let S be a semigroup of operators on a complex Banach space X of finite
or infinite dimension. Let f be a noncommutative polynomial, homogeneous in
each of its two variables. If f (A, B) = 0 for all A and B in S , or, more generally, if
f (A, B) is nilpotent (or quasinilpotent in the infinite-dimensional case), what can
we say about invariant subspaces of S?

All operators considered here are meant to be linear and bounded. By sub-
spaces we mean closed subspaces, and by a semigroup we mean a set of operators
closed under multiplication.

The simplest and best-known example of such polynomials is f (x, y) =
xy − yx. The vanishing of this polynomial on any set of operators on a finite-
dimensional X , and more generally, on any set S of compact operators, is eas-
ily seen to imply (simultaneous) triangularizability for S , i.e. the existence of a
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chain of invariant subspaces which is maximal as a subspace chain. A stronger
assertion holds for this polynomial: one has to assume merely that AB − BA is
quasinilpotent for all A and B in a semigroup S . (See [5] or [11].) More recently,
this result has been further strengthened with approximate versions of the hy-
pothesis, e.g., the assumption that the spectral radius of AB− BA is small for A
and B in S [2].

The situation is more complicated as soon as the polynomial f has degree
two or more in either of the variables, as shown by examples at the end of this sec-
tion. We should mention here that if rings or algebras are considered as opposed
to semigroups, then it is of course much harder for a polynomial to be zero or
quasinilpotent. This is the theme of much studied polynomial-identity rings and
algebras. For a brief and informative introduction, see Formanek’s monograph
[4]. A standard reference is [13].

Semigroup identities on abstract semigroups (or groups) have been studied
extensively: they correspond to a special case of polynomials in our case, namely
f (x, y) = w1(x, y) − w2(x, y), where w1 and w2 are fixed words. Every faithful
representation of an irreducible group or semigroup on Cn satisfies all the iden-
tities of Mn(C) as a polynomial-identity ring [13]. Our question is: what other
polynomials can it satisfy? For a recent treatment of topics in semigroup identi-
ties, see [7].

We remark, before proceeding further, that without restricting to compact
operators, even the simplest noncommutative polynomial xy− yx vanishing on a
semigroup of operators does not necessarily imply reducibility, i.e., the existence
of a single nontrivial invariant subspace for the semigroup. (Read [12] proves the
existence of a singly generated algebra of quasinilpotent operators on L1 that is
irreducible. For a Hilbert space, the problem is still unsettled, of course.)

We also remark that the interesting polynomials to be considered here are
those with coefficients adding up to zero. For let the sum a of the coefficients be
nonzero. It follows from the homogeneity of f that if f (A, B) is quasinilpotent for
all A and B in a semigroup S of compact operators, then for every A in S ,

a f (A, A) = aAr+s

is quasinilpotent (where r and s are the degrees of homogeneity of f in x and y
respectively.) Hence S consists of quasinilpotent compact operators and is thus
known to be triangularizable by Turovskii’s result [14].

Why consider only homogeneous polynomials? Because if the given f is
not homogeneous in either of the variables, say y, then by replacing y with a
suitable power of x we obtain a nontrivial polynomial g in one variable x which
will be zero (respectively , quasinilpotent) on a semigroup S if f is. This amounts
to restricting the spectra of members of S to a finite set. The connections of this
condition to the existence of invariant subspaces has been explored elsewhere,
e.g. in [6].
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Why only two variables? Of course more variables can be considered with
possibly interesting results, but it should be noted that we can always reduce the
number of variables to two. For instance, if f (x, y, z) is a nontrivial noncommut-
ing polynomial, then it is not hard to verify that the two-variable noncommuta-
tive polynomial f (x, y, xmy) is nontrivial for many values of m.

We now state our definitions formally.

DEFINITION 0.1. Let f be a noncommutative polynomial in two variables,
homogeneous of degree r in x, and homogeneous of degree s in y. Let S be a
semigroup of operators on a Banach space X .

(i) f is said to vanish (or be zero) on S if f (A, B) = 0 for all A and B in S .
(ii) f is said to be nil on S if f (A, B) is quasinilpotent for every A and B in S .

Observe that if a homogeneous polynomial is zero (or nil) on S , then it is
also zero (or nil) on its homogeneous closure,

CS = norm closure of {cS : c ∈ C, S ∈ S}.

This fact is very useful in reducing many cases involving compact operators to
those of finite-rank ones.

In [9] some polynomial conditions for reducibility and triangularizability
of semigroups of compact operators were given, but they were mainly restricted
to polynomials of the special form f (xy, yx), a direct extension of the already-
known case of xy− yx mentioned above. In this paper, we consider the general
case.

It turns out that the problem of verifying reducibility is hardest when S is
a group (and thus the underlying space is of finite dimension n, although n can-
not be assumed bounded). Hence we first study the case of matrix groups. For
semigroups of compact operators on infinite-dimensional X and semigroups of
noninvertible matrices, our problems reduce to two cases: subgroups of GLn(C)
and subsemigroups of M2(C) consisting of singular matrices. The “small” irre-
ducible groups below play an important role in these reductions.

DEFINITION 0.2. Let p and q be primes, not necessarily distinct. Let A be a
nonscalar, diagonal, p× p matrix satisfying Aq = I and let B be the p× p cycle

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 · · · 0 1
1 0 · · · 0 0

 .

The notation G(p, q, A) will stand for the group generated by A and B.
Note for later reference, that G(p, q, A) is always a solvable group. It is a

nilpotent group if and only if p = q.

We shall need the following two results.
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LEMMA 0.3 (J. Bernik, R. Guralnick, and M. Mastnak [1]). A linear algebraic
group over an algebraically closed field is triangularizable if and only if all its finite sub-
groups are triangularizable.

LEMMA 0.4 ([9]). A noncommutative polynomial, homogeneous in each of its two
variables, is zero (respectively nil) on an irreducible finite subgroup of GLn(C) for some
n > 1 if and only if it is zero (respectively nil) on some G(p, q, A).

Combining these two results, we record the following lemma for later use.

LEMMA 0.5. Assume a noncommutative polynomial f , homogeneous in each of its
two variables is not zero (respectively nil) on any G(p, q, A). If f is zero (respectively nil)
on any group G of matrices, then G is triangularizable.

Proof. If f is zero (respectively nil) on any semigroup S, then it is clearly also
zero (respectively nil) on the Zariski closure of S . Thus we can assume, without
loss of generality, that the group G is closed (in the relative topology), so that
Lemmas 0.3 and 0.4 are applicable.

The idea now is to find workable sufficient conditions on a given polyno-
mial (in terms of its form and its coefficients) which would make it a “triangular-
izing” polynomial.

We conclude this section with examples of polynomials that are identically
zero on some irreducible semigroups. For any integer m > 2, the simple poly-
nomial xmy − yxm is zero on the group G(p, p, A) where p is an arbitrary prime
dividing m, and A = diag(1, ω, . . . , ωp−1) with ω a p-th primitive root of unity.
(Just observe that Ap = I for all A in this group.) In fact, any polynomial of the
form g(xp, y) with coefficients summing to zero vanishes on this group. There
are less trivial polynomials vanishing on G. For example, as will be clear from the
next result, the polynomial y2xyx3 − yx2yx2y, or more generally,

f (x, y) = a1y2xyx3 + a2yx3y2x + a3yx2yx2y + a4x2y3x2 + a5xy2x3y

with a1 + · · ·+ a5 = 0 is zero on G(5, 5, A).

EXAMPLE 0.6. Consider the general polynomial f of homogeneous degrees
r and s respectively in x and y, i.e.,

f (x, y) = ∑ an0,n1,...,ns xn0 yxn1 yxn2 y · · · xns y

with ni > 0 and
s
∑

i=0
ni = r. Assume the coefficients add up to zero. If, for the

exponents of every term,
s
∑

i=0
ini is a constant c modulo some prime p, then f is

zero on the irreducible group G(p, p, A) as described above.

Proof. It is not hard to verify that the commutator subgroup of this p-group
is just its centre, i.e., for every pair S and T in G,

TS = ωST,
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where ω is some p-th root of unity. It follows that TiSj = wijSjTi for all i and j.
Now, by a straight-forward calculation,

f (S, T) = ∑ an0,...,ns Sn0 TSn1 T · · · Sns T = ∑ an0,...,ns ω∑s
i=0 ini SrTs

=
(

∑ an0,...,ns

)
ωcSrTs = 0.

As motivation for the results in later sections, we also include the following,
slightly more general, set of examples whose verification should be easy.

EXAMPLE 0.7. Let f be a polynomial of the general form given in Exam-
ple 0.6. Assume, furthermore, that the set of index vectors R = (n0, n1, . . . , ns) is
partitioned into subsets R1, . . . ,Rk satisfying

∑{aR : R ∈ Rj} = 0

for j = 1, . . . , k. If there is a prime p and constants cj modulo p such that,

∑{ini : (n0, n1, . . . , ns) ∈ Rj} = cj

for every j, then f vanishes on G(p, p, A).

In the first two sections of this paper, we consider the significant case of
groups of operators on finite dimensions, first the case of a vanishing polynomial,
and then the more complicated case of a nil polynomial. The results are then used
in Section 3 to treat the general case of semigroups of operators on an infinite-
dimensional space.

1. VANISHING OF A POLYNOMIAL ON A GROUP

We have to deal with a certain type of integer-valued matrix whose rank
is the same modulo every prime. Thus it is convenient to define the following
number associated with any rectangular matrix of integers.

DEFINITION 1.1. Let M be a rectangular matrix of integers with m + 1
columns and constant row sums. Denote its rows by R1, . . . , Rl . Form a matrix
M0 whose rows are Ri − Rj with i < j. (Thus M0 has zero row sums and its rank
is at most m.) Let

∆ = {det N : N m×m submatrix of M0}.

Define δ(M) = 0 if ∆ = ∅ or ∆ = {0}. Otherwise, set

δ(M) = gcd{δ ∈ ∆ : δ 6= 0}.

REMARKS 1.2. (i) δ(M) is necessarily zero if l < m.
(ii) The condition δ(M) = 1 is easily seen to be equivalent to the assertion that

the rank of M0 is one less than the number of its columns when it is viewed as a
matrix over the field Zp for any prime p.
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(ii) Let {ej}m+1
j=1 be the standard column basis. Let k 6 m and let T be the

(m + 1)× k matrix whose j-th column is

ej + ej+k + ej+2k + · · ·

(the last term having index j + tk with the largest t satisfying j + tk 6 m + 1). With
M as in the definition, it can be verified that δ(M) = 1 implies that δ(MT) = 1.

We are now ready to associate a useful integer with every noncommutative
homogeneous polynomial, defined in terms of the sequences of exponents in each
of its monomial terms.

DEFINITION 1.3. Let f be a noncommutative polynomial separately homo-
geneous of degrees r and s in x and y respectively. We express f uniquely as

∑
R

aRxn0 yxn1 yxn2 · · · xns−1yxns ,

with R = (n0, . . . , ns), 0 6 nj, and n0 + · · ·+ ns = r. Let M be the matrix whose
rows consist of all R with aR 6= 0. Define δ( f ) = δ(M). (Note that δ is unchanged
if the rows of M are permuted.)

We pause here to make a point of clarification and apology to the reader:
whenever we speak, admittedly loosely, of “a proper subset of nonzero coeffi-
cients” of a polynomial f with coefficients {aR : R ∈ R} as above, we mean a
subset {aR : R ∈ R1}, where R1 is a proper subset of the index set R.

THEOREM 1.4. Let f be a noncommutative polynomial, separately homogeneous
in each of its variables x and y, such that

(i) δ( f ) = 1 and
(ii) no proper subset of the nonzero coefficients of f sums to zero.

If f vanishes on a group G of matrices, then G is triangularizable. If G is also
compact, then it is diagonalizable (and thus Abelian).

Before presenting the proof, we find it convenient to give a definition and a
lemma concerning commutative polynomials in several variables. These will be
used more than once.

DEFINITION 1.5. Let g be a commutative polynomial in the variables zj,
0 6 j 6 m. Assume g is jointly homogeneous of degree d, so that

g(z0, . . . , zm) = ∑
R

aRzr0
0 zr1

1 · · · z
rm
m ,

where each R = (r0, . . . , rm) ∈ Zm+1, rj > 0 for all j , and ∑ rj = d. Let M be the
matrix whose rows consist of those R for which aR 6= 0. Define

δ0(g) = δ(M).
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REMARKS 1.6. If f (x, y) is expressed as in Definition 1.3, we can introduce
formal transformations zj = yjxy−j, j = 0, . . . , s, and rewrite f uniquely as

g(z0, . . . , zs)ys,

where
g(z0, z1, . . . , zs) = ∑

R
aRzn0

0 zn1
1 · · · zns

s .

Treating g as a commutative polynomial, we make two observations.
(i) The correspondence between f and g is one-to-one. In other words, given

g, a jointly homogeneous polynomial of degree r in s + 1 commuting variables
zj, we arrange the variables in each monomial in ascending order of the indices j
and form

f (x, y) = g(x, yxy−1, . . . , ysxy−s)ys.

Later, we will have occasion to consider a more involved commutative “trans-
form” for f , which will not be one-to-one. We may call g the first transform of f .

(ii) It is easily seen that δ( f ) = δ0(g).

Our technical lemma follows.

LEMMA 1.7. Let g be a nonzero, jointly homogeneous, commutative polynomial
in m + 1 variables,

g(z0, . . . , zm) = ∑
R

aRzr0
0 zr1

1 · · · z
rm
m .

Assume that no proper subset of nonzero coefficients of g sums to zero. If there exists a
prime p and a sequence {k0, . . . , km} of integers that is not constant modulo p such that
the polynomial h(x) = g(xk0 , . . . , xkm) is divisible by xp − 1, then δ0(g) 6= 1.

Proof. Let θ be a primitive p-th root of unity. It follows from xp − 1|h(x) that
h(θt) = 0 for all integers t, so that

∑
R

aRθ(∑m
i=0 riki)t = 0.

Collecting terms, this yields
p−1
∑

j=0

(
∑

{
aR :

m
∑

i=0
riki = j mod p

})
θ jt = 0. Hence,

for every j, the members of the set

Ej =
{

aR :
m

∑
i=0

riki = j mod p
}

have zero sums. Since no proper subset of the coefficients sums to zero, there is a

unique j such that Ej contains all the coefficients aR. In other words,
m
∑

i=0
riki = j

mod p for all R. It follows that the system
m

∑
i=0

(ri − r′i)ki = 0 mod p,
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where R and R′ range over all distinct pairs of rows corresponding to aR and
aR′ , has a solution {k0, . . . , km}, nonconstant modulo p. The system also has the
constant solution {1, 1, . . . , 1}. This implies that the rank of the coefficient matrix
A of the system is at most m − 1 over the field Zp. Thus the determinant of
every possible m × m submatrix of A over Zp is zero. Since the matrix M0 of
Definition 1.1 obtained from the matrix M of Definition 1.5 is a submatrix of A,
we conclude that δ(M) 6= 1.

Proof of Theorem 1.4. By Lemma 0.5 it suffices to show that f does not vanish
on any of the groups G(p, q, A) of Definition 0.2.

Suppose otherwise. Thus there are p× p matrices

A = diag(θk0 , θk1 , . . . , θkp−1) and B =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
1 0 0 · · · 0


where θ is a primitive q-th root of unity, A is nonscalar, and f (S, T) = 0 for all S
and T in the group generated by A and B.

We first assume s < p. Replacing A with Bj AB−j for an appropriate j if nec-
essary (and still keeping it diagonal) we make sure that the first s diagonal entries
of A are not all the same. Noting that the set {A, BAB−1, . . . , Bs AB−s} is commu-
tative, we employ the notation given in the remarks following Definition 1.5 to
deduce that

0 = f (A, B)B−s = g(A, BAB−1, B2 AB−2, . . . , Bs AB−s).

We collect the first diagonal entries on the right hand side to have g(θk0, θk1, . . . , θks)
= 0. Similarly, the equation 0 = f (At, B)B−s yields g(θtk0 , θtk1 , . . . , θtks) = 0 for
all integers t. This implies that the polynomial

g0(x) = g(xk0 , xk1 , . . . , xks)

is divisible by xq − 1. Since no proper subset of the coefficients has zero sum,
Lemma 1.7 applies and

δ( f ) = δ0(g) 6= 1,

which is a contradiction.
We must now consider the case p6 s. Extend the vector K =(k0, k1, . . . , kp−1)

of exponents by periodicity to

K̂ = (k0, k1, . . . , kp−1; k0, k1, . . . , kp−1; k0, k1, . . .)

with s + 1 components. Since Bp = I, it is easily seen that the equation f (A, B)B−s

= 0 still gives

g(θtk0 , . . . , θtks) = 0
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for all t as before, yielding a contradiction. To complete the proof, we must only
observe that if the group G is compact, then it is simultaneously similar to a uni-
tary group, which is diagonalizable (and thus commutative) if it is triangulariz-
able.

A converse to Theorem 1.4 can be stated if f is of degree 1 in one of the
variables, say y. (See also [8] and [9] for related results.)

THEOREM 1.8. Let f be homogeneous of degree r in x and degree 1 in y. Assume
that the coefficients of f add up to zero. If δ( f ) 6= 1, then there exists an irreducible group
of matrices on which f vanishes.

Proof. Assume δ( f ) 6= 1. We write

f (x, y) = a0yxr + a1xyxr−1 + · · ·+ arxry.

Doing away with the vacuous case in which f is a monomial, we see from the
definition that δ( f ) = gcd{j− k : j 6= k, ajak 6= 0}. It follows from δ( f ) 6= 1 that
there is a prime p that divides δ( f ). Hence there is an integer t > 0 such that after
discarding some of the zero coefficients,

f (x, y) = xt(atyxpk + at+pxpyxp(k−1) + · · ·+ at+kpxkpy)xr−t−kp.

Now let G = G(p, p, A) with A = diag(1, w, . . . , wp−1). Since Sp = I for all S ∈ G,
we conclude that for all S and T in G,

f (S, T) = St
((

∑ ai

)
T
)

Sr−t−kp = 0.

EXAMPLE 1.9. Let f be homogeneous of degrees r in x and 2 in y. Thus

f (x, y) = ∑
R

aRxr0 yxr1 yxr2

with R = (r0, r1, r2), ri > 0 and r0 + r1 + r2 = r. Finding δ( f ) then amounts to a
calculation of determinants of the typical form

det
(

r0 − r′0 r1 − r′1
r0 − r′′1 r1 − r′′1

)
for distinct vectors R, R′, R′′. More specifically, let us consider the case where r
also equals 2 so that

f (x, y) = a1(xy)2 + a2(yx)2 + a3xy2x + a4yx2y + a5x2y2 + a6y2x2.

The calculation of δ( f ) is easy. For instance, if a1a2a3 6= 0, then the corresponding
rows R are R1 = (1, 1, 0), R2 = (0, 1, 1), and R3 = (1, 0, 1). Thus the matrix of the
differences Ri − Rj has a submatrix(

1 0 −1
0 1 −1

)
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so that δ( f ) = 1 by definition. For a very specific example, if

(xy)2 + (yx)2 − 2xy2x

vanishes on a compact matrix group G, then G is Abelian.

The following result is an application to the special case of nilpotent groups.
In this case, a stronger result than our main theorem above can be proved by
replacing the hypothesis f (A, B) ≡ 0 on G with det f (A, B) ≡ 0 on G.

THEOREM 1.10. Let f be a noncommutative polynomial of homogeneous degree r
in x and s in y such that

(i) δ( f ) = 1;
(ii) no proper subset of nonzero coefficients of f sums to zero.

If G is a nilpotent subgroup of Mn(C) and if det f (S, T) = 0 for all S and T in G,
then G is triangularizable (and diagonalizable if G is also compact.)

Proof. Suppose G is not triangularizable. Since the Zariski closure of G (in
GLn(C)) is also nilpotent, we can assume G is Zariski-closed. By [1], G has a finite
nontriangularizable subgroup G0. Let G00 be a minimal non Abelian subgroup of
G0, which is nilpotent as is G0. Then by Lemma 4.2.9 of [10] together with the fact
that we can assume G = CG, there exists an invariant subspace M for G00 such
that G00|M is of the form G(p, q, A). But p = q since G00|M is nilpotent.

Now it is not hard to verify that G(p, p, A) = G(p, p, A′), where A′ has the
pleasant feature of a geometric progression on its diagonal. So we replace A with
A′ and assume that

A = diag(1, θ, . . . , θp−1),

where θ is a primitive p-th root of unity.
Observe that in the proof of Theorem 1.4 we collected the first diagonal

entries of
g(A, BAB−1, B2 AB−2, . . .) = f (A, B)B−s = 0

and set it equal to zero to get a contradiction. In the current case, some diagonal
entry of f (A, B)B−s, not necessarily the first, must be zero, say the j-th. But by
the perfect regularity of the form of A, we can see that the j-th entry is

0 = g(θ j−1, θ j, . . . , θ j+s−1) = ∑
R

aRθ∑s
i=0(i+j−1)ri

= ∑
R

aRθ∑s
i=0 iri+(j−1) ∑s

i=0 ri = θ(j−1)r ∑
R

aRθ∑s
i=0 iri .

Hence the first diagonal entry of f (A, B)B−s is zero as well. A contradiction
is then obtained as in Theorem 1.4.

As we have seen in the introduction, one cannot expect affirmative results
without the condition (i) in Theorems 1.4 and 1.10. For example, the simple poly-
nomial xmy − yxm, mentioned in the introduction, has δ = m and satisfies the
condition (ii) of the theorems above. But if m 6= 1, then for any p dividing m,
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the polynomial vanishes on G(p, p, A). The following example shows that the
condition (i) is not sufficient either.

EXAMPLE 1.11. Theorems 1.4 and 1.10 do not hold if we assume (i), but not
(ii). To see this consider the noncommutative polynomial

f (x, y) = (xy− yx)(xy−ωyx) · · · (xy−ωp−1yx),

where ω is a primitive p-th root and p is a prime. In the p-group G(p, p, A) with
A = diag(1, ω, . . . , ωp−1), any two members S and T satisfy the relation ST =
ω jTS for some j, so that f (S, T) is identically zero on G(p, p, A).

It is not hard to see that f does not satisfy the condition (ii). To verify
that it does satisfy (i), it is convenient to consider the commutative transform
g(x0, . . . , xp) of f (as constructed after Definition 1.5), which is

(x0 − x1)(x1 −ωx2) · · · (xp−1 −ωp−1xp).

Now we observe that every one of the p + 1 terms ∏
i 6=j

xi, j = 0, . . . , p, is present in

g (with some nonzero coefficient). Thus the rows R0, . . . , Rp of the (p + 1)× (p +
1) matrix 

1 1 1 · · · 1 0
0 1 1 · · · 1 1
1 0 1 · · · 1 1
...

...
...

...
...

1 1 1 · · · 0 1


are some of those of M, the matrix of exponent vectors of g as in Definition 1.5.
The matrix with rows R0 − Rj, j > 0, has a submatrix equal to the p× p identity.
Hence δ0(g) = 1 or δ( f ) = 1.

REMARKS 1.12. (i) The results of this section can also be viewed as state-
ments about irreducible representations. For example, Theorem 1.4 says that if G
is an abstract group, then it has no nontrivial irreducible representation G satisfy-
ing f (A, B) ≡ 0 if f is any polynomial with properties (i) and (ii). Theorem 1.10
says that if G is an abstract nilpotent group, then it has no such representation
even with det f (A, B) ≡ 0.

(ii) If f can be factored from left or right, i.e., if

f (x, y) = w1(x, y) f1(x, y)w2(x, y),

where w1 and w2 are words in x and y, then the vanishing of f on a group is
clearly equivalent to that of f , so that δ( f1) could more profitably used in apply-
ing the results above.

(iii) The reader may have noticed that the definition of δ is not symmetric rel-
ative to x and y. In fact, if we interchange x and y and define g(x, y) as f (y, x),
then δ(g), which may well be different from δ( f ), could, clearly, also be used in
every one of the theorems above. At the cost of introducing yet another piece
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of notation, we could strengthen Theorems 1.4, 1.10, and their corollaries: just
define

δ̂( f ) = δ( f ) + δ(g)− δ( f )δ(g),

with g as above, so that δ̂( f ) = 1 if and only if one of the two numbers δ( f ) and
δ(g) equals 1. Then δ̂ treats the two variables of f symmetrically and can replace
δ in all our statements.

2. NILPOTENCY OF A POLYNOMIAL ON A GROUP

The effect of a polynomial f being nil on a group G is of course the same as
that of a power of f vanishing on G, but the main result of the preceding section
does not apply to a power of f , because of the condition (ii) in Theorem 1.4. For
example, many proper subsets of the nonzero coefficients of (xy − yx)n add up
to zero if n > 2. Even if we fix that condition, finding the number δ would be
cumbersome for large n. So our goal here is to keep the condition (ii) but define
another integer δ1 associated with f which would work with the nilpotency hy-
pothesis. We shall restrict our attention to homogeneous f of the same degree m
in x as well as in y. We remark again that the interesting case is the one in which
the coefficients of f sum to zero. (Otherwise, nilpotency of f (S, S) for all S in G
implies that of S.)

It is not surprising that δ( f ) will not be adequate for dealing with f when
we merely assume nilpotency of f on G, as opposed to the stronger condition of
its vanishing on G.

We construct a new commutative “transform” h for f as follows. As before,
express f (x, y) as a linear combination of monomials,

∑
R

aRwR(x, y),

where R = (n0, n1, . . . , nm) with ni > 0, and

wR(x, y) = xn0 yxn1 yxn2 · · · xnm−1yxnm .

It is not hard to verify that each group word wR(y−mxym−1, y) can be expressed
uniquely as a product of m of the 2m terms

z0 = x, z1 = y−1xy, z2 = y−2xy2, . . . , z2m−1 = y−(2m−1)xy2m−1.

Thus, given f , homogeneous of degree m in each variable, we can form

h(z0, . . . , z2m−1) = ∑ aRwR(y−mxym−1, y)

unambiguously. We now view h as a commutative polynomial in 2m variables.
(The function h does not uniquely determine f , unlike the case of the function g
used in the preceding section, but we shall not need injectivity.)
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DEFINITION 2.1. Let f be a noncommutative polynomial of the same ho-
mogeneous degree m in x and in y. Let h be the corresponding commutative
polynomial obtained as in the paragraph above. Define

δ1( f ) = δ0(h).

The main result of this section follows.

THEOREM 2.2. Let f be a polynomial of homogeneous degree m in each of its two
variables. Assume that

(i) δ1( f ) = 1 and
(ii) no proper subset of the nonzero coefficients of f sums to zero.

If f is nil on a group G of matrices, then G is triangularizable. In particular, G is
Abelian if it is compact.

Proof. Let f (x, y) = ∑
R

aRwR(x, y), and assume, without loss of generality,

that ∑
R

aR = 0. Let h be the commutative polynomial constructed from f as above.

Observe that each monomial in h may come from several monomials in f , so that
each of its coefficients is of the form

∑(aR ∈ Ri),

where R =
⋃Ri is a partition of the original index set R. This implies that the

coefficients of h, like those of f , have the property that no proper subset of them
sums to zero.

By Lemma 0.5 it suffices to prove that f cannot be nil on any group G(p, q, A).
Assume otherwise. Letting A and B be the diagonal and the cycle in G(p, q, A)
as before, we deduce that f (B−m ABm−1, B) is nilpotent. Since all the matrices
B−j ABj, for j = 0, . . . , 2m− 1 are diagonal (and thus commute with each other),
this implies that the diagonal matrix

h(A, B−1 AB, . . . , B−(2m−1)AB2m−1)

is nilpotent, and hence equal to zero. Assuming first, 2m − 1 < p, and collect-
ing the first entries of diagonal terms, we obtain h(θk0 , θk1 , . . . , θk2m−1) = 0. Pro-
ceeding as in the proof of Theorem 1.4, we replace A with At to obtain further
h(θtk0 , θtk1 , . . . , θtk2m−1) = 0 for all integers t. Thus

h0(x) = h(xk0 , . . . , xk2m−1)

is divisible by xq − 1. This implies by Lemma 1.7 that δ1( f ) = δ0(h) 6= 1, which
is a contradiction. The case 2m− 1 > p is treated exactly as it was in the proof of
Theorem 1.4.

EXAMPLE 2.3. Let f be the general homogeneous polynomial of degree 2 in
each of the variables x and y:

f (x, y) = a1(xy)2 + a2(yx)2 + a3xy2x + a4yx2y + a5x2y2 + a6y2x2.
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To find the corresponding commutative h, we replace x with y−2xy and obtain

f (y−2xy, y) = a1y−2xy2y−2xy2 + a2y−1xyy−1xy + a3y−2xy2y−1xy

+ a4y−1xyy−2xy2 + a5y−2xy2y−3xy3 + a6xy−1xy

= a1z2
2 + a2z2

1 + a3z2z1 + a4z1z2 + a5z2z3 + a6z0z1.

So the polynomial h is

h(z0, z1, z2, z3) = a6z0z1 + a2z2
1 + (a3 + a4)z1z2 + a1z2

2 + a5z2z3.

The matrix M of the exponent vectors is a submatrix of
1 1 0 0
0 2 0 0
0 1 1 0
0 0 2 0
0 0 1 1


consisting of those rows for which the coefficient of the corresponding monomial
is nonzero. If, for example, a1(a3 + a4)a5a6 6= 0, then δ(M) = 1. For a more
specific example, let

f (x, y) = a(xy)2 + bxy2x + cx2y2 + dy2x2

with abcd 6= 0 and no proper subset of {a, b, c, d} adding up to zero. If f is nil on
a compact group G of matrices, then G is Abelian. (If G is not compact, then we
can only deduce triangularizability.)

Paragraphs (i) and (iii) of the remarks at the end of the preceding section
clearly apply to Theorem 2.2 as well.

3. EXTENSIONS TO SEMIGROUPS OF OPERATORS

The results of the preceding sections on groups are also valid for semigroups
of invertible matrices (not necessarily closed under taking inverses). For if S is
such a semigroup in Mn(C) and f (x, y) is zero (or nil) on S , then it is also zero
(or nil) on the Zariski closure G of S in GLn(C). But G is a group.

We now consider the general case of semigroups of compact operators on a
(complex) Banach space X (which includes semigroups of arbitrary operators if
X is finite-dimensional). The following useful lemma is a rewording of Lemma 1.1
and Corollary 1.5 of [9].

LEMMA 3.1. Let S be an irreducible semigroup of compact operators on a Banach
space X with S = R+S . If X is finite-dimensional, also assume that S has a nonzero
singular member. Then S contains a semigroup S0 with the following property: S0 has
invariant subspacesM1 andM2 withM1 a subspace of codimension 2 inM2 such that
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the semigroup induced by S0 on M2/M1 is, up to simultaneous similarity, generated
by a pair

A =
(

α 0
1 0

)
and B =

(
0 1
0 β

)
in M2(C) with αβ 6= 1.

REMARK 3.2. It is easily checked that the condition αβ 6= 1 is equivalent to
the irreducibility of the pair {A, B}. Depending on whether neither, one, or both
of the numbers α and β equal zero, one gets three distinct semigroups in M2(C).
It turns out that we shall not need to distinguish these cases in our considerations
and the single parameter αβ will do.

We extend a definition from [9] to more general polynomials.

DEFINITION 3.3. A noncommutative polynomial f (x, y) is said to be rigid if
it is not nil on any 2× 2 semigroup generated by(

α 0
1 0

)
and

(
0 1
0 β

)
with αβ 6= 1. We denote this semigroup by S(α, β).

REMARK 3.4. Checking a given polynomial for rigidity is not hard. Rather
than rely on the long and detailed recipe given in [9], which distinguished among
the three different cases of pairs, we present a simpler method, which is more
suitable for the polynomials considered here. Let f be of the same homogeneous
degree r in each of the variables x and y. It is convenient to represent every
monomial in f with positive exponents only, i.e.,

xm1 yn1 xm2 yn2 · · · or yn1 xm1 yn2 xm2 · · · ,

ni >1, mi >1. Replace each xmi with αmi−1x and each yni with βni−1y, where α and
β are scalar variables and then collapse every xyx to X and every yxy to Y . A typi-
cal monomial starting and ending with x is of the form xm1 yn1 xm2 yn2 · · · ynj−1xmj ,
which becomes

αm1+···+mj−jβn1+···+nj−1−(j−1)X = αr−jβr−j+1X = β(αβ)r−jX.

Similarly, the transforms of monomials x(· · · )y, y(· · · )x, and y(· · · )y are, respec-
tively, of the following general forms:

(αβ)kXY, (αβ)kYX, and α(αβ)kY.

Thus we obtain a simple polynomial, uniquely from f , of the form

f11(αβ)βX + f12(αβ)XY + f21(αβ)YX + f22(αβ)αY,

where each fij is a polynomial in one variable.

DEFINITION 3.5. The four polynomials fij constructed above will be called
the reduced components of f .
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LEMMA 3.6. Let f be of the same homogeneous degree r in x and y, and assume
that its coefficients sum to zero. Let fij be its reduced components. Then f is rigid if and
only if the following two equations have exactly one common solution z = 1:

[ f11(z) + f22(z)]z + f21(z) + f12(z) = 0,

f11(z) f22(z)z2 − [ f11(z) f22(z) + f12(z) f21(z)]z + f21(z) f12(z) = 0.

Proof. Assume f is not rigid. Then there exist α and β with αβ 6= 1 such
that f is nil on the semigroup S(α, β) of Definition 3.3. In particular, f (A, B) is
nilpotent with

A =
(

α 0
1 0

)
, B =

(
0 1
0 β

)
.

Since ABA = A, BAB = B, Am = αm−1 A, and Bm = βm−1B for all m > 1, it
follows from the construction of the components fij that the matrix

C = f11(α, β)βA + f12(α, β)AB + f21(α, β)BA + f22(α, β)αB

is nilpotent. Thus det C = tr C = 0. But

C =
(

αβ f11(α, β) + f21(α, β) [ f12(α, β) + f22(α, β)]α
[ f12(α, β) + f22(α, β)]β f12(α, β + f22(α, β)

)
.

This easily implies that the two equations are satisfied by z = αβ 6= 1.
Conversely, assume that the system has a solution z0 6= 1. We shall show

that f is nil on some semigroup S = S(α, β) of the form given above with αβ =
z0. Since the argument just given for traces and determinants is reversible, we
immediately deduce that f (A, B) is nilpotent at least for the generators of S . But
we must prove that f (R, S) is nilpotent for arbitrary R and S in S .

First note that, since the coefficients of f are assumed to have zero sum,
f (T1, T2) is automatically nilpotent whenever T1 and T2 are simultaneously trian-
gularizable (because the diagonal of f (T1, T2) must be zero). Thus we can restrict
ourselves to non-triangularizable pairs {R, S} in S .

Now if z0 = 0, just take α = 0, β = 0, and S = S(0, 0). Then S has only four
nonzero members and the only non-triangularizable ordered pairs in S are {A, B}
and {B, A}. Since a permutation of the basis shows that {A, B} is simultaneously
similar to {B, A}, and since f (A, B) is nilpotent, so is f (B, A), and we are done.

To complete the proof, assume z0 6= 0. Take α = β with α2 = z0. Then every
member of S(α, α) is a scalar multiple of one of the matrices

A=
(

α 0
1 0

)
, B=

(
0 1
0 α

)
, C=

(
1/α 0

1 0

)
, and D=

(
0 1
0 1/α

)
.

Of all the unordered pairs, {A, C} and {B, D} are obviously triangularizable. So
are {A, D} and {B, C}. (Just note that A and D have a common eigenvector, and
so do B and C.) As in the preceding paragraph, {A, B} is simultaneously similar
to {B, A} as is {C, D} to {D, C}. So the only ordered pair on which we have to
show that f is nil is {C, D}. But this is just {A, B} with 1/α in place of α.
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EXAMPLE 3.7. The only interesting polynomial of homogeneous degree r =
1 both in x and in y is xy− yx, which is of course rigid. The case r = 2 is also very
easy to check: let f be the general polynomial

f (x, y) = a1(xy)2 + a2(yx)2 + a3xy2x + a4yx2y + a5x2y2 + a6y2x2

with a1 + · · ·+ a6 = 0 (and of course, not all ai equal to zero). If no subset of the
nonzero ai sums to zero, then f is rigid. To see this, just observe that the reduced
components fij(z) are obtained from

a3βX + (a1 + a5αβ)XY + (a2 + a6αβ)YX + a4αY

as f11 = a3, f12 = a1 + a5z, f21 = a2 + a6z and f22 = a4. Hence the first equations
in the test system of the lemma above is

(a3 + a4 + a5 + a6)z + a1 + a2 = 0

whose only solution is z = 1. Hence the lemma applies.

We can now state our most general theorem on triangularizability of semi-
groups of compact operators. We should point out that the mere assumption of
rigidity for a polynomial f can yield reducibility results for a semigroup S of
compact operators on which f is nil. It was proved in [9], for example, that under
this hypothesis

(i) S has a block-triangularization in which every diagonal (irreducible) block
is an essentially finite group of finite dimension, i.e., it is contained in CG where
G is a finite subgroup of GLn(C) for some n, and

(ii) in particular, if every member of S has rank at most one, then it is triangu-
lar.

Note that if the underlying space X is infinite-dimensional or S contains
nonzero singular elements, then the above hypothesis implies reducibility. We
now consider the general case for triangularization.

THEOREM 3.8. Let f be a rigid polynomial of the same homogeneous degree r in x
and in y. Assume that δ1( f ) = 1 and that no proper subset of the coefficients of f sums
to zero. If f is nil on any semigroup of compact operators on a Banach space X , then S is
triangularizable.

Proof. If M1 and M2 are any invariant subspaces for S with M1 ⊆ M2,
then f is nil on the semigroup induced by S on the quotient space M2/M1.
Thus it suffices to show that S is reducible. (See the Triangularization Lemma in
p. 155 of [10].)

Suppose S is irreducible. Theorem 2.2 together with the opening remarks
of the present section allow us to assume that if X is finite-dimensional, then S
has a singular element. Since f is nil on R+S by homogeneity of f and continuity
of spectral radius on compact operators, Lemma 3.1 implies that f is nil on some
S(α, β), which contradicts the rigidity hypothesis.
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The following corollary is immediate.

COROLLARY 3.9. If in addition to the hypotheses of Theorem 3.8, X is assumed to
be a Hilbert space and S to be self-adjoint, then S is commutative (and consists of normal
operators.)

COROLLARY 3.10. Let f be as in Theorem 3.8, and let S be a semigroup in B(X ),
merely assumed to contain a nonzero compact operator. If f is nil on S , then S is re-
ducible.

Proof. The semigroup ideal of S consisting of compact members of S satis-
fies the hypotheses of the theorem and is thus triangularizable. This implies that
S is reducible. (See e.g., p. 200 of [10].)

EXAMPLE 3.11. Consider the general f , quadratic in x and in y, given in
Example 3.7 with a1 + · · ·+ a6 = 0 and no proper subset of nonzero ai summing
to zero, so that f is rigid. If δ1( f )=1 and if f is nil on a semigroup S of compact
operators, then S is triangularizable. If, for example,

f (x, y) = a(xy)2 + bxy2x + cx2y2 + dy2x2

with abcd 6= 0 and no proper subset of {a, b, c, d} summing to zero, then δ1( f ) =
1, as shown in Example 2.3.

4. ON THE CASE OF NONCOMPACT OPERATORS

As noted in the introduction, even the simplest of polynomials of the form
considered in this paper, i.e., xy− yx can vanish on an irreducible S , where S is
not just a semigroup, but a singly generated algebra. Compactness of the opera-
tors in S was used in the preceeding section to obtain affirmative results.

If nonzero compact operators are present in S , certain corollaries of the re-
sults above can be obtained by making use of the fact that semigroup ideals of
S are irreducible if S itself is irreducible. Corollary 3.10 above is a sample. Fur-
thermore, if the compact operator present in S is also “substantial,” e.g., injective
and diagonalizable with distinct eigenvalues, then S is triangularizable. Proofs
of these corollaries are similar to those given in [9] and will not be repeated here.

We shall now consider one case in which S is not assumed to contain any
compact operators other than zero. Instead, we assume that S is a strongly com-
pact group of invertible operators on a Banach space X . The main tool here is the
following lemma, which is implicit in most proofs of the Peter–Weyl Theorem.
For a proof see [11].

LEMMA 4.1. Let G be a group of bounded operators on a Banach space X and
assume that G is compact in the strong operator topology. Then the following set is dense
in X :

X0 = {x ∈ X : Gx has finite dimensional span}.



NIL POLYNOMIALS AND REDUCIBILITY OF OPERATOR SEMIGROUPS 263

THEOREM 4.2. Let f be a noncommutative polynomial, separately homogeneous
in each of its two variables, such that

(i) δ( f ) = 1 and
(ii) no proper subset of nonzero coefficients of f sums to zero.

If f vanishes on a strongly compact group G in B(X ), then G is Abelian.

Proof. Let x ∈ X0, so that the linear span M of Gx is a finite-dimensional
subspace of X invariant under G. Then G0 = G|M is a group of invertible opera-
tors on M which is compact, since G is strongly compact. Thus G0 is Abelian by
Theorem 1.4. It follows that ABx = BAx for all A and B in G. Since this is true
for all x in X0, and X0 is dense, we deduce that AB = BA for all A and B in G.

COROLLARY 4.3. Let f be a polynomial satisfying the conditions of Theorem 4.2.
If G is a compact group of invertible elements in a unital Banach algebra A, and if f
vanishes on G, then G is Abelian.

Proof. Following [11], we treat G as a group of left-multiplications. This
makes Theorem 4.2 immediately applicable.

The following results can be proved in a similar way, using Theorem 2.2
instead of Theorem 1.4.

THEOREM 4.4. Let f be a polynomial of homogeneous degree m in each of its two
variables. Assume that

(i) δ1( f ) = 1 and
(ii) no proper subset of nonzero coefficients of f adds up to zero.

If f is nil on a strongly compact group G of operators on a Banach space, then G is
Abelian.

COROLLARY 4.5. Let f be as in the preceeding theorem. A compact group G in a
unital Banach algebra is Abelian if f is nil on G.

One family of noncompact operators for which the polynomial conditions
in this paper may prove useful is that of algebraic operators. As pointed out in [3],
there exists an irreducible semigroup of unipotent operators, i.e. operators of the
form 1 + N, where N is nilpotent. However, assuming bounded index and using
Zelmanov’s result [15], it was shown in [3] that every semigroup of unipotent
operators whose nilpotent parts have bounded index is triangularizable. Thus
the following general questions seems reasonable to ask.

QUESTION 4.6. What polynomial conditions can be imposed on semigroups
of algebraic operators on a Banach space to guarantee reducibility, triangulariz-
ability, or commutativity?
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