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ABSTRACT. We investigate the behaviour of the spectrum of selfadjoint op-
erators in Krein spaces under perturbations with uniformly dissipative oper-
ators. Moreover we consider the closely related problem of the perturbation
of unitary operators with uniformly bi-expansive. The obtained perturbation
results give a new characterization of spectral points of positive type and of
type π+ of selfadjoint (respectively unitary) operators in Krein spaces.
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INTRODUCTION

A real point λ of the spectrum of a closed operator in a Krein space (H, [., .])
is called a spectral point of positive (negative) type, if for every normed approx-
imative eigensequence (xn) corresponding to λ all accumulation points of the
sequence ([xn, xn]) are positive (respectively negative), see Definition 1.1 below.
These spectral points were introduced by P. Lancaster, A. Markus and V. Matsaev
in [24] for a bounded operator A which is selfadjoint in the Krein space (H, [., .]),
i.e. the selfadjointness is understood with respect to [., .]. In [26] the existence of
a local spectral function was proved for intervals containing only spectral points
of positive (negative) type or points of the resolvent set ρ(A). Moreover it was
shown that, if A is perturbed by a compact selfadjoint operator, a spectral point of
positive type of A becomes either an inner point of the spectrum of the perturbed
operator or it becomes an eigenvalue of type π+. A point from the approximative
point spectrum of A is of type π+ if the abovementioned property of approxima-
tive eigensequences (xn) holds only for sequences (xn) belonging to some linear
manifold of finite codimension (see Definition 1.2 below). Every spectral point
of a selfadjoint operator in a Pontryagin space with finite rank of negativity is of
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type π+. For a detailed study of the properties of the spectrum of type π+ we
refer to [3] and [7].

It is the main aim of this paper to consider perturbations of selfadjoint op-
erators (unitary operators) in some Krein spaces with uniformly dissipative op-
erators (respectively uniformly bi-expansive operators). Let A be a selfadjoint
operator in the Krein space H. Let λ0 be no accumulation point of the non-real
spectrum of A and let (a, b) \ {λ0} consists of spectral points of positive type or
of points from the resolvent set of A only. In Section 2 below we show that λ0
belongs to the spectrum of positive type of A if and only if there exists a fixed
open neighbourhood U of λ0 such that for all sufficiently small uniformly dissi-
pative operators B the operator A + B has no spectrum inside the intersection of
U and the open lower half-plane. Moreover, the point λ0 belongs to the spectrum
of type π+ if and only if for all sufficiently small uniformly dissipative opera-
tors B the operator A + B has at most finitely many normal eigenvalues inside
the intersection of U and the open lower half-plane. In particular, we are able to
show that the sum of all spectral multiplicities within U intersected with the open
lower half-plane equals the rank of negativity of κ−(E((a′, b′))H), where E(·) de-
notes the local spectral function of A. On the other hand, if for every sufficiently
small uniformly dissipative operator B the range of the Riesz–Dunford projector
corresponding to A + B and the intersection of U and the open lower half-plane
is of infinite dimension, then λ0 does not belong to σπ+(A) ∪ ρ(A).

In Section 3 we show that the above arguments hold true in a similar way
for uniformly bi-expansive perturbations of unitary operators.

We view these perturbation results also as a new characterization of the
spectral points of positive (respectively negative) type and of type π+ (respec-
tively π−) of selfadjoint/unitary operators in Krein spaces. We mention that in
the early work of L.S. Pontryagin such arguments were used in a similar manner,
cf. [31].

Sign type spectrum is used in the theory of indefinite Sturm–Liouville op-
erators, e.g. [6], [8], [12], [23]. Moreover, it is used in the theory of mathematical
system theory, see e.g. [18], [19], [25] and in the study of PT-symmetric problems
[13], [14], [27].

We conclude this paper with an application of our results to a second order
equation, cf. Section 4.

1. PRELIMINARIES

Let (H, [., .]) be a Krein space. Let A be a closed operator inH. By Lλ(A) we

denote the root subspace of A corresponding to λ, i.e. Lλ(A) =
∞⋃

n=1
ker (A− λ)n.

A point λ0 ∈ C is said to belong to the approximative point spectrum σap(A) of A
if there exists a sequence (xn) ⊂ D(A) with ‖xn‖ = 1, n = 1, 2, . . . , and ‖(A−
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λ0)xn‖ → 0 as n → ∞. The boundary points of the spectrum of a closed operator
belong to the approximative point spectrum. For a selfadjoint operator A in the
Krein space (H, [., .]) all real points of the spectrum of A belong to σap(A) (see
e.g. Corollary VI.6.2 of [10]). The operator A is called Fredholm if the dimension
of the kernel of A and the codimension of the range of A are finite. The set

σess(A) := {λ ∈ C : A− λI is not Fredholm}

is called the essential spectrum of A.
The following definition is from [1]. In [24], [26] it was given for the case of

a bounded selfadjoint operator.

DEFINITION 1.1. For a closed operator A in H a point λ0 ∈ σ(A) is called a
spectral point of positive (negative) type of A if λ0 ∈ σap(A) and for every sequence
(xn) ⊂ D(A) with ‖xn‖ = 1 and ‖(A− λ0)xn‖ → 0 as n → ∞, we have

lim inf
n→∞

[xn, xn] > 0 (respectively lim sup
n→∞

[xn, xn] < 0).

We denote the set of all points of positive (negative) type of A by σ++(A) (respec-
tively σ−−(A)).

If the operator A is selfadjoint then the sets σ++(A) and σ−−(A) are con-
tained in R (cf. [26])

In a similar way as in Definition 1.1 we introduce now some subsets of σ(A)
containing σ++(A) and σ−−(A), respectively, which will play an important role
in the following (cf. [1] and for special case of a selfadjoint operator see [3]).

DEFINITION 1.2. For a closed operator A in H a point λ0 ∈ σ(A) is called
a spectral point of type π+ (type π−) of A if λ0 ∈ σap(A) and if there exists a
subspace H0 ⊂ H with codimH0 < ∞ such that for every sequence (xn) ⊂
H0 ∩D(A) with ‖xn‖ = 1 and ‖(A− λ0)xn‖ → 0 as n → ∞, we have

lim inf
n→∞

[xn, xn] > 0 (respectively lim sup
n→∞

[xn, xn] < 0).

We denote the set of all points of type π+ (type π−) of A by σπ+(A) (respectively
σπ−(A)). We call H0 of minimal codimension if for each subspace H1 ⊂ H with
codimH1 < codimH0 there exists a sequence (xn) ⊂ H1 ∩ D(A) with ‖xn‖ = 1
and ‖(A− λ0)xn‖ → 0 as n → ∞, such that

lim inf
n→∞

[xn, xn] 6 0 (respectively lim sup
n→∞

[xn, xn] > 0).

Observe, that for a point λ0 ∈ σπ+(A) we have that λ0 ∈ σ++(A) if and
only if the subspace H0 from Definition 1.2 can be chosen as H0 = H.

Recall that an operator C in a Krein space (H, [., .]) is called uniformly dissipa-
tive if there exists some α > 0 such that for x ∈ D(C) we have Im [Cx, x] > α‖x‖2.

The second part of the following lemma is well-known, nevertheless we
give a proof for the sake of completeness.

We set C± := {z ∈ C : ±Im z > 0}.
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LEMMA 1.3. Let C be a closed uniformly dissipative operator in a Krein space
(H, [., .]). Then

σap(C) ∩C− ⊂ σ−−(C).

If λ ∈ σp(C) ∩C− then for each x ∈ Lλ(C), x 6= 0, it follows

[x, x] < 0.

Proof. Let λ0 ∈ σap(C) ∩C−. Then the first statement of Lemma 1.3 follows
from the fact that for every sequence (xn) ⊂ D(C) with ‖xn‖ = 1 and ‖(C −
λ0)xn‖ → 0, n → ∞, we have

|Im [Cxn, xn]− Im λ0[xn, xn]| 6 ‖(C− λ0)xn‖ → 0, n → ∞.

Let λ ∈ σp(C) ∩C−. It follows from Chapter 2, Corollary 2.17 of [2] that for each
y ∈ Lλ(C) we have [y, y] 6 0. Assume that there exists an x ∈ Lλ(C), x 6= 0, with
[x, x] = 0. Then we have [x, y] = 0 for all y ∈ Lλ(C). Hence

0 = Im [(C− λ)x, x],

which is a contradiction to the assumption that C is uniformly dissipative.

2. UNIFORMLY DISSIPATIVE PERTURBATION OF SELFADJOINT OPERATORS IN KREIN SPACES

Let A be a selfadjoint operator in the Krein space (H, [., .]), that is, A = A+.
Here we denote by A+ the adjoint of a densely defined operator A in a Krein
space (H, [., .]) with respect to [., .]. Let B be a bounded uniformly dissipative
operator in the Krein space (H, [., .]). Then the operator A + B, which is defined
on D(A), is uniformly dissipative.

LEMMA 2.1. Let A be a selfadjoint operator and let B be a bounded uniformly
dissipative operator in H. Then

R ⊂ ρ(A + B).

Proof. Set C := A + B. We choose α > 0 such that Im [Bx, x] > α‖x‖2, x ∈ H.
We have D(C) = D(A) = D(C+) and, therefore, for λ ∈ R and x ∈ D(C), x 6= 0,
it follows

‖x‖‖(C− λ)x‖ > |[(C− λ)x, x]| > |Im [Bx, x]| > α‖x‖2

and
‖(C+ − λ)x‖ > α‖x‖.

As C is a closed operator the point λ belongs to ρ(C).

LEMMA 2.2. Let µ ∈ σ++(A). Then there exists a δ > 0 and an ε > 0 such that
for all bounded uniformly dissipative operators in H with ‖B‖ 6 ε it follows that the
intersection of C− and the disc around µ with radius δ belongs to ρ(A + B).
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Proof. Assume that the assertion of Lemma 2.2 is not true. Then there exist a
sequence of bounded uniformly dissipative operators (Bn) in H with ‖Bn‖ → 0,
n → ∞, and a sequence (λn) in σ(A + Bn) ∩ C− which converges to µ, µ ∈
σ++(A). We assume λn ∈ σap(A + Bn), n ∈ N. In view of Lemma 2.1 this is
no restriction. By Lemma 1.3 there exists a sequence (xn), xn ∈ D(A + Bn) =
D(A) with ‖xn‖ = 1, [xn, xn] < 0 and ‖(A + Bn − λn)xn‖ 6 1

n , n ∈ N. Then
lim inf

n→∞
[xn, xn] 6 0 and

(A− µ)xn = (A + Bn − λn)xn + (λn − µ)xn − Bnxn → 0, n → ∞,

which contradicts µ ∈ σ++(A).

PROPOSITION 2.3. Let A be a selfadjoint operator. Assume that λ0, λ0 ∈ (a, b),
is not an accumulation point of the non-real spectrum of A and that

(2.1) (a, b) \ {λ0} ⊂ σ++(A) ∪ ρ(A)

holds. Let a < a′ < λ0 < b′ < b. Then there exists a δ′ > 0 such that the strip

{λ ∈ C− : a′ 6 Re λ 6 b′,−δ′ 6 Im λ < 0}
belongs to the resolvent set of A. Moreover, if γδ′ denotes the closed oriented curve in the
complex plane which consists of the line segments connecting the points b′, b′ − iδ′, a′ −
iδ′, a′ and b′ then there exists an ε0 > 0 such that for all bounded uniformly dissipative
operators B in H with ‖B‖ 6 ε0 we have

(2.2) γδ′ ⊂ ρ(A + B).

Proof. The first statement of Proposition 2.3 follows from [26] (or [3]). In or-
der to show (2.2) we choose ε0 > 0 so small that, cf. Lemma 2.2, for all bounded
uniformly dissipative operators B in H with ‖B‖ 6 ε0 the line segments connect-
ing the points b′ and b′ − iδ′ and the points a′ and a′ − iδ′ belong to ρ(A + B).
Moreover, we choose ε0 so small that

ε0 <
1

max
λ∈Γ

‖(A− λ)−1‖

holds, where Γ is the line segment connecting the points b′ − iδ′ and a′ − iδ′. As
A + B− λ = (I + B(A− λ)−1)(A− λ), Γ is a subset of ρ(A + B). Moreover, by
Lemma 2.1, R ⊂ ρ(A + B), hence Proposition 2.3 is proved.

The following theorem can be considered as the main result of this paper.
Recall that for a selfadjoint operator satisfying (2.1) there exists a local spectral
function E defined on subintervals of (a, b) with endpoints not equal to a, b or
λ0, cf. [3], [21]. In particular there exists the spectral projection E((a′, b′)) corre-
sponding to the interval (a′, b′) with a < a′ < λ0 < b′ < b.

THEOREM 2.4. Let A be a selfadjoint operator in the Krein space H. Assume that
λ0, λ0 ∈ (a, b), is not an accumulation point of the non-real spectrum of A and that

(2.3) (a, b) \ {λ0} ⊂ σ++(A) ∪ ρ(A).
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Let a′, b′, δ′, ε0 and γδ′ be as in Proposition 2.3. Then the following assertions are valid.
(i) The point λ0 belongs to σ++(A)∪ ρ(A) if and only if there exists an ε1 > 0 such

that for every uniformly dissipative operator B acting in H with ‖B‖ < ε1 the operator
A + B has no spectrum inside the curve γδ′ .

(ii) The point λ0 belongs to σπ+(A) if and only if there exists an ε1 > 0 such that for
every uniformly dissipative operator B acting inH with ‖B‖ < ε1 the spectrum of A + B
inside the curve γδ′ consists of at most finitely many normal eigenvalues λ1, λ2, . . . , λk
such that

M− := span {Lλj(A + B) : 1 6 j 6 k}
is of finite dimension. Moreover, in this case, the dimension of M− is equal to the rank
of negativity κ−(E((a′, b′))H) of the Pontryagin space E((a′, b′))H, that is

dimM− = κ−(E((a′, b′))H).

(iii) The point λ0 does not belong to σπ+(A) ∪ ρ(A) if and only if there exists an
ε1 > 0 such that for every uniformly dissipative operator B acting in H with ‖B‖ < ε1
the range of the Riesz–Dunford projector corresponding to A + B and γδ′ is of infinite
dimension.

Proof. Let a′, b′, δ′, ε0 and γδ′ be as in Proposition 2.3. Set K := (I −
E((a′, b′)))H. Then the space H decomposes

(2.4) H = E((a′, b′))H [
.
+]K,

where [
.
+] denote the direct sum of spaces which are orthogonal with respect to

[., .]. Moreover,

A =
[

A0 0
0 A1

]
and B =

[
B0 B01
B10 B1

]
with respect to the decomposition (2.4). The operators B0 and B1 are uniformly
dissipative operators in E((a′, b′))H and K, respectively. As E is the spectral
function of A, we have

σ(A0) ⊂ [a′, b′] and σ(A1) ⊂ R \ (a′, b′).

By assumption, a′ and b′ belong to σ++(A) ∪ ρ(A). Lemma 2.2 implies the exis-
tence of δ > 0 and ε > 0 such that for all bounded uniformly dissipative operators
in H with ‖B‖ 6 ε it follows that the intersection of C− and the discs around a′

and b′ with radius δ belong to the resolvent set of the operator[
A0 0
0 A1

]
+

[
B0 0
0 B1

]
.

Denote by Γδ′ the open set in C which has as its boundary the curve γδ′ , that is
Γδ′ = {λ ∈ C : a′ < Re λ < b′,−δ′ < Im λ < 0}. It follows from IV. Section 3.1 of
[22] that there is an ε1 > 0, ε1 < min{ε, ε0}, such that for all uniformly dissipative
operators B acting in H with ‖B‖ < ε1 we have

(2.5) σ(A0 + B0) ⊂ {λ ∈ C : dist (λ, [a′, b′]) < min{δ, δ′}}
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and

(2.6) Γδ′ ⊂ ρ(A1 + B1).

Then Lemma 2.1, Proposition 2.3 and (2.5) imply that for all uniformly dissipative
operators B with ‖B‖ < ε1

(2.7) σ(A0 + B0) ∩C− ⊂ Γδ′ .

Now we assume that λ0 belongs to σπ+(A). Then (E((a′, b′)), [., .]) is a Pon-
tryagin space with a finite rank of negativity and, if λ0 ∈ σ++(A), it is even a
Hilbert space (cf. Theorems 23 and 24 of [3]). An application of Theorem 11.6 in
[16] implies that σ(A0 + B0) ∩ C− consists of at most finitely many eigenvalues
and that

M− := span {Lλ(A0 + B0) : λ ∈ σ(A0 + B0) ∩C−}
is a maximal uniformly negative subspace of E((a′, b′))H invariant under A0 +
B0. Therefore

dimM− = κ−(E((a′, b′))H)

and relations (2.7) and (2.6) imply that the operator A + B has the properties
stated in assertions (i) and (ii) if B01 = B10 = 0. If B01 6= 0 or B10 6= 0 we
consider the operators [

A0 0
0 A1

]
+

[
B0 tB01

tB10 B1

]
,

where t runs through [0, 1]. Then by IV. Section 3.4 of [22], Lemma 1.3 and Propo-
sition 2.3 the operator A + B has the properties stated in assertions (i) and (ii).

It remains to consider the case λ0 /∈ σπ+(A). Assume that the range of the
Riesz–Dunford projector P− corresponding to A0 + B0 and γδ′ is of finite dimen-
sion. Then, by Lemma 1.3, it is a uniformly negative subspace of E((a′, b′))H.
Moreover the range of the Riesz–Dunford projector P+ corresponding to A0 + B0
and σ(A0 + B0) ∩C+ is a nonnegative subspace (cf. [2]) and we have

E((a′, b′))H = P+E((a′, b′))H[
.
+]P−E((a′, b′))H.

We claim that P−E((a′, b′))H is a maximal uniformly negative subspace of the
Krein space E((a′, b′))H. Indeed, assume that there exists a maximal uniformly
negative subspace M̃− with P−E((a′, b′))H ⊂ M̃− and there exists some x,
x ∈ M̃− \ P−E((a′, b′))H. Then [x − P−x, x − P−x] < 0 holds. But this is a
contradiction to x− P−x = P+x ∈ P+E((a′, b′))H.

Therefore the Krein space E((a′, b′))H has a finite dimensional maximal uni-
formly negative subspace, hence E((a′, b′))H is a Pontryagin space. But this is
impossible as λ0 /∈ σπ+(A) (cf. Theorem 24 of [3]) and the operator A + B has the
properties stated in assertions (iii) if B01 = B10 = 0. If B01 6= 0 or B10 6= 0 then
a similar reasoning as above shows that assertion (iii) holds and Theorem 2.4 is
proved.
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COROLLARY 2.5. Let λ0, λ0 ∈ (a, b), belongs to σπ+(A) \ σ++(A) and choose
H0 as in Definition 1.2 such that H0 is of minimal codimension. Assume that λ0 is not
an accumulation point of the non-real spectrum of A and that (2.1) holds. Let a′, b′, ε1
and M− be as in Theorem 2.4. Then we have for every uniformly dissipative operator B
acting in H with ‖B‖ < ε1

(2.8) codimH0 6 dimM− = κ−(E((a′, b′))H).

Moreover, let

ker (A− λ0) = N0[
.
+]N+[

.
+]N− and Lλ0(A) = L0[

.
+]L+[

.
+]L−

be fundamental decompositions of ker (A− λ0) and Lλ0(A), respectively, that is, N0 =
ker (A− λ0)∩ (ker (A− λ0))[⊥], L0 = Lλ0(A)∩ (Lλ0(A))[⊥], N+, L+ are positive
subspaces of E((a′, b′))H and N−, L− are negative subspace of E((a′, b′))H. We have
equality in (2.8), that is,

codimH0 = dimM− = κ−(E((a′, b′))H)

if and only if
dimN0 + dimN− = dimL0 + dimL−.

In this case we have

dimN0+dimN−=dimL0+dimL−=codimH0 =dimM−=κ−(E((a′, b′))H).

Proof. We choose a fundamental decomposition for the Pontryagin space
E((a′, b′))H, E((a′, b′))H = Π+ [

.
+] Π−. Then Π+ [

.
+] (I − E((a′, b′)))H is of fi-

nite codimension in H and an easy calculation shows that (2.8) holds. The re-
maining statements of Corollary 2.5 follows from Theorem 3.6 of [7].

We refer to [7] for an example such that the inequality in (2.8) is strict.

3. UNIFORMLY BI-EXPANSIVE PERTURBATION OF UNITARY OPERATORS IN KREIN SPACES

A bounded operator U in a Krein space (H, [., .]) is called unitary if U is
surjective and [Ux, Ux] = [x, x] for all x ∈ H.

A bounded operator V is said to be bi-expansive if both V and V+ are non-
contractive with respect to [., .], that is,

[Vx, Vx] > [x, x] and [V+x, V+x] > [x, x] for all x ∈ H.

The operator V is called uniformly bi-expansive if the operator V is bi-
expansive and there is an αV > 0 such that [Vx, Vx] > [x, x] + αV‖x‖2. If V
is uniformly bi-expansive then also V+ is uniformly bi-expansive and αV+ = αV .

For every uniformly bi-expansive operator V we have

(3.1) T ⊂ ρ(V),
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where T denote the unit circle T = {λ : |λ| = 1} (see, e.g., Theorem 2.4.31 of [2]).
The operator

(3.2) A := i(V + 1)(V − 1)−1

is called the Cayley–Neumann transformation of V. If V is a uniformly bi-ex-
pansive operator then we have for x ∈ H with y := (V − 1)x,

Im [Ay, y] = Re ([(V + I)x, (V − I)x]) = Re ([Vx, Vx] + [x, Vx]− [Vx, x]− [x, x])

= [Vx, Vx]− [x, x]

and A is uniformly dissipative.
It is well-known that the classes of selfadjoint and unitary operators (as

well as the classes of bounded uniformly dissipative operators and uniformly
bi-expansive operators) are closely connected via Cayley–Neumann transforma-
tion. It is a natural idea to prove similar results as in the previous sections us-
ing Cayley–Neumann transformation for bi-expansive perturbations of unitary
operators. But this does not work in general since the image of an unbounded
uniformly dissipative operator A + B need not to be a uniformly bi-expansive
operator. Because of this in this section we follow the same ideas as in the pre-
vious sections replacing dissipative perturbations of selfadjoint operators by bi-
expansive perturbations of unitary operators.

The following lemma is an analog of Lemma 1.3. Let D denotes the open
unit disc,

D := {λ ∈ C : |λ| < 1}.

LEMMA 3.1. Let V be a uniformly bi-expansive operator in a Krein space (H, [., .]).
Then

σap(V) ∩D ⊂ σ−−(V);

If λ ∈ σp(V) ∩D then for each x ∈ Lλ(V), x 6= 0, it follows [x, x] < 0.

Proof. Let λ0 ∈ σap(V) ∩D. Let (xn) be a sequence with ‖xn‖ = 1, n ∈ N,
and (V − λ0)xn → 0 as n → ∞. Since

[Vxn, Vxn]− |λ0|2[xn, xn] = [(V − λ0)xn, Vxn] + λ0[xn, (V − λ0)xn],

we have

0 = lim inf
n→∞

[Vxn, Vxn]− |λ0|2 lim inf
n→∞

[xn, xn] > (1− |λ0|2) lim inf
n→∞

[xn, xn] + αV .

Hence
lim inf

n→∞
[xn, xn] 6 − αv

1− |λ0|2
< 0.

Now we show that Lλ(V) is a negative subspace, i.e. [x, x] < 0 for all non-
zero x ∈ Lλ(V). By (3.1), 1 ∈ ρ(V) and we consider the Cayley–Neumann
transformation A of V, cf. (3.2). The operator A is uniformly dissipative. Since
Lλ(V) = Lµ(A) for µ = i λ+1

λ−1 , the statement follows from Lemma 1.3.
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LEMMA 3.2. Let U be a unitary operator and let µ ∈ σ++(U). Then |µ| = 1 and
there exist a δ > 0 and an ε > 0 such that for all uniformly bi-expansive operators V
with ‖I −V‖ 6 ε it follows that the intersection of D and the disc around µ with radius
δ belongs to ρ(UV).

Proof. First we show that |µ| = 1. Assume the contrary: |µ| 6= 1. Let ‖zn‖ =
1, n ∈ N, and (U − µ)zn → 0 as n → ∞. Since

(1− |µ|2)[zn, zn] = [Uzn, Uzn]− |µ|2[zn, zn] = [(U−µ)zn, Uzn] + µ[zn, (U−µ)zn]

we have lim
n→∞

[zn, zn] = 0 which contradicts to µ ∈ σ++(U).

Assume now that the second assertion of the lemma is not true. Then there
exists a sequence of uniformly bi-expansive operators Vn in H with Vn → I as
n → ∞ and a sequence (λn) ⊂ σ(UVn) ∩ D which converges to µ ∈ σ++(U).
In view of (3.1) it is no restriction if we assume that λn ∈ σap(UVn), n ∈ N. By
Lemma 3.1 there exists a sequence (xn) with ‖xn‖ = 1, [xn, xn] < 0 and ‖(UVn −
λn)xn‖ 6 1

n . Then lim inf
n→∞

[xn, xn] 6 0 and as n → ∞ we have

(U − µ)xn = (UVn − λn)xn + (λn − µ)xn −U(Vn − I)xn → 0

which contradicts µ ∈ σ++(U).

Assume
ϕ, ψ ∈ [0, 2π), ϕ < ψ and δ ∈ (0, 1).

Denote by ωϕ,ψ the open arc of the unit circle given by

ωϕ,ψ := {λ = eiη : ϕ < η < ψ},

by Ωϕ,ψ,δ the part of the sector generated by ωϕ,ψ,

Ωϕ,ψ,δ := {λ = reiη : ϕ 6 η 6 ψ, 1− δ 6 r < 1},

and by γϕ,ψ,δ the boundary of Ωϕ,ψ,δ.

PROPOSITION 3.3. Let U be a unitary operator. Assume λ0 = eiη0 , λ0 ∈ ωϕ,ψ,
is not an accumulation point of σ(U) \T and that

(3.3) ωϕ,ψ \ {λ0} ⊂ σ++(U) ∪ ρ(U).

Let
ϕ < ϕ′ < η0 < ψ′ < ψ.

Then there exists a δ′ > 0 such that Ωϕ′ ,ψ′ ,δ′ ⊂ ρ(U).
Moreover, there exists an ε0 > 0 such that for all uniformly bi-expansive operators

V with ‖I −V‖ < ε0 we have γϕ′ ,ψ′ ,δ′ ⊂ ρ(UV).

Proof. We omit the proof since it repeats similar arguments as we used in
the proof of Proposition 2.3 .
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A unitary operator in a Krein space satisfying (3.3) has a local spectral func-
tion E defined on subarcs of ωϕ,ψ with endpoints not equal to eiϕ, eiψ or λ0, cf.
[21]. In particular there exists the spectral projection E(ωϕ′ ,ψ′) corresponding to
the subarc ωϕ′ ,ψ′ with ϕ < ϕ′ < η0 < ψ′ < ψ.

THEOREM 3.4. Let U be a unitary operator in the Krein space H. Assume that
λ0 = eiη0 , λ0 ∈ ωϕ,ψ, is not an accumulation point of σ(U) \T and that

ωϕ,ψ \ {λ0} ⊂ σ++(U) ∪ ρ(U).

Let a′, b′, δ′, ε0 and γϕ′ ,ψ′ ,δ′ be as in Proposition 3.3. Then the following assertions are
valid.

(i) The point λ0 belongs to σ++(U)∪ ρ(U) if and only if there exists an ε1 > 0 such
that for every uniformly bi-expansive operator V acting in H with ‖I − V‖ < ε1 the
operator UV has no spectrum inside the curve γϕ′ ,ψ′ ,δ′ .

(ii) The point λ0 belongs to σπ+(U) if and only if there exists an ε1 > 0 such that for
every uniformly bi-expansive operator V acting in H with ‖I − V‖ < ε1 the spectrum
of UV inside the curve γϕ′ ,ψ′ ,δ′ consists of at most finitely many normal eigenvalues
λ1, λ2, . . . , λk. Then

M− := span {Lλj(UV) : 1 6 j 6 k}

is of finite dimension and moreover, in this case, the dimension of M− is equal to the
rank of negativity κ−(E(ωϕ′ ,ψ′)H) of the Pontryagin space E(ωϕ′ ,ψ′)H, that is

dimM− = κ−(E(ωϕ′ ,ψ′)H).

(iii) The point λ0 does not belong to σπ+(U)∪ ρ(U) if and only if there exists an ε1 >
0 such that for every uniformly bi-expansive operator V acting in H with ‖I −V‖ < ε1
the range of the Riesz–Dunford projector corresponding to UV and γϕ′ ,ψ′ ,δ′ is of infinite
dimension.

Proof. Similar to the proof of Theorem 2.4.

We left it to the reader to formulate and to prove statements like Corol-
lary 2.5 for operators UV, where U is a unitary and V is a bi-expansive operator.

4. AN APPLICATION: SECOND ORDER SYSTEMS

A linear equation describing transverse motions of a thin beam can be writ-
ten in the form

∂2u
∂t2 +

∂2

∂r2

[∂2u
∂r2 + α

∂3u
∂r2∂t

]
= 0, r ∈ (0, 1), t > 0,

where u(r, t) is the transverse displacement of the beam at time t and position r
and α is a constant. The existence of solutions depends also on boundary and ini-
tial conditions. Identifying the function u(·, t) with an element z(t) ∈ L2(0, 1) by
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z(t)(r) = u(r, t) we obtain from the partial differential equation above a second
order equation in L2(0, 1) of the form

(4.1) z̈(t) + A0z(t) + Dż(t) = 0,

where A0 = ∂4

∂r4 , D = αA0 acting in L2(0, 1) with appropriate domains encoding
the boundary conditions under consideration.

In the following we study second order equations of type (4.1) in an ab-
stract Hilbert space H where the operator A0 is an unbounded, uniformly pos-
itive operator on H and the operator D : H1/2 → H−1/2 is a bounded oper-
ator such that A−1/2

0 DA−1/2
0 is a bounded non-negative operator in H. Here

H1/2 is the domain of the positive square root of A0 equipped with the norm
‖ · ‖H1/2 := ‖A1/2

0 · ‖H and H−1/2 is the completion of H with respect to the
norm ‖z‖H−1/2 = ‖A−1/2

0 z‖H . Thus A0 restricts to a bounded operator A0 :
H1/2 → H−1/2.

The second order equation (4.1) is equivalent to the standard first order
equation ẋ(t) = Ax(t) where A : D(A) ⊂ H1/2 × H → H1/2 × H is given by

A =
[

0 I
−A0 −D

]
, D(A) = {( z

w ) ∈ H1/2 × H1/2 : A0z + Dw ∈ H}.

This operator matrix has been studied in the literature for more than 20 years. In-
terest in this particular model is motivated by various problems such as stabiliza-
tion, see for example [9], [29], [30], [32], solvability of Riccati equations [15] and
minimum-phase property [17]. It is well-known thatA generates a C0-semigroup
of contractions in H1/2 × H and thus the spectrum of A is located in the closed
left half plane. This goes back to [4], [28], see also [5], [11]. Moreover, 0 ∈ ρ(A),
see [33].

We will apply our results from Section 2 to the operator matrix A. For this
we introduce an inner product on H1/2 × H via[(

x1
y1

)
,
(

x2
y2

)]
= (x1, x2)H1/2 − (y1, y2) for

(
x1
y1

)
,
(

x2
y2

)
∈ H1/2 × H.

It is well-known (e.g. [18], [34]) that A is selfadjoint operator in the Krein space
(H1/2 × H, [., .]), and, hence, R ⊂ σap(A) ∪ ρ(A).

We denote by EA0 the spectral function of the selfadjoint operator A0 in the
Hilbert space H.

PROPOSITION 4.1. Assume, in addition, that the operator A−1
0 is compact in H.

Then

(4.2) σess(A) =
{

λ ∈ C\{0} :
1
λ
∈ σess(−A−1

0 D)
}

,

where A−1
0 D is considered as an operator acting in H1/2. Let λ0 ∈ σ(A)∩R and denote

by κ the number of eigenvalues of A0 below or equal to λ2
0 (counted according to their
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multiplicities), that is
κ = dim EA0((0, λ2

0])H.

Moreover, we assume

(4.3) ‖A1/2
0 x‖ 6= |λ0|‖x‖ for all

( x
λ0x

)
∈ ker(A− λ0) with x 6= 0.

Then there exists an interval (a, b), λ0 ∈ (a, b), such that A satisfies (2.3) and, with
δ′ and γδ′ as in Proposition 2.3, there exists an ε1 > 0 such that for every uniformly
dissipative operator B acting in H1/2 × H with ‖B‖ < ε1 the spectrum of A+ B inside
γδ′ consists of at most finitely many normal eigenvalues with

2κ > dim span {Lλ(A+ B) : λ inside γδ′}.

Proof. Relation (4.2) is proved in Theorem 4.1 of [18]. The space EA0((0, λ2
0])H

is finite dimensional and a subset of D(A0). We set

H0 := (EA0((0, λ2
0])H × EA0((0, λ2

0])H)⊥,

where ⊥ denotes the orthogonal complement in H1/2 × H with respect to the
usual Hilbert scalar product in H1/2 × H. Then

(4.4) codimH0 = 2κ.

For every sequence
(( xn

yn

))
in D(A) ∩H0 with∥∥( xn

yn

)∥∥2
H1/2×H = 1 and lim

n→∞

∥∥(A− λ0)
( xn

yn

)∥∥
H1/2×H = 0

we have
‖yn − λ0xn‖H1/2 → 0 as n → ∞.

This gives

lim inf
n→∞

[( xn
yn

)
,
( xn

yn

)]
= lim inf

n→∞
((xn, xn)H1/2 − (yn, yn))

= lim inf
n→∞

((A0xn, xn)− λ2
0(xn, xn)) > 0,

hence λ0 ∈ σπ+(A).
By Corollary 5.2 of [18] the non-real spectrum ofA does not accumulate to a

real point. Then, together with Theorem 18 of [3] we find real numbers such that
A satisfies (2.3). Moreover, for every vector

( x
λ0x

)
∈ ker(A− λ0) with x 6= 0 we

deduce from (4.3)[(
xn

λ0xn

)
,
(

xn
λ0xn

)]
= ‖xn‖2

H1/2
− |λ0|2‖xn‖2 6= 0,

that is, there exists no Jordan chain of A corresponding to λ0 of length greater
than one. Therefore ker(A− λ0) = Lλ0(A) and, by Theorem 2.4, Corollary 2.5
and (4.3), we obtain

dim span {Lλ(A+ B) : λ inside γδ′} 6 2κ.
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REMARK 4.2. Choose λ0, ε1 as in Proposition 4.1 and let us assume that the
uniformly dissipative operator B in Proposition 4.1 is of the following form with
respect to H1/2 × H

B =
[

β0 I 0
0 B1

]
,

where β0, |β0| 6 ε1, is a complex number with positive imaginary part and −B1
is a bounded, uniformly dissipative operator in the Hilbert H with norm less or
equal to ε1. Then the first order equation ẋ(t) = (A+ B)x(t) is equivalent to the
second order equation

z̈(t) + (D− β0 I − B1)ż(t) + (A0 − β0D + β0B1)z(t) = 0.
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