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ABSTRACT. Given a quasi-special endomorphism ρ of a C∗-algebra A with
nontrivial center, we study an extension problem for automorphisms ofA to a
minimal cross-product B ofA by ρ. Exploiting some aspects of the underlying
generalized Doplicher–Roberts duality theory based on Pimsner algebras, an
obstruction to the existence of such extensions is found and described in terms
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1. INTRODUCTION

Symmetries of C∗-algebras are provided by automorphisms. Thus the struc-
ture of the group of automorphisms of a C∗-algebra often reveals interesting in-
formations about the algebra itself. If two C∗-algebras are linked by some nat-
ural map, e.g. a homomorphism, then one can try to “transfer” automorphisms
back and forth using this map. In this paper we deal with a typical extension
problem for automorphisms that loosely speaking takes the following form. (We
consider only the case of a single automorphism, but the generalization to the
case of an action of, say, a locally compact group is straightforward.) Suppose
that A is a C∗-subalgebra of the C∗-algebra B, and β is an outer automorphism of
A. Then a simple question is whether β admits an extension to an automorphism
of B. This question is appealing as it is both natural and useful in a number of
situations. Under more specific circumstances, it may even become important
to require the extension to satisfy additional properties, such as to commute with
another given action of a locally compact group α on B. In operator algebras, such
kind of problems have already appeared in this or similar formulations (also in-
volving endomorphisms or anti-automorphisms) in several contexts, but we will
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not attempt to give a comprehensive list of all the related literature. For the ap-
plications we have in mind, we only refer the reader to [8], [3], [4] and references
therein. As we explain below, the C∗-algebras we are interested in are suggested
by the Doplicher–Roberts duality theory.

Motivated by structural problems in quantum field theory, Doplicher and
Roberts have deeply investigated an abstract duality theory for compact groups
involving “extensions of C∗-algebras by tensor C∗-categories” which, in more
concrete terms, take the form of cross-products by certain categories whose ob-
jects are semigroups of unital endomorphisms [8]. More recently, some steps have
been taken towards a generalization of their work in which the relevant tensor
C∗-categories are not required to have the property that the self-intertwiners of
the monoidal unit reduce to the complex scalars C, thus aiming at a more general
duality theory for “loop group-like” objects [16], [17], [18]. A very important in-
gredient of the DR-analysis was provided by the Cuntz algebras, as C∗-algebras
generated by a Hilbert space. In a similar fashion, in the new setup a similar
role is now taken by the Pimsner algebras, as C∗-algebras generated by a Hilbert
bimodule [14].

In this paper we start with a unital C∗-algebra A with nontrivial center
equipped with an endomorphism ρ that satisfies a weakened condition of permu-
tation symmetry and in addition is quasi-special. Such endomorphisms naturally
arise in the framework of (generalized) DR duality. Due to the wide generality
of the situation at hand the existence of a minimal cross-product of A by ρ is
not automatically guaranteed, but it is in several particular situations, as the one
studied by H. Baumgärtel and F. Lledó [2]. When it is possible to construct such a
cross-product (the “field algebra”), which then clearly contains A, our extension
problem applies. The automorphisms that we wish to extend are those that are
somewhat “compatible” with the given data. Making use of the cross-product
structure and appealing to some aspects of the DR duality theory we reduce the
problem to a more elementary one living in a Pimsner algebra. We then tackle
the problem of extending certain automorphisms of a fixed point subalgebra of
the Pimsner algebra under a group bundle action to the whole algebra, possibly
in equivariant way, and here the obstruction pops up. It should be pointed out
that this phenomenon is genuinely new as the obstruction vanishes in the more
traditional setting based on Cuntz algebras.

In order to keep things as simple as possible, in this paper we have consid-
ered only the case of free bimodules as some salient features of the underlying
structure already show up in this situation, although in the future it would cer-
tainly make sense to consider more general bimodules. Also, we have focused
our attention on the so-called equivariant automorphisms and not more general
families of automorphisms, as a proper treatment in the latter case would prob-
ably require to replace the cross-product by a single endomorphism with more
general types of cross-products that are not yet available. Finally, we stress that
one might also try to elucidate whenever possible some additional properties of
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group bundles which might play a role in this context (e.g., a natural guess would
be a “fibered version” of quasi-completeness, cf. [4]).

We conclude with a few words on the adopted terminology and conven-
tions. In this paper all the C∗-algebras will be unital. Also, automorphism (re-
spectively endomorphism, homomorphism) will stand for ∗-automorphism (re-
spectively unital ∗-endomorphism, unital ∗-homomorphism).

2. BACKGROUND

Let d ∈ N, d > 2. We denote by Od the Cuntz algebra generated by a d-
dimensional Hilbert space H, and by (Hr, Hs) the vector space of linear operators
from the tensor powers Hr into Hs, r, s ∈ N (for r = 0, we define ι := H0 := C). If
K ⊆ U(d) is any closed subgroup, we define

(Hr, Hs)K := {t ∈ (Hr, Hs) : gst = tgr, g ∈ K}

where gr :=
⊗r g ∈ (Hr, Hr), g ∈ K. We denote by K̂ the category with objects

Hr, r ∈ N, and arrows (Hr, Hs)K. It is well-known that K̂ is a symmetric tensor
C∗-category, with symmetry induced by the flip operator θ ∈ (H2, H2)K.

We also consider the well-known action

(2.1) U(d) → autOd, u 7→ û : û(t) := ustu∗r , t ∈ (Hr, Hs).

Let us denote by OK ⊆ Od the C∗-algebra generated by the set {(Hr, Hs)K :
r, s ∈ N}. Then it is easily verified that OK is the fixed-point algebra of Od with
respect to the action (2.1) restricted to elements of K; moreover, K is isomorphic
to the stabilizer of OK in Od (see Corollary 3.3 in [7]).

Let {ψi}d
i=1 be an orthonormal basis of H. If we consider the canonical en-

domorphism

σd(t) :=
d

∑
i=1

ψitψ∗i , t ∈ Od,

then we find that σd restricts to an endomorphism σK ∈ endOK.
For future reference, we introduce the notation

autσK ,θOK := {α ∈ autOK : α ◦ σK = σK ◦ α, α(θ) = θ}.

Let us now consider a normalized vector generating the totally antisym-
metric tensor power

∧d H, say R. Then R appears in the Cuntz algebra Od as an
isometry R ∈ (ι, Hd) = (ι, σd

d ), with support the totally antisymmetric projection
Pθ,d := ∑

p
sign(p)θ(p), and satisfying the special conjugate equation

(2.2) R∗σd(R) = (−1)d−1d−11

(see Equation 4.6 in [8]). Since gdR = det gR, g ∈ U(d), we find that if K ⊆ SU(d)
then R ∈ OK.
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With K ⊆ U(d) as above, we define NK as the normalizer of K in U(d),
and QK as the quotient NK/K; we also denote by p : NK → QK the natural
projection. It is clear that NK and QK are compact Lie groups.

We denote by
aut(Od,OK)

the group of automorphisms of Od leaving OK globally stable, and coinciding
with the identity on OU(d) ⊆ OK. By Theorem 34 in [18], when K ⊆ SU(d) the
action (2.1) induces an isomorphism QK → autσK ,θOK, y 7→ ŷ.

REMARK 2.1. Here we somehow provide a link to the situation discussed
in [4]. An element ŷ ∈ autσK ,θOK extends to a K-equivariant automorphisms in
aut(Od,OK) if for some (and thus, for all) u ∈ p−1(y) ⊂ NK the corresponding
automorphism of K, αu := u · u∗, is inner. In fact, in that case one readily finds that
u = g0u0 where g0 ∈ K and u0 ∈ CK, the centralizer of K in U(d). In particular,
if the only automorphisms of K that are unitarily implemented in the defining
representation U of K on H are the inner ones, every element in autσK ,θOK lifts to
a K-equivariant automorphisms in aut(Od,OK). (To see this, just notice that for
u ∈ NK one has ug = (ugu∗)u for all g ∈ K, that is u ∈ (U, U ◦ αu).)

Perhaps the simplest example is provided by K = SU(d) with d = 2; for it
is easy to see that the only equivariant extensions are given by the gauge auto-
morphisms of O2. In turn, the same conclusion holds true for the fundamental
representation of SU(d), with d > 2 and, more generally, for any closed subgroup
K ⊆ SU(d) that is quasi-complete and acts irreducibly on H.

Now, let X be a compact space. We consider the rank d, free Hilbert C(X)-
bimodule E := C(X)⊗ H, endowed with the natural left and right actions; it is
clear that we may regard E as the space of continuous maps from X into H. The
group of unitary C(X)-module operators of E is given by the set

C(X, U(d))

of continuous maps from X into the unitary group U(d), endowed with the topol-
ogy of uniform convergence.

For every r, s ∈ N, we denote by (Er, Es) the Banach C(X)-bimodule of
operators from the internal tensor power Er into Es (we also set E0 := C(X)). It
is clear that

(Er, Es) ' C(X)⊗ (Hr, Hs).

If G is a closed subgroup of the unitary group UE ≡ C(X, U(d)), then in the same
way as above we can consider the Banach C(X)-bimodules

(Er, Es)G := {t ∈ (Er, Es) : gst = tgr, g ∈ G}

and denote by ĜE the tensor C∗-category with objects Er, r ∈ N, and arrows
(Er, Es)G. If we identify θ ∈ (H2, H2) with the corresponding constant map in
C(X)⊗ (H2, H2), then we find that ĜE is symmetric.
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We denote by OG the C∗-subalgebra of the Cuntz–Pimsner algebra OE '
C(X)⊗Od generated by the spaces {(Er, Es)G : r, s ∈ N}. The canonical endo-
morphism σd ∈ endOd naturally extends to give an endomorphism

σE := idX ⊗ σd ∈ endOE

(where idX ∈ autC(X) denotes the identity automorphism); moreover, σE re-
stricts in a natural way to an endomorphism

σG ∈ endOG.

The C∗-dynamical systems (OE, σE), (OG, σG) have been studied in a more gen-
eral setting in [16]. There is an action

(2.3) UE → autOE, u 7→ û : û(t) := ustu∗r , t ∈ (Er, Es).

If we restrict (2.3) to elements of G, then by construction we find that OG is con-
tained in the fixed-point algebra of OE with respect to this restricted action.

REMARK 2.2. In general, the space (Er, Es)G ⊂ C(X)⊗ (Hr, Hs) is not a free
C(X)-bimodule. For example, in the case in which G is a locally compact group,
then the Haar measure induces a projection

PG : C(X)⊗ (Hr, Hs) → (Er, Es)G,

and this implies that in general (Er, Es)G is projective (and not free). We give
an explicit example. Let us consider the 2-sphere S2, and let E → S2 denote
the (complexified) tangent bundle. It is well-known that E is nontrivial (i.e., the
module of sections of E is not a free C(S2)-module); on the other side, if Vn :=
S2 ×Cn, n ∈ N, denotes the trivial rank n vector bundle, then we find E ⊕ V1 '
V3 (see II.1.19 in [10]). Let us now denote by T the torus, acting in the natural
way on V1. If we consider the group G := 1⊕ T, where 1 is the identity on E ,
then there is a natural action

G× (E ⊕V1) → E ⊕V1,

such that the fixed-point vector bundle is E . By passing to the modules of sec-
tions, this means that if we define M := C(S2)⊗C3, then we obtain that there is
a G-action

G× M → M
such that (ι, M)G is not free as a C(S2)-module (in fact, (ι, M)G is isomorphic to
the module of sections of E ).

It is clear that OG is a continuous field of C∗-algebras with base space X in
the sense of Section 10 in [5]. The above considerations imply that, in general,
OG is not trivial as a continuous field of C∗-algebras, anyway there is a C(X)-
monomorphism OG ↪→ OE = C(X) ⊗ Od. We now analyze the structure of
the fibres of OG. At first, we observe that for every x ∈ X the fibre (OG)x :=
OG/(Cx(X)OG) is naturally embedded in Od. In order to see this, we define

Gx := {u ∈ U(d) : û(t) = t ∀t ∈ (OG)x}.
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Clearly, Gx is a closed subgroup of U(d). Then by Corollary 4.6 in [16] one obtains
the following result.

LEMMA 2.3. Let G ⊆ C(X, SU(d)) be a closed group. For every x ∈ X, one has
(OG)x ' OGx .

We now define the spectral bundle

G := {(x, y) : x ∈ X, y ∈ Gx} ⊆ X×U(d),

endowed with the obvious topology as a subspace of X × U(d). Moreover, we
introduce the space of sections of G

SG := {g ∈ C(X, U(d)) : g(x) ∈ Gx, ∀x ∈ X}.

Note that G is a bundle in the sense of Definition 1.1 in [9], having fibres the
compact groups Gx, x ∈ X, and in general it is not locally trivial (see Example 4.5
in [16]). By Lemma 4.10 in [16], we find

LEMMA 2.4. For each closed group G ⊆ C(X, U(d)) there is an inclusion G ⊆
SG; moreover, (Er, Es)G = (Er, Es)SG, r, s ∈ N, and OG = OSG.

REMARK 2.5. Since SG may be recovered as the stabilizer in OE of OG =
OSG (see Proposition 4.8 in [16]), we find that SG = S(SG) (in fact, OSG =
OS(SG)).

Let NGx denote the normalizer of Gx in U(d). We define

NG := {(x, n) : x ∈ X, n ∈ NGx} ⊆ X×U(d)

endowed with the natural topology as a subspace of X ×U(d), and the quotient
space (with the associated natural projection)

QG := NG/G, p : NG → QG.

It is clear that, at the level of sets, there is an identification QG = {(x, z) : x ∈
X, z ∈ NGx/Gx}. We define q : QG → X as the natural projection. For every
closed group G ⊆ C(X, U(d)), we define

NG := {u ∈ C(X, U(d)) : u(x) ∈ NGx, ∀x ∈ X}.

We also define the set of continuous sections of QG

QG := {y : X ↪→ QG : q ◦ y = idX}.

Note that there is a morphism

(2.4) p∗ : NG → QG, p∗(u) := p ◦ u.

In general, p∗ is not surjective. For a short discussion of this point in the simple
but instructive case where G = C(X, K) for some closed subgroup K ⊂ SU(d),
see the Appendix.



EXTENSION OF AUTOMORPHISMS TO C∗ -CROSSED PRODUCTS WITH NON-TRIVIAL CENTRE 423

Let us now introduce the groups

autσG ,θOG := {α ∈ autOG : α ◦ σG = σG ◦ α, α(θ) = θ},

and
aut(OE,OG) := {α ∈ autOE : α(OG) = OG, α|OUE = id}.

LEMMA 2.6. Let G ⊆ C(X, SU(d)) be a closed group. Then the following proper-
ties are satisfied:

(i) SG is isomorphic to the stabilizer of OG in OE, via the map (2.3);
(ii) there is a commutative diagram

(2.5) aut(OE,OG) ' //

π

��

NG

p∗
��

autσG ,θOG
' // QG

where the horizontal arrows are group isomorphisms.

Proof. Point (i) is a consequence of Proposition 4.8 in [16]. Concerning Point
(ii), we note that every α ∈ aut(OE,OG) is by definition a C(X)-automorphism of
OE, thus there exists a continuous family αx ∈ autOd such that πx ◦ α = αx ◦ πx,
where πx : OE → Od, x ∈ X, is the evaluation epimorphism (see Section 4 in
[13]). Since πx ◦ σE = σd ◦ πx, πx(OG) = OGx = (OG)x (see Lemma 2.3), we find
that each αx belongs to aut(Od,OGx ). By Theorem 34 in [18], we conclude that
there is ux ∈ NGx such that αx = ûx. Since the family (αx)x is continuous, and
from the fact that the correspondence (2.1) is one-to-one, we conclude that the
family (ux)x is unique and continuous. Thus, we have proved that

NG 3 u 7→ û ∈ aut(OE,OG)

defines the desired automorphism. Now, if v ∈ NGx, y ∈ Gx, we find v̂y ◦
πx(t) = û ◦πx(t) for every t ∈ OG; in other terms, NGx acts onOGx . This implies
that there is a well-defined map QG → autσG ,θOG, which assigns to the generic

element y ∈ QG the automorphism ŷ. If ŷ = ŷ′, then ŷ−1y′ is the identity on OG,
and this means that for every x ∈ X there is gx ∈ Gx such that y′(x) = y(x)gx;
of course, by definition of NG this implies y = y′. It remains to verify that {y 7→
ŷ} is surjective. But this easily follows from the fact that every β ∈ autσG ,θOG
defines a continuous family (βx)x, βx ∈ autσK ,θOK, and from the isomorphism
autσK ,θOK ' QK proved in Theorem 34 in [18].

3. CROSSED PRODUCTS

Let A be a C∗-algebra with centre Z , ρ ∈ endA an endomorphism. We
consider the tensor C∗-category ρ̂ having as objects the powers ρr, r ∈ N (for r =
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0, we consider the identity automorphism ι := ρ0), and arrows the intertwiner
spaces

(ρr, ρs) = {t ∈ A : ρs(a)t = tρr(a), a ∈ A};

the tensor product is given by{
ρr, ρs 7→ ρr+s;
t, s 7→ tρr(t′) = ρs(t′)t ∈ (ρr+r′ , ρs+s′);

t ∈ (ρr, ρs), t′ ∈ (ρr′ , ρs′). Moreover, we introduce the notation

Zρ := { f ∈ Z : ρ( f ) = f }
and denote by Xρ the spectrum of Zρ, so that we make the identification Zρ '
C(Xρ). Note that A has a natural structure of C(Xρ)-algebra in the sense of Kas-
parov (i.e., there is a nondegenerate morphism from C(Xρ) into Z). In general,
C(Xρ) does not coincide with Z .

In order to give an intuitive idea of the role of C(Xρ), we consider the case
in which ρ restricts to an automorphism of Z . In this case, by Gel’fand transform
we obtain a homeomorphism αρ of the spectrum X′ of Z , and Xρ coincides with
the orbit space X′/Z with respect to the Z-action induced by αρ.

In the sequel we elaborate on the notion of permutation symmetry (PS)
which plays an important role in the Doplicher–Roberts duality theory, see Sec-
tion 4 in [8].

DEFINITION 3.1 (Generalized permutation symmetry). An endomorphism
ρ of a C∗-algebra A has weak permutation symmetry (WPS) if there exists a unitary
representation p 7→ ε(p) of the group P∞ of finite permutations of N in A, such
that:

ε(Sp) = ρ ◦ ε(p);(3.1)

ε(p) ∈ (ρn, ρn), n ∈ N, p ∈ Pn;(3.2)

where S is the shift (Sp)(1) := 1, (Sp)(n) := 1 + p(n− 1), p ∈ P∞.
In particular,

(3.3) ε := ε(1, 1) ∈ (ρ2, ρ2),

where (r, s) ∈ Pr+s permutes the first r terms with the remaining s.
The elements of (ρr, ρs)ε, r, s ∈ N, where

(3.4) (ρr, ρs)ε := {t ∈ (ρr, ρs) : ε(s, 1)t = ρ(t)ε(r, 1)},

are called symmetry intertwiners.
An endomorphism ρ of a C∗-algebra A with centre Z has permutation quasi-

symmetry (qPS) if it has WPS and

(3.5) (ρr, ρs) = ρs(Z) · (ρr, ρs)ε = (ρr, ρs)ε · ρr(Z).

The previous equation has to be intended in the sense that e.g. the set
{ρs(z)t : z ∈ Z , t ∈ (ρr, ρs)ε} is dense in (ρr, ρs), r, s ∈ N.
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Of course, the implications PS ⇒ qPS ⇒ WPS hold. If ρ has a WPS then
ε(p) ∈ (ρn, ρn)ε for all p ∈ Pn. Also, a WPS with (ρr, ρs)ε = (ρr, ρs), r, s ∈ N is a
PS (by definition of the latter). Thus when Z is trivial qPS = PS.

REMARK 3.2. Let ρ be an endomorphism on a C∗-algebraA carrying a weak
permutation symmetry ε. We denote by ρ̂ε the C∗-subcategory of ρ̂ having arrows
(ρr, ρs)ε, r, s ∈ N. It is easily verified that ρ̂ε is a tensor subcategory of ρ̂ (see
Lemma 4.2 in [17]). In particular, by definition (ι, ι)ε = C(Xρ), so that every
(ρr, ρs)ε has a natural structure of Banach C(Xρ)-bimodule with respect to the
multiplication by elements of C(Xρ).

EXAMPLE 3.3. The endomorphisms σd ∈ endOd, σE ∈ endOE and σG ∈
endOG considered in Section 2 have PS.

EXAMPLE 3.4. The so-called canonical endomorphisms considered in [2] have
qPS. In that particular case, every (ρr, ρs)ε is a free C(Xρ)-bimodule.

Let ρ ∈ endA be an endomorphism with WPS. Then ρ has a well-defined
dimension d(ρ) ∈ N (see [16], [7]). The data of an endomorphism with WPS ε and
dimension d will be denoted by (ρ, ε, d).

We now introduce the following C∗-subalgebras of A:

Oρ := C∗{t, t ∈ (ρr, ρs), r, s ∈ N};(3.6)

Oρ,ε := C∗{t, t ∈ (ρr, ρs)ε, r, s ∈ N};(3.7)

Pρ,ε := C∗{ε(p), p ∈ P∞}.(3.8)

Then clearly Pρ,ε ⊆ Oρ,ε ⊆ Oρ ⊆ A. It is proved in [7] that there is an isomor-
phism

(3.9) i : OU(d) → Pρ,ε,

that is, in essence, just Weyl reciprocity.

REMARK 3.5. The above-defined “soft” notions of permutation symmetry
have been considered in [17], and the interest in them arises from the fact that sev-
eral properties can be proved by assuming WPS or qPS. For example, it suffices to
assume WPS to prove that Oρ,ε is a continuous bundle with fibres C∗-algebras of
the typeOK, K ⊆ SU(d) (Theorem 5.1 in [17]). Moreover, it suffices to assume qPS
to prove that the intertwiner spaces (ρr, ρs), r, s ∈ N, can be interpreted in terms
of equivariant operators between tensor powers of a suitable Hilbert Z-bimodule
(Theorem 7.4 in [19]).

We introduce the following notation. If ρ′ ∈ endA′ has WPS, say ε′, then a
C∗-algebra morphism η : A → A′ is said equivariant if

ρ′ ◦ η = η ◦ ρ, η(ε) = ε′.
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In such a case, we use the notation η : (A, ρ, ε) → (A′, ρ′, ε′). The group of
equivariant automorphisms α : (A, ρ, ε) → (A, ρ, ε) will be denoted by

(3.10) autρ,εA.

Then autρ,εA is a (not normal, in general) subgroup of autA.

REMARK 3.6. Let α ∈ autρ,εA. Then
(i) α(ρr, ρs) = (ρr, ρs), r, s ∈ N;

(ii) α(ρr, ρs)ε = (ρr, ρs)ε, r, s ∈ N;
(iii) α(ε(p)) = ε(p), p ∈ P∞.

Let A be a C∗-algebra with centre Z , and ρ an endomorphism with WPS,
say ε, with dimension d := d(ρ). A minimal crossed product of A by ρ (mCP) is
given by a C∗-algebra B with identity 1 ∈ B, satisfying the following properties:

(i) B is generated by A and a set {ψi}d
i=1 of d isometries, satisfying the Cuntz

relations

(3.11) ψ∗i ψj = δij1, ∑
i

ψiψ
∗
i = 1.

By the universality of the Cuntz algebra, this implies the existence of a monomor-
phism j : Od ↪→ B. Moreover, the following endomorphism of B is defined by

(3.12) σ(b) := ∑
i

ψibψ∗i .

(ii) σ(a) = ρ(a), a ∈ A.
(iii) A′ ∩ B = Z (minimality).
(iv) i(t) = j(t), t ∈ OU(d) ⊂ Od, where i is defined in (3.9) (symmetry).

Note that there is a naturally defined WPS (σ, ε, d), thus it makes sense to
consider the group

autσ,εB.

Let us consider the group C(Xρ, U(d)) (see Section 2). If E = C(Xρ, H) is the (free)
Hilbert C(Xρ)-bimodule introduced in Section 2, then it is clear that C(Xρ, U(d))
coincides with the unitary group of E. In the sequel, we will identify E with

span{ψi f , i = 1, . . . , d, f ∈ C(Xρ)}

so that there is an inclusion E ⊂ B. The C∗-subalgebra of B generated by E
is clearly isomorphic to OE ' C(Xρ) ⊗ Od; in this way, j extends to a C(Xρ)-
monomorphism

(3.13) j : (OE, σE, θ) ↪→ (B, σ, ε).

Further, one readily checks that j ◦ σE = σ ◦ j and j(θ) = ε.

LEMMA 3.7. With the above notation, it turns out E = (ιB , σ), where ιB ∈ autB
denotes the identity automorphism.
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Proof. By (3.12) it follows that E ⊆ (ιB , σ). For the converse, let b ∈ (ιB , σ);
then for every i = 1, . . . , d we define bi := ψ∗i b. In order to prove that b ∈ E, it
suffices to verify that bi ∈ C(Xρ). For this purpose, we note that

b′bi = b′ψ∗i b = ψ∗i σ(b′)b = bib′,

so that bi ∈ B′ ∩ B. Since B′ ∩ B ⊆ A′ ∩ B, the minimality condition implies that
bi ∈ Z . Moreover, we have

ρ(bi) = σ(bi) = ∑
k

ψkbiψ
∗
k = bi,

and this implies bi ∈ C(Xρ).

THEOREM 3.8. Let A be a C∗-algebra with centre Z , and let (ρ, ε, d) be a quasi-
symmetric endomorphism. For every mCP B, there exist:

(i) A closed subgroup G of C(Xρ, U(d)), naturally acting on the C(Xρ)-bimodule E,
given by

G := autA,ρB := {β ∈ autB : β|A = id, β ◦ σ = σ ◦ β}.

(ii) An equivariant monomorphism

(3.14) µ : (OG, σG, θ) → (A, ρ, ε).

(iii) An isomorphism (ĜE, θ) → (ρ̂ε, ε) of symmetric tensor C∗-categories.

Proof. (i) We show that G acts in a natural way on E. This will suffice to
conclude that there is an inclusion G ↪→ C(Xρ, U(d)). Let ψ ∈ E = (ιB , σ) (recall
Lemma 3.7), and β ∈ autA,ρB. For every i = 1, . . . , d, we define bi := ψ∗i β(ψ),
and note that for every a ∈ A it turns out

abi = ψ∗i ρ(a)β(ψ) = ψ∗i β(ρ(a)ψ) = ψ∗i β(ψ)a = bia.

This implies that bi ∈ A′ ∩ B = Z . Moreover, by using σ(ψ) = εψ and β(ε) = ε
we find

ρ(bi) = σ(ψ∗i )β(σ(ψ)) = ψ∗i εβ(εψ) = ψ∗i ε2β(ψ) = bi,

and this implies bi ∈ C(Xρ). Thus, β(ψ) = ∑
i

ψibi belongs to E, and this implies

that β|E restricts to a unitary operator on E. By applying (2.3), we find that there
is u ∈ C(Xρ, U(d)) such that

(3.15) β ◦ j = j ◦ û, û ∈ autOE.

This proves (i).
(ii) Let OG ⊆ OE be the C∗-algebra generated by the spaces (Er, Es)G. We

define µ := j|OG , µ : OG ↪→ B. By (3.13), µ is equivariant:

µ : (OG, σG, θ) ↪→ (B, σ, ε).

Moreover, by applying (3.15) we find µ(Er, Es)G = µ(σr
G, σs

G) ⊆ (ρr, ρs)ε, r, s ∈ N.
In order to prove the opposite inclusion, let us define

(3.16) ψI := ψi1 · · ·ψir ∈ Er = j(ι, σr).
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It is clear that

ψ∗I ψJ = δI J1, ∑
I

ψIψ
∗
I = 1.

If t ∈ (ρr, ρs)ε, then we find t = ∑
I J

ψI tI Jψ
∗
J , where tI J := ψ∗I tψJ . Since σ|A = ρ, we

find

tI J a = ψ∗I tρr(a)ψJ = ψ∗I ρs(a)tψJ = atI J ,

thus tI J ∈ A′ ∩ B = Z . Moreover, since Er ⊆ (ιB , σr)ε, by applying equation (3.4)
we find

ρ(tI J) = ψ∗I ε(1, s)ε(s, 1)tε(1, r)ε(r, 1)ψJ = tI J .

This implies tI J ∈ C(Xρ), thus t ∈ j(Er, Es). Moreover, (3.15) implies that û ◦
j−1(t) = j−1(t) for every u ∈ G. Thus, we conclude that (ρr, ρs)ε = j(Er, Es)G,
r, s ∈ N.

(iii) follows trivially from (ii).

REMARK 3.9. In particular, it follows from the last proof that µ(OG) = Oρ,ε.

REMARK 3.10. If Z 6= C1, then existence and unicity of (B, G) are not en-
sured. For a class of examples of this phenomenon, see Section 6.2 in [19]. In the
particular case studied in [2], then (B, G) exists and is unique, with the additional
property that G is of the type G = C(Xρ, K) for some K ⊆ U(d). For a proof of
this result, see Theorem 7.4 in [19].

Let (ρ, ε, d) be an endomorphism with WPS (respectively qPS, PS). We say
that ρ is weakly special (respectively quasi special, special) if there exists an isometry
S ∈ (ι, ρd) such that

(3.17) RR∗ = Pε,d := ∑
p∈Pd

sign(p)ε(p), R∗ρ(R) = (−1)d−1d−11.

The data of a weakly special endomorphism will be denoted by (ρ, ε, d, R).

EXAMPLE 3.11. If K ⊆ SU(d), G ⊆ C(X, SU(d)), then the endomorphisms
considered in Section 2 are special (see (2.2)). Special endomorphisms in C∗-
algebras with trivial centre have been studied in [8]. Moreover, if a canonical
endomorphism in the sense of [2] satisfies (3.17), then it is quasi-special.

PROPOSITION 3.12. Let (ρ, ε, d, R) be a canonical endomorphism of a C∗-algebra
A (in the sense of [2]) satisfying (3.17). Then there exists a mCP B of A by ρ, with
G = C(X, K) for some closed subgroup K ⊆ SU(d).

Proof. See Theorem 7.4 in [19].
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4. EXTENSIONS

Let (ρ, ε, d, S) be a quasi-special endomorphism of a C∗-algebra A. If E is
the free, rank d Hilbert C(Xρ)-bimodule, then we refer the reader to the notations
NG, QG introduced in Section 2 for every closed group G ⊆ C(Xρ, U(d)).

Let B be a mCP ofA by ρ. We recall that B is endowed with a weakly special
endomorphism (σ, ε, d, S) extending ρ, and denote by

autσ,ε(B;A)

the group of automorphisms of B commuting with σ, leaving ε fixed, andA glob-
ally stable.

Now, by (3.13) and Theorem 3.8, there is a commutative diagram

(4.1) A ⊂ // B

OG

µ

OO

⊂ // OE

j

OO

The above diagram, together with the condition ρ(a) = σ(a), a ∈ A (and (3.12)),
implies that B may be regarded as the crossed product Aoµ Ĝ in the sense of
Section 3 in [17]. The universality property of the crossed product implies that
if B′ is a C∗-algebra satisfying (4.1) and (3.12) with given C∗-monomorphisms
µ′ : OG → A, j′ : OE → B′, then there is an isomorphism

(4.2) β : B → B′,
such that β ◦ j = j′ ◦ β (this also implies β ◦ µ = µ′ ◦ β); moreover, β turns out to
be also an A-module map, i.e. β(A) = A. The previous universal property is the
key ingredient of the next result.

THEOREM 4.1. Let A be a C∗-algebra, (ρ, ε, d, S) a quasi-special endomorphism,
and B a mCP of A by ρ with a group G ⊆ C(Xρ, SU(d)), G ' autA,ρB. Then there is
a commutative diagram

(4.3) autσ,ε(B;A)
rB //

π

��

NG

p∗
��

autρ,εA
rA // QG

In addition, rB is a group epimorphism.

Proof. The proof of the theorem will be divided in several steps.
Step 1. Let β ∈ autσ,ε(B;A). For every t ∈ (σr, σs), b ∈ B, we find

β(t)σr(b) = β(tσr ◦ β−1(b)) = β(σs ◦ β−1(b)t) = σs(b)β(t),

thus β(σr, σs) = (σr, σs). In particular, it turns out β(ιB , σ) = (ιB , σ), thus by
Lemma 3.7 we conclude that β restricts to a unitary map u : E → E. Let us denote
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by û ∈ autOE the automorphism obtained by extending u in the usual way. By
(3.13), it turns out that

(4.4) β ◦ j = j ◦ û.

Step 2. Our task is now to give an explicit representation of β in terms of
its restriction to A and û. As a first step, we verify that β(ρr, ρs)ε = (ρr, ρs)ε.
For this purpose, note that the condition β(σr, σs) = (σr, σs) is equivalent to β ◦
j(Er, Es) = j(Er, Es), r, s ∈ N (in fact, Lemma 3.7 implies (σr, σs) = j(Er, Es)). In
particular, if t ∈ (ρr, ρs)ε, then by Theorem 3.8 we find t ∈ µ(Er, Es)G ⊆ j(Er, Es).
Thus, β(t) ∈ j(Er, Es) = (σr, σs), and we obtain the inclusion

β(ρr, ρs)ε ⊆ (ρr, ρs).

Moreover, by (3.13), we find

ρ(t) = ρ ◦ j(t′) = µ ◦ σE(t′) = j(θ(s, 1)t′θ(1, r)) = ε(s, 1)tε(r, 1).

Thus β(ρr, ρs)ε ⊆ (ρr, ρs)ε, and by applying the above argument to β−1 we con-
clude

(4.5) β(ρr, ρs)ε = (ρr, ρs)ε.

Let us denote by G ⊆ UE the closed group constructed in Theorem 3.8; by con-
struction, G satisfies the property that j restricts to the isomorphism (3.14), in such
a way that µ(Er, Es)G = (ρr, ρs)ε, r, s ∈ N. Since β(ρr, ρs)ε = (ρr, ρs)ε and β ◦ µ =
β ◦ j|OG = j ◦ û, we obtain

(4.6) û(Er, Es)G = (Er, Es)G, r, s ∈ N.

Thus, from Lemma 2.6, we conclude that in particular u ∈ NG, and û restricts to
an automorphism of OG.

Step 3. The relations (4.5) imply that by restricting to A an element of
autσ,ε(B;A), one obtains an automorphism of A preserving the spaces of sym-
metry intertwiners. Thus, the following map is well-defined:

π : autσ,ε(B;A) → autρ,εA, π(β) := β|A.

Moreover, if u ∈ NG is the unitary constructed as in the previous step, we define

(4.7) rB : autσ,ε(B;A) → NG, rB(β) := u.

By (4.4) and Lemma 2.6, we find that rB preserves the product, thus it is a group
morphism. Moreover, for every u ∈ NG we have a commutative diagram

(4.8) A ⊂ // B

OG

µ◦û

OO

⊂ // OE

j◦û

OO

By (4.2), we conclude that there is an automorphism β ∈ autB satisfying (4.4);
this means that rB is surjective.
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Step 4. Let α ∈ autρ,εA. From the isomorphism (3.14) and Remark 3.9, we
obtain that there is α′ ∈ autσG ,θOG such that α ◦ µ = µ ◦ α′. By Lemma 2.6, we
find that there is y ∈ QG such that α′ = ŷ. Thus, we can define the morphism

rA : autρ,εA → QG, rA(α) := y.

Step 5. Let u ∈ NG. Then û ∈ autOE is an automorphism which restricts
to an automorphism δ ∈ autOG, and Lemma 2.6 implies that δ = ŷ, where y :=
p∗(u) ∈ QG. This proves that the diagram (4.3) commutes.

As proved in Section 2 for the case B = OE, A = OG, the vertical arrows of
(4.3) in general are not surjective.

Let G1, G2, S be groups endowed with group morphisms r1 : G1 → S, r2 :
G2 → S. Then it is possible to define the fibered product

G1 ×S G2 := {(g1, g2) ∈ G1 × G2 : r1(g1) = r2(g2)}.

THEOREM 4.2. Let A be a C∗-algebra, (ρ, ε, d, S) a quasi-special endomorphism,
and B a mCP of A by ρ with a group G ⊆ C(Xρ, SU(d)), G ' autA,ρB. Then the map

(4.9) r : autσ,ε(B;A) → autρ,εA×QG NG, r(β) := (β|A, rB(β))

is a group isomorphism.

Proof. Theorem 4.1 implies that the map r is well-defined. If r(β) = (idA, 1),
then by (4.4) we conclude that β restricts to the identity on j(OE); since j(OE)
and A generate B, we find β = idB . Thus, r is injective. Moreover, if (α, u) ∈
autρ,εA×QG NG, then we have a commutative diagram

(4.10) A α // B

OG

µ

OO

⊂ // OE

j◦û

OO

By the universality property of B = Aoµ Ĝ (see Section 3.1 in [17]), we conclude
that there is β ∈ autB such that

β(a · j(t)) = α(a) · j ◦ û(t), a ∈ A, t ∈ OE.

In other terms, r(β) = (α, u).

COROLLARY 4.3. Let α ∈ autρ,εA. Then there is β ∈ autσ,ε(B;A) such that
β|A = α if and only if

rA(α) ∈ p∗(NG).

Proof. Let u ∈ NG such that p∗(u) = rA(α). By the previous theorem, the
pair (α, u) defines an element β of autσ,ε(B;A) such that β|A = α.

REMARK 4.4. If Xρ reduces to a single point, every element in autρ,εA ad-
mits an extension in autσ,ε(B;A).
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REMARK 4.5. In the general situation described in Corollary 4.3, an exten-
sion β commutes with the action of G if and only if rB(β) ∈ CNG(G), the central-
izer of G in NG.

5. APPENDIX: SECTIONS OF GROUP BUNDLES

For a complete exposition of the background needed for the present section,
we refer to I.7 in [15]. Let d ∈ N, and K ⊆ SU(d) be a closed subgroup with
normalizer NK and projection

(5.1) p0 : NK → QK.

It is well-known that (5.1) defines a principal bundle with structure group K,
which in general is nontrivial. In explicit terms, we may find an open cover (Ωi)
for QK, with homeomorphisms

πi : p−1
0 (Ωi) → Ωi × K.

This implies that the isomorphism class of (5.1) is uniquely determined by the
equivalence class of a cocycle

(5.2) α := ((Ωi), (αij)) ∈ H1(QK, K),

where the continuous maps αij : Ωi ∩Ωj → K are defined by the compositions
πi ◦ π−1

j . Now, it is well-known that the following conditions are equivalent:

(1) The bundle (5.1) is isomorphic to QK× K.
(2) The cocycle (5.2) is trivial.
(3) There exists a continuous section γ : QK → NK, p0 ◦ γ = idQK. On the

converse, the existence of local sections

γi : Ωi → NK, p0 ◦ γi = idΩi

is always ensured, in such a way that α is interpreted as the obstruction to obtain
a global section extending the maps γi.

Our goal is now to use the previous construction to provide examples of
group bundles such that the map (2.4) is not surjective. Let X be a compact Haus-
dorff space. We define the group bundles G := X × K, NG := X × NK, QG :=
X × QK, and consider the associated groups of sections G, NG, QG, with the
projection

p : NG → QG.

Let us consider a section s ∈ QG; then s may be regarded as a continuous map

s : X → QK.

We show that s does not necessarily admit a lift s̃ : X → NK such that s = p∗ s̃,
where

p∗ : NG → QG, p∗s(u) := p ◦ s(x), x ∈ X.
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For this purpose, we define
Xi := s−1(Ωi),

and the continuous maps

si : Xi → NK, si := γi ◦ s|Xi ,

which by construction satisfy the relations

p∗si(x) = s(x), x ∈ Xi.

It can be proved that the following relations are satisfied:

si(x)sj(x)−1 = αij ◦ s(x), x ∈ Xi ∩ Xj.

Thus, by defining
s∗αij(x) := αij ◦ s(x), x ∈ Xi ∩ Xj,

we get a cocycle
s∗α := ((Xi), (s∗αij)) ∈ H1(X, K).

By choosing different local sections γi, the equivalence class of s∗α in H1(X, K)
remains unchanged, thus s∗α is actually an invariant associated with the section
s. It turns out that existence of a global section s̃ : X → NK such that s = p∗ s̃ is
equivalent to triviality of the cocycle s∗α. In particular, if we pick X := QK and
s : QK → QK the identity map, then s∗α = α ∈ H1(QK, K), and s admits a lift to
NG if and only if α is trivial.

In this way, explicit examples for which the identity map does not admit a
lift can be easily provided by considering suitable closed subgroups K ⊆ SU(d).
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