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ABSTRACT. We show that every (continuous) faithful product system admits
a (continuous) faithful nondegenerate representation. For Hilbert spaces this
is equivalent to Arveson’s result that every Arveson system comes from an
E0-semigroup. We point out that for Hilbert modules this is not so. As appli-
cations we show a C∗-algebra version of a result for von Neumann algebras
due to Arveson and Kishimoto, and a result about existence of elementary
dilations for (semi-)faithful CP-semigroups.
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1. INTRODUCTION

Recall that a correspondence over B (or, more generally, from A to B) is a
(right) Hilbert B-module with a nondegenerate left action of B (or of A) by ad-
jointable operators. The (internal) tensor product of correspondences we denote
by �. The algebra of adjointable operators on a Hilbert B-module we denote by
Ba(E). Recall that E is full, if span〈E, E〉 = B. We say a correspondence is faith-
ful, if its left action defines a faithful representation. For x ∈ E, we define the
mapping x∗ : E → B by setting x∗y = 〈x, y〉. The adjoint of x∗ is x : b 7→ xb.
The algebra K(E) of compact operators on E is the norm completion of the algebra
F(E) := span{xy∗ : x, y ∈ E} of finite rank operators that is spanned linearly by
the rank-one operators xy∗ : z 7→ x〈y, z〉. Recall that for a unital homomorphism
ϑ : Ba(E) → Ba(F) to be strict is equivalent to that the action of the compacts
alone is already nondegenerate: span ϑ(K(E))F = F.

An (algebraic) product system is a family E� = (Et)t∈R+
of correspondences

Et over a C∗-algebra B with a family of bilinear unitaries us,t : Es � Et → Es+t,
such that the “multiplication” defined by xsyt := us,t(xs � yt) is associative.
Moreover, E0 = B is the trivial correspondence over B and u0,t and ut,0 are left
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and right action, respectively, of E0 = B on Et. A product system E� is full, if
each Et (t > 0) is full, and E� is faithful, if each Et (t > 0) is faithful.

A left dilation of a full product system E� to a full Hilbert B-module E is a
family of unitaries vt : E� Et → E such that (xys)zt = x(yszt), where we defined
xyt := vt(x � yt). By setting ϑv

t (a) := vt(a � idt)v∗t , every left dilation gives
rise to an E0-semigroup ϑv = (ϑv

t )t∈R+
on Ba(E), that is, a semigroup of strict

unital endomorphisms. (In these notes, as a convention, we always assume that
homomorphisms are strict.)

A right dilation of a faithful product system E� to a faithful correspondence
H from B to C (that is, a Hilbert space with a faithful nondegenerate representa-
tion of B) is a family of bilinear unitaries wt : Et � H → H such that xt(ysh) =
(xtys)h, where we defined xth := wt(xt � h). By defining the operator ηw

t (xt) :
h 7→ xth in B(H), every right dilation gives rise to a representation of E�, that is, a
family of linear maps ηw

t : Et → B(H) such that

ηw
t (xt)

∗ηw
t (yt) = ηw

0 (〈xt, yt〉) and ηw
t (xt)η

w
s (ys) = ηw

t+s(xtys),

which is nondegenerate (that is, span ηw
t (Et)H = H for all t) and faithful (that

is, ηw
0 and, therefore, all ηw

t are injective). By applying the two equations to
〈x0, y0〉 = x∗0y0 (x0, x0,∗ , y0 ∈ E0 = B), and taking also into account nondegener-
acy, one checks that ηw

0 is a representation of B. (Note, too, that ηw
t (xt〈yt, zt〉) =

ηw
t (xt)ηw

t (yt)∗ηw
t (zt), that is, ηt is a ternary homomorphism. In particular, ηw

t is
linear and completely contractive; see [1].) Conversely, if ηt is a faithful nonde-
generate representation of E� on H, then H is a faithful correspondence from B
to C via η0 and by setting wt(xt � h) := ηt(xt)h we define a right dilation to H.
Of course, wt gives back ηt as ηw

t .
We see that left dilations relate full product systems to E0-semigroups, while

right dilations of faithful product systems are synonymous with nondegenerate
faithful representations.

An E0-semigroup ϑ on Ba(E) with E a full Hilbert B-module gives rise to
a full product system E� of B-correspondences and a left dilation vt such that
ϑ = ϑv; see [16], [26], [25]. Two E0-semigroups on the same Ba(E) have isomor-
phic product systems if an only if they are cocycle conjugate; see [16]. In [27], [25]
we extended this to E0-semigroups acting on different Ba(E) provided the two E
are countably generated and over unital B ([27]) or σ-unital B ([25]). In [23], we
have constructed for every continuous product system of correspondences over a
unital C∗-algebra B a continuous left dilation, that is, it is the product system of a
strongly continuous E0-semigroup. This dilation is to a countably generated E, if
the product system is countably generated. Also this we generalized to σ-unital
B in [25]. (We use the occasion to mention that the proof in Proposition 4.9 of
[23] that the product system of the constructed E0-semigroup has the same con-
tinuous structure as the original product system has a gap. This gap is fixed in
[25].) Combining all this, under the stated countability assumptions in [27] we
obtain a full analogy with Arveson’s results [2], [4], [3], [5], namely, a one-to-one
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correspondence between E0-semigroups on full Hilbert B-modules up to stable
cocycle conjugacy and full product systems up to isomorphism.

In these notes we show that every (continuous) faithful product system of
correspondences over an arbitrary C∗-algebra admits a (continuous) right dila-
tion, that is, a (continuous) faithful nondegenerate representation (Theorem 2.9).
Right dilations do not establish such a direct relation between product systems
and E0-semigroups. It is true that a right dilation (wt)t∈R+

of E� gives rise to
an E0-semigroup, namely, to the semigroup of unital normal endomorphisms
θw

t (a) := wt(idt�a)w∗t acting on Bbil(H), the von Neumann subalgebra of B(H)
which consists of all bounded bilinear operators on H. However, the E0-semi-
group θw, in general, does not allow to reconstruct the product system E�

uniquely. The following space of intertwining operators {xt ∈ B(H) : θw
t (a)xt =

xta (a ∈ Bbil(H))} contains Et as a (strongly dense) subset in a natural way. But
Et will coincide with that intertwiner space, only if it is a von Neumann corre-
spondence over the double commutant of ηw

0 (B) in B(H). (We omit details and
refer the reader to [17], [24], [21].) Nevertheless, the question whether a product
system admits a faithful nondegenerate representation is of independent interest.
In Section 3 we give some applications. We prove a result about embedding faith-
ful E0-semigroups into inner automorphism groups (which provides an analogue
for C∗-algebras of a result by Arveson and Kishimoto for von Neumann algebras).
And we prove existence of elementary dilations for (semi-)faithful CP-semigroups.

Technically, these notes where we show that every faithful product system
admits a right dilation are very similar to [23], where we constructed a left di-
lation for every continuous product system of correspondences over a unital
C∗-algebra. In cases where the results are just analogues of statements in [23] with
analogue proofs (Propositions 2.5–2.8), we do not repeat these proofs. Proposi-
tion 2.3 and its corollary, instead, are technically more involved (mainly, because
we consider sections in spaces that are tensor products), and require new ideas.

In principle, the reader who is interested only in the proof of the statement,
may now pass immediately to Theorem 1.2 and, then, proceed to Section 2. But
we wish to clarify why such a strange statement like Theorem 1.2 is the natural
starting point for the construction of a right dilation, knowing the successful strat-
egy for constructing a left dilation. The balance of this introduction is dedicated
to this motivation.

For product systems of Hilbert spaces E⊗ (Arveson systems) there is not
much a difference between the construction of a left dilation and the construc-
tion of a right dilation. More precisely, a left dilation of E⊗ gives rise to a right
dilation of E⊗op (the opposite Arveson system of E⊗ with the opposite product
(xs, yt) 7→ ytxs) and vice versa, simply by “inverting” all orders in tensor prod-
ucts; see [20]. (Note, however, that E⊗ and E⊗op need not be isomorphic Arveson
systems; see [29].)
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For Hilbert modules the situation is more delicate. Since there is no canon-
ical flip operation for tensor products of correspondences, there is no such thing
like the opposite product system of E�. However, there is the commutant of von
Neumann correspondences ( [17] and [14]). The commutant transforms ap T is
faithful, if T(b∗b) = 0 implies b = 0 for all b ∈ B. It i product system of von
Neumann correspondences over a von Neumann algebra B ⊂ B(G) into a prod-
uct system of von Neumann correspondences over the commutant B′ of B. (In
fact, the opposite of an Arveson system is just its commutant system.) Under
commutant, left dilations transform into right dilations and vice versa; (Theorem
9. of [26] or Theorem 3.6(3) of [24]). Also the conditions to be full or faithful are
interchanged under commutant.

We see, in the von Neumann case, a proof of existence of left dilation trans-
forms into a proof of existence of right dilations. Although, this is strictly true
only for von Neumann correspondences, understanding how ingredients of the
proof for existence of left dilations transform under the commutant is crucial for
finding our proof here for existence of right dilations in the case of C∗-correspond-
ences.

For instance, in [20] we constructed a left and right dilation for every Arve-
son E⊗ = (Et)t∈R+

system by starting with a left and right dilation, respectively,
of the discrete subsystem (Et)t∈N0 of E⊗, and “blowing it up” suitably. As al-
ready mentioned, there is not really a difference between left and right, here. It
is, however, important to note that the input, a dilation of the discrete subsystem,
can easily be obtained by choosing a unit vector ζ1 ∈ E1.

In [6], Arveson constructed a right dilation, which turned out to be unitarily
equivalent to ours; see [22]. In order to construct that right dilation, also Arveson
fixes a unit vector ζ1 ∈ E1. Then he considers the space of right stable sections
in L2,loc(E⊗), that is, of locally square integrable sections x : α 7→ xα ∈ Eα, that
fulfill xα+1 = xαζ1 for all sufficiently big α. He equips this space with a semiinner

product 〈x, y〉 :=
T+1∫
T
〈xα, yα〉dα (which does not depend on T for all sufficiently

big T). On the quotient Hilbert space the product system acts simply by “multi-
plication” (that is, tensor product) from the left.

The same construction works for left dilations. We simply start with the
space of left stable sections (that is, xα+1 = ζ1xα for all sufficiently big α), on which
the product system acts by “multiplication” from the right. This construction of
a left dilation also works for Hilbert modules as soon as we have a unit vector
ζ1 ∈ E1 (that is, a vector that fulfills 〈ζ1, ζ1〉 = 1 ∈ B), because then the semiinner

product
T+1∫
T
〈xα, yα〉dα does not depend on T for all sufficiently big T. Note that

B must be unital. Continuous product systems of correspondences over a unital
C∗-algebras have unit vectors in all fibres, and apart from more involved technical
problems due to modules, the proof in [23] runs like Arveson’s [6].
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Nothing like this is possible for right dilations in the module case: Since

〈xα � ζ1, yα � ζ1〉 = 〈ζ1, 〈xα, yα〉ζ1〉, the semiinner product
T+1∫
T
〈xα, yα〉dα of right

stable sections will depend on T, unless ζ1 is a unit vector that commutes with all
elements in B.

The solution to our problem becomes clear, if we recall that the unit vector
corresponds to the construction of a certain left dilation of the discrete subsystem
(Et)t∈N0 of E�. In the construction of a right dilation, dual to the construction of
a left dilation, that unit vector must be a unit vector in the commutant E′1 of E1,
rather than in E1.

The construction of the commutant of a correspondence E1 over B is pos-
sible, as soon as we assume that B ⊂ B(G) is a concrete C∗-algebra of oper-
ators acting nondegenerately on a Hilbert space G: Define the correspondence
H1 := E1 � G from B to C. Put E′1 := Bbil(G, H1).

REMARK 1.1. On H1 we have an action of the von Neumann algebra B′ =
Bbil(G) defined by b′(x1 � g) := x1 � b′g, the so-called commutant lifting. E′1 with
inner product 〈x′1, y′1〉 := x′∗1 y′1 and with left action via the commutant lifting is,
then, a von Neumann B′-correspondence. If B ⊂ B(G) is a von Neumann algebra
and if E1 is a von Neumann B-correspondence, then E′1 is precisely the commutant
of E1 as introduced in [17].

We see that a unit vector in E′1 is an isometry ζ ′1 from G to H1 that intertwines
the canonical actions of B.

Existence of an identification B ⊂ B(G) such that there exists a unit vector
ζ ′1 ∈ E′1 follows now by existence of a nondegenerate faithful representation of
E1 as proved by [12] and [26].

THEOREM 1.2. Let B be a C∗-algebra and E a faithful correspondence over B.
Then there exists a faithful nondegenerate representation of B on a Hilbert space G that
admits an isometry ζ ′ ∈ Bbil(G, E� G).

Proof. Under the same hypothesis, in Theorem 8.3 of [26] (first [12] for the
case when E is also full) we have shown that E admits a faithful nondegener-
ate representation. That is, there exists a faithful nondegenerate representation
π : B → B(G) and a map η : E→ B(G) such that

η(b1xb2) = π(b1)η(x)π(b2), π(〈x, y〉) = η(x)∗η(y), span η(E)G = G.

We immediately check that E � G = G as B-C-correspondences, via x � g 7→
η(x)g. Clearly, ζ ′ := idG is an isometry in Bbil(G) = B′.
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2. THE CONSTRUCTION

In principle, like all the constructions by Skeide and by Arveson ([20], [6],
[23]), everything works algebraically, if we take the occurring direct integrals with
respect to the counting measure, that is, if we take direct sums. But nice conti-
nuity (or just measurability) properties of the constructed dilations, of course,
emerge only if we choose the Lebesgue measure. For that goal the product sys-
tem must fulfill technical conditions. Here, as in [23], we consider continuous
product systems as defined in [18]. Also measurable versions of product systems
have been considered; see [11].

DEFINITION 2.1. Let E� = (Et)t∈R+
be a product system of correspon-

dences over a C∗-algebra B with a family i = (it)t∈R+
of isometric (that is, inner

product preserving) embeddings it : Et→ Ê into a Hilbert B-module Ê. Denote by

CSi(E�) = {x = (xt)t∈R+
: xt ∈ Et, t 7→ itxt is continuous}

the set of continuous sections of E� (with respect to i). We say E� is continuous
(with respect to i), if the following conditions are satisfied:

(i) For every yt ∈ Et we can find a continuous section x ∈ CSi(E�) such that
xt = yt.

(ii) For every pair x, y ∈ CSi(E�) of continuous sections the following function
is continuous:

(s, t) 7−→ is+t(xsyt).
We say two embeddings i and i′ have the same continuous structure, if

CSi(E�) = CSi′(E�).

This is Definition 7.1 of [18] except that B need not be unital. It is motivated
by the fact that every product system of a strictly continuous E0-semigroup acting
on the operators of a Hilbert module fulfills these requirements. Condition (i)
may be replaced with the weaker condition that for every t ∈ R+ the set {xt : x ∈
CSi(E�)} is total in Et. Condition (ii) may be replaced with the weaker condition
that for all b ∈ B with x ∈ CSi(E�) also the section bx := (bxt)t∈R+

is in CSi(E�)
and that the function (s, t) 7→ 〈z, is+t(xsyt)〉 is continuous for every z ∈ Ê and
every pair x, y ∈ CSi(E�). See [18], [23] for details.

Throughout the balance of this section we shall suppose that E� is faithful
and that B ⊂ B(G) is given as a concrete C∗-algebra of operators via the repre-
sentation guaranteed by Theorem 1.2 for the correspondence E = E1.

For each t ∈ R+ we put Ht := Et � G. For all s, t ∈ R+ an element xs ∈ Es
has an action ht 7→ xsht ∈ Hs+t on ht ∈ Ht defined by setting xs(yt � g) :=
(xsyt)� g.

Each Ht is a correspondence from B to C (faithful, if and only if Et is faithful)
with left action defined by setting b(xt � g) := (bxt)� g.

By Theorem 1.2, we may fix an isometry ζ ′1 ∈ Bbil(G, H1). It would be
tempting to consider stable sections x of E�, in the sense that xα+1 = xαζ ′1 for
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all sufficiently large α. However, if xα is in Eα, then xαζ ′1 ∈ B(G, Hα+1) is, in
general, not in Eα+1 = {g 7→ xα+1 � g|xα+1 ∈ Eα+1} ⊂ B(G, Hα+1). Thus, we
cannot consider sections in E�. Instead, we will consider sections in the family
E� � G := (Ht)t∈R+

of Hilbert spaces. As ζ ′1 is left linear, for each t the operator
idt�ζ ′1 is a well-defined isometry in Bbil(Ht, Et � H1). As Et � H1

∼= Ht+1 (as
correspondences from B to C) via xt � h1 7→ xth1, there is also a unique isometry
in Bbil(Ht, Ht+1) that sends xt � g to xtζ

′
1g. Also here we shall write the action of

this isometry on elements ht ∈ Ht simply as ht 7→ ζ ′1ht.

REMARK 2.2. This notation suggests a relation ζ ′1xs = xsζ ′1 for the actions
on Ht. A fact, that may be verified for all pairs xs ∈ Es and y′r ∈ E′r := Bbil(G, Hr);
see the proof of Theorem 3.4(1) of [24].

The sections h of E� � G we shall consider, will fulfill

(2.1) hα+1 = ζ ′1hα

for all sufficiently big α. But, before we proceed we need to specify some proper-
ties of the relevant direct integrals.

First of all, we note that the embeddings it : Et → Ê give rise to embeddings
Ht → Ĥ := Ê � G, also denoted by it, defined by xt � g 7→ (itxt) � g. We,
therefore, may speak about continuous sections h = (ht)t∈R+

of E� � G, in the
sense that t 7→ itht is continuous. We denote the set of all continuous sections
of E� � G by CSi(E� � G). Obviously, whenever x, y ∈ CSi(E�) and g ∈ G,
then the functions t 7→ itxt � g and (s, t) 7→ is+t(xsyt)� g are continuous. The
following properties are less obvious.

PROPOSITION 2.3. Every continuous section h ∈ CSi(E� � G) may be approxi-
mated locally uniformly by elements in span CSi(E�)� G. Moreover:

(i) For every kt ∈ Ht we can find a continuous section h ∈ CSi(E� � G) such that
ht = kt.

(ii) For every pair x ∈ CSi(E�) and h ∈ CSi(E� � G) of continuous sections the
following function is continuous:

(s, t) 7−→ is+t(xsht).

Proof. The proof of (i) is very similar to the proof of Proposition 7.9 of [18].
Every kt ∈ Ht may be written as ∑

n
kn

t in such a way that ∑
n
‖kn

t ‖ < ∞, where

kn
t =

mn
∑

j=1
yn,j

t � f n,j with yn,j
t ∈ Et, f n,j ∈ G (n ∈ N; mn ∈ N; j = 1, . . . , mn).

Choose continuous sections xn,j ∈ CSi(E�) such that xn,j
t = yn,j

t and such that∥∥∥ mn
∑

j=1
xn,j

s � f n,j
∥∥∥ 6 ‖kn

t ‖ for all s ∈ R+, n ∈ N. Then h := ∑
n

mn
∑

j=1
xn,j � f n,j is a

(bounded!) section in CSi(E� � G) with ht = kt.
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Now let h ∈ CSi(E� � G) and choose 0 6 a < b < ∞ and ε > 0. For every
β ∈ [a, b], by the proof of part (ii) there exists a section hβ in span CSi(E�)� G
such that ‖hβ − hβ

β‖ < ε/2. For every β define Iβ to be the largest interval such

that ‖hα − hβ
α‖ < ε for all α ∈ Iβ. Every Iβ is open in [a, b] and contains at least β.

Therefore, the family of all Iβ forms an open cover of the compact interval [a, b].
So, we may choose β1, . . . , βm such that the union over Iβi is [a, b]. By standard
theorems about partitions of unity there exist continuous functions ϕi on [a, b]
with the following properties:

0 6 ϕi 6 1, ϕi � I{βi
= 0,

m

∑
i=1

ϕi = 1.

From these properties, one easily verifies that
∥∥∥hα −

m
∑

i=1
ϕi(α)h

βi
α

∥∥∥ < ε for all α ∈

[a, b]. This shows that
m
∑

i=1
ϕihβi ∈ span CSi(E�) � G approximates h uniformly

up to ε on the interval [a, b].
(ii) follows now by three epsilons, approximating ht with an element in

span CSi(E�)� G on a suitably big interval.

COROLLARY 2.4. If h : t 7→ ht is a continuous section, then the following shifted
section is continuous for t > 1:

t 7−→
{

0 t < 1,
ζ ′1ht−1 t > 1.

Proof. By Proposition 2.3 the elements in span CSi(E�) � G approximate
t 7→ ht locally uniformly. So, it is enough to show the statement for sections of the
form t 7→ xt � g (x ∈ CSi(E�), g ∈ G). Again by Proposition 2.3 there is a section
h ∈ CSi(E� � G) such that h1 = ζ ′1g. Once more, by Proposition 2.3 we may

choose ht =
∞
∑

n=1
yn

t � gn (limit locally uniformly in t) for sequences yn ∈ CSi(E�)

and gn ∈ G. Then

ζ ′1(xt � g) = xtζ
′
1g =

∞

∑
n=1

xtyn
1 � gn

locally uniformly in t > 0. All t 7→ xtyn
1 � gn are continuous locally uniformly, so

that also t 7→ ζ ′1(xt � g) is locally uniformly continuous.

In the sequel, for a section h of E� � G we shall denote h(t) := itht. Let

0 6 a < b < ∞. By
b∫
a

Hα dα we understand the norm completion of the pre-

Hilbert space that consists of continuous sections h ∈ CSi(E� � G) restricted to
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[a, b) with inner product

〈h, h′〉[a,b] :=
b∫

a

〈hα, h′α〉dα =

b∫
a

〈h(α), h′(α)〉dα.

Note that all continuous sections are bounded on the compact interval [a, b] and,
therefore, square integrable.

In order to see that (later on, in Proposition 2.6) we will have enough sec-
tions fulfilling the stability condition in (2.1), it is necessary to convince ourselves

that
b∫
a

Hα dα contains a sufficient number of sections that are only piecewise con-

tinuous. As in Proposition 4.2 of [23] we show:

PROPOSITION 2.5.
b∫
a

Hα dα contains the space R[a,b) of restrictions to [a, b) of

those sections h for which t 7→ h(t) is right continuous with finite jumps (by this we
mean, in particular, that there exists a left limit) in finitely many points of [a, b), and
bounded on [a, b), as a pre-Hilbert subspace.

(A jump at b would not contribute to the inner product. So, the restriction
to the right open interval [a, b) is necessary in order that the inner product be
definite.)

Let S denote the subspace of all sections h = (ht)t∈R+
of E� � G which are

locally R, that is, for every 0 6 a < b < ∞ the restriction of h to [a, b) is in R[a,b),
and which are stable with respect to the isometry ζ ′1, that is, there exists an α0 > 0
such that (2.1) holds for all α > α0. By N we denote the subspace of all sections
in S which are eventually 0, that is, of all sections h ∈ S for which there exists an
α0 > 0 such that hα = 0 for all α > α0. A straightforward verification shows that

〈h, h′〉 := lim
m→∞

m+1∫
m

〈h(α), h′(α)〉dα

defines a semiinner product on S and that 〈h, h〉 = 0 if and only if h ∈ N. Actually,
we have

〈h, h′〉 =
T+1∫
T

〈h(α), h′(α)〉dα

for all sufficiently large T > 0; see Lemma 2.1 of [6]. So, S/N becomes a pre-
Hilbert space with inner product 〈h +N, h′ +N〉 := 〈h, h′〉. By H we denote its
completion.

As in Proposition 4.3 of [23] we show:
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PROPOSITION 2.6. For every section h and every α0 > 0 define the section hα0 as

hα0
α :=

{
0 α < α0 ,
ζ ′1

nhα−n α ∈ [α0 + n, α0 + n + 1), n ∈ N0.

If h is in CSi(E� � G), then hα0 is in S. Moreover, the set {hα0 +N : h ∈ CSi(E� �
G), α0 > 0} is a dense subspace of H.

Observe that on H we have a canonical representation of B that acts sim-
ply pointwise on sections. (This representation is faithful, because E� is faithful.
Nondegeneracy we see in a minute.) It is now completely plain to see that for
every t ∈ R+ the map xt � h 7→ xth, where

(xth)α =

{
xthα−t α > t,
0 else,

defines an isometry wt : Et � H → H, and that these isometries iterate associa-
tively as required for a right dilation.

The following proposition may be proved as Proposition 4.6 of [23]. The ar-
guments are similar to those used to show the statement about density in Propo-
sition 2.3. Actually, the proof is simpler, because thanks to Proposition 2.5 we
need not worry to obtain an approximation by continuous sections. Thus, it is
not necessary to involve partitions of unity.

PROPOSITION 2.7. Each wt is surjective. In particular, for t = 0 this means that
the canonical representation of B = E0 on H is nondegenerate, so that H is a correspon-
dence from B to C.

As in Proposition 4.6 of [23] we show:

PROPOSITION 2.8. The wt are continuous in the sense that for every continuous
section x ∈ CSi(E�) and every h ∈ H the function t 7→ xth is continuous.

We are now in a position to prove the main result of these notes.

THEOREM 2.9. Let E� be a faithful (continuous) product system of correspon-
dences over a C∗-algebra B. Then E� admits a faithful nondegenerate (continuous) rep-
resentation on a Hilbert space.

Proof. It is clear from the preceding propositions that if E� is faithful and
continuous, then the wt form a continuous right dilation. So, the representa-
tion ηw

t is faithful, nondegenerate and continuous in the sense that t 7→ ηw
t (xt)

is strongly continuous for every continuous section x ∈ CSi(E�).
If E is just an algebraic product system, then everything is much easier.

(Simply, instead of
b∫
a

Hα dα use direct sums. All the technical Propositions 2.3,

2.5, 2.6, 2.7, 2.8 and Corollary 2.4 are superfluous, and we obtain a right dilation
that, definitely, is not continuous.)
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REMARK 2.10. The condition to be faithful is also necessary for a product
system to admit a faithful nondegenerate representation η. Indeed, suppose there
is a t ∈ R+ such that bxt = 0 for all xt ∈ Et. Then η0(b)ηt(xt)h = ηt(bxt)h = 0
for all xt ∈ Et, h ∈ H. As ηt is nondegenerate, this implies η0(b) = 0 and as η is
faithful, this implies b = 0.

By Lemma 3.2 of [23] continuous product systems of correspondences over
a unital C∗-algebra are full automatically. Note that this is not true in the nonuni-
tal case; see Example 4.13 of [19] (old version). So for having Theorem 2.9 for
correspondences over nonunital C∗-algebras, the improved version Theorem 8.3
of [26] of Hirshberg’s result [12] is indispensable.

3. APPLICATIONS

In this section we discuss two applications of Theorem 2.9. One is a C∗-ver-
sion of a theorem due to Arveson and Kishimoto, the other an existence result for
a certain type of dilation of CP-semigroups.

THEOREM 3.1. Let E be a full Hilbert module over a unital C∗-algebra B and let
ϑ be a strongly continuous strict faithful E0-semigroup on Ba(E). Then there exists a
faithful correspondence K from Ba(E) to C with strict left action (that is, a Hilbert space
with a faithful nondegenerate strict representation of Ba(E)) and a strongly continuous
unitary group u on K such that ϑt(a)k = utau∗t k for all a ∈ Ba(E), t ∈ R+, k ∈ K.

Proof. Suppose we have a left dilation vt : E � Et → E and a right dila-
tion wt : Et � H → H of a product system E�. Then, by setting ut := (vt �
idH)(idE�w∗t ), which acts as x � yth 7→ xyt � h (note that this is nontrivial!),
we define a unitary semigroup ut on K := E � H. Moreover, we recover the
E0-semigroup ϑv on Ba(E) by restricting ut • u∗t to Ba(E) � idH . So, our job is
to recover ϑ as ϑv from a left dilation of a product system (mentioned in the
introduction), to construct a right dilation (Theorem 2.9), and to show that the
corresponding semigroup u is sufficiently continuous.

Suppose the E0-semigroup ϑ acts on a Hilbert B-module E with a unit vec-
tor ξ. (Otherwise, by Lemma 3.2 of [26] there is a natural number n such that
En has a unit vector. We may pass to the inflation of ϑ to an E0-semigroup on
Ba(En) = Mn(Ba(E)) that gives back ϑ by embedding Ba(E) unitally into the di-
agonal of Mn(Ba(E)).) Then as explained in Section 7 of [18], we obtain a continu-
ous product system E� and a left dilation of E� that gives back ϑ, in the following
way. Put Et := ϑt(ξξ∗)E, equip Et with the left action bxt := ϑt(ξbξ∗)xt of B, and
define vt : x� yt 7→ ϑt(xξ∗)yt. Then xsyt := vt(xs � yt) defines a product system
structure on E� = (Et)t∈R+

and the vt define a left dilation of E� to E giving back
ϑ = ϑv. Moreover, choosing for it the canonical embedding of the submodule Et
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of E into E, we turn E� into a continuous product system. Note that the left di-
lation is continuous in the sense that t 7→ xyt = ϑt(xξ∗)yt = ϑt(xξ∗)ityt for every
continuous section y.

Since E is full and ϑt is faithful, Et is faithful. For wt we choose the right
dilation from Theorem 2.9.

The proof of continuity of ut is quite standard following similar proofs in
[18], [23]: As the family ut is bounded uniformly, it is sufficient to check strong
continuity on the total subset of K formed by all x� h. Let ζ denote a continuous
section of unit vectors with ζ0 = 1, as granted by Lemma 3.2 of [23]. Then for
all sufficiently small t, the elements ζth are close to h and, therefore, the elements
x� ζth are close to x� h. Similarly, xζt is close to x and, therefore, also xζt � h is
close to x� h. We find that the following is close to 0:

ut(x� h)− x� h = ut(x� h)− ut(x� ζth) + ut(x� ζth)− x� h

= ut(x� h− x� ζth) + (xζt � h− x� h).

COROLLARY 3.2. Let ϑ be a strongly continuous faithful semigroup of nondegen-
erate endomorphisms on a C∗-algebra B. (By nondegenerate we mean span ϑt(B)B = B
for all t ∈ R+.) Then there exists a faithful correspondence K from B to C and a strongly
continuous unitary group u on K such that ϑt(b)k = utbu∗t k for all b ∈ B, t ∈ R+,
k ∈ K.

For the proof notice that ϑ extends from B = K(B) to a strict E0-semigroup
on Ba(B).

REMARK 3.3. For von Neumann algebras B ⊂ B(G) and E0-semigroups
that are continuous in the strong operator topology of B(G), the statement of
Corollary 3.2 is due to Arveson and Kishimoto [7]. In [28] we will provide ana-
logue proofs of a version of Theorem 3.2 for von Neumann modules and the
result of [7], that is, Corollary 3.2 for von Neumann algebras.

We now come to elementary dilations of CP-semigroups. Recall that a CP-
semigroup is a semigroup T = (Tt)t∈R+

of completely positive (CP-)maps on a
C∗-algebra. A CP-map T is faithful, if T(b∗b) = 0 implies b = 0 for all b ∈ B. It is
semifaithful, if its GNS-correspondence E is faithful. (Recall that by [15] the GNS-
correspondence is that unique correspondence over B that contains a vector ξ
that generates E as correspondence and that fulfills 〈ξ, bξ〉 = T(b). Alternatively
one may require that some (and, therefore, every) Stinespring representation is
faithful.) A CP-semigroup T is (semi-)faithful, if every Tt is (semi-)faithful. A CP-
semigroup T is elementary, if it has the form Tt(b) = c∗t bct for some semigroup
c = (ct)t∈R+

of elements in B. An elementary dilation of a CP-semigroup T on B is
a C∗-algebra A with an embedding ϕ : B → A and a semigroup c = (ct)t∈R+

of
elements in A such that, for all b ∈ B and t ∈ R+,

ϕ ◦ T(b) = c∗t ϕ(b)ct.



NONDEGENERATE REPRESENTATIONS OF PRODUCT SYSTEMS 83

THEOREM 3.4. Every semifaithful (strongly continuous) CP-semigroup on a uni-
tal C∗-algebra admits a (strongly continuous) elementary dilation to some B(H).

Proof. Recall that a unit for a product system E� of correspondences Et over
a unital C∗-algebra B is a family ξ� = (ξt) of elements ξt ∈ Et that factors as
ξs+t = ξsξt with ξ0 = 1. Bhat and Skeide [9] associate with every CP-semigroup
T on a unital C∗-algebra B a product system E� of correspondences over B and a
unit ξ� such that Tt(b) = 〈ξt, bξt〉. (This product system is unique, if we require
that it is generated by the unit ξ�.)

If T is semifaithful, then already the left action of B on the B-bimodule of
Et generated by ξt is faithful. Therefore, we may apply Theorem 2.9 to obtain a
right dilation w of E� to a correspondence H from B to C and, further, a faithful
nondegenerate representation η := ηw of E� on H. It follows that ct := ηt(ξt) is
a semigroup in B(H) and that c∗t η0(b)ct = η0(〈ξt, bξt〉) = η0 ◦ Tt(b).

If T is strongly continuous then by Section 7 of [18] the product system gen-
erated by ξ� is continuous and ξ� is among the continuous sections. By Theo-
rem 2.9, we may chose the right dilation w continuous. But this means precisely
that t 7→ ηt(xt) is strongly continuous for every continuous section x. Since ξ� is
continuous, so is c.

REMARK 3.5. Note that, in particular, uniformly continuous CP-semigroups
fit into the assumptions of Theorem 3.4. (In fact, every Tt is invertible so that
bξt = 0⇒ Tt(b∗b) = 0⇒ b∗b = 0⇒ b = 0, so that Tt is even faithful.) We think
that in this way Theorem 3.4 might be helpful in finding a proof of the fact that
a suitable strong closure of E� contains a central continuous unit ω�, that is, a
unit where all ωt commute with all elements of B. By [8] this statement is equiv-
alent to the results by [10] on the form of the generator of a uniformly continuous
CP-semigroup.

REMARK 3.6. For a CP-semigroup T on B, the proof of Theorem 3.4 starts
with the construction from [9] of a product system E� of B-correspondences and
a unit ξ� for that product system. Then Theorem 2.9 is applied to that prod-
uct system E� providing a representation of E�. In the case of a normal CP-
semigroup on a von Neumann algebra B, also Muhly and Solel [13] construct a
product system and, then, a representation of that product system. We would like
to emphasize that the product system constructed in [13] is E′�, the commutant
of E� (see [17], [24]). The construction in [13] of a representation (that is, of a right
dilation) of E′� is equivalent (via commutant) to the older construction in [9] of
an E0-semigroup (that is, a left dilation) for E� based on the unit ξ�. The con-
struction of an E0-semigroup from a unit is much easier than the general result in
[23] without unit. It has nothing to do with our representation in Theorem 2.9.

REMARK 3.7. We would like to mention that, after the first version of these
notes, in [25] we constructed a continuous product system with a continuous left
dilation for a strongly continuous E0-semigroup on Ba(E), where E may be a full
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Hilbert module over a σ-unital C∗-algebra B, or any Hilbert module E over an
arbitrary C∗-algebra as long as E∞ contains a direct summand B. Theorem 3.1
holds under these conditions, too.
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