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ABSTRACT. We show that the projective module tensor product of a certain
class of contractive left respectively right modules over properly infinite C∗-
algebras is injective, i.e. the module tensor product of isometric morphisms is
an isometric linear map.

Helemskii introduced Ruan B-bimodules and left or right semi-Ruan B-
modules, where B = B(L) and L a separable Hilbert space. Then he shows
that certain B-modules have a flatness property with respect to (semi-) Ruan
B-modules. We generalize this program to properly infinite C∗-algebras A
and show that the projective module tensor product of arbitrary left and right
semi-Ruan A-modules is injective; i.e. they are flat in the sense of Helemskii.
The proof starts with the special case of cyclic semi-Ruan modules and then
uses an exhaustion argument. As an application we obtain a generalization of
the extension theorem for completely bounded C∗-bimodule morphisms and
a proof for the injectivity of the module Haagerup tensor product of opera-
tor C∗-modules. Semi-Ruan modules have a minimal isometric isomorphic
representation as a submodule of B(K, H) for some Hilbert spaces H, K.

KEYWORDS: Projective module tensor product, properly infinite C∗-algebra, opera-
tor module, module Haagerup tensor product, completely bounded operator.
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INTRODUCTION

We shall denote by A, C properly infinite C∗-algebras, by X a right semi-
RuanA-module, by Y a left semi-RuanA-module (or sometimes a C-module) and
by W a Ruan A-C-bimodule. These spaces are not necessarily complete. X ⊗

A
Y

denotes the uncompleted projective module tensor product.
We denote B = B(L), K = K(L) and F = F (L) the operators of finite rank

in K, where L is a fixed separable infinite-dimensional Hilbert space (for instance
`2 or so). We use F

.
⊗W to denote the uncompleted minimal (spatial) tensor

product of F and a matricial operator space W and
^⊗ denotes the completed
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minimal tensor product. ⊗
h

respectively ⊗
hA

denotes the uncompleted Haagerup

tensor product respectively the uncompleted module Haagerup tensor product.
We take the definition and the basic results of/on one-sided semi-Ruan A-

modules and Ruan A-C-bimodules from Helemskii’s paper [9]. Helemskii intro-
duced semi-Ruan B-modules and Ruan B-bimodules. The preparing results ([9],
Chapter 0-2) on these modules hold for arbitrary properly infinite C∗-algebras.
The aim of this paper is to generalize Helemskii’s results on flatness properties of
certain semi-Ruan B-modules to arbitrary semi-Ruan A-modules.

The theory of Ruan B-bimodules gives another axiomatic way to the quan-
tization of Banach spaces and the theory of Ruan B-bimodules is equivalent to
operator space theory. The category of general Ruan bimodules is equivalent to
the category of operator C∗-bimodules.

The main objects of this paper are the one-sided semi-RuanA-modules. We
shall see that a left semi-Ruan A-module has an isometric isomorphic represen-
tation as a submodule of some space B(K, H) where H, K are suitable Hilbert
spaces and H a contractive left A-module. Thus semi-Ruan modules have iso-
metric quantizations but in general the quantization will not be unique (this gives
an interpretation of the term “semi-Ruan”). Our construction gives the minimal
quantization. For a maximal quantization see Anantharaman-Delaroche and Pop
([1], Proposition 1.14) and Lambert ([11], Section 4).

Lambert [11] developed a related theory of operator sequence spaces which
is roughly speaking equivalent to the theory of semi-Ruan B-modules. Both the-
ories are based on a one-sided contractive module operation, Lambert uses the
sequence of normed spaces En, (n = 1, 2, . . . ), and scalar matrices Mn. Helem-
skii considers modules over the algebra B. Both theories postulate the quadratic
inequality ‖x + y‖2 6 ‖x‖2 + ‖y‖2 for orthogonal elements. The translation goes
as follows: Starting with Lambert’s theory, then the closure of

⋃
n

En ⊂ E∞ is a

semi-Ruan B-module. On the other hand, given a semi-Ruan B-module Y, then
there is a unique family of norms on Yn, (n = 1, 2, . . . ), such that Y with these
norms is an operator sequence space and the Yn are contractive Mn(B) modules.

I started this research with a generalization of Lambert’s work to one-sided
operator sequence C∗-modules. Then from Helemskii’s paper [9] I became ac-
quainted with semi-Ruan modules and found this non-matricial and non-coor-
dinate approach more convenient.

We shall show in Section 6 that the projective module tensor product X⊗
A

Y

of arbitrary right and left semi-Ruan A-modules X respectively Y is injective, i.e.
preserves isometric embeddings. For the proof we use the abstract Definition of
semi-RuanA-modules and no representation theory. As an application we obtain
a generalization of the extension theorem [24], [21], [15] for completely bounded
C∗-bimodule morphisms and a proof for the injectivity of the module Haagerup
tensor product of operator C∗-modules. The latter result was originally proved
in Theorem 7.1 of [1] and Theorem 3.6.5 of [3].
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Then we show that every left semi-Ruan A-module Y has an isometric rep-
resentation θ : Y → B(K, H) via a ∗-representation π : A → B(H). Since semi-
Ruan modules are representable modules this is a special case of a more general
result of Magajna [14] and Pop [18]. We give a proof for the special situation of
one-sided modules and thereby gain some additional information. In the first
step we construct for a given linear functional f in the dual unit sphere SY′ a
uniquely determined majorizing state denoted by | f |. This generalizes the notion
of the absolute value of a functional on a C∗-algebra. The minimal representation
is an isometric functor into the category of left operator modules i.e. bounded
morphisms of semi-Ruan modules become completely bounded morphisms with
the same norm. This functor is naturally isomorphic to the functor which assigns
to Y the Ruan A-B-bimodule F (L, Y) of bounded linear mappings of finite rank.

CONCLUDING REMARKS. Lambert uses his theory among other things to gen-
eralize the column quantization of Hilbert space to arbitrary Banach spaces E.
Then one may mimic the formula B(H) =cb CB(Hc) to quantize B(E). Lambert–
Neufang–Runde [12] showed that this column quantization of Lp-spaces and the
corresponding quantization of B(Lp) are the right tools to generalize Ruan’s re-
sults on the amenability of the quantized Fourier algebra A(G) to Ap(G). It might
be promising to study the column quantization or the corresponding (semi-)Ruan
modules for representable one-sided modules.

It might be possible to extend the injectivity of the module tensor product to
a larger classes of “infinite” C∗-algebras; see Anantharaman-Delaroche and Pop
[1] for related results.

1. PRELIMINARIES AND NOTATION

Let A be an arbitrary unital C∗-algebra and Z a left A-module. The term
module always mean unital module. We recall that Z is called a contractive left
A-module if Z is a normed space and if the module product satisfies ‖az‖ 6
‖a‖‖z‖ for all a ∈ A and z ∈ Z. We denote the module product with az and
in case of doubt with a · z as in the following remark. Given a contractive left
A-module the module product defines a contractive morphism π : A → B(Z)
by π(a) : z 7→ a · z. Given a contractive unital morphism π : A → B(Z) we
define an A-module action on Z by a · z := π(a)z and say Z is an A-module via π.
If Z happens to be a Hilbert space and simultaneously a contractive A-module
then the corresponding contractive morphism π : A → B(Z) is automatically a
∗-homomorphism (see Proposition A.5.8 of [3]), i.e. π(a)∗z = a∗ · z. Hence the
meaning of ∗ is unambiguous if we denote the module product for short with
a∗z. We use the remarks above for right modules with the obvious modifications.

Given an C∗-algebra A and a contractive A-bimodule Z, then we cancel the
bimodule operation and define Z/A := Z/[A, Z]− to be the quotient space by
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the closure of the subspace spanned by the commutators za− az. If Z is an op-
erator space and a contractive A-bimodule then Z/A denotes the corresponding
quotient operator space.

Clearly Z/A has the following universal property: given a balanced (i.e.
Φ(az) = Φ(za)) bounded linear operator Φ from Z to a normed space E then
there exist a unique bounded linear operator Φ̃ : Z/A → E such that Φ = Φ̃ ◦ κ,
where κ : Z → Z/A is the quotient map. Clearly ‖Φ̃‖ = ‖Φ‖. Observe, Z/A may
be the zero space.

Suppose that Z1, Z2 are a right respectively a left contractive A-modules. A
bounded bilinear operator Φ : Z1 × Z2 → E, where E is a normed space, is called
balanced if Φ(z1a, z2) = Φ(z1, az2) for all a ∈ A, z1 ∈ Z1, z2 ∈ Z2. The projec-
tive tensor product of the normed spaces Z1 ⊗p Z2 is a contractive A-bimodule
with the module multiplication defined by a1 · (z1 ⊗ z2) · a2 := (z1a2) ⊗ (a1z2).
The projective module tensor product Z1 ⊗

A
Z2 is defined as the quotient of the

projective tensor product Z1 ⊗p Z2 of normed linear spaces by the closure of the
commutators [a, z1 ⊗ z2] = z1 ⊗ az2 − z1a ⊗ z2. We write z1 ⊗

A
z2 for the equiv-

alence class of z1 ⊗ z2 in Z1 ⊗
A

Z2. The space Z1 ⊗
A

Z2 has the universal property

that it linearizes bounded balanced bilinear mappings to linear mappings with the
same norm.

In the two-sided case we consider a contractive C-A-bimodule Z and a con-
tractive A-C-bimodule W. A bounded bilinear operator Φ : Z×W → E is called
A-C-balanced if Φ(cza, w) = Φ(z, azc) for all a ∈ A, c ∈ C, z ∈ Z, w ∈ W.
The projective bimodule tensor product Z ⊗

A−C
W is defined as the quotient of the

projective tensor product Z ⊗p W of normed linear spaces by the closure of the
subspace spanned by terms of the form za⊗w− z⊗ aw and cz⊗w− z⊗wc. We
write z ⊗

A−C
w for the equivalence class of z⊗w in Z ⊗

A−C
W. The space Z ⊗

A−C
W has

the universal property that it linearizes bounded A-C-balanced bilinear mappings
to linear mappings with the same norm.

LEMMA 1.1. Let A, C be unital C∗-algebras and Z a contractive A
^⊗C-bimodule,

then Z is a contractive C-bimodule, Z/C is a contractive A-bimodule and Z/(C
^⊗ A) =

(Z/C)/A.

Proof. We define the module operation c1 · z · c2 in the obvious way by
(c1 ⊗ 1A)z(c2 ⊗ 1A). Similarly Z is a contractive A-bimodule and [C, Z]− is an
A-subbimodule. Thus Z/C is a contractive A-bimodule and the canonical map
κC : Z → (Z/C) is an A-bimodule morphism.

The bounded operator Φ : Z → Z/(C
^⊗ A) taking z to z + [C

^⊗ A, Z]− is
C-balanced. Φ induces a bounded linear map by Φ̃ : Z/C → Z/(C

^⊗ A). Since Φ̃

is A-balanced there exists the induced map ˜̃Φ : (Z/C)/A→ Z/(C
^⊗ A).



INJECTIVITY OF THE MODULE TENSOR PRODUCT OF SEMI-RUAN MODULES 91

On the other hand, consider the bounded map Ψ = κA ◦ κC : Z → Z/C →
(Z/C)/A. By definition we have

Ψ((c⊗ a)z)=κA ◦ κC((c⊗ 1A)((1C ⊗ a)z)) = κA(a · κC(z(c⊗ 1A)))

=κA(κC(z(c⊗1A)) · a)=κA(κC((z(c⊗1A))(1C⊗a)))=Ψ(z(c⊗a)).

Thus Ψ is balanced with respect to the algebraic tensor product C⊗ A. Since Ψ is
bounded, it is A

^⊗ C-balanced and thus there exists the induced bounded linear
map Ψ̃ : Z/(A

^⊗ C) : → (Z/C)/A.

From the construction follows that Ψ̃ and ˜̃Φ are inverse to each other.

COROLLARY 1.2. Let A, C be unital C∗-algebras and X and Y right respectively
left contractive A

^⊗ C-modules, then X ⊗
C⊗̆A

Y = (X⊗
C

Y)/A.

2. MODULE TENSOR PRODUCT RELATIVE TO PROPERLY INFINITE C∗-ALGEBRAS

In this preparing section A denotes a properly infinite unital C∗-algebra.
The module tensor product X ⊗

A
Y of a a right contractive A-module X and a left

contractive A-module Y has some simple but useful properties.
A unital C∗-algebra A is called properly infinite if it contains two isometries

S1, S2 with orthogonal left support, i.e. the final projections Pk := SkS∗k , (k = 1, 2),
are orthogonal. Then

(2.1) Sk = PkSk, S∗k = S∗k Pk and S∗k Sl =

{
0 for k 6= l,
1A for k = l.

Clearly it suffices to have this property for n = 2. If S1, S2 are isometries with
S1S∗1 ⊥ S2S∗2 then Sn−1

2 S1, (n = 1, 2, . . . ), is a sequence of isometries with pairwise
orthogonal left supports.

Given a contractive left A-module Y and an isometry S ∈ A, then without
mentioning we will use the following simple estimates:

(2.2) ‖y‖ = ‖S∗Sy‖ 6 ‖S∗‖‖Sy‖ 6 ‖S‖‖y‖ = ‖y‖
for all y ∈ Y; i.e. ‖Sy‖ = ‖y‖. Similarly for a right contractive A-module X holds
‖xS∗‖ = ‖x‖.

Let A be a unital C∗-algebra and C a C∗-subalgebra with 1C = 1A. If C
is properly infinite then A is properly infinite. We will use this remark in the
following situation: If A is an arbitrary unital C∗-algebra, then the spatial tensor
product A := B ^⊗ A is properly infinite. If V is a left operator A-module in the
sense of [4] then K ^⊗V is a contractive (B ^⊗ A)-B-bimodule.

Given a left contractive A-module Y, we consider the cyclic submodules
Ay ⊂ Y, (y ∈ Y). We define a partial order on the elements of Y by y � z if Ay ⊂
Az. We denote the inclusion mappings by iy : Ay ↪→ Y and by iy,z : Ay ↪→ Az for
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y � z. Then iy = iziy,z. We take inductive limits in the category of normed spaces
and contractive linear maps.

LEMMA 2.1. Given a properly infinite C∗-algebra A and a contractive left A-
module then the family {Ay : y ∈ Y} of cyclic submodules is directed upwards and
(Y, (iy)y∈Y) is the inductive limit, simply a union, of the system (iy,z : Ay→ Az)y�z .

Proof. Given y1, y2 ∈ Y. Choose two isometries S1, S2 ∈ A with orthog-
onal final projections S1S∗1 ⊥ S2S∗2 and define y3 = S1y1 + S2y2. Then Ayi =
AS∗i (S1y1 + S2y2) ⊂ Ay3 for i = 1, 2. Since A is a unital algebra

⋃
y∈Y
Ay = Y.

We will use the system of linear contractions 1X ⊗
A

iy : X⊗
A
Ay→ X⊗

A
Y and

1X ⊗
A

iy,z : X⊗
A
Ay→ Y⊗

A
Az for y � z.

LEMMA 2.2. Let X be a right contractive A-module, X0 ⊂ X a submodule and
Y a left contractive A-module. Denote by i0 : X0 ↪→ X the isometric inclusion map. If
for all cyclic submodules Ay ⊂ Y, (y ∈ Y) the map i0 ⊗

A
1Ay : X0 ⊗

A
Ay → X ⊗

A
Ay is

isometric, then i0 ⊗
A

1Y : X0 ⊗
A

Y → X⊗
A

Y is an isometry.

Proof. Clearly i0⊗
A

1Y is a contraction. In order to show that it is an isometry

we construct to every bounded linear functional ϕ ∈ (X0 ⊗
A

Y)′ an extension ψ ∈
(X ⊗

A
Y)′ such that ψ ◦ (i0 ⊗

A
1Y) = ϕ and ‖ϕ‖ = ‖ψ‖. It suffices to extend the

corresponding bounded balanced bilinear form f : X0 ×Y → C.
For y ∈ Y denote by ϕy = ϕ ◦ (1X0 ⊗A iy) and by fy : X0 × Ay → C the

corresponding balanced bilinear form. Clearly fy = f |X0×Ay and ‖ϕy‖ = ‖ fy‖ 6
‖ f ‖ = ‖ϕ‖. By assumption ϕy has a linear extension ψy ∈ (X ⊗

A
Ay)′ such that

ψy ◦ (i0⊗
A

1Ay) = ϕy and ‖ψy‖ = ‖ϕy‖. Let ey : X×Ay→ C be the corresponding

bounded balanced bilinear form. Clearly ‖ey‖ = ‖ψy‖ 6 ‖ϕ‖ and ey|X0×Ay =
fy = f |X0×Ay.

Recall the partial order on Y: we say y1 � y2 ifAy1 ⊂ Ay2. From Lemma 2.1
this is an upwards directed system and Y =

⋃
y∈Y
Ay. Choose an ultra filter U over

the filter of tails of this directed system and define

e(x, z) := lim
z�y→U

ey(x, z) for x ∈ X, z ∈ Y.

Obviously e : X × Y → C is well defined bilinear balanced and an extension of f
with ‖e‖ = ‖ f ‖. The corresponding linear form ψ ∈ (X ⊗

A
Y)′ is an extension of

ϕ with the same norm.

The module tensor product relative to a properly infinite C∗-algebra A has
some attractive properties. Helemskii ([9], Section 0-2) introduced these useful
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properties for B-modules. It is easily seen that the results and the proofs of Sec-
tion 0-2 in [9] hold for arbitrary properly infinite C∗-algebras. For the convenience
of the reader we recall here and in the next section some of these results (see the
Propositions 2.3, 3.8, 4.6).

PROPOSITION 2.3 ([9], Proposition 1). Let X be a right contractive A-module
and Y a left contractive A-module. Then every u ∈ X⊗

A
Y can be represented as a single

elementary tensor u = x⊗
A

y.

3. SEMI-RUAN ONE-SIDED MODULES

DEFINITION 3.1. Given a properly infinite C∗-algebras A, a contractive left
A-module Y is called a left semi-Ruan A-module if it satisfies the following con-
dition (the left semi-Ruan axiom): There exist two isometries S1, S2 ∈ A with
orthogonal final projections S1S∗1 ⊥ S2S∗2 such that

‖S1y1 + S2y2‖ 6 (‖y1‖2 + ‖y2‖2)1/2 for all y1, y2 ∈ Y.(lsR)

Similarly we define the notion of a right semi-Ruan A-module X: There exist two
isometries S1, S2 ∈ A with orthogonal final projections such that

‖x1S∗1 + x2S∗2‖ 6 (‖x1‖2 + ‖x2‖2)1/2 for all x1, x2 ∈ X.(rsR)

Helemskii ([9], Definition 2) defines left semi-Ruan B-modules Y, where
B = B(L), by the following formally stronger condition (lsR′) respectively a sim-
ilar condition (rsR′) for right modules:

REMARK 3.2. Given a properly infinite C∗-algebra A, a contractive left A-
module Y is a semi-Ruan A-module if and only if

(lsR′) ‖y1 + y2‖ 6 (‖y1‖2 + ‖y2‖2)1/2

for all y1, y2 with orthogonal left supports; i.e there exist orthogonal projections
Pi such that Piyi = yi, (i = 1, 2). The equivalence of (lsR′) and (lsR) follows from
the next proposition.

PROPOSITION 3.3. Given a properly infinite C∗-algebra A, a contractive left A-
module Y is a left semi-Ruan A-module if and only if it satisfies the following condition
(left representable module)

(lr) ‖a1y1 + a2y2‖ 6 ‖a1a∗1 + a2a∗2‖1/2(‖y1‖2 + ‖y2‖2)1/2

for all a1, a2 ∈ A, y1, y2 ∈ Y.

Proof. Choose two isometries S1, S2 with orthogonal final projections such
that the estimate (lsR) holds and let a = a1S∗1 + a2S∗2 . The C∗-identity gives
‖a‖2 = ‖aa∗‖ = ‖a1S∗1S1a∗1 + a2S∗2S2a∗2‖ = ‖a1a∗1 + a2a∗2‖. From the condition
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(lsR) follows ‖a1y1 + a2y2‖ = ‖a(S1y1 + S2y2)‖ 6 ‖a‖‖S1y1 + S2y2‖ 6 ‖a1a∗1 +
a2a∗2‖1/2(‖y1‖2 + ‖y2‖2)1/2.

On the other hand condition (lsR) is a special case of condition (lr).

REMARK 3.4. Magajna ([14], Corollary 2.2) has shown that a left contractive
module Y over an arbitrary C∗-algebra A is isometrically isomorphic to a left
operator A-module in the sense of [4] if and only if it satisfies the condition (lr).
Such a module is called left representable.

EXAMPLE AND REMARK 3.5. (i) Given a C∗-algebra A with a properly infi-
nite unital subalgebra A0 and a contractive left A-module Y, if Y is a semi-Ruan
A0-module, then Y is a semi-Ruan A-module.

(ii) Especially for an arbitrary Hilbert space H and a C∗-algebra A ⊂ B(H),
the Hilbert space L⊗2 H is a left semi-Ruan (B ^⊗ A)-module.

(iii) Given a ∗-representation π : A → B(H) of a properly infinite C∗-algebra
A, a normed space Y and an isometry θ : Y → B(K, H) such that π(A)θ(Y) ⊂
θ(Y), define a left module action on Y by ay := θ−1(π(a)θ(y)). Then Y is a left
semi-Ruan module. We call θ a representation of the A-module Y via π and Y a
representable semi-Ruan A-module. In Section 11 we shall show that every semi-
Ruan module is representable.

(iv) A representation of a left semi-RuanA-module Y gives to Y a structure as a
left operatorA-module in the sense of [4] (see Theorem 15.14 and Corollary 16.10
of [16] or Section 3.3.1 and Theorem 3.3.1 of [3]). In general the operator module
structure of a semi-Ruan module is not unique, there is a minimal and a maximal
one. This explains the term semi-Ruan.

(v) For example, L⊗2 H is a left semi-Ruan B-module. The minimal operator
B-module structure is given by the column operator Hilbert space (L⊗2 H)c and
the maximal one by the maximal operator space over L⊗2 H.

(vi) Given a semi-Ruan A-module Y and a closed A-submodule Y0, then the
quotient space Y/Y0 is a semi-Ruan A-module.

(vii) The `p-direct-sum (2 6 p 6 ∞) of a family of semi-Ruan modules of the
same type is also a semi-Ruan module.
(viii) Let E be a normed space and Y a left semi-RuanA-module, then B(E, Y) is

a left semi-Ruan A-module.

PROPOSITION 3.6. The condition (lsR) is always an equality if and only if there
is an inner product 〈·, ·〉 on Y, such that ‖y‖ = 〈y, y〉1/2. The completion H of Y is a
Hilbert space and the module action gives a ∗-representation π : A→ B(H).

Proof. Suppose S1, S2 are two isometries with orthogonal final projections
P1, P2. Let Q = 1A − P1 − P2, then the element U := 2−1/2(1A + iQ + S2S∗1 −
S1S∗2) is unitary and U(S1y1 + S2y2) = 2−1/2(S2(y2 + y1) + S1(y1 − y2)). Since
by assumption the condition (lsR) is an equality we obtain

2‖y1‖2 + 2‖y2‖2=2‖S1y1 + S2y2‖2=2‖U(S1y1+S2y2)‖=‖y1+y2‖2 + ‖y1−y2‖2.
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The parallelogram equality holds and thus Y is an inner product space.
The module action gives a contractive morphism π : A → B(H). From

Proposition A.5.8 of [3] follows that π is a ∗-homomorphism.

REMARK 3.7. Given a left semi-Ruan A-module Y then the dual space Y′

with the multiplication ( f · a)(y) := f (ay) for f ∈ Y′, a ∈ A, y ∈ Y is a right
contractive A-module with the following property:

‖ f1 + f2‖ > (‖ f1‖2 + ‖ f2‖2)1/2

for all f1, f2 ∈ Y′ with orthogonal right supports. Hence the dual of a semi-Ruan
module Y is a semi-Ruan module if and only if Y is an inner product space.

PROPOSITION 3.8 ([9], Proposition 5). Let X be a right semi-Ruan A-module,
Y a left semi-Ruan A-module and u ∈ X⊗

A
Y. Then

‖u‖ = inf{‖x‖‖y‖},

where the infimum is taken over all possible representations of u in the form u = x⊗
A

y,

x ∈ X, y ∈ Y, (such representations exist by Proposition 2.3).

4. RUAN BIMODULES

DEFINITION 4.1. Given properly infinite C∗-algebras A and C, then a con-
tractiveA-C-bimodule W is called a RuanA-C-bimodule if it satisfies the following
condition (the Ruan axiom):

There exist isometries S1, S2 ∈ A with orthogonal left supports and isome-
tries T1, T2 ∈ C with orthogonal left supports such that

(R) ‖S1w1T∗1 + S2w2T∗2 ‖ = max{‖w1‖, ‖w2‖} for all w1, w2 ∈W.

Given a contractiveA-module W and elements w1, w2 ∈W with orthogonal
left supports P1, P2, then ‖wi‖ = ‖Pi(w1 + w2)‖ 6 ‖Pi‖‖w1 + w2‖ = ‖w1 + w2‖,
(i = 1, 2). Hence we have the following observation:

Instead of equation (R) the following condition is sufficient

(R′) ‖S1w1T∗1 + S2w2T∗2 ‖ 6 max{‖w1‖, ‖w2‖} for all w1, w2 ∈W.

Helemskii defines Ruan B-bimodules by the following stronger condition
(R′′). Given two elements w1, w2 ∈ W, then we say they have orthogonal left sup-
ports, if there exist projections Q1, Q2 ∈ A such that Q1 ⊥ Q2 and wi = Qiwi,
(i = 1, 2). Given a Ruan A-C-bimodule W then

(R′′) ‖w1 + w2‖ = max{‖w1‖, ‖w2‖},

for all w1, w2 ∈W with orthogonal left and orthogonal right supports.
The equivalence of (R′′) and (R) follows from the next proposition.
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PROPOSITION 4.2. Given properly infinite C∗-algebra A, C, then a contractive
A-C-module W is a Ruan A-C-module if and only if it satisfies the following condition
(representable bimodule)

(r) ‖a1w1c1 + a2w2c2‖ 6 ‖a1a∗1 + a2a∗2‖1/2(max{‖w1‖, ‖w2‖}‖c∗1c1 + c∗2c2‖1/2,

for all a1, a2 ∈ A, c1, c2 ∈ C, w1, w2 ∈W.

Proof. Choose isometries S1, S2 ∈ A with orthogonal final projections and
isometries T1, T2 ∈ C with orthogonal final projections such that the equation (R)
holds. Let a = a1S∗1 + a2S∗2 and c = T1c1 + T2c2. The C∗-identity gives

‖a‖2 = ‖aa∗‖ = ‖a1S∗1S1a∗1 + a2S∗2S2a∗2‖ = ‖a1a∗1 + a2a∗2‖,

and similarly ‖c‖2 = ‖c∗1c1 + c∗2c2‖. From the equation a(S1w1T∗1 + S2w2T∗2 )c =
a1w1c1 + a2w2c2 and the condition (R) follows

‖a1w1c1 + a2w2c2‖ = ‖a(S1w1T∗1 + S2w2T∗2 )c‖ 6 ‖a‖max{‖w1‖, ‖w2‖}‖c‖

= ‖a1a∗1 + a2a∗2‖1/2 max{‖w1‖, ‖w2‖}‖c∗1c1 + c∗2c2‖1/2.

On the other hand condition (R′) is a special case of condition (r).

REMARK 4.3. Magajna [14] and Pop [18] showed that a contractive bimod-
ule W over arbitrary C∗-algebras A, C is isometrically isomorphic to an operator
A-C-bimodule in the sense of [4] if and only if it satisfies the condition (r). Such
a module is called representable. It has an isometric isomorphic representation as
a submodule of some B(K, H), where H, K are Hilbert spaces and contractive left
A-modules respectively right C-modules.

By a straight forward computation we obtain the following proposition:

PROPOSITION 4.4. Given a Ruan A-C-bimodule W, then there exist a unique
family of norms ‖ · ‖n on Mn(W), (n ∈ N) such that W becomes an operator A-C-
bimodule (in the sense of [4]). These norms are given by the formula

(4.1) ‖w‖Mn(W) :=
∥∥∥ n

∑
i,j=1

Siwi,jT∗j
∥∥∥ for w = [wi,j] ∈ Mn(W),

where Si ∈ A, Tj ∈ C are arbitrary n-tuples of isometries with pairwise orthogonal final
projections. Every bounded morphism Φ between Ruan A-C-bimodules is completely
bounded with ‖Φ‖cb = ‖Φ‖.

EXAMPLE AND REMARK 4.5. (i) Given C∗-algebras A, C with properly infi-
nite unital subalgebras A0 respectively C0 and a contractive A-C-bimodule W, if
W is a Ruan A0-C0-bimodule, then W is a Ruan A-C-bimodule.

(ii) Given an arbitrary operator A-C-bimodule Z in the sense of [4] then the
minimal (spatial) tensor product W := K ^⊗ Z is a Ruan A-C-bimodule, where
A = B ^⊗ A and C = B ^⊗ C.
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(iii) Let π : A → B(H) and ρ : C → B(K) be unital ∗-representations, W a
normed space and θ : W → B(K, H) an isometry such that π(A)θ(W)ρ(C) ⊂
θ(W). Define the module action by awc := θ−1(π(a)θ(w)ρ(c)). Then W is a
Ruan A-C-bimodule. We call θ an isometric representation of W via (π, ρ) and
W a representable Ruan A-C-bimodule. Every Ruan bimodule is representable (see
Proposition 4.2 and the the proximate remark).

(iv) All isometric representation of a Ruan bimodule into some space B(K, H)
give the same structure as an operator bimodule (see Proposition 4.4).

PROPOSITION 4.6 ([9], Proposition 6). Let W be a Ruan A-C-bimodule, X a
right semi-Ruan A-module and Y a left semi-Ruan C-module. Then X ⊗

A
W is a right

semi-Ruan C-module respectively W ⊗
C

Y a left semi-Ruan A-module.

The following proposition corresponds to the fact that the module Haage-
rup tensor product of operator modules is an operator module (see Chapter 8).

PROPOSITION 4.7. Let V, W be Ruan A-C- respectively C-D-bimodules. Then
V ⊗
C

W is a Ruan A-D-bimodule.

Proof. Clearly V ⊗
C

W is a contractive A-D-bimodule. Let u1, u2 ∈ V ⊗
C

W

have orthogonal left supports Q1, Q2 ∈ A and orthogonal right supports R1, R2 ∈
D. For ε > 0 there exist representations ui = vi ⊗

C
wi such that ‖vi‖‖wi‖ 6 ‖ui‖+

ε, (i = 1, 2), (see Proposition 3.8). Obviously we may suppose that ‖vi‖ = ‖wi‖
and vi = Qivi, wi = wiRi, (i = 1, 2).

Choose two isometries T1, T2 ∈ C with orthogonal final supports P1, P2.
Then we have u1 + u2 = (v1T∗1 + v2T∗2 ) ⊗C (T1w1 + T2w2). Now the elements

viT∗i have orthogonal left supports Qi and orthogonal right supports Pi and the
elements Tiwi have orthogonal left supports Pi and orthogonal right supports Ri,
(i = 1, 2). From equation (R′′) we have

‖u1 + u2‖ 6 ‖v1T∗1 + v2T∗2 ‖‖T1w1 + T2w2‖
= max{‖v1T∗1 ‖, ‖v2T∗2 ‖}max{‖T1w1‖, ‖T2w2‖}
= max{‖v1‖, ‖v2‖}max{‖w1‖, ‖w2‖}
= max{‖v1‖‖w1‖, ‖v2‖‖w2‖} 6 max{‖u1‖, ‖u2‖}+ ε.

Since ε > 0 is arbitrary, V ⊗
C

W has the Ruan property (R′′).

5. FROM SEMI-RUAN MODULES TO RUAN MODULES AND VICE VERSA

PROPOSITION 5.1 (see Proposition 4 of [9]). Every Ruan A-C-bimodule, con-
sidered as a left A-module or a right C-module, is a respective one-sided semi-Ruan mod-
ule.
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REMARK 5.2. (i) Given a Ruan A-C-bimodule and a c ∈ C then Wc ⊂ W is
a left semi-Ruan A-submodule of W.

(ii) Let A be a C∗-algebra on a Hilbert space L and Y a left contractive A-
module. The space F (L, Y) of bounded operators of finite rank is a contractive
A-B-bimodule. Given ξ ∈ L, ‖ξ‖ = 1 and p = ξ ′ ⊗ ξ ∈ B(L) the corresponding
minimal projection then the mapping F (L, Y) · p 3 vp → vξ ∈ Y is an isometric
A-isomorphism F (L, Y) · p ∼= Y. Further on F (L, Y) = lin(F (L, Y) · p · B).

(iii) Observe B(`2, Y) is isometric isomorphic to the weak `2-direct sum of count-

able many copies of Y, i.e. the norm of the mapping v : ξ 7→
∞
∑

i=1
ξiyi is ‖v‖ =

sup
f

( ∞
∑

i=1
| f (yi)|2

)1/2
where the supremum runs over all f ∈ Y′, ‖ f ‖ 6 1.

(iv) Consider the special case where π : A → B(H) is a ∗-representation on a
Hilbert space H,A := B ^⊗ A. Then Y = L⊗2 H is a left semi-RuanA-module and
F (L)

.
⊗ B(C, H) = F (L⊗2 C, L⊗2 H) ⊂ F (L, Y) ⊂ K(L, Y) = K(L⊗2 C, L⊗2

H) = K(L)
^⊗ B(C, H). Both the left or right hand side give the usual column

Hilbert space quantization of H (see Chapter 2 of [17]). The following proposition
generalizes this column quantization (see Lambert, Chapter 5 of [11]).

PROPOSITION 5.3. Given a left semi-Ruan A-module Y and a separable Hilbert
space L, then F (L, Y) is a Ruan A-B-bimodule, where B = B(L). Let p ∈ B be
a minimal projection, then Y is isometric A-isomorphic to the semi-Ruan A-module
F (L, Y) · p.

Proof. Clearly F (L, Y) is a contractive A-B-bimodule. Choose isometries
S1, S2 ∈ A and isometries T1, T2 ∈ B with orthogonal final projections. Hence

‖(S1w1T∗1+S2w2T∗2 )ξ‖6(‖S1w1T∗1 ξ‖2+‖S2w2T∗2 ξ‖2)1/2=(‖w1T∗1 ξ‖2+‖w2T∗2 ξ‖2)1/2

6max{‖w1‖, ‖w2‖}(‖T∗1 ξ‖2 + ‖T∗2 ξ‖2)1/2

=max{‖w1‖, ‖w2‖}〈(T1T∗1 + T2T∗2 )ξ, ξ〉1/2

6max{‖w1‖, ‖w2‖}‖ξ‖

for all w1, w2 ∈ B(L, Y), ξ ∈ L. The rest follows from remark (ii) above.

F (L, Y) is the minimal Ruan A-B-bimodule V such that (Vp) is isometric
A-isomorphic to Y. The following Lemma 5.4 states this more precisely.

LEMMA 5.4. Given a Ruan A-B-bimodule W and a minimal projection p = ξ ′ ⊗
ξ ∈ B. If W = lin{(W p) · B} then the linear mapping

Λ : W → F (L, W p), Λ(wp · b) : ζ 7→ 〈bζ, ξ〉wp,

for w ∈W, b ∈ B, ζ ∈ L, is a contractive bimorphism of Ruan A-B-bimodules.
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Proof. Given ∑
ν

wν p · bν ∈ lin{W p · B} and ζ ∈ L, then

Λ
(

∑
ν

wν p · bν

)
(ζ) = ∑

ν

〈bνζ, ξ〉wν p = ∑
ν

wν p · bνz

where z : η 7→ 〈η, ξ〉ζ and thus∥∥∥Λ
(

∑
ν

wν p · bν

)
(ζ)
∥∥∥ =

∥∥∥∑
ν

wν p · bνz
∥∥∥ 6 ∥∥∥∑

ν

wν p · bν

∥∥∥‖z‖.
Since ‖z‖ = ‖ζ‖ the mapping Λ is welldefined and contractive. Clearly, Λ is an
A-B-bimorphism.

6. INJECTIVITY OF THE PROJECTIVE MODULE TENSOR PRODUCT

Our aim is to show that the projective module tensor product of right and
left semi-Ruan modules preserves embeddings.

THEOREM 6.1. Given a properly infinite C∗-algebra A, right semi-Ruan A-mod-
ules X0, X, left semi-Ruan A-modules Y0, Y and isometric morphisms α : X0 → X and
β : Y0 → Y, of right respectively left A-modules, then the linear operator α⊗

A
β : X0 ⊗

A
Y0 → X⊗

A
Y is isometric.

Proof. Since α⊗
A

β = (α⊗
A

1Y)(1X0 ⊗A β) it suffices to show that both factors

are isometric. We will prove this for the first factor (see Corollary 6.6 below).
It is obvious that the proof for the second factor follows in a “symmetric way”.
Helemskii ([9], Proposition 7) gives a formal proof for the latter argument using
complex conjugate opposite modules.

We start the proof that α⊗
A

1Y is isometric, with the special case where Y is

a cyclic module. The general case then follows from Lemma 2.1 that the cyclic
submodules are directed upwards and Lemma 2.2 about the limit of their tensor
products.

In order to simplify the notation we consider the isometric morphism as an
embedding of a submodule Z of X and write Z ⊂ X. In some places we need a
name for the embedding map and denote it by iZ,X : Z → X. In the following A
denotes a properly infinite C∗-algebra.

LEMMA 6.2. Given a right semi-Ruan A-module X, a left semi-Ruan A-module
Y and a fixed element ỹ ∈ Y, define

(6.1) X 3 x 7→ qỹ(x) := inf
x=x̃a
‖x̃‖‖aỹ‖

where a ∈ A and x̃ ∈ X arbitrary. Then qỹ is a seminorm on X. Furthermore we may
suppose in the definition of qỹ that a is invertible.
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Proof. Clearly qỹ(λx) = |λ|qỹ(x) for λ ∈ C. For ε > 0 and x1, x2 ∈ X choose
decompositions xi = x̃iai, (i = 1, 2), such that ‖x̃i‖‖ai ỹ‖ 6 qỹ(xi) + ε. We may
assume that ‖x̃i‖ = ‖ai ỹ‖. Choose isometries S1, S2 ∈ A with orthogonal final
projections. Then S∗i Sj = δi,j1A for i = 1, 2 and hence

x1 + x2 = (x̃1S∗1 + x̃2S∗2)(S1a1 + S2a2).

From the conditions (rsR) and (lsR) and equation (2.2) we obtain the following
estimation:

qỹ(x1 + x2) 6 ‖x̃1S∗1 + x̃2S∗2‖‖S1a1ỹ + S2a2ỹ‖

6 (‖x̃1S∗1‖2 + ‖x̃2S∗2‖2)1/2(‖S1a1ỹ‖2 + ‖S2a2ỹ‖2)1/2

= (‖x̃1‖2 + ‖x̃2‖2)1/2(‖a1ỹ‖2 + ‖a2ỹ‖2)1/2

= ‖x̃1‖‖a1ỹ‖+ ‖x̃2‖‖a2ỹ‖ 6 qỹ(x1) + qỹ(x2) + 2ε.

Since ε is arbitrary qỹ is subadditive.
We denote temporarily q̃ỹ(x) := inf

x=x̃a
‖x̃‖‖aỹ‖ where x̃ ∈ X, a ∈ A and a is

invertible. We will show that q̃ỹ = qỹ.
Obviously qỹ 6 q̃ỹ. For ε > 0 there are x̃ ∈ X, a ∈ A such that x = x̃a

and (‖x̃‖‖aỹ‖) 6 qỹ(x) + ε. We may assume ‖x̃‖ = 1. With isometries S1, S2 as
above we have x = x̃S∗1(S1a + εS2) where (S1a + εS2)

∗(S1a + εS2) = a∗a + ε21A
is invertible. Let vε|aε| be the polar decomposition of aε = S1a + εS2. Then |aε| is
invertible, vε = aε|aε|−1 ∈ A and x = (x̃S1vε)|aε|. Since |aε| = v∗ε aε we obtain

q̃ỹ(x) 6 ‖x̃S∗1vε‖‖|aε|ỹ‖ = ‖x̃‖‖aεỹ‖ 6 ‖x̃‖(‖S1aỹ‖+ ε‖S2ỹ‖)
= ‖x̃‖‖aỹ‖+ ε‖x̃‖‖ỹ‖ 6 qỹ(x) + ε(1 + ‖ỹ‖).

Since ε > 0 is arbitrary q̃ỹ 6 qỹ.

LEMMA 6.3. Define the seminorm qỹ : X → [0, ∞) as in Lemma 6.2. Given a
submodule Z ⊂ X define analogously a seminorm pỹ on Z (see equation (6.1)):

Z 3 z 7→ pỹ(z) := inf
z=z̃a
‖z̃‖‖aỹ‖

where z̃ ∈ Z, a ∈ A arbitrary. Then qỹ|Z = pỹ.

Proof. If z ∈ Z, then qỹ(z) 6 pỹ(z) since there are more decompositions for z
in X. On the other hand, for z ∈ Z and ε > 0 there exists a decomposition z = x̃a
as in Lemma 6.2 with x̃ ∈ X and an invertible a such that ‖x̃‖‖aỹ‖ 6 qỹ(z) + ε.
Then x̃ = za−1 ∈ Z and thus pỹ(z) 6 ‖x̃‖‖aỹ‖ 6 qỹ(z) + ε.

PROPOSITION 6.4. Let X be a right semi-Ruan, Y a left semi-RuanA-module and
ỹ a fixed element in Y. Define the semi norm qỹ on X as in Lemma 6.2. Denote the kernel
of qỹ by Xỹ = {x ∈ X : qỹ(x) = 0} and by ‖ · ‖qỹ the induced norm on X/Xỹ. The
kernel of the linear map (tensor multiplication with ỹ)

τỹ : X 3 x → x⊗
A

ỹ ∈ X⊗
A
Aỹ
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is Xỹ and the induced map τ̃ỹ : (X/Xỹ, ‖ · ‖ỹ)→ X⊗
A
Aỹ is a surjective isometry.

Proof. Clearly τỹ is a linear map. Choose a decomposition x = x̃a, x̃ ∈ X,
a ∈ A of x, then

τỹ(x) = x̃a⊗
A

ỹ = x̃⊗
A

aỹ and ‖τỹ(x)‖ 6 ‖x̃‖‖aỹ‖.

Taking the infimum over all decompositions we obtain ‖τỹ(x)‖ 6 qỹ(x). Hence
τỹ induces a contraction τ̃ỹ : (X/Xỹ, ‖ · ‖qỹ) → X ⊗

A
Aỹ. By Proposition 2.3 τ̃ỹ is

surjective.
For x̃ ∈ X there is a linear functional ϕ : X → C such that ϕ(x̃) = qỹ(x̃) and

|ϕ(x)| 6 qỹ(x) for all x ∈ X. We define a function f : X×Aỹ→ C by

f (x, aỹ) := ϕ(xa).

We show that f is well defined. If a1ỹ = a2ỹ then

|ϕ(x(a1 − a2))| 6 qỹ(x(a1 − a2)) 6 ‖x‖‖(a1 − a2)ỹ‖ = 0.

Similarly follows that f is linear in the second variable: If aỹ + bỹ = cỹ then

| f (x, aỹ) + f (x, bỹ)− f (x, cỹ)| = |ϕ(x(a + b− c))| 6 qỹ(x(a + b− c))

6 ‖x‖‖(a + b− c)ỹ‖ = 0.

Thus f is bilinear and balanced:

f (xa, bỹ) = ϕ((xa)b) = ϕ(x(ab)) = f (x, a(bỹ))

for all x ∈ X and a, b ∈ A. By definition | f (x, aỹ)| 6 qỹ(xa) 6 ‖x‖‖aỹ‖, i.e.
f : X ×Aỹ → C is contractive. Hence there is a bounded linear functional ϕ̃ ∈
(X⊗

A
Aỹ)′ such that ϕ̃(x⊗

A
aỹ) = f (x, aỹ) and ‖ϕ̃‖ = ‖ f ‖ 6 1. Now

qỹ(x̃) = ϕ(x̃) = f (x̃, ỹ) = ϕ̃(x̃⊗
A

ỹ) = ϕ̃(τỹ(x̃)) 6 ‖ϕ̃‖‖τỹ(x̃)‖

and thus ‖x̃ + Xỹ‖qỹ = qỹ(x̃) 6 ‖τ̃ỹ(x̃ + Xỹ)‖Y⊗
A
Aỹ. Since x̃ is arbitrary τ̃ỹ is an

isometry.

COROLLARY 6.5. Let iZ,X : Z ↪→ X be a submodule and ỹ a fixed element in Y.
The map iZ,X ⊗

A
1Aỹ : Z⊗

A
Aỹ→ X⊗

A
Aỹ is an isometry.

Proof. Consider the seminorms qỹ and pỹ = qỹ|Z as defined in Lemma 6.3
and their kernels as defined in Proposition 6.4:

Zỹ = {y ∈ Z : pỹ(y) = 0} = Xỹ ∩ Z.

Hence the canonical linear map Z/Zỹ = Z/(Z ∩Xỹ)
κ
↪→ X/Xỹ is injective and an

isometry for the induced norms ‖ · ‖pỹ and ‖ · ‖qỹ . Now we have the commutative
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diagram

Z/Zỹ
κ−−−−−→ X/Xỹ

τ̃ỹ

y yτ̃ỹ

Z⊗
A
Aỹ −−−−−→

iZ,X ⊗
A

1Aỹ
X⊗
A
Aỹ

where the vertical maps are isometric isomorphisms (see Proposition 6.4) and κ
is an isometry. Hence iZ,X ⊗

A
1Aỹ is an isometry too.

The following corollary is the last step in the proof of Theorem 6.1:

COROLLARY 6.6. Given a submodule iZ,X : Z ↪→ X, then the map iZ,X ⊗
A

1Y :

Z⊗
A

Y → X⊗
A

Y is an isometry.

Proof. For y1 � y2 � y3 � · · · we have the upwards directed system of
subspaces (see Lemma 2.1)

Ay1 ⊂ Ay2 ⊂ Ay3 · · · with union Y.

Let i1,2 : Ay1 ↪→ Ay2 and iy : Ay ↪→ Y denote the inclusion mappings. Building
the module tensor product with the inclusion mapping iZ,X : Z ↪→ X we obtain a
commutative diagram, where all vertical maps on the left side are isometric

(6.2)

Z⊗
A
Ay1

1Z ⊗
A

i1,2

−−−−→ Z⊗
A
Ay2

1Z ⊗
A

i2,3

−−−−→ Z⊗
A
Ay3 −→ · · · Z⊗

A
Y

iZ,X ⊗
A

y1Ay1
iZ,X ⊗

A
1Ay2

y iZ,X ⊗
A

1Ay3

y iZ,X ⊗
A

1Y

y
X⊗
A
Ay1 −−−−→

1X ⊗
A

i1,2
X⊗
A
Ay2 −−−−→

1X ⊗
A

i2,3
X⊗
A
Ay3 −→ · · · X⊗

A
Y

.

From Lemma 2.2 follows, that the “limit map” iZ,X ⊗
A

1Y is isometric too.

After finishing the proof of Theorem 6.1 we may apply the result to the top
and bottom row of the diagram (6.2):

REMARK 6.7. The mappings on the left-hand side of the top and bottom row
of diagram (6.2) are all isometric. The family of isometries 1X ⊗

A
iy : X ⊗

A
Ay ↪→

X ⊗
A

Y, (y ∈ Y), is the inductive limit of the bottom row and analogously for

the top row. Now iZ,X ⊗
A

1Y is the inductive limit of the vertical maps. We may

consider this as an exhaustion by an upwards directed system of subspaces

X⊗
A

Y =
⋃

y∈Y
X⊗
A
Ay.
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7. AN EXTENSION THEOREM FOR BOUNDED BIMODULE MORPHISMS

Given a right contractive A-module X and a left contractive C-module Y,
then the the projective tensor product Y ⊗p X of the normed spaces is a contrac-
tive C-A-bimodule and the dual (Y ⊗p X)′ is a contractive A-C-bimodule. The
module operation is given by

c · (y⊗ x) · a := (cy)⊗ (xa) and (a · f · c)(y⊗ x) = f (cy⊗ xa)

for all a ∈ A, c ∈ C, y ∈ Y, x ∈ X, f ∈ (Y⊗p X)′.
A short inspection of the proof shows that Helemskii’s result ([9], Propo-

sition 8) holds for arbitrary (semi-)Ruan (bi)modules with respect to properly
infinite C∗-algebras. So using this proof we get the following result:

PROPOSITION 7.1. Let X be a right semi-Ruan A-module, Y a left semi-Ruan C-
module and W a Ruan A-C-bimodule. Given submodules iX0,X : X0 ↪→ X, iY0,Y : Y0 ↪→
Y and iW0,W : W0 ↪→W then the following is an isometry of normed spaces:

(7.1) (iY0,Y ⊗
p

iX0,X) ⊗
A−C

iW0,W : (Y0 ⊗
p

X0) ⊗
A−C

W0 → (Y⊗
p

X) ⊗
A−C

W.

Proof. Consider the following commutative diagram

(Y0 ⊗
p

X0) ⊗
A−C

W0

(iY0,Y ⊗p iX0,X) ⊗
A−C

iW0,W

−−−−−−−−−−−−−→ (Y⊗
p

X) ⊗
A−C

Wy y
(X0 ⊗

A
W0)⊗

C
Y0

(iX0,X ⊗
A

iW0,W )⊗
C

iY0,Y

−−−−−−−−−−−−−→ (X⊗
A

W)⊗
C

Y

where the vertical arrows are isometric isomorphisms of normed spaces. In the
case that we are considering, these isomorphisms are the shuffle maps defined
on elementary tensors as (y ⊗ x) ⊗

A−C
w → (x ⊗

A
w) ⊗

C
y where x ∈ X0, y ∈ Y0

and w ∈ W0 respectively x ∈ X, y ∈ Y and w ∈ W (see [10]). We see that
it is sufficient to show that the operator (iX0,X ⊗

A
iW0,W) ⊗

C
iY0,Y is isometric. By

Proposition 5.1 iW0,W is an isometric morphism of left semi-RuanA-modules and
therefore the operator iX0,X ⊗

A
iW0,W is isometric (see Theorem 6.1). Moreover, by

Proposition 4.6 it is an isometric morphism of right semi-Ruan C-modules. Ap-
plying once more Theorem 6.1 we see that (iX0,X ⊗

A
iW0,W)⊗

C
iY0,Y is isometric.

Recall the isometric isomorphisms

(7.2) ((Y⊗
p

X) ⊗
A−C

W)′ ∼= AhC(W, (Y⊗
p

X)′) ∼= ChA((Y⊗
p

X), W ′),

where AhC denotes the normed space of bounded A-C-bimorphisms. By special-
izing we obtain from equations (7.1) and (7.2) extension and lifting theorems for
bounded bimodule morphisms, for example:
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THEOREM 7.2. Given families of right semi-RuanA-module Xi, of left semi-Ruan
C-module Yi, (i ∈ I), a Ruan A-C-bimodule W and a subbimodule W0 ⊂ W, then for

every bounded A-C-morphism Φ : W0 →
( `1⊕

i∈I
Yi ⊗p Xi

)′
there exists an extension to

an A-C-morphism Φ̃ : W →
( `1⊕

i∈I
Yi ⊗p Xi

)′
with the same norm.

In the terminology of Helemskii [9]: the space
`1⊕

i∈I
Yi ⊗p Xi is ER-flat.

Proof. Clearly (Yi ⊗p Xi)
′ has the extension property. Thus the `∞ direct

sum of these spaces has the extension property and the `∞ direct sum is the dual
of the `1 direct sum.

Theorem 7.2 generalizes the well known extension Theorem 7.3 for opera-
tor valued completely bounded A-C-morphisms. For this purpose consider the
following special case:

Let H, K be Hilbert spaces, π : A → B(H), ρ : C → B(K) representations
of arbitrary unital C∗-algebras. Kop denotes the complex conjugate space with
the opposite module structure, i.e. Kop is a right A-module. The Hilbert space
X := Lop ⊗2 Kop is a right semi-Ruan (B ^⊗ A)-module and Y := L ⊗2 H a left
semi-Ruan (B ^⊗C)-module via the representation 1B⊗ ρ respectively 1B⊗π. The
projective tensor product (Y ⊗p X) coincides with the space T (L ⊗2 H, L ⊗2 K)
of trace class operators and the dual (Y ⊗p X)′ with the Ruan (B ^⊗ A)-(B ^⊗ C)-
bimodule B(L⊗2 K, L⊗2 H). Now using the same line of arguments as Helemskii
([9], Section 4) we see that the extension Theorem 7.3 below follows from Theo-
rem 7.2. I must confess that this is not the shortest proof of Theorem 7.3 but this
was not the intention.

THEOREM 7.3. Let A, C be unital C∗-algebras, H, K Hilbert spaces and π : A 7→
B(H), ρ : C 7→ B(K) unital ∗-representations. Given an operator A-C-bimodule W and
a subbimodule W0, every completely bounded A-C-morphism Φ : W0 7→ B(K, H) (i.e.
Φ(avc) = π(a)Φ(v)ρ(c) for a ∈ A, v ∈ V, c ∈ C) has an extension to a completely
bounded A-C-morphism Φ̃ : W 7→ B(K, H) with the same norm ‖Φ̃‖cb = ‖Φ‖cb.

The extension theorem 7.3 above was first proved by the author [24] (see
also Muhly and Na [15]) using a generalization of the Hahn–Banach theorem for
operator valued sublinear functionals [23]. Suen [21] gave a proof for a concrete
A-C-bimodule using the bimodule Paulsen system (see Section 3.6.1 of [3]). For
this proof and related results see Blecher and Le Merdy ([3], Chapter 3.6 and the
notes in Chapter 3.9). The extension theorem holds for arbitrary C∗-algebras by
replacing A, C with the unitizations A1, C1 if necessary. The extension theorem is
not valid in general with A or C replaced by a nonselfadjoint operator algebra.
See for example Proposition 7.2.11 of [3] and Example 3.5 of [20].
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8. INJECTIVITY OF THE MODULE HAAGERUP TENSOR PRODUCT

Let V respectively W be a right respectively left operator A-module. The
uncompleted Haagerup tensor product V ⊗

h
W is an uncompleted operator space

and a contractive A-bimodule with the multiplication a1 · (x⊗ y) · a2 := xa2⊗ a1y.
The uncompleted module Haagerup tensor product is defined by V⊗

hA
W := (V⊗

h

W)/A (see Section 1). The injective operator space tensor product
.
⊗ with K =

K(L) is projective (see Definition 2.4.3 and Remark(iii) of [17]). Hence we have
a completely isometric isomorphism of operator spaces and an isomorphism of
Ruan B-bimodules

(8.1) K
.
⊗ (V ⊗

hA
W) = K

.
⊗ ((V ⊗

h
W)/A) = (K

.
⊗ (V ⊗

h
W))/A.

For further properties of the module Haagerup tensor product see Sections 3.4
and 3.6 of [3]. The module Haagerup tensor product is injective for operator
A-modules (see Anantharaman-Delaroche and Pop Chapter 7 of [1] and Theo-
rem 3.6.5 of [3]). By the last remark in Section 3.1.11 of [3] one may assume that A
is unital (by replacing A with the unitization A1 if necessary). Now the injectivity
follows from Theorem 6.1 and the following result of Helemskii:

THEOREM 8.1 ([8], Theorem 3). Let V, W be operator spaces. The balanced
bounded bilinear operator (K

.
⊗V)× (K

.
⊗W)→ K

.
⊗ (V ⊗

h
W) uniquely defined by

(8.2) (b1 ⊗ v, b2 ⊗ w) 7→ b1b2 ⊗ (v⊗ w)

extends to an isometric isomorphism of Ruan B-bimodules (K
.
⊗V)⊗

B
(K

.
⊗W) ∼= K

.
⊗

(V ⊗
h

W).

COROLLARY 8.2. Let V, W be a right respectively left operator A-modules. The
balanced completely bounded bilinear operator given by equation (8.2) extends to an iso-
metric isomorphism with dense image of Ruan B-bimodules

(8.3) K
.
⊗ (V ⊗

hA
W) ↪→ (K ^⊗V) ⊗

B⊗̆A
(K ^⊗W).

Proof. From equation (8.1), Theorem 8.1 and Corollary 1.2 follows K
.
⊗ (V ⊗

hA

W) = (K
.
⊗ (V ⊗

h
W))/A = ((K

.
⊗ V) ⊗

B
(K

.
⊗W))/A ↪→ ((K ^⊗ V) ⊗

B
(K ^⊗

W))/A = (K ^⊗V) ⊗
B⊗̆A

(K ^⊗W) isometrically.

REMARK 8.3. Since the tensor product on the right-hand side of equation
(8.3) is injective, the module Haagerup tensor product is injective and thus com-
pletely injective (see Proposition 4.4).
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9. ABSOLUTE VALUE OF A LINEAR FUNCTIONAL

We consider now an arbitrary unital C∗-algebra A and a representable left
A-module Y (see Remark 3.4). We shall show that every representable A-module
has an isometric representation. In the first step we construct for a given linear
functional f in the dual unit sphere SY′ a uniquely determined majorizing state
denoted by | f |. This generalizes the notion of the absolute value of a normal
functional on a W∗-algebra ([22], Proposition 4.6).

Let us start with a simple example. Given f ∈ Y′ with ‖ f ‖ = 1. Assume that
there is a ỹ ∈ Y with ‖ỹ‖ = 1 such that ‖ f ‖ = f (ỹ). Define a linear functional
| f | an A by | f | : a 7→ f (aỹ). Since || f |(a)| = | f (aỹ)| 6 ‖ f ‖‖a‖‖ỹ‖ = ‖a‖ the
functional has norm ‖| f |‖ 6 1. In addition | f |(1A) = f (ỹ) = ‖ f ‖ = 1 and thus
| f | is a state. Proposition 9.3 says that | f | is a majorizing state for f , i.e.

| f (ay)| 6 (| f |(aa∗)1/2‖y‖ for all a ∈ A, y ∈ Y

and it is the unique state with this property.
Although the absolute value | f | of a functional f ∈ SY′ will be unique and

given by a simple formula (see equation (9.5)), I need the Hahn–Banach theorem
for the proof. It would be nice to have a direct proof but I doubt whether this will
be possible. There is a consequence of the uniqueness: the sublinear functional p
defined by the curious equation (9.3) below is R-linear and p = Re | f |.

LEMMA 9.1. Given a C∗-algebra A, a left representable A-module Y and f ∈ Y′

with ‖ f ‖ = 1, then there exists a state ψ on A such that

(9.1) | f (ay)| 6 ψ(aa∗)1/2‖y‖ for all a ∈ A, y ∈ Y.

We call such a state ψ a majorizing state for f . In a next step we show that the
majorizing state is unique and denote it by | f |.

Proof. Clearly, the multiplicative inequality (9.1) is equivalent to the follow-
ing additive form: 2 Re f (ay) 6 ψ(aa∗) + ‖y‖2 and the latter is equivalent to

(9.2) Re ψ(b− aa∗) 6 ‖b‖+ ‖y‖2 − 2 Re f (ay) for all a, b ∈ A, y ∈ Y.

Given a decomposition c = b− aa∗ then Re ψ(c) is dominated by the right hand
side of the inequality above.

To find a suitable state ψ we take the infimum of the right hand side of (9.2)
and verify that this defines a sublinear functional on A:

(9.3) c 7→ p(c) := inf{‖b‖+ ‖y‖2 − 2 Re f (ay)}
where c, b, a ∈ A such that c = b− aa∗ and y ∈ Y arbitrary.

Step 1. We claim that we may choose a invertible in the definition of p. Let
p̃(c) = inf{‖b‖ + ‖y‖2 − 2 Re f (ay)} where c, b, a ∈ A, y ∈ Y as in (9.3) and in
addition a invertible.

Obviously p(c) 6 p̃(c). For t > p(c) there exist a decomposition c = b− aa∗

and an y such that ‖b‖ + ‖y‖2 − 2 Re f (ay) < t. For ε > 0 let bε := b + ε1A,
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aε := (aa∗ + ε1A)
1/2. Then aε is invertible and c = bε − aεa∗ε . The element vε :=

a−1
ε a ∈ A and since

vεv∗ε = a−1
ε aa∗a−1

ε 6 a−1
ε (aa∗ + ε1A)a−1

ε = 1A

we have ‖vε‖ 6 1. Let yε := vεy then ay = aεyε and thus

p̃(c) 6 ‖bε‖+ ‖yε‖2 − 2 Re f (aεyε) = ‖b + ε1A‖+ ‖vεy‖2 − 2 Re f (ay)

6 ‖b‖+ ‖y‖2 − 2 Re f (ay) + ε < t + ε.

Since ε > 0 and t > p(c) are arbitrary we have p̃(c) 6 p(c).
Step 2. If c = 0 then b = aa∗ and thus 2 Re f (ay) 6 2‖a‖‖y‖ 6 ‖a‖2 +

‖y‖2 = ‖b‖+ ‖y‖2. Hence p(0) = 0.
Step 3. Given bounds ti > p(ci) choose decompositions ci = bi − aia∗i , ai

invertible, and yi such that ‖bi‖ + ‖yi‖2 − 2 Re f (aiyi) < ti, (i = 1, 2). Then
a = (a1a∗1 + a2a∗2)

1/2 is invertible. Let vi = a−1ai, (i = 1, 2), then

v1v∗1 + v2v∗2 = a−1(a1a∗1 + a2a∗2)a−1 = 1A,

c1 + c2 = (b1 + b2)− (a1a∗1 + a2a∗2) = (b1 + b2)− aa∗.

From the condition (lr) we obtain the following estimation:

p(c1+c2)6‖b1 + b2‖+ ‖v1y1 + v2y2‖2 − 2 Re f (a(v1y1 + v2y2))

6‖b1‖+‖b2‖+‖v1v∗1+v2v∗2‖(‖y1‖2+‖y2‖2)−2 Re f (a1y1+a2y2)<t1+t2.

Since the bounds t1, t2 are arbitrary p(c1 + c2) 6 p(c1) + p(c2).
Step 4. From 0 = p(0) = p(c− c) 6 p(c) + p(−c) follows −∞ < p(c).
Step 5. Let λ > 0. For a decomposition c = b− aa∗ and y as in equation (9.3)

holds λc = λb− (
√

λa)(
√

λa)∗ and

p(λc) 6 ‖λb‖+ ‖
√

λy‖2 − 2 Re f (
√

λa
√

λy).

Taking the infimum over all decompositions of c gives p(λc) 6 λp(c). Now
p(c) = p((1/λ)λc) 6 (1/λ)p(λc) and hence p(λc) = λp(c).

Step 6. We compute the value of p(−1A): On the right side of equation (9.3)
consider the special values b = 0, a = 1A and an arbitrary y ∈ Y with ‖y‖ =
1. Since inf

‖y‖=1
{‖y‖2 − 2 Re f (1Ay)} = 1− 2‖ f ‖ = −1 we have p(−1A) 6 −1.

Clearly p(c) 6 ‖c‖. From −1 6 −p(1A) 6 p(−1A) follows p(−1A) = −1.
Step 7. By the Hahn–Banach theorem there exists a linear functional ψ on

A such that Re ψ(c) 6 p(c). From the definition of p follows Re ψ(c) 6 ‖c‖
and thus ‖ψ‖ 6 1. On the other hand −Re ψ(1A) 6 p(−1A) = −1 and thus
Re ψ(1A) = 1 = ‖ψ‖, i.e. ψ is a state. By definition ψ satisfies the estimates (9.2)
and (9.1).

LEMMA 9.2. Let A be a unital C∗-algebra and ϕn a sequence in A′ with a common
majorizing state ψ, i.e. |ϕn(a)| 6 (ψ(aa∗))1/2 for a ∈ A and n ∈ N. If lim

n→∞
ϕn(1A) =

1, then lim
n→∞

ϕn(a) = ψ(a) uniformly on the set {a ∈ A : ψ(aa∗) 6 1}.
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Proof. From the GNS representation theorem we have a cyclic representa-
tion π : A → B(H) with a cyclic unit vector ξ0 such that ψ(a) = 〈π(a)ξ0, ξ0〉 for
all a ∈ A. Since |ϕn(a∗)| 6 ψ(a∗a)1/2 = ‖π(a)ξ0‖ the mapping H 3 π(a)ξ0 7→
ϕn(a∗) is a well defined and contractive conjugate linear functional on the dense
subspace π(A)ξ0 of H. Thus, there exists a unique element ηn ∈ H such that
ϕn(a∗) = 〈ηn, π(a)ξ0〉 for all a ∈ A. Clearly ‖ηn‖ 6 1.

From the parallelogram identity follows

‖ηm − ηn‖2 = 2‖ηm‖2 + 2‖ηm‖2 − ‖ηm + ηn‖2(9.4)

6 4− |〈ηm + ηn, ξ0〉|2 = 4− |ϕm(1A) + ϕn(1A)|2 −−−−→m,n→∞
0.

Let η := lim
n→∞

ηn, then 1 = 〈η, ξ0〉 6 ‖η‖‖ξ0‖ 6 1. The equality in the Schwarz

inequality holds if and only if η = ξ0. Hence

lim
n→∞

ϕn(a) =
〈

lim
n→∞

ηn, π(a∗)ξ0

〉
= 〈π(a)ξ0, ξ0〉 = ψ(a)

for all a ∈ A. The sequence 〈ηn, π(a∗)ξ0〉 converges uniformly on the unit-ball of
H, i.e. uniformly on the set {a : ψ(aa∗) 6 1}.

PROPOSITION AND DEFINITION 9.3. Given a left representable A-module Y and
f ∈ Y′ with ‖ f ‖ = 1, then there exists a unique majorizing state on A. We denote this
state by | f | and call it the absolute value of f . Given a sequence (yn)n in Y with ‖yn‖ 6 1
such that ‖ f ‖ = lim

n→∞
f (yn), then

(9.5) | f |(a) = lim
n→∞

f (ayn).

The convergence is uniform on the set {a ∈ A : | f |(a∗a) 6 1}.
Proof. From Lemma 9.1 we have a majorizing state ψ of f . Then we apply

Lemma 9.2 to the functionals ϕn : a 7→ f (ayn) and get ψ(a) = lim
n→∞

f (ayn). Thus

the majorizing state is uniquely determined.

REMARK 9.4. Similar results hold for right representable modules and rep-
resentable bimodules. Let V be a representable A-C-bimodule and f ∈ SV′ . There
exist uniquely a left majorizing state | f |l on A and a right majorizing state | f |r
on C such that | f (avc)| 6 | f |l(aa∗)1/2‖v‖ | f |r(c∗c)1/2 for a ∈ A, v ∈ v and
c ∈ C. The corresponding sublinear functional (see equation (9.3)) on A ⊕ C
is p(a⊕ c) = inf{‖ã‖+ ‖c̃‖ − 2 Re f (bvd)}, where the infimum runs over all de-
compositions a = ã − bb∗, c = c̃ − d∗d and v ∈ V, ‖v‖ = 1 (see also [6] and
Lemma 2.3 of [18]). Thus Re(| f |l(a) + | f |r(c)) = p(a⊕ c) for a ∈ A, c ∈ C.

10. CYCLIC REPRESENTATION OF LEFT REPRESENTABLE MODULES

PROPOSITION 10.1. Given a left representable A-module Y and f ∈ Y′ with
‖ f ‖ = 1, there exist a unital ∗-representation π of A on a Hilbert space H with a cyclic
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unit vector ξ0 ∈ H and a contractive A-morphism θ : Y → H such that θ(ay) =
π(a)θ(y) and f (y) = 〈θ(y), ξ0〉 for all a ∈ A, y ∈ Y. θ(Y) is dense in H. All cyclic
contractive representations corresponding to f are unitary equivalent.

Proof. We have the majorizing state | f | on A (see Proposition 9.3). From the
GNS representation theorem there is a corresponding representation π = π| f |
of A on a Hilbert space H = H| f | with cyclic unit vector ξ0 = ξ| f | satisfying
| f |(a) = 〈π(a)ξ0, ξ0〉 for all a ∈ A. Given an element y ∈ Y, then

| f (a∗y)| 6 | f |(a∗a)1/2‖y‖ = ‖π(a)ξ0‖‖y‖

and thus we have a well defined and bounded conjugate linear form

H 3 π(a)ξ0 7→ f (a∗y)

on the dense subspace π(A)ξ0 of H. Hence there exists a unique element θ(y) ∈
H for which f (a∗y) = 〈θ(y), π(a)ξ0〉 for all a ∈ A. Clearly the map θ = θ f : Y →
H is linear and contractive. Further on

〈θ(by), π(a)ξ0〉 = f (a∗by) = 〈θ(y), π(b∗a)ξ0〉 = 〈π(b)θ(y), π(a)ξ0〉

for all a, b ∈ A. Hence θ(by) = π(b)θ(y). The other assertions follow from the
lemma below.

LEMMA 10.2. Given f ∈ SY′ and a contractive cyclic representation (θ, π) on
a Hilbert space H with a cyclic unit vector ξ0 as in Proposition 10.1 then the image
θ(Y) is dense in H and | f |(a) = 〈π(a)ξ0, ξ0〉 for all a ∈ A. All cyclic contractive
representations corresponding to f are unitary equivalent.

Proof. The space H0 := cl{θ(Y)} is invariant under π(A) and the projection
P0 onto H0 commutes with π(A). Now

‖ξ0‖=1=‖ f ‖= sup
‖y‖61
| f (y)|= sup

‖y‖61
|〈θ(y), ξ0〉|= sup

‖y‖61
|〈θ(y), Pξ0〉|6‖P0ξ0‖6‖ξ0‖.

Hence P0ξ0 = ξ0 and thus H0 = P0H = cl{π(A)P0ξ0} = cl{π(A)ξ0} = H.
Clearly a 7→ 〈π(a)ξ0, ξ0〉 is a majorizing state of f and hence it is | f |.

PROPOSITION 10.3. If Y is a left representable A-module, then there are Hilbert
spaces H, K, a ∗-representation π of A on H and an isometric A-morphism θ of Y into
B(K, H). If Yis separable then we can let the Hilbert spaces H, K separable.

Proof. We choose a norming set S0 of the dual unit sphere SY′ . Recall, a sub-
set S0 of SY′ is norming if sup

f∈S0

| f (y)| = ‖y‖ for all y ∈ Y. Then |y‖ = sup
f∈S0

| f (y)| =

sup
f∈S0

|〈θ f (y), ξ| f |〉| 6 sup
f∈S0

‖θ f (y)‖ 6 ‖y‖.
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Now we may set H :=
⊕

f
H| f |, K := `S0

2 . We define θ ∈ B(`S0
2 , H) and a

∗-representation π of A on H by

(10.1)
θ(y) : (η f ) 7→ (η f θ f (y))

π(a) =
⊕

f
π| f |(a)

for all y ∈ Y, (η f ) ∈ `S0
2 ,

for all a ∈ A,

where the direct sum runs over the norming set S0. Then θ : Y → B(K, H) is an
isometric representation via π.

If Y is separable then θ f (Y) is a separable dense subset of H| f |. We may
choose S0 countable and then the Hilbert spaces H, K are separable.

11. FUNCTORIAL PROPERTIES OF THE REPRESENTATION OF SEMI-RUAN MODULES

A semi-Ruan A-module Y is representable and has an isometric represen-
tation θ into some B(K, H) (see Proposition 3.3 and Proposition 10.3). From this
representation Y receives a structure as Ruan A-B-bimodule L′

.
⊗ θ(Y). The un-

completed spatial tensor product is defined by L′
.
⊗ θ(Y) ⊂ B(L,C)

.
⊗B(K, H) ⊂

B(L⊗2 K,C⊗2 H).
The following lemma and it corollary say that the representation θ given by

equation (10.1) always generates the minimal Ruan bimodule structure. The letter
is given by the minimal Ruan bimodule L′⊗Y ∼= F (L, Y) (see Proposition 5.3 and
Lemma 5.4). We will show that the mapping 1L′ ⊗ θ : F(L, Y) → L′

.
⊗ θ(Y) is an

isometric isomorphism of Ruan A-B-bimodules.

LEMMA 11.1. Given a left semi-Ruan A-module Y and an isometric isomorphic
representation (θ, π) into B(K, H) given by equation (10.1), then the linear mapping
L′ ⊗ Y → L′

.
⊗ θ(Y) is an isometric isomorphism of Ruan A-B-modules F (L, Y) →

L′
.
⊗ θ(Y) and a complete isometry.

Proof. Recall θ(y) =
⊕

f
θ f (y) ∈

⊕
f

B(C, H| f |) ⊂ B
(⊕

f
C,
⊕

f
H| f |

)
= B(K, H)

and ‖θ(y)‖ = sup
f
‖θ f (y)‖ for y ∈ Y where f runs over a norming subset S0 of

the dual unit sphere. An element w ∈ F (L, θ(Y)) has the components w f ∈
F (L, H| f |) and ‖w‖=sup

f
‖w f ‖. Thus we have an isometric morphism w 7→⊕

f
w f

F (L, θ(Y)) ↪→ B
(⊕

f
L,
⊕

f
H| f |

)
= B(L⊗2 K,C⊗2 H).

This isomorphism takes an operator ξ ′ ⊗ θ(y) ∈ F (L, θ(Y) to the corresponding
elementary tensor in B(L,C)⊗ θ(Y) and thus

F (L, θ(Y)) ∼−→ B(L,C)
.
⊗ θ(Y) ⊂ B(L⊗2 K,C⊗2 H)
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is an isometry. Hence we have an isometric isomorphism of Ruan A-B-modules

F (L, Y) ∼=1 F (L, θ(Y)) ∼−→ L′
.
⊗ θ(Y).

Since Ruan bimodules have a unique structure of an operator bimodule (see
Proposition 4.4) this isomorphism is a complete isometry.

From Proposition 10.3 every left RuanA-module Y has an isometric isomor-
phic representation Y ∼=1 θY(Y) ⊂ B(KY, HY) and thus Y is isometrically isomor-
phic to an operator A-module. The following corollary says, that the represen-
tations given by equation (10.1) induce an isometric functor from the category of
semi-Ruan A-modules into the category of operator A-modules.

COROLLARY 11.2. Given left semi-Ruan modules Y, Z, then choose representa-
tions θY, θZ as in Proposition 10.3 and equation (10.1). Let Φ : Y → Z be a bounded
morphism of semi-Ruan A-modules then the induced morphism Φ̃ : θY(Y) → θZ(Z) is
completely bounded with the same norm ‖Φ̃‖cb = ‖Φ‖.

Proof. Choose an arbitrary unit vector ξ ′ ∈ L′ and define an isometry θY(Y)
to L′

.
⊗ θY(Y) by θY(y) → ξ ′

.
⊗ θY(y) and the corresponding isometry θZ(Z) →

L′
.
⊗ θZ(Z). Then we have the commutative diagram

θY(Y)
cb isometric−−−−−−→ L′

.
⊗ θY(Y)

cb isometric−−−−−−→∼=
F (L, Y)yΦ̃

y1L′
.
⊗Φ̃

y ˜̃Φ
θZ(Z) cb isometric−−−−−−→ L′

.
⊗ θZ(Z) cb isometric−−−−−−→∼=

F (L, Z)

where ˜̃Φ : w → Φ ◦ w is completely bounded with ‖ ˜̃Φ‖cb = ‖Φ‖ (see Proposi-

tion 4.4). Thus we have ‖Φ‖ = ‖Φ̃‖ 6 ‖Φ̃‖cb 6 ‖ ˜̃Φ‖cb = ‖Φ‖.

REFERENCES

[1] C. ANANTHARAMAN-DELAROCHE, C. POP, Relative tensor products and infinite C∗-
algebras, J. Operator Theory 47(2002), 389–412.

[2] D.P. BLECHER, V.I. PAULSEN, Tensor products of operator spaces, J. Funct. Anal.
99(1991), 262–292.

[3] D.P. BLECHER, C. LE MERDY, Operator Algebras and their Modules — An Operator Space
Approach, London Math. Soc. Monographs (N.S.), vol. 30, Oxford Univ. Press, The
Clarendon Press, Oxford Univ. Press, Oxford 2004.

[4] E. CHRISTENSEN, E.G. EFFROS, A. SINCLAIR, Completely bounded multilinear maps
and C∗-algebraic cohomology, Invent. Math. 90(1987), 279–296.



112 GERD WITTSTOCK

[5] E.G. EFFROS, Z.-J. RUAN, On matricially normed spaces, Pacific J. Math. 132(1988),
243–264.

[6] E.G. EFFROS, Z.-J. RUAN, Representations of operator bimodules and their applica-
tions, J. Operator Theory 19(1988), 137–158.

[7] E.G. EFFROS, Z.-J. RUAN, Operator Spaces, London Math. Soc. Monographs (N.S.),
vol. 23, Clarendon Press, Oxford Univ. Press, New York 2000.

[8] A.YA. HELEMSKII, Tensor products in quantum functional analysis: the non-matricial
approach, arXiv:060208v1 [math.FA] 5. Feb. 2006.

[9] A.YA. HELEMSKII, Extreme flatness of normed modules and Arveson–Wittstock type
theorems, J. Operator Theory 64(2010), 171–188.

[10] A.YA. HELEMSKII, Lectures and Exercises on Functional Analysis, Transl. Math. Mono-
graphs, vol. 233, Amer. Math. Soc., Providence, RI 2006.

[11] A. LAMBERT, Operatorfolgenräume. Eine Kategorie auf dem Weg von den Ba-
nachräumen zu den Operatorräumen, Ph.D. Dissertation, Univ. des Saarlandes, Saar-
brücken 2002.

[12] A. LAMBERT, M. NEUFANG, V. RUNDE, Operator space structure and amenability for
Figà-Talamanca–Herz algebras, J. Funct. Anal. 211(2004), 245–269.

[13] B. MAGAJNA, The Haagerup norm on the tensor product of operator modules, J.
Funct. Anal. 129(1995), 325–248.

[14] B. MAGAJNA, The minimal operator module of a Banach module, Proc. Edinburgh
Math. Soc. 42(1999), 191–208.

[15] P.S. MUHLY, Q. NA, Extension of completely bounded A-B bimodule maps, Glasgow
Math. J. 36(1994), 145–155.

[16] V.I. PAULSEN, Completely Bounded Maps and Operator Algebras, Cambridge Univ. Press,
Cambridge 2002.

[17] G. PISIER, Introduction to Operator Spaces, London Math. Soc. Lecture Note Ser., vol.
294, Cambridge Univ. Press, Cambridge 2003.

[18] C. POP, Bimodules normés représentables sur des espaces hilbertiens, in Operator
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