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1. INTRODUCTION

A topological group G is said to be simple if G has no proper nontrivial
closed normal subgroups. Simple topological groups play a fundamental role in
many places in mathematics — some examples being the connected simple Lie
groups with trivial centre, for which there are a complete classification as well
as much knowledge of the representation theory. In this paper, one of our first
goals is to study the simplicity of certain topological groups associated to simple
C∗-algebras. Perhaps the most basic examples of this are the full matrix algebras
Mn(C) (the simple finite dimensional C∗-algebras). In this case, the unitary group
U(Mn(C)) is not simple. However, when “moded out" by the scalar unitaries (or
the centre), the quotient group U(Mn(C))/T is a simple topological group. We
are interested in infinite-dimensional generalizations of this result, which will
necessarily involve interesting nonlocally compact topological groups. Kadison
generalized the finite-dimensional result to the case of simple von Neumann fac-
tors. Recall that the infinite-dimensional von Neumann factors which are simple
are exactly the ones which are either type II1 or type III. In [15], Kadison showed
that if M is a type II1 or a type III factor then U(M)/T is a simple topological
group. (Here, the topology on U(M) is the norm topology.)

In the C∗-algebra context, de la Harpe and Skandalis showed that if A is a
unital simple AF-algebra then U(A)/T is a simple topological group [6]. (Again,
U(A) is given the norm topology.) Generalizing this, Elliott and Rørdam showed
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that ifA is a unital simple C∗-algebra of real rank zero which is either purely infi-
nite, or has stable rank one and weak unperforation, then U(A)0 (given the same
topology as before) is a simple topological group. (Here, U(A)0 is the group of
unitaries in A that are in the (path) connected component of the identity.) El-
liott and Rørdam used their result to understand the structure of the topological
group Aut(A), the automorphism group of A [8]. (Aut(A) is given the strong
topology.) Among other things, they showed that the group Inn(A) of approxi-
mately inner automorphisms ofA is a simple topological group. (Inn(A) is given
the strong topology.) With this, they raised the following question:

QUESTION 1.1. Let A be a simple unital separable C∗-algebra. Is it the case that
Inn(A), given the strong topology, is a simple topological group?

Thomsen showed that the results of Elliott and Rørdam [8] cannot be di-
rectly generalized to the nonreal rank zero case. Specifically, Thomsen showed
that there are examples of simple unital AH-algebras with bounded dimension
growth and real rank one such that U(A)0/T (with same topology as before)
is not a simple topological group [23]. However, in the same paper, Thomsen
showed that for certain classes of simple unital AH-algebras with bounded di-
mension growth (namely for those where the spectra of the building blocks were
compact connected metric spaces with covering dimension less than or equal
to two and with second cohomology group being zero), CU(A)/T is a simple
topological group. (CU(A) is the closure of the commutator subgroup of U(A).
CU(A) is given the norm topology from A. We note that it is a nontrivial result
that T (the scalar multiples of the identity, where the scalars have absolute value
one) is a subgroup of CU(A). For the case of the Jiang–Su algebra, we prove this
in Lemma 2.1.)

In [18] and [17], the results of Elliott, Rørdam, and Thomsen were general-
ized to the case of an arbitrary simple unital AH-algebraAwith bounded dimen-
sion growth. (There are real rank one such algebras.) Among other things, it was
shown that CU(A)/T is simple and Inn(A) is simple (thus answering Elliott and
Rørdam’s Question 1.1 for such algebras). The structures of U(A) and Aut(A)
(as topological groups) were determined.

We note that in all of the above results, the C∗-algebras involved had abun-
dant projections. In this paper, we study the Jiang–Su algebra Z . This C∗-algebra
is completely different from the previous ones in that Z has no projections other
than 0 and 1.

The Jiang–Su algebra Z is the unique simple unital inductive limit of di-
mension drop algebras such that Z has the same K-theory invariant as the com-
plex numbers (i.e., (K0(Z), K0(Z)+, K1(Z), [1Z ]) = (Z,Z+ ∪ {0}, {0}, 1) and Z
has unique tracial state). Z is currently the centre of much attention in the Elliott
classification program for simple nuclear C∗-algebras. Among other things, it has
been suggested that all simple unital separable nuclear Z-stable C∗-algebras can
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be classified using K-theory invariants. (A C∗-algebra A is Z-stable if A⊗ Z ∼=
A.) All simple nuclear C∗-algebras which have so far been classified are Z-stable,
and many examples from applications are Z-stable. Much exciting progress has
been made in this direction in recent years ([3], [7], [11], [12], [20], [25], [26], [28],
[29], [30], [21]). Hence, Z is a good C∗-algebra to which to generalize the theory
of Elliott, Rørdam and Thomsen.

In this paper, we prove the following:

THEOREM 1.2. Let Z be the Jiang–Su algebra. Then we have the following:
(i) CU(Z)/T is a simple topological group.

(Here, T is the scalar multiples of the identity, where the scalars have absolute value one.
It will be shown in Lemma 2.1 that T is a subgroup of CU(Z).)

(ii) By the work of Thomsen [24], there is an exact sequence

{1} → CU(Z)→ U(Z)→ T→ {1}.

This, together with (i), give the topological normal subgroup structure of U(Z).
(We note that the copy of the circle T in (ii) is different from the copy of T in (i).)

(iii) Aut(Z) = Inn(Z) is a simple topological group.

Note that Theorem 1.2 part (iii) answers Elliott and Rørdam’s Question 1.1
for Z .

The argument for Theorem 1.2 is quite technical, but it is a first step in gen-
eralizing the theory of Elliott, Rørdam and Thomsen to a large class of interesting
C∗-algebras. In particular, with our result for Z , we raise the following question:

QUESTION 1.3. Can we generalize Theorem 1.2 (with appropriate modifications)
to arbitrary simple unital separable nuclear Z-stable C∗-algebras?

2. NOTATION AND PRELIMINARIES

For positive integers p, q, we let Zp,q be the dimension drop algebra

Zp,q = { f ∈ C[0, 1]⊗Mpq : f (0) ∈Mp ⊗ 1Mq f (1) ∈ 1Mp ⊗Mq}.

Let p, q be supernatural numbers, we let Zp,q be the generalized dimension drop
algebra

Zp,q =df { f ∈ C[0, 1]⊗Mp ⊗Mq : f (0) ∈Mp ⊗ 1Mq f (1) ∈ 1Mp ⊗Mq}.

(In the above, Mp is the UHF-algebra with supernatural number p. Similar for
Mq. See [30].)

We say that a supernatural number p is of infinite type if any prime number
that occurs in p occurs infinitely many times.

Let p be a supernatural number of infinite type. Let {Pk}∞
k=1 be a sequence

of natural numbers. We say {Pk}∞
k=1 generates p exponentially if the following con-

ditions hold:
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(i) p = P1P2P3 · · · ;
(ii) (Pk)

2 divides Pk+1 for all k > 1.
(See [30].)

We let T denote the unit circle of the complex plane (i.e., T =df {z ∈ C :
|z| = 1}). For a unital C∗-algebra A, U(A) denotes the unitary group of A and
CU(A) denotes the closure of the commutator subgroup of U(A). U0(A) (or
U(A)0) denotes the elements of U(A) that are in the (path) connected compo-
nent of the identity. Aut(A) is the automorphism group of A, given the strong
topology, and Inn(A) is the subgroup of Aut(A) consisting of the approximately
inner automorphisms.

With notation as in the previous paragraph, throughout this paper, U(A)
and its subgroups are given the norm topology. Aut(A) and its subgroups are
given the strong topology.

If A = Mn(C[0, 1]) or if A is a dimension drop algebra or a generalized
dimension drop algebra, then U(A)e consists of those elements f ∈ U(A) such
that f (0) = 1 and f (1) = 1. CU(A)e is the closure of the commutator subgroup
of U(A)e.

For a C∗-algebra C and for finitely many elements a1, a2, . . . , an ∈ C, we let
n
∏
i=1

ai denote the finite product
n
∏
i=1

ai =df a1a2 · · · an. Also, if a, b ∈ C then we let

(a, b) denote the commutator (a, b) = aba∗b∗.
Also, we note that in M2(C), every unitary of the form diag(α, α), where

α = eiθ has absolute value one (so θ ∈ R), is in CU(M2(C)), since(
α 0
0 α

)
=
(

eiθ/2 0
0 e−iθ/2

) (
0 1
1 0

) (
e−iθ/2 0

0 eiθ/2

) (
0 1
1 0

)
.

Also, (
−1 0
0 −1

)
=
( 1 0

0 −1
) (

0 1
1 0

) ( 1 0
0 −1

) (
0 1
1 0

)
.

And also, for θ ∈ R,(
eiθ 0
0 e−iθ

)
= (1/

√
2)
( 1 −i

1 i

) ( cos(θ) sin(θ)
−sin(θ) cos(θ)

)
(1/
√

2)
( 1 1

i −i
)

.

Hence,(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)
is an element of CU(M2(C)). Hence, for n > 1,

SU(Mn(C)) = CU(Mn(C)) and U(Mn(C))/T = CU(Mn(C))/T.(2.1)

(Note also that the latter two are simple as (algebraic) groups.)

We also see, from the computations in (2.1),

that if h : [0, 1]→ R is a continuous function then(
eih 0
0 e−ih

)
and

(
cos(h) sin(h)
−sin(h) cos(h)

)
are elements of CU(M2(C[0, 1])).(2.2)

We end this section with a preliminary lemma which is important in under-
standing the topological normal subgroup structure of the Jiang–Su algebra:
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LEMMA 2.1. Let Z be the Jiang–Su algebra. Then the following hold:
(i) CU(Z) ⊆ U0(Z);

(ii) T ⊆ CU(Z) (i.e., the scalar unitaries are contained in CU(Z)).
Proof. (i) By [14], K1(Z) = 0. By [20], Z has stable rank one. Hence, by

Theorem 10.12 of [19] and Corollary 7.14 of [1], we see that U(Z) = U0(Z). In
particular, CU(Z) ⊆ U0(Z) as required.

(ii) Let α ∈ T be a complex number with absolute value one. We will show
that α1Z ∈ CU(Z).

Let ε > 0 be given. Let p, q > 2 be relatively prime positive integers, and let
r, s > 1 be positive integers with 0 < r < p and 0 < s < q such that the following
hold:

(i) r/p < s/q;

(ii) |r/p− s/q| < ε/100;(2.3)

(iii) for r/p 6 t 6 s/q, |ei2πt − α| < ε/100.

Let p, q be relatively prime supernatural numbers such that p divides p and
q divides q. Then by Proposition 3.3 of [21], Zp,q embeds unitally into Z . Since
Zp,q embeds unitally into Zp,q, we have a sequence of unital embeddings:

(2.4) Zp,q → Zp,q → Z .

Now let u ∈ U(Zp,q) be the unitary that is given by:

(i) u(t) = ei2π(r/p)1Mp⊗Mq for t ∈ [0, 1/3];

(ii) u(t) = ei2π(r/p)(−3t+2)1Mp⊗Mq for t ∈ [1/3, 2/3];
(iii) u(t) = 1Mp⊗Mq for t ∈ [2/3, 1].

Let λ1, λ2, . . . , λp : [0, 1]→ T be continuous functions given by:

(i) λ1(t) = ei2π(r/p) for t ∈ [0, 1/3];

(ii) λ1(t) = ei2π(r/p)(−3t+2) for t ∈ [1/3, 2/3];(2.5)

(iii) λ1(t) = 1 for t ∈ [2/3, 1];

(iv) for 2 6 n 6 p− 1, λn is the unique function such that λ1 = λn−1λn.

Let {ei,j}16i,j6p be a system of matrix units for Mp. Then by (2.5), we see
that

(2.6) u = λ1e1,1 ⊗ 1Mq +
p−1

∑
j=2

λj−1λjej,j ⊗ 1Mq + λp−1ep,p ⊗ 1Mq .

For 1 6 i 6 p− 1, let ui ∈ Zp,q be given by

ui =df λiei,i ⊗ 1Mq + λiei+1,i+1 ⊗ 1Mq + (1Mp⊗Mq − ei,i ⊗ 1Mq − ei+1,i+1 ⊗ 1Mq).

Hence, we have that

(2.7) u = u1u2 · · · un.
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For 1 6 i 6 p − 1, let γi : [0, 1] → T be a continuous function such that
(γi)

2 = λi and γi(t) = 1 for t ∈ [2/3, 1]. Let vi, wi be unitaries in U(Zp,q) such
that

vi =df γiei,i ⊗ 1Mq + γiei+1,i+1 ⊗ 1Mq + (1Mp⊗Mq − (ei,i + ei+1,i+1)⊗ 1Mq)

and

wi(t) =

{
ei,i+1⊗1Mq+ei+1,i⊗1Mq+(1Mp⊗Mq−(ei,i+ei+1,i+1)⊗1Mq) t∈ [0, 2/3],

1Mp⊗Mq t = 1.

Hence, for 1 6 i 6 p− 1, we have that

(2.8) ui = viwi(vi)
∗(wi)

∗ = (vi, wi) ∈ CU(Zp,q).

Hence, u = u1u2 · · · un ∈ CU(Zp,q) as required.
Next, let u′ ∈ U(Zp,q) be the unitary in U(Zp,q) that is given by:
(i) u′(t) = 1Mp⊗Mq for t ∈ [0, 1/3];

(ii) u′(t) = ei2π(s/q)(3t−1)1Mp⊗Mq for t ∈ [1/3, 2/3];

(iii) u′(t) = ei2π(s/q) for t ∈ [2/3, 1].
By an argument similar to that for u, we have that u′ ∈ CU(Zp,q). From this and
(2.8), we have that uu′ ∈ CU(Zp,q).

Moreover, by (2.3), we have that ‖α1Mp⊗Mq − u(t)u′(t)‖ < ε for t ∈ [0, 1].
Hence, α1Mp⊗Mq is in norm within ε of an element of CU(Zp,q). From this and
the diagram in (2.8), we see that α1Mp⊗Mq is in norm within ε of an element of
CU(Z). Since ε > 0 is arbitrary and since CU(Z) is a closed subgroup of U(Z),
we see that α1Mp⊗Mq ∈ CU(Z) as required.

3. UNITARIES IN THE BUILDING BLOCKS

The first result follows from Theorem 9.1 of [6].

LEMMA 3.1. Let A be a UHF-algebra. Let H ⊆ U(A) be a noncentral (not
necessarily closed) subgroup of U(A) that is normalized by CU(A).

Then H contains CU(A).

LEMMA 3.2. Let p, q be supernatural numbers. Let H be a closed normal sub-
group of CU(Zp,q) such that H contains a unitary u with u(0) being a nonscalar uni-
tary. For all nonzero orthogonal projections p0, q0 ∈ Mp ⊗ 1Mq such that p0 and q0 are
Murray–von Neumann equivalent in Mp ⊗ 1Mq , for every θ ∈ R, and for every ε > 0,
there exist v ∈ H and 0 < δ < ε such that:

(i) v(0) = eiθ p0 + e−iθq0 + (1− (p0 + q0));
(ii) v(t) = 1 for t ∈ [δ, 1];

(iii) ‖v(t)−(eiθ(−(1/δ)t+1)p0+e−iθ(−(1/δ)t+1)q0+(1−(p0+q0)))‖< ε for t ∈ [0, δ].
(We can actually choose δ > 0 to be arbitrarily small.)
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Proof. Since p0, q0 are Murray–von Neumann equivalent in Mp ⊗ 1Mq , let
w0 ∈ Mp ⊗ 1Mq be a partial isometry with initial projection p0 and range projec-
tion q0. By Lemma 3.1, let u ∈ H be such that

u(0) = w0 + (w0)
∗ + (1− (p0 + q0)).

Choose δ > 0 such that δ < ε and for t ∈ [0, δ],

(3.1) ‖u(t)− u(0)‖ < ε/100.

Now let x ∈Mp,q be a unitary such that, for t ∈ [0, δ],

x(t) = eiθ(−(1/δ)t+1)/2 p0 + e−iθ(−(1/δ)t+1)/2q0 + (1− (p0 + q0))

and
x(t) = 1

for t ∈ [δ, 1]. By arguments similar to those of (2.1) and (2.2), we see that x ∈
CU(Mp,q).

Then the following is an element of H which satisfies the required condi-
tions:

v =df xux∗u∗.

The next lemma is the same as Lemma 3.2, with endpoints interchanged.

LEMMA 3.3. Let p, q be supernatural numbers. Let H be a closed normal sub-
group of CU(Zp,q) such that H contains a unitary u with u(1) being a nonscalar uni-
tary. For all nonzero orthogonal projections p0, q0 ∈ 1Mp ⊗Mq such that p0 and q0 are
Murray–von Neumann equivalent in 1Mp ⊗Mq, for every θ ∈ R, and for every ε > 0,
there exist v ∈ H and 0 < δ < ε such that:

(i) v(1) = eiθ p0 + e−iθq0 + (1− (p0 + q0));
(ii) v(t) = 1 for t ∈ [0, 1− δ];

(iii) ‖v(t) − (eiθ((1/δ)t+1−1/δ)p0 + e−iθ((1/δ)t+1−1/δ)q0 + (1 − (p0 + q0)))‖ < ε
for t ∈ [1− δ, 1].
(We can actually choose δ > 0 to be arbitrarily small.)

The proof is similar to the proof of Lemma 3.2.

LEMMA 3.4. Let p, q be supernatural numbers. Let H be a closed normal sub-
group of CU(Zp,q) such that H contains a unitary u with u(0) being a nonscalar uni-
tary. Let P, Q > 2 be positive integers that divide p, q respectively. Let ZP,Q be the
corresponding unital C∗-subalgebra of Zp,q. (Note that ZP,Q is a dimension drop alge-
bra.)

Suppose that w ∈ CU(ZP,Q) is a unitary such that

‖w(0)− 1‖ < r < 1/10.

Then for every ε > 0, there exists v ∈ H such that:
(i) ‖v(t)− 1‖ < r + ε for all t ∈ [0, 1];

(ii) v(t) = 1 for t ∈ [1/2, 1];
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(iii) v(0) = w(0).

Proof. There exist real numbers φ1, φ2, . . . , φP and pairwise orthogonal pro-
jections p1, p2, . . . , pP ∈MP ⊗ 1MQ such that the following hold:

(i) w(0) =
P

∑
j=1

ei2πφjt pj;

(ii) φj ∈ [−1/12, 1/12] for 1 6 j 6 P;(3.2)

(iii)
P

∑
j=1

φj = 0 (so
P

∏
j=1

ei2πφj = 1 ).

We now construct continuous functions θ1, θ2, . . . , θP−1 : [0, 1] → R as fol-
lows:

(i) θ1 = φ1;(3.3)

(ii) θj − θj−1 = φj for 2 6 j 6 P− 1.

(Hence, ei2πθ1 = ei2πφ1 and ei2πθj e−i2πθj−1 = ei2πφj for 2 6 j 6 P− 1.)
By Lemma 3.2, let δ > 0 with δ < 1/2 be such that for 1 6 j 6 P− 1, there

exists vj ∈ H such that the following hold:

(i) vj(0) = ei2πθj pj + e−i2πθj pj+1 + (1− (pj + pj+1));

(ii) vj(t) = 1 for t ∈ [δ, 1];(3.4)

(iii) ‖vj(t)− (ei2πθj(−(1/δ)t+1)pj + e−i2πθj(−(1/δ)t+1)pj+1

+ (1− (pj + pj+1)))‖ < ε/(100P(100P2 + 1)) for t ∈ [0, δ].

Hence, v =df v1v2 · · · vP is an element of H. By (3.2) statement (i), (3.3) and
(3.4) statement (i), we have that

v(0) = w(0).

By (3.4) statement (ii), we have that v(t) = 1 for t ∈ [δ, 1].
By (3.2) and (3.4), for t ∈ [0, δ],

‖v(t)− 1‖

6
∥∥∥v(t)−

P

∑
j=1

ei2πφj(−(1/δ)t+1)pj

∥∥∥+ ∥∥∥ P

∑
j=1

ei2πφj(−(1/δ)t+1)pj − 1
∥∥∥

<
∥∥∥v1(t)v2(t) · · · vP(t)−

P−1

∏
j=1

(ei2πθj(−(1/δ)t+1)pj + e−i2πθj(−(1/δ)t+1)pj+1

+ (1−(pj+pj+1)))
∥∥∥+r< ε/(100(100P2 + 1)) + r< ε + r

as required.
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LEMMA 3.5. Let p, q be supernatural numbers. Let H be a closed normal sub-
group of CU(Zp,q) such that H contains a unitary u with u(0) and u(1) being non-
scalar unitaries. Let P, Q > 2 be positive integers that divide p, q respectively. Let ZP,Q
be the corresponding unital C∗-subalgebra of Zp,q. (Note that ZP,Q is a dimension drop
algebra.)

Suppose that w ∈ CU(ZP,Q) is a unitary such that

‖w(0)− 1‖ < r < 1/10 and ‖w(1)− 1‖ < r < 1/10.

Then for every ε > 0, there exists v ∈ H such that:
(i) ‖v(t)− 1‖ < r + ε for all t ∈ [0, 1];

(ii) v(0) = w(0);
(iii) v(1) = w(1).

The argument is a modification of the argument of Lemma 3.4 to include
the right endpoint 1.

LEMMA 3.6. Let h : [0, 1]→ R be a continuous map such that h(0) = h(1) = 0.
Then

(
eih 0
0 e−ih

)
and

(
cos(h) sin(h)
−sin(h) cos(h)

)
are both elements of CU(Mn(C[0, 1]))e.

Proof. The proof involves modifying the equations in (2.1) and (2.2).
Let ε > 0. We first want to show that diag(eih, e−ih) can be norm approxi-

mated within ε by an element of CU(Mn(C[0, 1]))e.
Now since h(0) = h(1) = 0 and since h and the exponential map are contin-

uous, there is δ > 0 such that if 0 6 t 6 δ or 1− δ 6 t 6 1 then

(3.5) |eih(t) − 1| < ε/100 and |eih(t)/2 − 1| < ε/100.

Now let v ∈ U(Mn(C[0, 1])) be a continuous path of unitaries such that:
(i) v(0) = v(1) = 1Mn ;

(ii) v(t) =
(

0 1
1 0

)
for t ∈ [δ/2, 1− δ/2].

Hence,

w =df

(
eih/2 0

0 e−ih/2

)
v
(

e−ih/2 0
0 eih/2

)
v∗

is an element of CU(Mn(C[0, 1]))e. Moreover, by the computations in (2.1), (2.2),
(3.5), and the definition of w and v, we have that for t∈ [δ/2, 1−δ/2], diag(eih(t),
e−ih(t)) = w(t). And for t ∈ [0, δ/2] ∪ [1− δ/2, 1],

‖w(t)− 1Mn‖

=
∥∥∥ ( eih(t)/2 0

0 e−ih(t)/2

)
v(t)

(
e−ih(t)/2 0

0 eih(t)/2

)
v(t)∗ − 1Mn

∥∥∥
=
∥∥∥ ( eih(t)/2 0

0 e−ih(t)/2

)
v(t)

(
e−ih(t)/2 0

0 eih(t)/2

)
v(t)∗ − 1Mn v(t)1Mn v(t)∗

∥∥∥
6
∥∥∥ ( eih(t)/2 0

0 e−ih(t)/2

)
v(t)

(
e−ih(t)/2 0

0 eih(t)/2

)
v(t)∗ − 1Mn v(t)

(
e−ih(t)/2 0

0 eih(t)/2

)
v(t)∗

∥∥∥
+
∥∥∥1Mn v(t)

(
e−ih(t)/2 0

0 eih(t)/2

)
v(t)∗ − 1Mn v(t)1Mn v(t)∗

∥∥∥
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6
∥∥∥ ( eih(t)/2 0

0 e−ih(t)/2

)
−1Mn

∥∥∥+ ∥∥∥ ( e−ih(t)/2 0
0 eih(t)/2

)
− 1Mn

∥∥∥< ε/100+ε/100= ε/50.

From the above and (3.5), we see that w is within ε of diag(eih, e−ih). Hence,
diag(eih, e−ih) is within ε of an element of CU(Mn(C[0, 1]))e. Since ε > 0 is arbi-
trary, it follows that diag(eih, e−ih) ∈ CU(Mn(C[0, 1]))e as required.

Next, again, let ε>0 be given. We want to find a unitary w′∈CU(Mn(C[0, 1]))e

such that w′ is norm within ε of
(

cos(h) sin(h)
−sin(h) cos(h)

)
. The argument is similar to the

argument for diag(eih, e−ih), except that we now replace the matrix
(

0 1
1 0

)
with

the matrix (1/
√

2)
( 1 −i

1 i

)
, and we need to use the identity(

cos(h) sin(h)
−sin(h) cos(h)

)
= (1/

√
2)
( 1 1

i −i
) (

eih 0
0 e−ih

)
(1/
√

2)
( 1 −i

1 i

)
and except that we now have to use that diag(eih, e−ih) is an element of
CU(Mn(C[0, 1]))e (previous proof).

LEMMA 3.7. (i) Let n > 2 and let X be a compact Hausdorff topological space.
Then the commutator subgroup of U(Mn(C(X)))0 is exactly

{u ∈ U(Mn(C(X))) : det(u(x)) = 1 ∀x ∈ X}.

(ii) Let p, q > 2 be positive integers. Consider the dimension drop algebra Zp,q.
Let πp : Zp,q → Mp and πq : Zp,q → Mq be the irreducible representations of Zp,q
corresponding to the endpoints 0, 1 respectively.

Let u ∈ U(Zp,q) be a unitary. Suppose that

det(u(t)) = 1

for all t ∈ [0, 1], and
det(πp(u)) = det(πq(u)) = 1.

Then u ∈ CU(Zp,q).

The first statement follows from Proposition 2.4 of [23]. The second state-
ment follows from Proposition 5.3 of [16] (with slight modification).

LEMMA 3.8. Say that n > 2. Suppose that u ∈ U(Mn(C[0, 1])) is a unitary.
Then for every ε > 0, there exist continuous functions fi : [0, 1] → T and pairwise

orthogonal projections pi ∈Mn(C[0, 1]), 16 i6n, such that
n
∑

i=1
fi pi∈Mn(C[0, 1]) and

∥∥∥ n

∑
i=1

fi pi − u
∥∥∥ < ε.

Moreover, if u ∈ CU(Mn(C[0, 1])) and u(0) = u(1) = 1Mn(C[0,1]) then we can require

that fi(0) = fi(1) = 1 for 1 6 i 6 n and
n
∏
i=1

fi(t) = 1Mn for t ∈ [0, 1].

This follows from Lemma 1.9 of [22].
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LEMMA 3.9. Let α : [0, 1] → T be a continuous function such that for all t ∈
[0, 1], the real and imaginary parts of α(t) and α(t)2 satisfy

Re(α(t)), Im(α(t)), Re((α(t))2), Im((α(t))2) > 0.

Let θ : [0, 1]→ R be a continuous function with θ(0) = θ(1) = 0.
Then there exist unitaries u, u0 ∈ CU(M2(C[0, 1])) and an integer N > 1 such

that the following hold:
(i) u(0) = u(1) = 1M2(C);

(ii) diag(eiθ , e−iθ) = ((u0)
∗udiag(α, α)u∗diag(α, α)u0)

N ;
(iii) for every ε > 0, there exist unitaries u′, u′′ ∈ CU(M2(C[0, 1]))e such that

‖diag(eiθ , e−iθ)− ((u′′)∗u′diag(α, α)(u′)∗diag(α, α)u′′)N‖ < ε.

Proof. By hypothesis,

0 < inf{Re((α(t))2) : t ∈ [0, 1]} 6 sup{Re((α(t))2) : t ∈ [0, 1]} < 1.

Case 1. Suppose that |θ(t)| is small enough so that

inf{cos(θ(t)) : t ∈ [0, 1]} > sup{Re((α(t))2) : t ∈ [0, 1]}
and so that

cos(θ(t)) > Re((α(t))2) = 1 + (Re((α(t))2)− 1)
for all t ∈ [0, 1]. Hence, let h : [0, 1]→ [0, ∞) be a nonnegative continous function
such that h(0) = h(1) = 0 and

(3.6) Re(eiθ(t)) = cos(θ(t)) = 1 + (Re((α(t))2)− 1)sin2(h(t))

for all t ∈ [0, 1]. (Note that, necessarily, sin2(h(t)) 6= 1 for all t ∈ [0, 1].)
Now let u ∈ U(Mn(C[0, 1])) be the unitary given by

u =df

(
cos(h) sin(h)
−sin(h) cos(h)

)
.

We will show that u allows us to verify the statements in Lemma 3.9.
Firstly, we note that by the remarks in (2.2), u ∈ CU(M2(C[0, 1])).
Claim 1. udiag(α, α)u∗diag(α, α) = v

where
v =df

(
cos2(h)+(α)2 sin2(h) (1−α2)sin(h)cos(h)
−(1−α2)sin(h)cos(h) α2 sin2(h)+cos2(h)

)
.

Proof of Claim 1:

udiag(α, α)u∗diag(α, α)=
(

cos(h) sin(h)
−sin(h) cos(h)

) (
α 0
0 α

) ( cos(h) −sin(h)
sin(h) cos(h)

) (
α 0
0 α

)
=
(

αcos(h) αsin(h)
−αsin(h) αcos(h)

) (
cos(h) −sin(h)
sin(h) cos(h)

) (
α 0
0 α

)
=
(

αcos2(h)+αsin2(h) −αcos(h)sin(h)+αcos(h)sin(h)
−αcos(h)sin(h)+αcos(h)sin(h) αsin2(h)+αcos2(h)

)(
α 0
0 α

)
=
(

cos2(h)+(α)2sin2(h) (1−α2)sin(h)cos(h)
−(1−α2)sin(h)cos(h) cos2(h)+α2sin2(h)

)
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as required. This completes the proof of Claim 1.
Note that the trace of v is 2cos2(h) + (α2 + α2) sin2(h). Hence, since for all

t ∈ [0, 1], v(t) is a unitary in M2(C) with determinant one and by the defini-

tion of h(t) in (3.6), we know that cos2(h(t)) + (1/2)(α(t)2 + α(t)
2
) sin2(h(t)) =

cos(θ(t)) is the real part of both eigenvalues of v(t). Hence, for t ∈ [0, 1], the
eigenvalues of v(t) are

λ±(t) = e±iθ(t) = cos2(h(t)) + (1/2)(α2 + α2) sin2(h(t))± i sin(θ(t)).

Claim 2. For t ∈ [0, 1] such that sin(h(t)) 6= 0, the one by one component of
v(t)− λ±(t) is nonzero.

We will use the notation “v1,1" to denote the one by one corner of v.
Proof of Claim 2:

v1,1 − λ±=(cos2(h) + α2 sin2(h))−(cos2(h)+(1/2)(α2+α2) sin2(h)± i sin(θ))

=(1/2)(α2 − α2) sin2(h)± i sin(θ).

Now suppose, to the contrary, that there is a point t ∈ [0, 1] with sin(h(t)) 6=
0 such that

v1,1(t)− λ±(t) = 0.

Therefore,
(1/2)(α(t)2 − α(t)2) sin2(h(t)) = ±i sin(θ(t)).

Therefore,
−i(1/2)(α(t)2 − α(t)2) sin2(h(t)) = ±sin(θ(t)).

Therefore,
−(1/4)(α(t)2 − α(t)2)2 sin4(h(t)) + cos2(θ(t)) = 1.

Applying (3.6), we see that

1=−(1/4)(α(t)2−α(t)2)2 sin4(h(t))+(1+((1/2)(α(t)2+α(t)
2
)−1) sin2(h(t)))2

=−(1/4)[α(t)
4 − 2 + α(t)4] sin4(h(t)) + [1 + (α(t)2 + α(t)

2 − 2) sin2(h(t))

+((1/2)(α(t)2 + α(t)
2
)− 1)2 sin4(h(t))].

Cancelling out the 1 term from both sides and continuing to expand, we
have:

0 = −(1/4)[α(t)
4
+ α(t)4 − 2] sin4(h(t)) + [α(t)2 + α(t)

2 − 2] sin2(h(t))

+ [(1/4)(α(t)2 + α(t)
2
)2 − (α(t)2 + α(t)

2
) + 1] sin4(h(t))

= −(1/4)[α(t)
4
+ α(t)4 − 2] sin4(h(t)) + [α(t)2 + α(t)

2 − 2] sin2(h(t))

+ [(1/4)(α(t)4 + α(t)
4
+ 2)− (α(t)2 + α(t)

2
) + 1] sin4(h(t))

= sin2(h(t))[α(t)2 + α(t)
2 − 2] + sin4(h(t))[2− α(t)2 − α(t)

2
].
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Hence, we have that

(3.7) sin2(h(t))[2− α(t)2 − α(t)
2
] = sin4(h(t))[2− α(t)2 − α(t)

2
].

By (3.6), sin2(h(t)) 6= 1. By hypothesis of Claim 2, sin2(h(t)) 6= 0. Finally,

by hypothesis of Lemma 3.9, α(t)2 + α(t)
2
< 2. Hence, the equation (3.7) is im-

possible, and we have a contradiction. This completes the proof of Claim 2.
Recall, from the statement before Claim 2, that for t ∈ [0, 1], the eigenvalues

of the determinant one unitary v(t) are

λ±(t)

= e±iθ(t) = cos2(h(t)) + (1/2)(α(t)2 + α(t)
2
) sin2(h(t))± i sin(θ(t))

= 1 + (Re(α(t)2)− 1) sin2(h(t))± i
√

1− (1 + (Re(α(t)2)− 1) sin2(h(t)))2

= 1 + (Re(α(t)2)− 1) sin2(h(t))

± i
√

1− (1 + 2(Re(α(t)2)− 1) sin2(h(t)) + (Re(α(t)2)− 1)2 sin4(h(t))

= 1 + (Re(α(t)2)− 1) sin2(h(t))

± i
√
−2(Re(α(t)2)− 1) sin2(h(t))− (Re(α(t)2)− 1)2 sin4(h(t))

= 1 + (Re(α(t)2)− 1) sin2(h(t))

± i sin(h(t))
√
−2(Re(α(t)2)− 1)− (Re(α(t)2)− 1)2 sin2(h(t)) .

Hence, for t ∈ [0, 1],

v1,1(t)− λ±(t) = (1/2)(α(t)
2 − α(t)2) sin2(h(t))± i sin(h(t))√

−2(Re(α(t)2)− 1)− (Re(α(t)2)− 1)2 sin2(h(t)) .

Now consider the continuous functions f± : [0, 1] → C that are given, for
t ∈ [0, 1], by

f±(t) =df (1/2)(α(t)
2 − α(t)2)sin(h(t))

± i
√
−2(Re(α(t)2)− 1)− (Re(α(t)2)− 1)2 sin2(h(t)) .

If sin(h(t)) = 0 then f±(t) = ±i
√
−2(Re(α(t)2)− 1) which is nonzero by

our hypothesis on α(t)2 in the statement of Lemma 3.9. On the other hand, if
sin(h(t)) 6= 0, then f±(t) 6= 0 by Claim 2. Hence, f± are nonzero continuous
functions on [0, 1].

Now consider the one by two component v1,2 = (1− α2)sin(h)cos(h) of v.
We see that for t ∈ [0, 1], the eigenvector of v(t) corresponding to the eigenvalue
λ±(t) (respectively) is

{(s1, s2) ∈ C2 : s1 = −s2(1− α(t)2)cos(h(t))/ f±(t)}.



170 P.W. NG

(Recall that f± is never zero.) Hence, for t ∈ [0, 1], let ~x±(t) ∈ C2 be the eigenvec-
tor of v(t) for the eigenvalue λ±(t) given by

~x±(t) =df

(
−(1−α(t)2)cos(h(t))/ f±(t)

1

)
.

Then ~x± is continuous and never zero on [0, 1]. For all t ∈ [0, 1], let ~y±(t) ∈ C2 be
the unit vector, which is an eigenvector of v(t) for the eigenvalue λ±(t), given by

~y±(t) =df ~x±(t)/‖~x±(t)‖.

Then ~y± is continuous on [0, 1].
Note that for t ∈ [0, 1], if λ+(t) 6= λ−(t), then ~y+(t) is orthogonal to ~y−(t)

in the inner product space C2.
And, by the definition of λ±, for t ∈ [0, 1], if λ+(t) = λ−(t) then λ+(t) =

λ−(t) = 1 and h(t) = θ(t) = 0. Hence, sin(h(t)) = 0, and

~x±(t) =
(
−(1−α(t)2)/±i

√
−2(Re(α(t)2)−1)

1

)
.

Hence, taking the inner product in C2, we have that

〈~x+(t)|~x−(t)〉=
−(1− α(t)2)

i
√
−2(Re(α(t)2)− 1)

−(1− α(t)
2
)

i
√
−2(Re(α(t)2)− 1)) + 1

=
−(1−α(t)2)(1−α(t)

2
)

2−α(t)2−α(t)
2 +1=

−(2−α(t)2−α(t)
2
)

2−α(t)2−α(t)
2 +1=−1+1=0.

Hence, ~x+(t) and ~x−(t) are orthogonal. Hence, ~y+(t) and ~y−(t) are orthogonal.
Whichever the case, we have that for all t ∈ [0, 1], ~y+(t) and ~y−(t) are or-

thogonal unit vectors in the inner product space C2. Hence, let u0 ∈ M2(C[0, 1])
be the unitary that is given by

u0(t) =df β(t) (~y+(t),~y−(t))

where β : [0, 1]→ T is a continuous function such that the determinant det(u0(t))
= 1 for all t ∈ [0, 1]. Hence, by Lemma 3.7, since every unitary in U(M2(C[0, 1]))
is in the connected component of the identity, we have that u0 ∈ CU(M2(C[0, 1])).
Then we have that

diag(eiθ , e−iθ) = diag(λ+, λ−) = (u0)
∗vu0 = (u0)

∗udiag(α, α)u∗diag(α, α)u0.

So statements (i) and (ii) of Lemma 3.9 are satisfied.
We now confirm statement (iii).

By Lemma 3.6 and by the definition of u,(3.8)

we have that u ∈ CU(M2(C[0, 1]))e.

Now by the definition of CU(M2(C[0, 1]))e, u(0) = u(1) = 1M2 . Hence, at
both t = 0, 1, we must have that

v(t) =df u(t)diag(α(t), α(t))(u(t))∗diag(α(t), α(t)) = 1M2 .



JIANG–SU UNITARY GROUP 171

So by continuity, let δ > 0 be such that for all t ∈ [0, δ] ∪ [1− δ, 1],

(3.9) ‖v(t)− 1M2‖ < ε/1000.

Now since u0∈CU(M2(C[0, 1])), let n>1 be an integer, and let x1, x2, . . . , xn,
y1, y2, . . . , yn be unitaries in U(M2(C[0, 1])) such that∥∥∥u0 −

n

∏
i=1

(xi, yi)
∥∥∥ < ε/1000.

Since U(M2(C)) is path-connected, for 1 6 i 6 n, let x′i , y′i be unitaries in
U(M2(C[0, 1])) such that the following statements hold:

(i) x′i(t) = xi(t) and y′i(t) = yi(t) for t ∈ [δ/100, 1− δ/100];
(ii) x′i(0) = x′i(1) = y′i(0) = y′i(1) = 1M2 .

Let u′ ∈ CU(M2(C[0, 1]))e be defined by

u′ =df

n

∏
i=1

(x′i , y′i).

So by the definition of u′ and v, by Lemma 3.9 (ii) and and by (3.8), for
t ∈ [δ/100, 1− δ/100], we have that

‖diag(eiθ(t), e−iθ(t))−(u′(t))∗u(t)diag(α(t), α(t))(u(t))∗

diag(α(t), α(t))u′(t)‖

6‖diag(eiθ(t), e−iθ(t))−(u0(t))∗u(t)diag(α(t), α(t))(u(t))∗

diag(α(t), α(t))u0(t)‖

+ ‖(u0(t))∗u(t)diag(α(t), α(t))(u(t))∗diag(α(t), α(t))u0(t)

− (u′(t))∗u(t)diag(α(t), α(t))(u(t))∗diag(α(t), α(t))u0(t)‖(3.10)

+ ‖(u′(t))∗u(t)diag(α(t), α(t))(u(t))∗diag(α(t), α(t))u0(t)

− (u′(t))∗u(t)diag(α(t), α(t))(u(t))∗diag(α(t), α(t))u′(t)‖
60+‖(u0(t))∗−(u′(t))∗‖+‖u0(t)− u′(t)‖< ε/1000+ε/1000= ε/500.

Also, by (3.9), (3.8), the definition of v and Lemma 3.9 (ii), we have that for
t ∈ [0, δ/100] ∪[1− δ/100, 1],

‖diag(eiθ(t), e−iθ(t))− (u′(t))∗u(t)diag(α(t), α(t))(u(t))∗diag(α(t), α(t))u′(t)‖
= ‖(u0(t))∗v(t)u0(t)− (u′(t))∗v(t)u′(t)‖
6 ‖(u0(t))∗v(t)u0(t)− 1‖+ ‖1− (u′(t))∗v(t)u′(t)‖
= ‖(u0(t))∗v(t)u0(t)− (u0(t))∗u0(t)‖+ ‖(u′(t))∗u′(t)− (u′(t))∗v(t)u′(t)‖
= ‖v(t)− 1‖+ ‖1− v(t)‖ < ε/1000 + ε/1000 = ε/500.

From this and (3.10), we have that

‖diag(eiθ , e−iθ)− (u′)∗udiag(α, α)u∗diag(α, α)u′‖ < ε
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which proves Lemma 3.9 statement (iii).
Case 2. Suppose that θ : [0, 1] → R is an arbitrary continuous function with

θ(0) = θ(1) = 0. Then choose an integer N > 1 such that θ/N ≈ 0 and

inf{cos(θ(t)/N) : t ∈ [0, 1]} > sup{Re(α(t)2) : t ∈ [0, 1]}.

Hence, the map [0, 1] → R, given by t 7→ θ(t)/N, satisfies Case 1. Apply Case 1
to get Lemma 3.9 statements (i), (ii) and (iii) for θ/N (replacing θ). Then take
appropriate quantities to the power of N to get (i), (ii) and (iii) of Lemma 3.9 for
θ as required.

In more detail: Firstly, note that the proof of Case 1 gives statements (i), (ii)
and (iii) of Lemma 3.9 with power being one. (In other words, with notation as
in Lemma 3.9, N = 1. Note that this “N" is different from the “N" that used in
the previous paragraph or the rest of this proof!) Hence, choose unitaries u, u0 ∈
CU(M2(C[0, 1])), and choose unitaries u′, u′′ ∈ CU(M2(C[0, 1]))e such that the
following hold:

(i) u(0) = u(1) = 1M2 ;

(ii)diag(eiθ/N , e−iθ/N) = (u0)
∗udiag(α, α)u∗diag(α, α)u0;(3.11)

(iii) ‖diag(eiθ/N, e−iθ/N)−(u′′)∗u′diag(α, α)(u′)∗diag(α, α)u′′‖<ε/(100N).

(Note that the “N" here is the same “N" as in the previous paragraph; i.e., it is
chosen so that |θ/N| is “small enough".)

From (3.11) statement (ii), we have that

diag(eiθ , e−iθ) = ((u0)
∗udiag(α, α)u∗diag(α, α)u0)

N .

This gives statement (ii) of Lemma 3.9 for θ.
From (3.11) statement (iii), we have that

‖diag(eiθ , e−iθ)− ((u′′)∗u′diag(α, α)(u′)∗diag(α, α)u′′)N‖ < ε.

This gives us statement (iii) of Lemma 3.9 for θ.

LEMMA 3.10. For every ε > 0, there exists δ > 0 such that for every unital
C∗-algebra A, if

(i) p1, p2, . . . , pn are pairwise orthogonal projections in A;
(ii) q1, q2, . . . , qn are pairwise orthogonal projections in A;

(iii) α1, α2, . . . , αn are scalars (complex numbers) with norm one;
(iv) |αi − αj| > ε for i 6= j; and
(v) ‖(α1 p1 + α2 p2 + · · ·+ αn pn)− (α1q1 + α2 p2 + · · ·+ αn pn)‖ < δ;

then ‖pi − qi‖ < ε and pi ∼ qi in A for 1 6 i 6 n.
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Proof. Let I1, I2, . . . , IN , with N > 3, be a collection of pairwise disjoint half-
open intervals such that the following hold:

(i) For 1 6 k 6 N, the interval Ik has length less than ε/100.

(ii) T =
N⋃

k=1

Ii. (Here T is the unit circle of the complex plane.)(3.12)

(iii) For 1 6 k 6 N, the immediate neighbours of Ik are Ik−1 and Ik+1.

(Here we define I−1 =df IN and IN+1 =df I1.)

For 1 6 k 6 N, let fk : T → [0, 1] be a continuous function such that the
following hold:

(i) fk = 1 on Ik.

(ii) fk = 0 on Il if l is not an element of {k− 1, k, k + 1}.(3.13)

(Here, I−1 and IN+1 are defined as in (3.12) statement (iii).)

By the Stone–Weierstrass Theorem, for 1 6 k 6 N, let g′k be a polynomial in
z, z (where z is a complex variable and, z is the complex conjugate of z) such that

(3.14) |g′k(z, z)− fk(z)| < ε/100

for z ∈ T. Now define gk(z) =df g′k(z, z) for all z ∈ T.
For 1 6 k 6 N,

since g′k is a polynomial and by the definition of gk,

choose δk > 0 such that whenever a, b ∈ A
are normal elements with norm less than or(3.15)

equal to one such that ‖a− b‖ < δk then ‖gk(a)− gk(b)‖ < ε/100.

Now let δ =df min{δ1, δ2, . . . , δN} > 0.

Now suppose that p1, p2, . . . , pn, q1, q2, . . . , qn, α1, α2, . . . , αn satisfy the hy-
pothesis of Lemma 3.10. Note that by (3.12), (3.13) and since |αi − αj| > ε for
i 6= j, we have that for each i, with 1 6 i 6 n, there exists k(i), with 1 6 k(i) 6 N
such that whenever r1, r2, . . . , rn are pairwise orthogonal projections in A then

fk(i)(α1r1 + α2r2 + · · ·+ αnrn) = ri.

From this, (3.14) and (3.15), we have that for 1 6 i 6 n,

‖pi − qi‖ = ‖ fk(i)(α1 p1 + α2 p2 + · · ·+ αn pn)− fk(i)(α1q1 + α2q2 + · · ·+ αnqn)‖

6 ‖ fk(i)(α1 p1 + α2 p2 + · · ·+ αn pn)− gk(i)(α1 p1 + α2 p2 + · · ·+ αn pn)‖
+‖gk(i)(α1 p1+α2 p2+· · ·+αn pn)−gk(i)(α1q1+α2q2+· · ·+αnqn)‖
+‖gk(i)(α1q1 + α2q2 + · · ·+ αnqn)− fk(i)(α1q1 + α2q2 + · · ·+ αnqn)‖

< ε/100 + ε/100 + ε/100 < ε.

The following follows from standard spectral theory arguments:



174 P.W. NG

LEMMA 3.11. Let A be a unital C∗-algebra. Let δ > 0 and let u, v ∈ U(A)
unitaries in A be such that

‖u− v‖ < δ.

Then every element of σ(u) is within δ of an element of σ(v) and vice versa.

LEMMA 3.12. Let p, q be supernatural numbers whch are relatively prime. Let
u ∈ CU(Zp,q) be a unitary such that every tracial state on Zp,q induces the same
tracial state on C∗(u).

Then for all s, t ∈ [0, 1], σ(u(s)) = σ(u(t)).

Proof. Firstly, we show that for all s, t ∈ (0, 1), σ(u(s)) = σ(u(t)). Let τ be
the unique tracial state on the UHF-algebra Mp ⊗Mq.

Fix s, t ∈ (0, 1). Let φs, φt : C∗(u) → Mp ⊗Mq be the two unital ∗-homo-
morphisms that satisfy φs(u) = u(s) and φt(u) = u(t). By hypothesis, we have
that τ ◦φs = τ ◦φt. Among other things, this implies that ker(φs) = ker(φt). Note
that since the K-theory of the UHF-algebra Mp ⊗Mq is completely determined
by τ, since σ(u) ⊆ T, by 23.1.1 of [2], and since φs and φt are unital, KL(φs) =
KL(φt). Hence, by [10], φs and φt are approximately unitarily equivalent. Hence,
u(s) = φs(u) and u(t) = φt(u) have the same spectrum. So we have shown that
for s, t ∈ (0, 1), σ(u(s)) = σ(u(t)).

Now note that u(0) ∈ Mp ⊗ 1Mq ⊆ Mp ⊗Mq. Hence, viewing u(0) as
being a unitary in Mp ⊗Mq, we have that ‖u(0) − u(1/n)‖ → 0 as n → ∞.
Hence, by Lemma 3.11 and by the work of the previous paragraph, we have that
σ(u(0)) = σ(u(t)) for all t ∈ (0, 1). Similarly, σ(u(1)) = σ(u(t)) for all t ∈ (0, 1).
From this and the work of the previous paragraph, σ(u(s)) = σ(u(t)) for all
s, t ∈ [0, 1].

LEMMA 3.13. Let p, q be infinite type supernatural numbers which are relatively
prime. Let {Pk}∞

k=1 and {Qk}∞
k=1 be sequences of natural numbers which exponentially

generate p, q respectively. Let Zp,q = lim
→
ZPk ,Qk be the corresponding inductive limit

decomposition of Zp,q. (See [30].)
Let u ∈ CU(Zp,q) be a nonscalar unitary such that every tracial state on Zp,q

induces the same tracial state on C∗(u).
Then for every ε > 0, there exists K > 1 such that for all k > K, there is a unitary

uk ∈ CU(ZPk ,Qk ) with the following properties:
(i) ‖uk − u‖ → 0 as k→ ∞.

(ii) For all k > K, there exist continuous functions γ1, γ2, . . . , γm : [0, 1]→ T (with
PkQk = m), and a unitary w ∈MPkQk (C[0, 1]) such that

‖uk − wdiag(γ1, γ2, . . . , γm)w∗‖ < ε and 0 < |γi−1(t)− γi(t)| < ε

for all t ∈ [0, 1], and for 2 6 i 6 m.
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Proof. Since Zp,q is projectionless,

we know that σ(u) must be a connected (and hence path-connected) set.

Since u is not a scalar unitary, σ(u) must be a nontrivial arc or

the whole circle. Hence, by Lemma 3.12, we see that σ(u(t)) is either

a nontrivial arc or the whole circle, for all t ∈ [0, 1].(3.16)

For simplicity, let us assume that σ(u) is a nontrivial arc and that

T− σ(u) (is a nontrivial arc that) corresponds to the interval

(r, s) (i.e., the map (r, s)→ T− σ(u) : φ 7→ eiφ is a homeomorphism).

Since u ∈ CU(Zp,q), choose K > 1 such that for all k > K, there exists a
unitary in CU(ZPk ,Qk ) which is within min{ε/100, (s− r)/100} of u. Hence, for
all k > K, let uk ∈ CU(ZPk ,Qk ) be a unitary such that ‖uk − u‖ < min{ε/100, (s−
r)/100} and, as k→ ∞,

(3.17) ‖uk − u‖ → 0.

Now consider k > K. By Lemma 3.8, let θ1, θ2, . . . , θm : [0, 1] → R be con-
tinuous functions with θi(t) 6 θi+1(t) for 1 6 i 6 m − 1, and θ1(t) 6 θm(t) 6
θ1(t) + 2π for all t ∈ [0, 1]; and let w ∈Mm(C[0, 1]) be a unitary such that

(3.18) ‖uk − wdiag(eiθ1 , eiθ2 , . . . , eiθm)w∗‖ < min{ε/100, (s− r)/100}.

(In the above, m = PkQk.)
From (3.17), (3.18) and Lemma 3.11, we know that for all t ∈ [0, 1], ev-

ery element in the spectrum of w(t)diag(eiθ1(t), eiθ2(t), . . . , eiθm(t))w(t)∗ is within
min{ε/50, (s − r)/50} of an element of σ(u(t)), and vice versa. From this and
(3.16) and (3.18), rearranging indices to go in a different direction (say counter-
clockwise instead of clockwise) and with a different starting point if necessary,
we may assume that |eiθj(t) − eiθj+1(t)| < ε/2 for all t ∈ [0, 1] and for 1 6 j 6
m − 1. Now for 1 6 j 6 m, let γj : [0, 1] → T be a continuous map such

that |eiθj(t) − γj(t)| < ε/100 and γj(t) 6= γj′(t) for all t ∈ [0, 1] if j 6= j′. Then
γ1, γ2, . . . , γm have the required properties.

LEMMA 3.14. Let p, q be infinite type supernatural numbers which are relatively
prime. Let u ∈ CU(Zp,q) be a nonscalar unitary such that every tracial state on Zp,q
induces the same tracial state on C∗(u).

Suppose that A is a unital separable C∗-algebra which contains Zp,q as a unital
C∗-subalgebra. Suppose that H is a closed subgroup of CU(A) which is normalized by
CU(Zp,q), such that u ∈ H. Then H contains CU(Zp,q).

Proof. Let {Pk}∞
k=1, {Qk}∞

k=1 be sequences of natural numbers which expo-
nentially generate p, q respectively. Let Zp,q = lim

→
ZPk ,Qk be the corresponding

inductive limit decomposition of Zp,q. (See [30].)
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It suffices to show that for all ε > 0, for all v ∈
∞⋃

k=1
CU(ZPk ,Qk ) such that

‖v− 1‖ < 1/100, v is within ε of an element of H. So let v ∈
∞⋃

k=1
CU(ZPk ,Qk ) be an

arbitrary unitary with ‖v− 1‖ < 1/100, and let ε > 0 be given. We may assume
that ε < 1/100. We want to show that v is within ε of an element of H.

Suppose that K > 1 is such that v ∈ ZPK ,QK .
Note that since u is nonscalar and by the hypothesis on C∗(u),

we must have that u is noncentral;

in particular,u(0) and u(1) are nonscalar unitaries in

Mp ⊗ 1Mq and 1Mp ⊗Mq respectively.

Hence, by Lemma 3.5 and since u ∈ H, let w ∈ H ∩MPK ,QK(3.19)

be such that ‖w− 1‖ < 1/50, v(0) = w(0) and v(1) = w(1).

Hence, v(0)w(0)∗ = 1, v(1)w(1)∗ = 1, and ‖vw∗ − 1‖ < 1/25.

Let v′ =df vw∗. It suffices to show that v′ is within ε of an element of H.

Let m =df PKQK. By Lemma 3.8, let γ1, γ2, . . . , γm : [0, 1]→ T be continuous
functions, and let p1, p2, . . . , pm be nonzero pairwise orthogonal projections in
Mm(C[0, 1]) such that the following hold:

(i)
m

∏
i=1

γi(t) = 1 for all t ∈ [0, 1];

(ii) γi(0) = γi(1) = 1 for 1 6 i 6 m;(3.20)

(iii)
∥∥∥ m

∑
i=1

γi pi − v′
∥∥∥ < ε/100;

(iv)
∥∥∥ m

∑
i=1

γi pi − 1
∥∥∥ < ε/100 + 1/25.

Using (3.20) statement (i), we construct a finite sequence χ1, χ2, . . . , χm−1 :
[0, 1] → T of continuous functions, with χi(0) = χi(1) = 1 for 1 6 i 6 m − 1,
inductively as follows:

(i) χ1 =df γ1.
(ii) For 2 6 i 6 m− 1, χi is the unique function which satisfies γi = χi−1χi.

By (3.20) statement (i), we see that γm = χm−1 and
m

∑
i=1

γi pi = χ1 p1 +
m−1

∑
i=2

χi−1χi pi + χm−1 pm.

Hence, by (3.19) and (3.20), it suffices to show that

for 1 6 i 6 m− 1, χi pi + χi pi+1 + (1− (pi + pi+1))(3.21)

is norm within ε/(100m2 + 1) of an element of H.
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By Lemmas 3.13 and 3.7, let L > K > 1, uL ∈ CU(ZPL ,QL), λ1, λ2, . . . , λn :
[0, 1]→T be continuous functions (where n=PLQL) and w′∈CU(MPLQL(C[0, 1]))
be such that the following hold:

(i) ‖u− uL‖ < ε/(100000m2 + 1).

(ii)
n

∏
i=1

λi(t) = 1 for t ∈ [0, 1].

(iii) ‖uL − w′diag(λ1, λ2, . . . , λn)(w′)∗‖ < ε/(100000m2 + 1).(3.22)

(iv) 0<|λ2j−1(t)−λ2j(t)|<1/1000 for all t∈ [0, 1], and for 262j62n/m.

(Recall that m > 2; so n = m(n/m) > 2(n/m). )

(v) uL(0) and uL(1) are all nonscalar unitaries.

(Note that v′ ∈ ZPL ,QL since L > K. )

Recall that n = PLQL. Note that the image of

m

∑
i=1

γi pi = χ1 p1 +
m−1

∑
i=2

χi−1χi pi + χm−1 pm

in ZPL ,QL is

n/m⊕
j=1

( m

∑
i=1

γi pi

)
=

n/m⊕
j=1

(
χ1 p1 +

m−1

∑
i=2

χi−1χi pi + χm−1 pm

)
.

To simplify notation, we rewrite the above expression as

n/m

∑
j=1

( m

∑
i=1

γi pi,j

)
=

n/m

∑
j=1

(
χ1 p1,j +

m−1

∑
i=2

χi−1χi pi,j + χm−1 pm,j

)
.

Hence, by (3.21), it suffices to show that for 1 6 i 6 m− 1,

(3.23)
n/m

∑
j=1

(χi pi,j + χi pi+1,j) + (1− (pi + pi+1))

is norm within ε/(100m2 + 1) of an element of H. Without loss of generality, we
will prove this statement for the case i = 1.

By (3.20) statement (iv), let θ : [0, 1]→ R be a continuous function such that
χ1 = eiθ and θ(0) = θ(1) = 0. For 2 6 2j 6 2n/m, let α2j : [0, 1] → T be the
continuous function that is given by

α2j =df λ2j−1λ2j.

By (3.22) statement (iv), we have that for 2 6 2j 6 2n/m, for all t ∈ [0, 1],

0 < |α2j(t)− 1| < 1/1000.
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For simplicity, we assume that Im(α2j(t)) > 0 for t ∈ [0, 1] and for 2 6 2j 6 2n/m
(otherwise, in the arguments which follow, we can replace α2j by α2j). Hence, we
have that for 1 6 j 6 n/m, for t ∈ [0, 1],

(3.24) Re(α2j(t)), Im(α2j(t)), Re((α2j(t))2), Im((α2j(t))2) > 0.

Let {ei,j}16i,j6n be a system of matrix units for Mn. By Lemma 3.7, let x ∈
CU(Mn(C[0, 1])) be the unitary that is given by

x = w′
( 2n/m

∑
2j=2

(e2j−1,2j + e2j,2j−1) +
(

1−
2n/m

∑
l=1

el

))
(w′)∗.

Then by (3.22) statements (i) and (iii), we have that

‖uxu∗x∗ − w′diag(α2, α2, α4, α4, . . . , α2n/m, α2n/m, 1, 1, . . . , 1)(w′)∗‖
6 ‖uxu∗x∗ − uLx(uL)

∗x∗‖
+ ‖uLx(uL)

∗x∗ − w′diag(λ1, λ2, . . . , λn)(w′)∗xw′(3.25)

diag(λ1, λ2, . . . , λn)(w′)∗x∗‖
+ ‖w′diag(λ1, λ2, . . . , λn)(w′)∗xw′diag(λ1, λ2, . . . , λn)(w′)∗x∗

− w′diag(α2, α2, α4, α4, . . . , α2n/m, α2n/m, 1, 1, . . . , 1)(w′)∗‖
< 2ε/(100000m2 + 1) + 2ε/(100000m2 + 1) + 0 = 4ε/(100000m2 + 1).

Hence, y =df (w′)∗uxu∗x∗w′ is within 4ε/(100000m2 + 1) of

(3.26) diag(α2, α2, α4, α4, . . . , α2n/m, α2n/m, 1, 1, . . . , 1).

From (3.26) and Lemma 3.9, let u′, u′′ ∈ CU(Mn(C[0, 1]))e and let N > 1 be
an integer such that

∥∥∥2n/m

∑
2j=2

(
χ1e2j−1,2j−1+χ1e2j,2j

)
+
(

1−
2n/m

∑
l=1

el,l

)
−((u′′)∗u′y(u′)∗y∗u′′)N

∥∥∥(3.27)

< 9ε/(100000m2 + 1).

(Note that from the proof of Lemma 3.9, we can choose the same N for all the α2j.)
Now by Lemma 3.7, let w′′ ∈ CU(Mn(C[0, 1])) be a unitary such that

n/m

∑
j=1

(χ1 p1,j + χ1 p2,j) + (1− (p1 + p2))

= w′′
( 2n/m

∑
2j=2

(χ1e2j−1,2j−1 + χ1e2j,2j) +
(

1−
2n/m

∑
l=1

el,l

))
(w′′)∗.
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From this and (3.27), we have that

∥∥∥n/m

∑
j=1

(χ1 p1,j+χ1 p2,j)+(1−(p1+p2))−w′′((u′′)∗u′y(u′)∗y∗u′′)N(w′′)∗
∥∥∥(3.28)

< 9ε/(100000m2 + 1).

Since u′(0) = u′(1) = u′′(0) = u′′(1) = 1 and χ1(0) = χ1(1) = 1, let δ > 0
be such that for all t ∈ [0, δ] ∪ [1− δ, 1],

‖u′(t)− 1Mn‖ < ε/(100N(1000m2 + 1000)),

‖u′′(t)− 1MN‖ < ε/(100N(1000m2 + 1000)), and(3.29)

|χ1(t)− 1| < ε/(100N(1000m2 + 1000)).

From (3.29), it follows that for a ∈ U(Mn(C[0, 1])) and for t ∈ [0, δ] ∪ [1−
δ, 1], we have that

‖w′′((u′′)∗u′a(u′)∗a∗u′′)N(w′′)∗(t)− 1‖

6 ‖w′′((u′′)∗u′a(u′)∗a∗u′′)N(w′′)∗(t)− w′′(u′a(u′)∗a∗u′′)N(w′′)∗(t)‖

+ ‖w′′(u′a(u′)∗a∗u′′)N(w′′)∗(t)− w′′(u′a(u′)∗a∗)N(w′′)∗(t)‖

+ ‖w′′(u′a(u′)∗a∗)N(w′′)∗(t)− w′′(a(u′)∗a∗)N(w′′)∗(t)‖
(3.30)

+ ‖w′′(a(u′)∗a∗)N(w′′)∗(t)−w′′(aa∗)N(w′′)∗(t)‖+‖w′′(aa∗)N(w′′)∗(t)−1‖
6 N‖(u′′)∗(t)− 1‖+ N‖u′′(t)− 1‖+ N‖u′(t)− 1‖+ N‖(u′)∗(t)− 1‖+ 0

< 4ε/(100(1000m2 + 1000)).

Since x, w′, w′′ ∈ CU(Mn(C[0, 1])) and by Lemma 3.7, let r, s, q > 1 be inte-
gers and let x1, x2, . . . , xr, x′1, x′2, . . . , x′r, y1, y2, . . . , ys, y′1, y′2, . . . , y′s, z1, z2, . . . , zq,
z′1, z′2, . . . , z′q be elements of U(Mn(C[0, 1])) such that

x =
r

∏
i=1

(xi, x′i), w′ =
s

∏
j=1

(yj, y′j), and w′′ =
q

∏
k=1

(zk, z′k).

(Recall that for invertible elements g, g′, (g, g′) is the commutator (g, g′) =df
gg′g−1(g′)−1.)



180 P.W. NG

Now for 1 6 i 6 r, 1 6 j 6 s and 1 6 k 6 q, let x′′i , x′′′i , y′′j , y′′′j , z′′k and z′′′k be
elements of U(Mn(C[0, 1])) such that:

(i) x′′i (t) = xi(t) for t ∈ [δ/100, 1− δ/100];

(ii) x′′′i (t) = x′i(t) for t ∈ [δ/100, 1− δ/100];

(iii) y′′j (t) = yj(t) for t ∈ [δ/100, 1− δ/100];

(iv) y′′′j (t) = y′j(t) for t ∈ [δ/100, 1− δ/100];

(v) z′′k (t) = zk(t) for t ∈ [δ/100, 1− δ/100];(3.31)

(vi) z′′′k (t) = z′k(t) for t ∈ [δ/100, 1− δ/100];

(vii) x′′i (0) = x′′i (1) = x′′′i (0) = x′′′i (1) = 1;

(viii) y′′j (0) = y′′j (1) = y′′′i (0) = y′′′i (1) = 1;

(ix) z′′k (0) = z′′k (1) = z′′′k (0) = z′′′k (1) = 1.

Now let x′, w′′′, w′′′′ be elements of CU(Mn(C[0, 1]))e ⊆ CU(ZPL ,QL) that
are given by

x′ =df

r

∏
i=1

(x′′i , x′′′i ), w′′′ =df

s

∏
j=1

(y′′j , y′′′j ), and w′′′′ =df

q

∏
k=1

(z′′k , z′′′k ).

Hence,
y′ =df (w′′′)∗ux′u∗(x′)∗w′′′

is an element of H (since H is normalized by the elements of CU(Zp,q)). For the
same reasons the following is an element of H:

w′′′′((u′′)∗u′y′(u′)∗(y′)∗u′′)N(w′′′′)∗.

By reasoning similar to that of (3.30), we have that for all a ∈ U(Mn(C[0, 1]))
and for t ∈ [0, δ] ∪ [1− δ, 1],

(3.32) ‖w′′′′((u′′)∗u′a(u′)∗a∗u′′)N(w′′′′)∗(t)− 1‖ < 4ε/(100(1000m2 + 1000)).

Now consider the quantity w′′′′((u′′)∗u′y′(u′)∗y∗u′′)N(w′′′′)∗. For t∈[δ/100,
1− δ/100],

w′′′′(t)((u′′)∗u′y′(u′)∗(y′)∗u′′)N(t)(w′′′′(t))∗=w′′(t)((u′′)∗u′y(u′)∗y∗u′′)N(t)(w′′(t))∗.

But for t ∈ [0, δ/100] ∪ [1− δ/100, 1], we have, from (3.30) and (3.32), that:

‖w′′′′(t)((u′′(t))∗u′(t)y′(t)(u′(t))∗y′(t)∗u′′(t))N(w′′′′(t))∗

− w′′(t)((u′′(t))∗u′(t)y(t)(u′(t))∗y(t)∗u′′(t))N(w′′(t))∗‖

6 ‖w′′′′(t)((u′′(t))∗u′(t)y′(t)(u′(t))∗y′(t)∗u′′(t))N(w′′′′(t))∗ − 1‖

‖1− w′′(t)((u′′(t))∗u′(t)y(t)(u′(t))∗y(t)∗u′′(t))N(w′′(t))∗‖
< 8ε/(100(1000m2 + 1000)).
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Hence, we must have that∥∥∥w′′′′((u′′)∗u′y′(u′)∗(y′)∗u′′)N(w′′′′)∗ − w′′((u′′)∗u′y(u′)∗y∗u′′)N(w′′)∗
∥∥∥

< 2ε/(25(1000m2 + 1000)).

From this and (3.28), we have that∥∥∥ n/m

∑
j=1

(χ1 p1,j + χ1 p2,j) + (1− (p1 + p2))− w′′′′((u′′)∗u′y′(u′)∗(y′)∗u′′)N(w′′′′)∗
∥∥∥

< ε/(100m2 + 1).

Hence,
n/m
∑

j=1
(χ1 p1,j + χ1 p2,j) + (1− (p1 + p2)) is within ε/(100m2 + 1) of an

element of H. From this and (3.23), we have completed the proof. Hence, H
contains CU(Zp,q).

4. SIMPLICITY OF U(Z)/T

LEMMA 4.1. Let Z be the Jiang–Su algebra. Let u ∈ U(Z) be a unitary and let
F ⊆ Z be a finite set. Then for every ε > 0, there exists v ∈ CU(Z) such that, for all
f ∈ F ,

‖u f u∗ − v f v∗‖ < ε.

This follows from Lemma 1.4 and Remark 1.5 of [5].

THEOREM 4.2. Let Z be the Jiang–Su algebra. Then CU(Z)/T is a simple topo-
logical group.

Proof. Let τ be the unique tracial state on the Jiang–Su algebra Z .
Let G ⊆ CU(Z) be a closed normal subgroup which properly contains the

scalar unitaries. We will show that CU(Z) ⊆ G.
Let p, q be relatively prime supernatural numbers of infinite type. By The-

orem 3.4 of [21], we have the following:

(i) There is a unital injective ∗-homomorphism φ : Zp,q → Zp,q which

is trace collapsing (i.e.,τ ◦ φ = τ′ ◦ φ for all tracial states τ, τ′ ∈ T(Zp,q) ).

(ii) Z can be realized as the C∗-inductive limit Z = lim
→

(An, φn,n+1),(4.1)

where for all n > 1,An ∼= Zp,q and the connecting map φn,n+1 = φ

(i.e., the connecting map is always the trace-collapsing map

φ from the previous item).

For all n > 1, let φn : An → Z be the map induced by the connecting maps.
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Fix n > 1.

We will show that CU(φn(An)) ⊆ G. Let u ∈ G be a nonscalar unitary.

By Corollary 3.2 of [21] (see also [30]), there is a unital

∗-homomorphism ψ : Z → An. Hence, ψ(u) is a nonscalar unitary in An

such that every tracial state on An induces the same(4.2)

itracial state on C∗(ψ(u)). Hence, φn ◦ ψ(u) is a nonscalar

unitary in φn(An) ∼= An such that every tracial state on φn(An)

induces the same tracial state on C∗(φn ◦ ψ(u)).

Now consider the two unital ∗-endomorphisms (of Z):

idZ : Z → Z and φn ◦ ψ : Z → Z .

It follows, by Theorem 3 of [14], that idZ and φn ◦ ψ are approximately unitarily
equivalent. Hence, let {uk}∞

k=1 be a sequence of unitaries in Z such that for all
a ∈ Z ,

‖uka(uk)
∗ − φn ◦ ψ(a)‖ → 0.

In particular,
‖uku(uk)

∗ − φn ◦ ψ(u)‖ → 0.

By Lemma 4.1, we may assume that uk ∈ CU(Z) for all k > 1. Hence, since u ∈ G
and since G is a normal subgroup of CU(Z), we have that uku(uk)

∗ ∈ G for all
k > 1. Hence, since G is a closed subgroup of CU(Z), we have that φn ◦ψ(u) ∈ G.

Since φn ◦ ψ(u) ∈ G (which is normalized by CU(Z)) and by (4.2) and
Lemma 3.14, we see that CU(φn(An)) ⊆ G. But n > 1 is arbitrary and G is
closed. Hence, CU(Z) ⊆ G as required.

5. SIMPLICITY OF Aut(Z) ∼= Inn(Z)

THEOREM 5.1. Let Z be the Jiang–Su algebra. Then Inn(Z) is a simple topologi-
cal group.

Proof. Firstly, by Lemma 4.1, every automorphism in Inn(Z) can be realized
as an approximately inner automorphism where the unitaries are in CU(Z).

The rest of the proof follows the argument of Corollary 2.5 of [8]. Let G be a
nontrivial closed normal subgroup of Inn(Z). Let

H =df {u ∈ CU(Z) : Ad(u) ∈ G}.

Then H is a closed normal subgroup of CU(Z) such that H contains all the scalar
unitaries. Since G is nontrivial, let β ∈ G be different from the identity automor-
phism. Hence, there exists v ∈ CU(Z) such that v∗α(v) /∈ C1. Since

(Ad(v))−1α(Ad(v))α−1 = Ad(v∗α(v))
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it follows that v∗α(v) ∈ H. Therefore, by Theorem 4.2, we have that H = CU(Z)
and G = Inn(Z).

6. THE STRUCTURES OF U(Z) AND Aut(Z)

We require a result that is due to Thomsen:

THEOREM 6.1. Let A be a unital exact C∗-algebra. Suppose that the natural map

π1(U(A))→ π1(U∞(A)) = K0(A)

is surjective. Then

U(A)/CU(A) ∼= K1(A)⊕Aff(T(A))/ρ(K0(A)).

In the above, π1 is the first homotopy group (i.e., the fundamental group), U∞(A) =
lim
→

U(Mn(A)) is the infinite unitary group of A, ρ : K0(A) → Aff(T(A)) is the

natural map, and ρ(K0(A)) is the closure of ρ(K0(A)) in Aff(T(A)).
This follows from Corollary 3.3 and Corollary 3.4 of [24].
Next we need a lemma about the fundamental group of the unitary group

of the Jiang–Su algebra:

LEMMA 6.2. Let Z be the Jiang–Su algebra. Then the natural map π1(U(Z))→
K0(Z) is surjective. Here, π1 is the first homotopy group (fundamental group).

Proof. This lemma actually follows from [13]. However, since [13] is not
published, we present a short proof for the convenience of the reader.

By [14], Z can be decomposed as a C∗-inductive limit Z = lim
→

(An, φn,n+1)

such that:

(i) each An is a prime dimension drop algebra

(and hence, K0(An) = Z );(6.1)

(ii) each map φn,n+1 induces a unital injective map K0(φn,n+1) : K0(An)

→ K0(An+1) (and hence, K0(φn,n+1) is an automorphism of Z ).

For each n > 1, by (6.1) statement (i), the natural map π1(U(An)) →
K0(An) is surjective. From this, the naturality of the map π1(U(An))→ K0(An),
and (6.1) statement (i), we see that the natural map π1(U(Z))→ K0(Z) is surjec-
tive.

THEOREM 6.3. Let Z be the Jiang–Su algebra. Then we have the following:
(i) CU(Z)/T is a simple topological group.

(Here, T is the scalar multiples of the identity, where the scalars have absolute value one.
By Lemma 2.1, T is a subgroup of CU(Z).)
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(ii) By [24], there is an exact sequence

{1} → CU(Z)→ U(Z)→ T→ {1}.

This, together with (i), give the topological normal subgroup structure of U(Z). (We
note that the copy of the circle T in (ii) is different from the copy of T in (i).)

(iii) Aut(Z) = Inn(Z) is a simple topological group.

Proof. Proof of (i). This follows from Theorem 4.2.
Proof of (ii). By Lemma 6.2, the natural map π1(U(Z)) → K0(Z) is surjec-

tive. Hence, by Theorem 6.1, we have an exact sequence

{1} → CU(Z)→ U(Z)→ Aff(T(Z))/K0(Z)→ {1}.

(Note that K1(Z) = {0}.) Since Z has unique trace and since K0(Z) = Z, we
have that Aff(T(Z))/K0(Z) ∼= T.

Proof of (iii). That Aut(Z) = Inn(Z) follows from Theorem 7.6 of [14]. That
Inn(Z) is simple follows from Theorem 5.1.
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