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ABSTRACT. If Ω is a locally compact Hausdorff space, we show that any local
C-linear map between Banach C0(Ω)-modules is “nearly C0(Ω)-linear” and
“nearly bounded”. Thus, any local C-linear map θ between Hilbert C0(Ω)-
modules is C0(Ω)-linear. If, in addition, Ω contains no isolated point, any
C0(Ω)-linear map between Hilbert C0(Ω)-modules is bounded. Moreover, if
θ is a bijective “biseparating” map from a full essential Banach C0(Ω)-module
E to a full Hilbert C0(∆)-module F, then θ is “nearly bounded” and there is a
homeomorphism σ : ∆→ Ω with θ(e · ϕ) = θ(e) · ϕ ◦ σ (e ∈ E, ϕ ∈ C0(Ω)).
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1. INTRODUCTION

A linear map θ between the spaces of continuous sections of two bundle
spaces over the same locally compact Hausdorff base space Ω is said to be local
if for any continuous section f , one has supp θ( f ) ⊆ supp f , or equivalently, for
each ψ ∈ C0(Ω),

f ψ = 0 ⇒ θ( f )ψ = 0.

Consequently, local property is weaker than C0(Ω)-linearity. In the case when
the domain and the range bundles are over different base spaces, a more general
notion is defined; namely, disjointness preserving, or separating (see Section 5).

Local and disjointness preserving linear maps are found in many researches
in analysis. For example, a theorem of Peetre [19] states that local linear maps of
the space of smooth functions defined on a manifold modelled on Rn are exactly
linear differential operators (see, e.g., [17]). This is further extended to the case of
vector-valued differentiable functions defined on a finite dimensional manifold
by Kantrowitz and Neumann [16] and Araujo [3].
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In the topological setting, similar results have been obtained. Local lin-
ear maps of the space of continuous functions over a locally compact Hausdorff
space are multiplication operators, while disjointness preserving (separating) lin-
ear maps between two such spaces over possibly different base spaces are
weighted composition operators (see, e.g., [1], [5], [18], [14], [12], [15]). Among
many interesting questions arising from these two notions, quite a few efforts has
been put on the automatic continuity of such maps. See, e.g., [2], [7], [14], [15] for
the scalar case, and [13], [4], [3], [6] for the vector-valued case.

In this paper, we extend this context to local or separating linear maps be-
tween spaces of continuous sections of vector bundles. Note that similar to the
correspondence developed by Swan [20] between finite dimensional vector bun-
dles over a locally compact Hausdorff space Ω and certain C0(Ω)-modules, the
spaces of continuous sections of “Banach bundles” are certain Banach C0(Ω)-
modules (see, e.g., [10], and Section 2 below).

One of the original motivations behind this work is to investigate up to what
extent will a local linear map between two Banach C0(Ω)-modules be C0(Ω)-
linear. Surprisingly, on top of finding that such maps are “nearly C0(Ω)-linear”,
we find that they are also “nearly bounded”. In fact, it is well known that there
are many unbounded C-linear maps from an infinite dimensional Banach space
to another Banach space and so, if S is a finite set, there are many unbounded
C(S)-module maps from certain Banach C(S)-module to another Banach C(S)-
module. The interesting thing we discovered is that the above is, in many cases,
the “only obstruction” to the automatic boundedness of C0(Ω)-module maps (see
Proposition 3.5 as well as Theorems 3.7 and 4.2).

More precisely, if θ is a local C-linear map (not assumed to be bounded)
from an essential Banach C0(Ω)-module E to another such module F, then θ is
“nearly C0(Ω)-linear”, in the sense that the induced map θ̃ : E → F̃ is a C0(Ω)-
module map (where F̃ is the image of F in the space of C0-sections on the canoni-
cal “(H)-Banach bundle” associated with F; see Section 2). Moreover, θ is “nearly
bounded” in the sense that there exists a finite subset S ⊆ Ω and a positive num-
ber κ such that

sup
ω∈Ω\S

‖θ̃(e)(ω)‖ 6 κ‖e‖ (e ∈ E).

Furthermore, if F is “C0(Ω)-normed” (in particular, if F is a Hilbert C0(Ω)-mo-
dule), then the finite set S consists of isolated points in Ω, and

θ = θ0 ⊕
⊕
ω∈S

θω

where θ0 : EΩ\S → FΩ\S is a bounded C0(Ω \ S)-linear map (where EΩ\S and
FΩ\S are the canonical essential Banach C0(Ω \ S)-modules induced from E and
F respectively) and θω are (possibly unbounded) C-linear maps (see Theorems 4.2
and 3.7). Consequently, if Ω contains no isolated point and F is C0(Ω)-normed,
then θ is automatically bounded. As another application, if X and Y are Banach
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spaces, and θ : `∞(X) → `∞(Y) is a linear map preserving “zero ultra-limits”
(see Corollary 4.7 for the precise definition), then θ induces a linear map θF from
the ultrapower XF to YF for each free ultrafilter F on N, and there exist free
ultrafilters F1, . . . , Fn on N such that sup

F 6=F1,...,Fn

‖θF‖ < ∞.

On the other hand, we will also study C-linear maps between two Banach
modules over two different base spaces. In this case, we will consider “sep-
arating” maps instead of local maps. More precisely, if Ω and ∆ are two lo-
cally compact Hausdorff spaces, E is a “full” essential Banach C0(Ω)-module
(see Remark 3.2(ii)), and F is a “full” Banach C0(∆)-normed module, then for
any bijective linear map θ : E → F (not assumed to be bounded) with both θ

and θ−1 being separating, there exists a homeomorphism σ : ∆ → Ω such that
θ(e · ϕ) = θ(e) · ϕ ◦ σ (e ∈ E, ϕ ∈ C0(Ω)), and there exists a finite set S consist-
ing of isolated points of ∆ such that the restriction of θ from EΩ\σ(S) to F∆\S is
bounded.

This paper is organised as follows. In Section 2, we will first collect some ba-
sic facts about the correspondence between Banach bundles and Banach C0(Ω)-
modules. In Section 3, we will show two technical lemmas concerning “near
C0(Ω)-linearity” and “near boundedness” of certain mappings. Section 4 is de-
voted to automatic C0(Ω)-linearity and automatic boundedness of local linear
mappings, while Section 5 is devoted to the automatic boundedness of bijec-
tive biseparating linear mappings between Banach modules over different base
spaces. Finally, as an attempt to a further generalisation, we show in the Ap-
pendix that for an arbitrary C∗-algebra A, every bounded local linear map from
a Banach A-module into a Hilbert A-module is A-linear. The boundedness as-
sumption can be removed in the case when A is finite dimensional (Corollary 4.9).

2. PRELIMINARIES AND NOTATIONS

Let us first recall (mainly from [10]) some basic terminologies and results
concerning Banach modules and Banach bundles.

NOTATION 2.1. In this article, Ω and ∆ are two locally compact Hausdorff
spaces, E is an essential Banach C0(Ω)-module, F is an essential Banach C0(∆)-
module, and θ : E → F is a C-linear map (not assumed to be bounded). Further-
more, Ω∞ and ∆∞ are the one-point compactifications of Ω and ∆ respectively.
We denote by NΩ(ω) the set of all compact neighbourhoods of an element ω in
Ω, and by IntΩ(S) the set of all interior points of a subset S in Ω. Moreover, if
U, V ⊆ Ω such that the closure of V is a compact subset of IntΩ(U), we denote
by UΩ(V, U) the collection of all λ ∈ Cc(Ω) with 0 6 λ 6 1, λ ≡ 1 on V and the
support of λ lies inside IntΩ(U).
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DEFINITION 2.2. Let Ξ be a Hausdorff space and p : Ξ → Ω be a surjective
continuous open map. Suppose that for each ω ∈ Ω,

(i) there exists a complex Banach space structure on Ξω := p−1(ω) such that
its norm topology coincides with the topology on Ξω (as a topological subspace
of Ξ);

(ii) {W(ε, U) : ε > 0, U ∈ NΩ(ω)} forms a neighbourhood basis for the zero
element 0ω ∈ Ξω where W(ε, U) := {ξ ∈ p−1(U) : ‖ξ‖ < ε};

(iii) the maps C× Ξ → Ξ and {(ξ, η) ∈ Ξ × Ξ : p(ξ) = p(η)} → Ξ given
respectively, by the scalar multiplications and the additions are continuous.

Then (Ξ, Ω, p) (or simply, Ξ) is called an (H)-Banach bundle (respectively, an
(F)-Banach bundle) over Ω if ξ 7→ ‖ξ‖ is an upper-semicontinuous (respectively,
continuous) map from Ξ to R+. In this case, Ω is called the base space of Ξ, the
map p is called the canonical projection and Ξω is called the fibre over ω ∈ Ω.

If Ξ is an (H)-Banach bundle over Ω and Ω0 ⊆ Ω is an open set, then

ΞΩ0 := p−1(Ω0)

is an (H)-Banach bundle over Ω0 and is called the restriction of Ξ to Ω0. If Ξ is an
(F)-Banach bundle, then so is ΞΩ0 .

DEFINITION 2.3. If Ξ and Λ are (H)-Banach bundle over Ω and ∆ respec-
tively, a map ρ : Ξ → Λ is called a fibrewise linear map covering a map σ : Ω → ∆
if ρ(Ξω) ⊆ Λσ(ω) and the restriction ρω : Ξω → Λσ(ω) is linear. Moreover, a
fibrewise linear map ρ covering a continuous map σ : Ω → ∆ is called a Banach
bundle map if ρ is continuous. A Banach bundle map ρ is said to be bounded if one
has sup

‖ξ‖61, ξ∈Ξ

‖ρ(ξ)‖ < ∞.

For any map e : Ω→ Ξ, we denote

|e|(ω) := ‖e(ω)‖ (ω ∈ Ω).

Such an e is called a C0-section on Ξ if e is continuous, p(e(ω)) = ω (ω ∈ Ω), and
for any ε > 0, there exists a compact set C ⊆ Ω such that |e|(ω) < ε (ω ∈ Ω \ C).
We put

Γ0(Ξ) := {e : Ω→ Ξ : e is a C0-section on Ξ}.
Note that |e| is always upper semi-continuous for every e ∈ Γ0(Ξ) and Ξ is an
(F)-Banach bundle if and only if all such |e| are continuous.

Next, we recall some terminologies and properties about essential Banach
(right) C0(Ω)-modules. A Banach C0(Ω)-module E is said to be essential if there
exists an approximate unit {ψi}i∈I in C0(Ω) such that ‖x − xψi‖ → 0 for any
x ∈ E. In this case, E can be regarded as a unital Banach C(Ω∞)-module in a
unique way. Furthermore, for any ω ∈ Ω∞ and S ⊆ Ω∞, we denote

KS := {ϕ ∈ C(Ω∞) : ϕ(S) = {0}}, KE
S := E · KS and IE

ω :=
⋃

V∈NΩ∞ (ω)

KE
V .
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For simplicity, we set KE
ω := KE

{ω}. Note that KE
∞ = E because E is an essential

Banach C0(Ω)-module. By p. 37 of [10], there exists an (H)-Banach bundle Ξ̌E

over Ω∞ with Ξ̌E
ω = E/KE

ω (ω ∈ Ω∞). Since Ξ̌E
∞ = {0}, if we set ΞE := p−1(Ω),

then Γ0(ΞE) ∼= Γ0(Ξ̌E) under the canonical identification. Furthermore, there
exists a contraction

∼ : E −→ Γ0(ΞE)

such that ẽ(ω) = e + KE
ω. We put Ẽ to be the closure of the image of ∼.

On the other hand, if θ is as in Notation 2.1, we define

θ̃ : E→ F̃ by θ̃(e) = θ̃(e) (e ∈ E).

DEFINITION 2.4. Let E be an essential Banach C0(Ω)-module.
(a) E is called a Banach C0(Ω)-convex module if for any ϕ, ψ ∈ C(Ω∞)+ with

ϕ + ψ = 1, one has ‖xϕ + yψ‖ 6 max{‖x‖, ‖y‖}.
(b) E is called a Banach C0(Ω)-normed module if there exists a map | · | : E →

C0(Ω)+ such that for any x, y ∈ X and a ∈ A,
(i) |x + y| 6 |x|+ |y|;

(ii) |xa| = |x||a|;
(iii) ‖x‖ = ‖|x|‖.

Recall that every Hilbert C0(Ω)-module is a Banach C0(Ω)-normed mod-
ule, and every Banach C0(Ω)-normed module is C0(Ω)-convex. On the other
hand, an essential Banach C0(Ω)-module E is C0(Ω)-convex if and only if∼ is an
isometric isomorphism onto Γ0(ΞE) (see e.g. Theorem 2.5 of [10]). In this case, we
will not distinguish E and Γ0(ΞE). Furthermore, E is C0(Ω)-normed if and only
if E is C0(Ω)-convex and ΞE is an (F)-Banach bundle (see e.g. p. 48 of [10]).

For any open subset Ω0 ⊆ Ω, we set EΩ0 := KE
Ω\Ω0

and ẼΩ0 := Γ0(ΞE
Ω0

).

One can regard KE
Ω\Ω0

as an essential Banach C0(Ω0)-module under the identifi-

cation C0(Ω0) ∼= KΩ\Ω0
. Notice that if E is C0(Ω)-convex, then ẼΩ0 = EΩ0 .

REMARK 2.5. (i) It is well-known that ω 7→ 0ω is a continuous map from Ω

into ΞE. Thus, if {ωi}i∈I is a net in Ω converging to ω0 ∈ Ω and e ∈ ⋂
i∈I

KE
ωi

, then

e ∈ KE
ω0

. Consequently, if e /∈ KE
ω, there exists U ∈ NΩ(ω) such that e /∈ KE

α for
any α ∈ U.

(ii) For each ω ∈ Ω and e ∈ KE
ω, there exists a net {eV}V∈NΩ(ω) such that

eV ∈ KE
V and ‖e− eV‖ → 0.

(iii) Let Ω = {ω1, ω2, . . .} be a countable compact Hausdorff space and E be a
Banach C(Ω)-module. Then ⋂

ω∈Ω

KE
ω = {0},

or equivalently, the map ∼ is injective. In fact, consider any e ∈ ⋂
ω∈Ω

KE
ω and

any ε > 0. For k ∈ N, there exists ϕk ∈ K{ωk} with ‖e − eϕk‖ < ε/2k+1. Thus,
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there exists ϕk ∈ C(Ω) with ϕk vanishing on an open neighbourhood Vk of ωk
and ‖e − eϕk‖ < ε/2k. Now, consider a finite subcover {V1, . . . , Vn} for Ω and
a continuous partition of unity {ψ1, . . . , ψn} subordinated to {V1, . . . , Vn}. Then

‖e‖ =
∥∥∥e− e

n
∑

k=1
ϕkψk

∥∥∥ 6
n
∑

k=1
‖e− eϕk‖ < ε.

(iv) Suppose that ∼ : E → Ẽ is injective (in particular, if E is C0(Ω)-convex). If
e ∈ E, ω ∈ Ω∞ and U ∈ NΩ∞(ω) such that ẽ(α) = 0 for all α ∈ U, then e ∈ IE

ω.
In fact, let V ∈ NΩ∞(ω) with V ⊆ IntΩ∞(U) and ϕ ∈ UΩ∞(V, U), then it is clear

that ˜e(1− ϕ) = ẽ which implies that e = e(1− ϕ) ∈ KE
V .

3. SOME TECHNICAL RESULTS

In this section, we will give two technical lemmas (3.3 and 3.6) which are
the crucial ingredients for all the results in this paper. Before presenting them,
let us give another automatic continuity type lemma that is needed for those two
essential lemmas.

LEMMA 3.1. Zθ := {ν ∈ ∆ : θ̃(e)(ν) = 0 for all e ∈ E} is a closed subset (where
θ̃ is as in Section 2). Moreover, if σ : ∆θ → Ω∞ (where ∆θ := ∆\Zθ) is a map satisfying
θ(IE

σ(ν)) ⊆ KF
ν (ν ∈ ∆θ), then σ is continuous.

Proof. It follows from Remark 2.5(i) that Zθ is closed. Suppose on the con-
trary, that there exists a net {νi}i∈I in ∆θ that converges to ν0 ∈ ∆θ but σ(νi) 9
σ(ν0). Then there are U, W ∈ NΩ∞(σ(ν0)) with U ⊆ IntΩ∞(W) and {i ∈ I :
σ(νi) /∈ IntΩ∞(W)} being cofinal. As Ω∞ is compact, by passing to a subnet if nec-
essary, we can assume that {σ(νi)} converges to an element ω ∈ Ω∞, and there
exists V ∈ NΩ∞(ω) with V ∩U = ∅. Pick any e ∈ E and ϕ ∈ UΩ∞(V, Ω∞ \U).
Since σ(νi) → ω, we see that e(1 − ϕ) ∈ IE

σ(νi)
when i is large enough and so

eventually,

θ̃(e(1− ϕ))(νi) = 0

(by the hypothesis). By Remark 2.5(i), we see that θ̃(e(1− ϕ))(ν0) = 0. On the
other hand, we have θ(eϕ) ∈ KF

ν0
(because eϕ ∈ IE

σ(ν0)
), and so θ(e) ∈ KF

ν0
, which

gives the contradiction that ν0 ∈ Zθ .

REMARK 3.2. (i) Note that for any ν ∈ Zθ , one has

(3.1) θ(IE
ω) ⊆ θ(E) ⊆ KF

ν (ω ∈ Ω).

Consequently, if we extend σ in Lemma 3.1 by setting σ(ν) arbitrarily for each
ν ∈ Zθ , then θ(IE

σ(ν)) ⊆ KF
ν (ν ∈ ∆) but one should not expect such σ to be

continuous on the whole of ∆.
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(ii) θ is said to be full if Zθ = ∅. Moreover, E is said to be full if id : E → E is
full (or equivalently, E 6= KE

ω for any ω ∈ Ω). Note that if E is full, then for any
ω ∈ Ω, there exists e ∈ E with ẽ(ω) 6= 0.

LEMMA 3.3. Let σ : ∆θ → Ω be a map satisfying θ(IE
σ(ν)) ⊆ KF

ν (ν ∈ ∆θ).

(i) If Uθ :=
{

ν ∈ ∆ : sup
‖e‖61

‖θ̃(e)(ν)‖ = ∞
}

, then Uθ ⊆ ∆θ ,

sup
ν∈∆\Uθ ;‖e‖61

‖θ̃(e)(ν)‖ < ∞,

(as usual, sup ∅ = −∞) and σ(Uθ) is a finite set.
(ii) If Nθ,σ := {ν ∈ ∆θ : θ(KE

σ(ν)) * KF
ν }, then Nθ,σ ⊆ Uθ and σ(Nθ,σ) consists of

non-isolated points in Ω.
(iii) If, in addition, σ is an injection sending isolated points in ∆θ to isolated points in

Ω, then θ̃(eϕ) = θ̃(e)(ϕ ◦ σ) (e ∈ E, ϕ ∈ C0(Ω)), when we extend σ to a map from ∆
to Ω arbitrarily.

Proof. (i) The first conclusion is clear. We put Y to be the `∞-direct sum
`∞⊕

ν∈∆
ΞF

ν . For every ν ∈ ∆ \ Uθ , one can regard e 7→ θ̃(e)(ν) as a bounded C-linear

map from E into Y such that ‖θ̃(e)(ν)‖ 6 ‖θ(e)‖ (e ∈ E), the uniform bound-
edness principle will give the second conclusion. Assume now that σ(Uθ) is in-
finite. For n = 1, we can find ν1 ∈ Uθ as well as e1 ∈ E with ‖e1‖ 6 1 and
‖θ̃(e1)(ν1)‖ > 1. Inductively, we can find νn ∈ Uθ and en ∈ E such that

σ(νn) 6= σ(νk) (k = 1, . . . , n− 1), ‖en‖ 6 1 and ‖θ̃(en)(νn)‖ > n3.

There exist n1 ∈ N and U1 ∈ NΩ(σ(νn1)) such that {n ∈ N : n > n1 and σ(νn) /∈
U1} is infinite (because a sequence in Ω can converge to at most one point). In-
ductively, we can find a subsequence {νnk} and Uk ∈ NΩ(σ(νnk )) (k ∈ N) such
that Uk ∩ Ul = ∅ for distinct k, l ∈ N. Without loss of generality, we assume
that nk = k. Pick Vn ∈ NΩ(σ(νn)) such that Vn is subset of IntΩ(Un). Consider

λn ∈ UΩ(Vn, Un) (n ∈ N) and notice that ‖enλ2
n‖ 6 1. Define e :=

∞
∑

k=1
ekλ2

k/k2 ∈ E

and take n ∈ N. Since

n2e− enλ2
n = n2

(
∑
k 6=n

ekλk
k2

)(
∑
k 6=n

λk

)
∈ KE

Un
,

we have n2θ̃(e)(νn) = θ̃(enλ2
n)(νn) (by the hypothesis). On the other hand, as

en − enλ2
n = en(1− λ2

n) ∈ KE
Vn

, we have θ̃(en)(νn) = θ̃(enλ2
n)(νn) and

‖θ̃(e)‖ > ‖θ̃(e)(νn)‖ =
1
n2 ‖θ̃(enλ2

n)(νn)‖ =
1
n2 ‖θ̃(en)(νn)‖ > n,

which contradicts the finiteness of ‖θ̃(e)‖.
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(ii) Consider ν ∈ ∆ \ Uθ and denote κ := sup
‖e‖61

‖θ̃(e)(ν)‖ < ∞. Pick any

e ∈ KE
σ(ν) and eV ∈ KE

V (V ∈ NΩ(σ(ν))) with ‖eV − e‖ → 0 (Remark 2.5(ii)). As

θ(eV) ∈ KF
ν , one has

‖θ̃(e)(ν)‖ = ‖θ̃(e− eV)(ν)‖ 6 κ‖e− eV‖,

which shows that ν ∈ ∆\Nθ,σ. Now, if ν ∈ Nθ,σ such that σ(ν) is an isolated point
in Ω, then {σ(ν)} ∈ NΩ(σ(ν)), and we have the contradiction that θ(KE

σ(ν)) ⊆ KF
ν .

This gives second statement.
(iii) Fix ϕ∈C0(Ω) and e∈ E. For any ν∈∆ \Nθ,σ, we have eϕ−eϕ(σ(ν)) =

e(ϕ−ϕ(σ(ν))1)∈KE
σ(ν). Thus, for any ν∈∆ \Nθ,σ, one has from (3.1),

(3.2) θ̃(eϕ)(ν) = θ̃(e)(ν)ϕ(σ(ν)).

In particular, (3.2) is true when ν ∈ ∆ \ Uθ (by part (ii)) or when ν ∈ Uθ is an
isolated point of ∆θ (by the hypothesis as well as part (ii)). Suppose that ν ∈ Uθ is
a non-isolated point of ∆θ . As σ is injective, part (i) implies that Uθ is a finite set.
Hence, there exists a net {νi} in ∆θ \ Uθ converging to ν. Now, by Lemma 3.1,

θ̃(eϕ)(ν) = lim θ̃(eϕ)(νi) = lim θ̃(e)(νi)ϕ(σ(νi)) = θ̃(e)(ν)ϕ(σ(ν)).

REMARK 3.4. Note that since Zθ is closed, isolated points in ∆θ are the same
as points in ∆θ which are isolated points of ∆. Moreover, for any ν ∈ Zθ , we have
sup
‖e‖61

‖θ̃(e)(ν)‖ = 0, and (3.1) holds. Therefore, Lemma 3.3 remains valid if we

replace all the ∆θ with ∆ (in fact, the current form is stronger as any injection on
∆ restricted to an injection on ∆θ). The same is true for all the remaining results
in this section.

If σ is injective, then Uθ is finite and we have, by Lemma 3.3(i), our first
nearly automatically boundedness result which states that if θ is a “module map
through an injection σ : ∆→ Ω” (one can relax this slightly to an injection on ∆θ),
then θ is “bounded after taking away finite number of points from ∆”.

PROPOSITION 3.5. Let Ω and ∆ be two locally compact Hausdorff spaces. Let
E and F be an essential Banach C0(Ω)-module and an essential Banach C0(∆)-module
respectively, and let θ : E→ F be a C-linear map (not assumed to be bounded). Suppose
that σ : ∆θ → Ω is an injection satisfying θ̃(eϕ)(ν) = θ̃(e)(ν)ϕ(σ(ν)) (e ∈ E, ϕ ∈
C0(Ω), ν ∈ ∆θ). Then there exist a finite subset T ⊆ ∆ and a positive number κ such
that

sup
ν∈∆\T

‖θ̃(e)(ν)‖ 6 κ‖e‖ (e ∈ E).

LEMMA 3.6. Let σ : ∆θ → Ω be a map satisfying θ(IE
σ(ν)) ⊆ KF

ν (ν ∈ ∆θ).
Suppose, in addition, that F is a Banach C0(∆)-normed module.

(i) Nθ,σ is an open subset of ∆.
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(ii) If σ is injective, then Uθ is a finite set consisting of isolated points of ∆. If, in
addition, Uθ 6= ∆, then F = F∆\Uθ

⊕ ⊕
ν∈Uθ

ΞF
ν and

θ0 := Pθ,σ ◦ θ|EΩ\σ(Uθ )
: EΩ\σ(Uθ) → F∆\Uθ

is a bounded linear map (where Pθ,σ : F → F∆\Uθ
is the canonical projection) such that

(3.3) θ0(eϕ) = θ0(e)(ϕ ◦ σ) (e ∈ EΩ\σ(Uθ), ϕ ∈ C0(Ω \ σ(Uθ))),

when we extends σ to a map from ∆ to Ω arbitrarily.

Proof. Notice, first of all, that as F is C0(Ω)-convex, one may regard θ̃ = θ.
(i) As ∆θ is open in ∆ and Nθ,σ ⊆ Uθ ⊆ ∆θ , it suffices to show that Nθ,σ is

open in ∆θ . By Lemma 3.3(i),

κ := sup
ν/∈Uθ

sup
‖e‖61

‖θ(e)(ν)‖ < ∞.

Let {νi}i∈I be a net in ∆θ \ Nθ,σ converging to ν0 ∈ ∆θ , and e be an arbitrary
element in KE

σ(ν0)
. By Lemma 3.1, we know that σ(νi)→ σ(ν0). Now, we consider

two cases separately. The first case is when {σ(νi)}i∈I is finite. In this case, by
passing to a subnet, we may assume that σ(νi) = σ(ν0) (i ∈ I). As e ∈ KE

σ(ν0)
=

KE
σ(νi)

and νi /∈ Nθ,σ, we have θ(e)(νi) = 0 which gives θ(e)(ν0) = 0, and so,

θ(e) ∈ KF
ν0

. The second case (of {σ(νi)}i∈I being infinite) can be subdivided into
two cases. More precisely, if there exists i0 ∈ I such that νj ∈ Uθ for every j > i0,
then we may assume that {σ(νi)}i∈I ⊆ σ(Uθ) which is a finite set, and the above
implies that θ(e) ∈ KF

ν0
. Otherwise, {i ∈ I : νi /∈ Uθ} is cofinal, and by passing

to a subnet, we may assume that νi /∈ Uθ (i ∈ I). For any ε > 0, pick V ∈
NΩ(σ(ν0)) and eV ∈ KE

V with ‖eV − e‖ < ε. When i is large enough, σ(νi) ∈ V
and eV(σ(νi)) = 0. Thus,

‖θ(e)(νi)‖ = ‖θ(e− eV)(νi)‖ 6 κε.

By the continuity of the norm function on ΞF, we have ‖θ(e)(ν0)‖ 6 κε which
implies that θ(e)(ν0) = 0.

(ii) By the hypothesis and Lemma 3.3(i), one knows that Uθ is finite. Without
loss of generality, we assume ∆ 6= Uθ . Let

(3.4) κ := sup
ν∈∆\Uθ

sup
‖e‖61

‖θ(e)(ν)‖ < ∞.

Suppose on the contrary that there is ν0 ∈ Uθ which is not an isolated point in ∆.
As Uθ is finite, there is a net {νi} in ∆ \ Uθ such that νi→ ν0. By the definition of
Uθ , there is e∈E with ‖e‖61 and ‖θ(e)(ν0)‖>κ+1. However, this will contradict
the continuity of |θ(e)| (because of (3.4)). Now, as Uθ is a finite set consisting of
isolated points in ∆ and F is the space of C0-sections on ΞF, we see that

F = KF
Uθ
⊕
⊕

ν∈Uθ

ΞF
ν .
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By the argument of Lemma 3.3(iii) (more precisely, (3.2) is true for ν ∈ ∆ \ Uθ),
one easily check that θ0 will satisfy (3.3). On the other hand, the boundedness of
θ0 follows from (3.4).

Observe that in Lemmas 3.3(iii) and 3.6(ii), one can replace the injectivity of
σ with the condition that σ−1(ω) is at most finite for any ω ∈ Ω.

The following is our second nearly automatically boundedness result that
applies, in particular, when F is a Hilbert C0(∆)-module.

THEOREM 3.7. Let Ω and ∆ be two locally compact Hausdorff spaces. Let E be an
essential Banach C0(Ω)-module, let F be an essential Banach C0(∆)-normed module, and
let θ : E→ F be a C-linear map (not assumed to be bounded). Suppose that σ : ∆θ → Ω

is an injection satisfying θ(IE
σ(ν)) ⊆ KF

ν (ν ∈ ∆).
(i) If ∆ contains no isolated point, then θ is bounded.

(ii) If σ sends isolated points in ∆θ to isolated points in Ω, then Nθ,σ = ∅ and
there exist a finite set T consisting of isolated points of ∆, a bounded linear map θ0 :
EΩ\σ(T) → F∆\T as well as linear maps θν : ΞE

σ(ν) → ΞF
ν (ν ∈ T) such that E =

EΩ\σ(T) ⊕
⊕

ν∈T
ΞE

σ(ν) and F = F∆\T ⊕
⊕

ν∈T
ΞF

ν under which θ = θ0 ⊕
⊕

ν∈T
θν.

Proof. (i) This follows directly from Lemma 3.6(ii).
(ii) The first conclusion follows from Lemmas 3.3(ii) and 3.6(ii), while the

second conclusion follows from Lemma 3.6(ii) (notice that we have a sharper con-
clusion here since Nθ,σ = ∅).

COROLLARY 3.8. Let Ξ be an (H)-Banach bundle over Ω, let Λ be an (F)-Banach
bundle over ∆, and let ρ : Ξ→ Λ be a map (not assumed to be bounded nor continuous).
Suppose that σ : ∆ → Ω is an injection sending isolated points in ∆ to isolated points
in Ω such that e 7→ ρ ◦ e ◦ σ defines a linear map θ : Γ0(Ξ) → Γ0(Λ). Then there
exists a finite set T consisting of isolated points of ∆ such that the restriction of ρ induces
a bounded Banach bundle map ρ0 : ΞΩ\σ(T) → Λ∆\T (covering σ|∆\T). Moreover, σ is
continuous on ∆ \ Zρ,σ where Zρ,σ := {ν ∈ ∆ : ρ(e(σ(ν))) = 0 for all e ∈ E}.

Proof. As θ is linear, we see that ρ(0σ(ν)) = 0ν for any ν ∈ ∆. Consequently,
θ(IE

σ(ν)) ⊆ KF
ν (ν ∈ ∆). Now the first conclusion follows from Theorem 3.7, and the

second conclusion follows from Lemma 3.1 as well as the fact that Zρ,σ = Zθ .

4. APPLICATIONS TO LOCAL LINEAR MAPPINGS

In the section, we will consider the case when ∆ = Ω, σ = id, and the
C-linear map θ is a local map in the sense that θ(e)ϕ = 0 whenever e ∈ E and
ϕ ∈ C0(Ω) satisfying eϕ = 0. It is obvious that any C0(Ω)-module map is local.

REMARK 4.1. Suppose that θ is local. Let U, V ⊆ Ω be open sets with the
closure of V being a compact subset of U, and consider λ ∈ UΩ(V, U). For any
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e ∈ KE
U and any ε > 0, there exists ϕ ∈ KU with ‖e− eϕ‖ < ε. Thus, eλ = 0 which

implies that θ(e)λ = 0 and θ(e) = θ(e)(1− λ) ∈ KF
V . This shows that σ = id will

satisfy the requirements in all the results in Section 3.

The following theorem (which follows directly from the results in Section 3
as well as Remark 4.1) is our main result concerning local linear maps.

THEOREM 4.2. Let Ω be a locally compact Hausdorff space. Suppose that E and
F are essential Banach C0(Ω)-modules, and θ : E → F is a local C-linear map (not
assumed to be bounded).

(i) θ̃ is a C0(Ω)-module map and there exist a finite subset T ⊆ Ω as well as a
positive number κ such that sup

ν∈Ω\T
‖θ̃(e)(ν)‖ 6 κ‖e‖ (e ∈ E).

(ii) If, in addition, F is a Banach C0(Ω)-normed module, then θ is a C0(Ω)-module
map and there exist a finite set T consisting of isolated points of Ω, a bounded linear map
θ0 : EΩ\T → FΩ\T as well as a linear map θν : ΞE

ν → ΞF
ν for each ν ∈ T such that

E = EΩ\T ⊕
⊕

ν∈T
ΞE

ν , F = FΩ\T ⊕
⊕

ν∈T
ΞF

ν and θ = θ0 ⊕
⊕

ν∈T
θν.

It is natural to ask if one can relax the assumption of F being C0(Ω)-normed
to C0(Ω)-convex in the second statement of Theorem 4.2 (in particular, whether
it is true that every C0(Ω)-module map from an essential Banach C0(Ω)-module
to an essential Banach C0(Ω)-convex module is automatically bounded provided
that Ω contains no isolated point). Unfortunately, it is not the case as can be seen
by the following simple example.

EXAMPLE 4.3. Let E := C([0, 1]) ⊕∞ X and F := C([0, 1]) ⊕∞ Y, where X
and Y are two infinite dimensional Banach spaces. Then E is an essential Ba-
nach C([0, 1])-convex module under the multiplication: (e, x)ϕ = (eϕ, xϕ(0))
(e, ϕ ∈ C([0, 1]); x ∈ X). In the same way, F is an essential Banach C([0, 1])-convex
module. Suppose that R : X → Y is an unbounded linear map and θ : E → F
is given by θ(e, x) = (e, R(x)) (e ∈ C([0, 1]); x ∈ X). Then θ is a C([0, 1])-module
map which is not bounded (as its restriction on X is R). In this case, we have
Uθ = {0}.

COROLLARY 4.4. Let Ω be a locally compact Hausdorff space. Any local C-linear
map θ from an essential Banach C0(Ω)-module to a Hilbert C0(Ω)-module is a C0(Ω)-
module map. Moreover, if Ω contains no isolated point, then any such θ is automatically
bounded.

REMARK 4.5. Let LC0(Ω)(E; C0(Ω)) and BC0(Ω)(E; C0(Ω)) be the set of all
C0(Ω)-module maps and the set of all bounded C0(Ω)-module maps, respec-
tively, from E into C0(Ω) (one may regards them as the “algebraic dual” and the
“topological dual” of E respectively). An application of Corollary 4.4 is that the
algebraic dual and the topological dual of E coincide in many cases:
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If Ω is a locally compact Hausdorff space having no isolated
point and E is an essential Banach C0(Ω)-module, then
BC0(Ω)(E; C0(Ω)) = LC0(Ω)(E; C0(Ω)).

COROLLARY 4.6. Let Ξ and Λ be respectively an (H)-Banach bundle and an (F)-
Banach bundle over the same base space Ω. If ρ : Ξ → Λ is a fibrewise linear map
covering id (without any boundedness nor continuity assumption) such that ρ ◦ e ∈
Γ0(Λ) for every e ∈ Γ0(Ξ), then there exists a finite subset S ⊆ Ω consisting of isolated
points such that ρ restricts to a bounded Banach bundle map ρ0 : ΞΩ\S → ΛΩ\S.

Let X and Y be Banach spaces. If E := `∞(X) and F := `∞(Y) be the sets
of all bounded sequences in X and Y respectively, then E and F are unital Banach
C(βN)-modules (where βN is the Stone–Čech compactification of N, which can
be identified with the set of all ultrafilters on N). If x ∈ E, we denote by xk the
kth-coordinate of x (i.e. x = [xk]k∈N). Suppose that θ : E→ F is a linear map (not
assumed to be bounded) such that lim

F
θ(x)k = 0 for every ultrafilter F ∈ βN and

x ∈ E with lim
F

xk = 0. Since

KE
F =

{
x ∈ E : lim

F
xk = 0

}
and KF

F =
{

y ∈ F : lim
F

yk = 0
}

(F ∈ βN),

the map θ induces a linear map θF : ΞE
F → ΞF

F for each F ∈ βN. In particular,
we obtain θk : X → Y such that θ(x)k = θk(xk) (k ∈ N; x ∈ E). Moreover, by
Theorem 4.2, we have the following corollary.

COROLLARY 4.7. Let X and Y be Banach spaces. Suppose that θ : `∞(X) →
`∞(Y) is a linear map such that lim

F
θ(x)k = 0 for every ultrafilter F on N and every x ∈

`∞(X) with lim
F

xk = 0. There exist F1, . . . , Fn ∈ βN with sup
F∈βN\{F1,...,Fn}

‖θF‖ < ∞.

REMARK 4.8. (i) Note that if F is a free ultrafilter on N, then Ξ
`∞(X)
F and

Ξ
`∞(Y)
F can be identified with the ultrapowers XF and YF of X and Y (over F)

respectively. Thus, Corollary 4.7 implies that under the assumption of this corol-
lary, θ induces a bounded linear map θF : XF → YF for all but a finite number of
free ultrafilter F and they have a common bound.

(ii) In our original version of Corollary 4.7, we also included results con-
cerning linear maps from c0(X) to c0(Y) and from c(X) to c(Y). However, the
referee has kindly shown us the following more general result with a very simple
argument:

If θk : X → Y is a sequence of linear maps such that the induced
map θ from the space of sequences in X to the space of sequences
in Y sends c0(X) to `∞(Y), there is n0∈N such that sup

n>n0

‖θn‖<∞.

The simple argument of the referee is as follows: if for each k ∈ N, there exist
nk > nk−1 and x0

nk
∈ X with ‖x0

nk
‖ = 1 and ‖θnk (x0

nk
)‖ > k2, and one sets xn :=
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x0
nk

/k when n = nk, as well as xn := 0 when n /∈ {nk : k ∈ N}, then one obtains
the contradiction that θ(x) /∈ `∞(Y).

Another important point in Theorem 4.2 is the automatic C0(Ω)-linearity.
In fact, it can be shown that for every C∗-algebra A, any bounded local linear
map from a Banach right A-module into a Hilbert A-module is automatically A-
linear (see Proposition A.1 in the Appendix). Theorem 4.2 tells us that if A is
commutative, then one can relax the assumption of the range space to a Banach
A-convex module and one can remove the boundedness assumption. Another
application of Theorem 4.2 is that if A is a finite dimensional C∗-algebras, then
every local linear map between any two Banach right A-modules is A-linear.

COROLLARY 4.9. Let A be a finite dimensional C∗-algebra. Suppose that E and
F are unital Banach right A-modules. If θ : E → F is a local C-linear map in the sense
of Proposition A.1 (not assumed to be bounded), then θ is an A-module map.

Proof. Pick any x ∈ E and a ∈ Asa. Let Aa := C∗(a, 1). Theorem 4.2 tell us
that θ̃ is an Aa-module map. By Remark 2.5(iii), we see that θ is also an Aa-module
map. In particular, θ(xa) = θ(x)a.

REMARK 4.10. (i) Suppose that A is a unital C∗-algebra and F is a unital
Banach right A-convex module in the sense ‖xa + y(1− a)‖ 6 max{‖x‖, ‖y‖}
for x, y ∈ F and a ∈ A+ with a 6 1. Then, by the argument of Corollary 4.9, all
local linear maps from any unital Banach right A-module into F are automatically
A-linear.

(ii) If one can show that for every compact subset Ω ⊆ R and every essential
Banach C(Ω)-module F, the map ∼: F → F̃ is injective, then using the argument
of Corollary 4.9, one can show that for each C∗-algebra A, all local linear maps be-
tween any two Banach right A-modules are A-module maps (without assuming
that θ is bounded). However, we do not know if it is true.

5. APPLICATIONS TO SEPARATING MAPPINGS

In this section, we consider Ω and ∆ to be possibly different spaces. In this
case, one cannot define local property any more, but one has a weaker natural
property called separating. More precisely, θ is said to be separating if

|θ̃(e)||θ̃(g)| = 0, whenever e, g ∈ E satisfying |ẽ||g̃| = 0.

In the case when E = C0(Ω) and F = C0(∆), this coincides with the well-known
notion of disjointness preserving (see e.g. [1], [5], [18], [14], [12], [15]).

LEMMA 5.1. If ∼: F → F̃ is injective and θ is separating, there is a continuous
map σ : ∆θ → Ω∞ such that θ(IE

σ(ν)) ⊆ IF
ν (ν ∈ ∆θ).
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Proof. Set
Sν := {ω ∈ Ω∞ : θ(IE

ω) ⊆ IF
ν } (ν ∈ ∆θ).

Suppose there is ν ∈ ∆θ with Sν = ∅. Then for each ω ∈ Ω∞, there exist Uω ∈
NΩ∞(ω) and eω ∈ KE

Uω
with θ(eω) /∈ IF

ν . Let {Uωi}n
i=1 be a finite subcover of

{Uω}ω∈Ω∞ and {ϕi}n
i=1 be a partition of unity subordinate to {Uωi}n

i=1. Take
any g ∈ E. From |g̃ϕi||ẽωi | = 0, we obtain |θ̃(gϕi)||θ̃(eωi )| = 0, which implies
that θ̃(gϕi)(ν) = 0 (otherwise, by Remark 2.5(i), one can find U ∈ N∆∞(ν) with
θ̃(gϕi)(µ) 6= 0 for any µ ∈ U, and the above as well as Remark 2.5(iv) will give
the contradiction that θ(eωi ) ∈ IF

ν ). Consequently,

θ̃(g)(ν) =
n

∑
i=1

θ̃(gϕi)(ν) = 0 (g ∈ E),

which contradicts ν /∈ Zθ . Suppose there is ν∈∆θ with Sν containing two distinct
points ω1 and ω2. Let U, V ∈NΩ∞(ω1) with V ⊆ IntΩ∞(U) and ω2 /∈U. For any
ϕ∈UΩ∞(V, U) and e∈E, we have e(1−ϕ)∈ IE

ω1
and eϕ∈ IE

ω2
which implies that

θ(e) = θ(e(1− ϕ)) + θ(eϕ) ∈ IF
ν .

This gives the contradiction that ν ∈ Zθ . Therefore, we can define σ(ν) to be the
unique point in Sν, and it is clear that θ(IE

σ(ν)) ⊆ IF
ν . Now, the continuity of σ

follows from Lemma 3.1 (because IF
ν ⊆ KF

ν ).

THEOREM 5.2. Let Ω and ∆ be two locally compact Hausdorff spaces, and let E
be a full essential Banach C0(Ω)-module (see Remark 3.2(ii)) and F be a full essential
Banach C0(∆)-normed module. Suppose that θ : E → F is a bijective C-linear map (not
assumed to be bounded) such that it is biseparating in the sense that both θ and θ−1 are
separating.

(i) There exists a homeomorphism σ : ∆→ Ω satisfying

θ(eϕ) = θ(e)(ϕ ◦ σ) (e ∈ E; ϕ ∈ C0(Ω)).

(ii) There exists a possibly empty finite subset {ν1, . . . , νn} ⊆ ∆ consisting of isolated
points such that the restriction of θ induces a Banach space isomorphism θ0 : EΩ′ → F∆′

where ∆′ := ∆ \ {ν1, . . . , νn} and Ω′ := σ(∆θ).

Proof. (i) If e ∈ E with ẽ = 0, then θ(e) = θ̃(e) = 0 (as θ is separating and
F is C0(∆)-convex), which gives e = 0 (as θ is injective). Hence, one can identify
ẽ with e and f̃ with f (e ∈ E, f ∈ F) as well as regard θ̃ = θ and θ̃−1 = θ−1. The
fullness of E and F as well as the surjectivity of θ and θ−1 ensure that Zθ = ∅ and
Zθ−1 = ∅. Therefore, by Lemma 5.1, we have two continuous maps

τ : Ω→ ∆∞ and σ : ∆→ Ω∞

such that θ−1(IF
τ(ω)) ⊆ IE

ω (ω ∈ Ω) and θ(IE
σ(ν)) ⊆ IF

ν (ν ∈ ∆). Consequently, for

any ν ∈ ∆0 := σ−1(Ω) and ω ∈ Ω0 := τ−1(∆), we have

σ(τ(ω)) = ω and τ(σ(ν)) = ν
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(because E and F are full, and we have IE
σ(τ(ω)) ⊆ IE

ω as well as IF
τ(σ(ν)) ⊆ IF

ν ; see
also Remark 2.5(i) and (iv)). If there exists ν ∈ ∆ \Nθ,σ (Nθ,σ as in Lemma 3.3(ii))
with σ(ν) = ∞, then F = θ(KE

∞) ⊆ KF
ν , which contradicts the fullness of F. Thus,

∆ \Nθ,σ ⊆ ∆0.

On the other hand, as ∆0 ∩Nθ,σ is a finite set (by Lemma 3.3(i) and (ii) and the fact
that σ is injective on ∆0) and is open in ∆ (by Lemma 3.6(i)), we see that ∆0 ∩Nθ,σ
consists of isolated points of ∆. Thus, σ(∆0 ∩Nθ,σ) consists of isolated points of
Ω0 (as σ restricts to a homeomorphism from ∆0 to Ω0). We want to show that

∆0 ∩Nθ,σ = ∅.

Suppose on the contrary that there is ν ∈ ∆0 ∩Nθ,σ. We know that σ(ν)
( 6= ∞) is a non-isolated point of Ω∞ (by Lemma 3.3(ii)). Therefore, there exists a
net {ωi}i∈I in Ω \ {σ(ν)} converging to σ(ν). If {i ∈ I : ωi ∈ Ω0} is cofinal, then
there is a net in Ω0 \ {σ(ν)} converging to σ(ν), which contradicts σ(ν) being
an isolated point in Ω0. Otherwise, ωi ∈ τ−1(∞) eventually, which gives the
contradiction that ν = ∞ (note that τ(ωi)→ τ(σ(ν)) = ν as ν ∈ ∆0).

Consequently,
∆ \Nθ,σ = ∆0.

Suppose that Nθ,σ 6= ∅ and ν ∈ Nθ,σ. Since Nθ,σ is an open subset of ∆ (by Lem-
ma 3.6(i)), there exists V ∈ N∆(ν) with V ⊆ Nθ,σ. Take any f ∈ F such that
f (ν) 6= 0 (by the fullness of F) and f vanishes outside V. Thus, f ∈ IF

∞ (as V is
compact) and so, θ−1( f )(ω) = 0 for any ω ∈ τ−1(∞). On the other hand, for
any ω ∈ Ω0, one has τ(ω) ∈ ∆0 and so, f ∈ IF

τ(ω) (as f vanishes on the open set

∆0 containing τ(ω)) which implies that θ−1( f )(ω) = 0. Hence θ−1( f ) = 0 which
contradicts the injectivity of θ−1. Therefore, Nθ,σ = ∅. This shows that σ : ∆→ Ω
is a homeomorphism and part (i) follows from Lemma 3.3(iii).

(ii) This follows directly from Theorem 3.7(ii).

One can apply the above to the case when F is a full Hilbert C0(∆)-module.
Another direct application of Theorem 5.2 is the following theorem which extends
and enriches a result of Chan [8] (by removing the boundedness assumption on
θ), as well as results concerning the product bundle cases discussed in [4], [13].
Notice that if (Ω, {Ξx}, E) is a continuous fields of Banach spaces over a locally
compact Hausdorff space Ω (as defined in [9], [11]), then E is a full essential
Banach C0(Ω)-normed module.

THEOREM 5.3. Let (Ω, {Ξx}, E) and (∆, {Λy}, F) be continuous fields of Banach
spaces over locally compact Hausdorff spaces Ω and ∆ respectively. Let θ : E → F be a
bijective linear map such that both θ and its inverse θ−1 are separating. Then there is a
homeomorphism σ : ∆→ Ω and a bijective linear operator Hν : Ξσ(ν) → Λν such that

θ( f )(ν) = Hν( f (σ(ν))) ( f ∈ E, ν ∈ ∆).
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Moreover, at most finitely many Hν are unbounded, and this can happen only when ν
is an isolated point in ∆. In particular, if Ω (or ∆) contains no isolated point, then θ is
automatically bounded.

Appendix A. BOUNDED LOCAL LINEAR MAPS ARE A-LINEAR

PROPOSITION A.1. Let A be a C∗-algebra, and let θ be a bounded linear map from
a Banach right A-modules E into a Hilbert A-module F. Then θ is a right A-module map
if and only if θ is local (in the sense that θ(e)a = 0 whenever e ∈ E and a ∈ A with
ea = 0).

Proof. Suppose θ is local. Observe, first of all, that E∗∗ and F∗∗ are unital
Banach A∗∗-modules, and the bidual map θ∗∗ : E∗∗ → F∗∗ is a bounded weak*-
weak*-continuous linear map. Fix x ∈ E and a ∈ A+, and let

Φ : C(σ(a))∗∗ → A∗∗

be the map induced by the canonical normal ∗-homomorphism Ψ : M(A)∗∗ →
A∗∗. Pick α, β ∈ R+ with α < β, and define p := Φ(χσ(a)∩(α,β)). Let { fn} and
{gn} be two bounded sequences in C(σ(a))+ such that fngn = 0, as well as

fn ↑ χσ(a)∩(α,β) and gn ↓ χσ(a)\(α,β) pointwisely.

Note that as Ψ(A) ⊆ A, we have an := Φ( fn) ∈ A (observe that fn(0) = 0 if
0 ∈ σ(a)), and we can write bn := Φ(gn) as cn + γn1 (where cn ∈ A and γn ∈ C).
Fix n ∈ N. Since an and cn commute, there is a locally compact Hausdorff space
Ω with C∗(an, cn) ∼= C0(Ω). By considering bn ∈ C0(Ω)+ + R+1 ⊆ Cb(Ω)+, one
can find a net {di}i∈I in C0(Ω)+ ⊆ A+ such that di 6 bn (i ∈ I) and di → bn
pointwisely. As 0 6 di 6 bn and anbn = 0 in Cb(Ω), one knows that andi = 0.
Now, the relations θ(xan)di = 0 and θ(xdi)an = 0 imply that θ∗∗(xan)bn = 0 and
θ∗∗(xbn)an = 0. Since the multiplication in the bidual of the linking algebra of F
is jointly weak*-continuous on bounded subsets, we see that θ∗∗(xp)(1− p) = 0
and θ∗∗(x(1 − p))p = 0, which implies that θ∗∗(xp) = θ∗∗(x)p. Finally, there
exists rk ∈ R and αk, βk ∈ R+ such that αk 6 βk and

sup
t∈σ(a)

∣∣∣t− M

∑
k=1

rkχσ(a)∩(αk ,βk)(t)
∣∣∣→ 0.

Thus, by the weak*-continuity again, we get θ∗∗(xa) = θ∗∗(x)a as required.
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