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ABSTRACT. This paper concerns an additive invariant on any invariant sub-
spaces of the vector-valued Hardy space over the ball, which is an analogous
version of the Arveson’s curvature invariant on the symmetric Fock space [2].
Inspired by Fang’s work [9], [7], we prove that this invariant equals to the fiber
dimension of the invariant subspace.
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INTRODUCTION

The Arveson’s curvature invariant was first introduced in [2]. Since then
various applications and generalizations to other function spaces have been made,
see [8], [10], [12], [16]. Many known proofs rely on the properties of Nevanlinna-
Pick kernels. In 2007, Fang [9] introduced an analogous curvature invariant for
the vector-valued Hardy space over the polydisc, where there is no Nevanlinna-
Pick kernel, and similar results are obtained by using technical methods. This
approach makes it possible to consider this curvature invariant on many other
spaces. Motivated by [7], [8], we consider such an invariant on the vector-valued
Hardy space over the ball.

Firstly, we introduce some notations. Let Bn denote the unit ball in Cn, and
H2(Bn)⊗CN the vector-valued Hardy space over the ball, N ∈ N. For a closed
subspaceM of H2(Bn)⊗CN , let PM be the orthogonal projection ontoM. An
invariant subspace of H2(Bn)⊗CN means a closed subspace that is invariant for
the coordinate operators Mzj (1 6 j 6 n). We use P̃k to denote the projection from
H2(Bn) onto the space of polynomials of degree at most k, and put Pk = P̃k ⊗ IN .
For an operator T in the trace class, denote the trace of T by tr(T).
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DEFINITION 0.1. Given an invariant subspace M ⊂ H2(Bn)⊗ CN , define
the multiplicity invariant m(M) as follows:

m(M) = lim
k→∞

tr(PMPk)
tr(P̃k)

.

Similarly, define m(M⊥) by setting m(M⊥) = lim
k→∞

tr(PM⊥Pk)
tr(P̃k)

.

In fact, in the case of symmetric Fock space, it was shown in [7] that this
invariant is exactly the Arveson’s curvature invariant. It is well known that

tr(P̃k) = rank(P̃k) =
(n + k) · · · (n + 1)

k!
=
(

n + k
n

)
.

Notice also that if m(M) exists, then does m(M⊥), and m(M) + m(M⊥) = N.
For any λ ∈ Bn, let M(λ) = { f (λ) : f ∈ M}. From elementary linear

algebraic analysis, dimM(λ) is a lower semi-continuous function on Bn, and it
is almost everywhere constant. This constant is called the fiber dimension of M,
and denoted by f − dim(M). Our main result is as follows.

THEOREM 0.2. For any invariant subspaceM⊂ H2(Bn)⊗CN ,

m(M) = f − dim(M).

In particular, the multiplicity m(M) is an integer.

Next we illustrate the connection between this invariant and the Samuel
multiplicity. R. Douglas and V. Paulsen [4] introduced the Hilbert modules, and
[3] is also a good reference for Hilbert modules. Based on their works, many al-
gebraic methods can be used to study multivariate operator theory. For example,
Hilbert polynomials not only have been investigated intensely in commutative
algebra, but also play an important role in describing numerical invariant in op-
erator theory. For example, Fang [7] studied Hilbert polynomials for certain holo-
morphic function spaces, and obtained some formulas that revealed the relation
between the Arveson’s curvature invariant and the Samuel multiplicity.

Now we recall the definition of the Samuel multiplicity with respect to
M. Equip H2(Bn) ⊗ CN with module structure over the polynomial ring A =
C[z1, . . . , zn] by

A × (H2(Bn)⊗CN) −→ H2(Bn)⊗CN

(p , f ) 7−→ p(Mz1 , . . . , Mzn) f .

HenceM is a submodule of H2(Bn)⊗CN . Let I = (z1, . . . , zn) be the maximal
ideal of A at the origin. When dim(M/I ·M) < ∞, the graded A-module

gr(M) = (M/I ·M)⊕ (I ·M/I2 ·M)⊕ (I2 ·M/I3 ·M)⊕ · · ·
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is a finitely generated algebraic module over A [5]. By [6], there is a polynomial
P(z) ∈ Q[z] and a natural number N > 1 such that

p(k) = dim(M	Ik ·M) = dim(M/Ik ·M), k > N,

where Q[z] is the ring of polynomials in one variable with rational coefficients.
Furthermore, there exist integers c0, . . . , cn such that

P(z) = c0 + c1

(
z
1

)
+ · · ·+ cn

(
z
n

)
, z ∈ Z,

where (z
i) = z···(z−i+1)

i! (1 6 i 6 n) is the binomial coefficient function. Thus the
leading coefficient of P(z) is of the form cn

n! . This cn is called the Samuel multiplicity
ofM, denoted by e(M). We have the following.

THEOREM 0.3. IfM⊂ H2(Bn)⊗CN is generated by polynomials, then

m(M) = e(M).

The proof is essentially the same as that of Lemma 9 in [7], which is omitted
here.

1. PRELIMINARIES

In this paper, we will apply the Tauberian theory, that has played an impor-
tant role in [9]. Some preliminaries are in order.

Given a series
∞
∑

k=0
ck, not necessarily convergent, define its 0-th Cesaro sum by

S(0)
k = c0 + · · ·+ ck,

and in general, define the n-th Cesaro sum by

S(n)
k = S(n−1)

0 + · · ·+ S(n−1)
k .

The series
∞
∑

k=0
ck is said (C, n) summable if

lim
k→∞

M(n, k) = c,

where

(1.1) M(n, k) =
S(n)

k

(n+k
n )

is the n-th Cesaro sum mean. In this case, we write (C, n)
∞
∑

k=0
ck = c.

It is known that if we put

(1.2) σi =
(

n + k− i
n

)
.
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then S(n)
k =

k
∑

i=0
σici. Now we state the following Tauberian theorem [1].

THEOREM 1.1 (Tauberian). If a series
∞
∑

k=0
Ak of real numbers is Abel summable

to A (that is, lim
r→1−

∞
∑

k=0
Akrk = A). Suppose its (n− 1)-th Cesaro sum is nonnegative,

i.e. S(n−1)
k > 0 for any k, then

∞
∑

k=0
Ak is (C,n) summable to A.

Next we turn to the reproducing kernel of H2(Bn), which will be discussed
in Step 3 of the proof of Theorem 0.2. It is well known that the reproducing kernel
of H2(Bn) is given by K(z, w) = 1

(1−〈z,w〉)n , z, w ∈ Bn. So H = H2(Bn)⊗CN has

a B(CN)-valued reproducing kernel KH(z, w) = K(z, w) · IN , i.e. KH(·, w)ξ =
K(·, w)ξ, for any ξ ∈ CN .

Let evw : H2(Bn) ⊗ CN → CN be the evaluation functional at w; that is,
evw( f ) = f (w), w ∈ Bn, f ∈ H2(Bn)⊗CN . Then ‖evw‖ = ‖K(·, w)‖H2(Bn). Put
jw = evw

‖evw‖ , and it is easy to see that jw is a partial isometry such that jw j∗w = IN

and j∗w jw = Pw, where Pw denotes the orthogonal projection onto the N dimen-
sional subspace K(·, w)⊗CN .

For each invariant subspace M ⊂ H2(Bn) ⊗ CN , the reproducing kernel
KM(z, w) ofM is given by

KM(·, w)ξ = PMK(·, w)ξ, w ∈ Bn, ξ ∈ CN .

Now define

kM(λ) = tr(PMPλ), λ ∈ Bn,

which is a vector version of the Berezin transform of PM, as mentioned in [9].
Observe that KM(λ,λ)

K(λ,λ) = jλPM j∗λ, which has the same trace as PM j∗λ jλ =
PMPλ, and then it follows that

kM(λ) = tr
(KM(λ, λ)

K(λ, λ)

)
.

Apply the method of the proof of Theorem 6 in [9], we immediately get the
following.

THEOREM 1.2. LetM be an invariant subspace in H2(Bn)⊗ CN . Then for al-

most every λ ∈ ∂Bn, the limit function KM(λ,λ)
K(λ,λ) = lim

r→1−
KM(rλ,rλ)

K(rλ,rλ) exists, and for such

λ, KM(λ,λ)
K(λ,λ) is a projection with constant rank f − dim(M).

The above treatment of boundary values can be regarded as a vector version
of [15].
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2. THE PROOF OF THEOREM 0.2

In this section, we will give the proof of Theorem 0.2. Some notations are
needed. For any multi-index I = (i1, . . . , in) ∈ Zn

+, let |I| = i1 + · · · + in, I! =
i1! · · · in!, zI = zi1

1 · · · z
in
n , and MI

z = Mi1
z1 · · ·M

in
zn , where Mz = (Mz1 , . . . , Mzn)

is the tuple of coordinate operators. Let Ẽi be the orthogonal projection from
H2(Bn) onto the subspace of those polynomials of degree i, and Ẽα

i denotes the
orthogonal projection from H2(Bn) onto the subspace generated by zα, where α

is a multi-index with |α| = i. Set Ei = Ẽi ⊗ IN , and Eα
i = Ẽα

i ⊗ IN . Clearly,
Ei = ∑

|α|=i
Eα

i . Then we have

(2.1)
tr(PMPk)

tr(P̃k)
=

k
∑

i=0
tr(PMEi)

(n+k
n )

=

k
∑

i=0

(
∑
|α|=i

tr(PMEα
i )
)

(n+k
n )

.

Define two maps φ(·) and φ∗(·) on H2(Bn)⊗CN as follows:

φ(X) =
n

∑
k=1

(−1)k−1
(

n
k

)(
∑
|I|=k

k!
I!

MI
zXMI∗

z

)
,

and

φ∗(X) =
n

∑
k=1

(−1)k−1
(

n
k

)(
∑
|I|=k

k!
I!

MI∗
z XMI

z

)
,

where X ∈ B(H2(Bn)⊗CN), and the multi-index I 6= (0, . . . , 0).
Since φt(·)Eα

i = 0 if t > i, then

tr(PMEα
i ) = tr

( i

∑
t=0

(φt − φt+1)(PM)Eα
i

)
= tr

(
(PM − φ(PM))

i

∑
t=0

φt
∗(Eα

i )
)

.(2.2)

For simplicity, we write Φ(X) = X− φ(X).

REMARK 2.1. Later in Step 3, it will be shown that Φ(PM) is the integral

operator given by Φ(PM) f (w) =
∫

∂Bn

KM(w,z)
K(w,z) f (z)dz. So the form of Φ(·) is related

to that of the reproducing kernel K(z, w). In fact, Φ(PM) is the defect operator of
M as introduced in [13]. For the symmetric Fock space, see [14].

Step 1. We first calculate tr(PMEα
i ).

Observe that MI∗
z zα = ‖zα‖2

‖zα−I‖2 zα−I , where α − I = (α1 − i1, . . . , αn − in).

Here zα−I is understood to be zero if some component of α− I is less than 0. So

MI∗
z Eα

i MI
z = ‖zα‖2

‖zα−I‖2 Eα−I
i−|I|. Thus

φ∗(Eα
i )=

n

∑
k=1

(−1)k−1
(

n
k

)(
∑
|I|=k

k!
I!

MI∗
z Eα

i MI
z

)
=

n

∑
k=1

(−1)k−1
(

n
k

)(
∑
|I|=k

k!
I!
‖zα‖2

‖zα−I‖2 Eα−I
i−|I|

)
,
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and hence

φt
∗(Eα

i ) =
n

∑
k1=1,...,kt=1

∑
|I1|=k1,...,|It |=kt

(−1)k1−1 · · · (−1)kt−1
(

n
k1

)
· · ·
(

n
k1

)
k1!
I1!
· · · kt!

It!

· ‖zα‖2

‖zα−I1−···−It‖2 Eα−I1−···−It
i−|I1|−···−|It |.(2.3)

For any power series f (x) = ∑
I>0

aI xI , write coe( f , xI) = aI for the coeffi-

cient of xI . Notice that for x = (x1, . . . , xn), I = (i1, . . . , in) and |I| = k (k 6 n),
one has

coe
(

1−
(

1−
n

∑
j=1

xj

)n
, xI

)
= coe

(
(−1)k−1

(
n
k

)( n

∑
j=1

xj

)k
, xI

)
= (−1)k−1

(
n
k

)
k!
I!

.

Then it follows from (2.3) that

φt
∗(Eα

i ) = ∑
β6α

coe
((

1−
(

1−
n

∑
j=1

xj

)n)t
, xβ

) ‖zα‖2

‖zα−β‖2 Eα−β

i−|β|,

where β 6 α means β j 6 αj (1 6 j 6 n). Now

i

∑
t=0

φt
∗(Eα

i ) =
i

∑
t=0

∑
β6α

coe
((

1−
(

1−
n

∑
j=1

xj

)n)t
, xβ

) ‖zα‖2

‖zα−β‖2 Eα−β

i−|β|

= ∑
β6α

coe
( ∞

∑
t=0

(
1−

(
1−

n

∑
j=1

xj

)n)t
, xβ

) ‖zα‖2

‖zα−β‖2 Eα−β

i−|β|

= ∑
β6α

coe
( 1

(1−∑n
j=1 xj)n , xβ

) ‖zα‖2

‖zα−β‖2 Eα−β

i−|β|

= ∑
β6α

(n− 1 + |β|)!
(n− 1)!β!

‖zα‖2

‖zα−β‖2 Eα−β

i−|β| = ∑
β6α

‖zα‖2

‖zβ‖2‖zα−β‖2 Eα−β

i−|β|.

The second identity follows from coe
((

1−
(

1−
n
∑

j=1
xj

)n)t
, xβ

)
=0 when |β|6 i< t.

The fourth identity follows from coe
(

1
(1−∑n

j=1 xj)n , xβ
)

= (n−1+|β|)!
(n−1)!β! , which is easy

to verify. And the last equation follows from
∫

∂Bn

|ξα|2dσ(ξ)= (n−1)!α!
(n−1+|α|)! [17].

Therefore by (2.2), we have

(2.4) tr(PMEα
i )) = tr

(
(PM − φ(PM)) ∑

β6α

‖zα‖2

‖zβ‖2‖zα−β‖2 Eα−β

i−|β|

)
.

Step 2. Next we will calculate tr(PMEi).
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Since Ei = ∑
|α|=i

Eα
i , (2.4) shows that

tr(PMEi) = ∑
|α|=i

tr(PMEα
i ) = tr

(
(PM − φ(PM)) ∑

|α|=i
∑
β6α

‖zα‖2

‖zβ‖2‖zα−β‖2 Eα−β

i−|β|

)

= tr
(
(PM − φ(PM))

i

∑
s=0

(
∑

β6α, |β|=s
∑
|α|=i

‖zα‖2

‖zβ‖2‖zα−β‖2 Eα−β

i−|β|

))
.

Before continuing, we have the following claim.

Claim. The sum ∑
|α|=i

‖zα‖2

‖zγ‖2‖zα−γ‖2 is independent on the choice of the multi-

index γ with |γ| = i− s.

In fact, for any fixed γ (γ 6 α, |γ| = i− s), by the formula
∫

∂Bn

|ξα|2dσ(ξ) =

(n−1)!α!
(n−1+|α|)! , one has

(2.5) ∑
|α|=i

‖zα‖2

‖zγ‖2‖zα−γ‖2 = ∑
|α|=i

α!(n− 1 + s)!(n− 1 + i− s)!
γ!(α− γ)!(n− 1 + i)!(n− 1)!

.

By the Lemma ??? (see Appendix), we have ∑
|α|=i

α!
γ!(α−γ)! = (n−1+i

s ), and then (2.5)

gives that

(2.6) ∑
|α|=i

‖zα‖2

‖zγ‖2‖zα−γ‖2 =
(

n + s− 1
n− 1

)
.

The proof of the claim is complete.

Now the coefficient of Eγ
i−|s| in the sum ∑

β6α, |β|=s
∑
|α|=i

‖zα‖2

‖zβ‖2‖zα−β‖2 Eα−β

i−|β| is

∑
|α|=i, |β|=s, α−β=γ

‖zα‖2

‖zβ‖2‖zγ‖2 = ∑
|α|=i

‖zα‖2

‖zγ‖2‖zα−γ‖2 ,

which equals to (n+s−1
n−1 ) by (2.6). Since Ei−s = ∑

|γ|=i−s
Eγ

i−s,

∑
β6α, |β|=s

∑
|α|=i

‖zα‖2

‖zβ‖2‖zα−β‖2 Eα−β

i−|β| =
(

n + s− 1
n− 1

)
Ei−s.
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Consequently,

tr(PMEi) =
i

∑
s=0

(
n + s− 1

n− 1

)
tr((PM − φ(PM))Ei−s)(2.7)

=
i

∑
s=0

(
n + i− s− 1

n− 1

)
tr((PM − φ(PM))Es)

=
i

∑
s=0

(
n + i− s− 1

n− 1

)
tr(Φ(PM)Es).

REMARK 2.2. In the case of polydisc, since MI∗
z MI

z = id, the similar identity
in [9] as (2.7) can be obtained directly by substituting Ei for Eα

i in Step 1.

Step 3. In this step, we will apply Theorem 1.1 to finish the proof.
First put As = tr(Φ(PM)Es). Combining (1.1), (1.2), (2.1) with (2.7), we get

tr(PMPk)
tr(P̃k)

=

k
∑

i=0

( i
∑

s=0
(n+i−s−1

n−1 )As

)
(n+k

n )
=

k
∑

s=0
(n+k−s

n )As

(n+k
n )

=
S(n)

k

(n+k
n )

,

where S(n)
k is the n-th Cesaro sum of the series

∞
∑

s=0
As. The (n− 1)-th Cesaro sum is

nonnegative because it equals to tr(PMEk) by (1.2) and (2.7). So by Theorem 1.1,

it remains to show that the series
∞
∑

s=0
As is Abel summable to f − dim(M). That

is, we must show

lim
r→1−

∞

∑
s=0

Asrs = f − dim(M).

Let KM(z, w) be the reproducing kernel of the invariant subspaceM. Recall
that

Φ(PM) = PM −
n

∑
k=1

(−1)k−1
(

n
k

)(
∑
|I|=k

k!
I!

MI
zPMMI∗

z

)
,

and hence for any f ∈ H2(Bn)⊗CN , w ∈ Bn and ξ ∈ C, we have

〈(Φ(PM) f )(w), ξ〉CN =
〈

f (·),
KM(·, w)

K(·, w)
ξ
〉

H2(Bn)⊗CN
=
∫

∂Bn

〈
f (z),

KM(z, w)
K(z, w)

ξ
〉

CN
dz

=
∫

∂Bn

〈KM(w, z)
K(w, z)

f (z), ξ
〉

CN
dz=

〈 ∫
∂Bn

KM(w, z)
K(w, z)

f (z)dz, ξ
〉

CN
.

Here the first equality follows from K(z, w) = 1
(1−〈z,w〉)n . So

(2.8) Φ(PM) f (w) =
∫

∂Bn

KM(w, z)
K(w, z)

f (z)dz.
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Let ej = (0, . . . , 0, 1, 0, . . . , 0) be the unit vector in CN , where 1 is at the j-th

coordinate. Write KM(w,z)
K(w,z) = ∑ aK,JwKzJ , where aK,J are N × N matrices, then by

(2.8) one has

As = tr(Φ(PM)Es)

= ∑
|I|=s, 16j6N

〈(
Φ(PM)

zI ⊗ ej

‖z‖I

)
(w),

wI ⊗ ej

‖z‖I

〉
H2(Bn)⊗CN

= ∑
|I|=s, 16j6N

1
‖zI‖2

〈 ∫
∂Bn

∑
K,J

aK,JwKzJ(zI ⊗ ej)dz, wI ⊗ ej

〉
H2(Bn)⊗CN

= ∑
|I|=s, 16j6N

〈aI,I(wI ⊗ ej), wI ⊗ ej〉H2(Bn)⊗CN = ∑
|I|=s

tr(aI,I)‖zI‖2.(2.9)

Moreover,∫
∂(
√

rBn)

tr
(KM(z, z)

K(z, z)

)
dz = ∑

K,J

∫
∂(
√

rBn)

tr(aK,JzKzJ)dz = ∑
I

tr(aI,I)
∫

∂(
√

rBn)

|zI |2dz

= ∑
I

tr(aI,I)(
√

r)2n−1(
√

r)2|I|‖zI‖2

=
√

r2n−1
∞

∑
s=0

Asrs (0 < r < 1).(2.10)

The last identity in (2.10) follows from (2.9).
Theorem 1.2 shows that the limit

KM(λ, λ)
K(λ, λ)

= lim
r→1−

KM(rλ, rλ)
K(rλ, rλ)

exists for almost every λ ∈ ∂Bn, and for such λ, it is a projection with constant

rank f − dim(M). By (2.10), we have lim
r→1−

∞
∑

s=0
Asrs = f − dim(M). The proof is

completed.

3. APPENDIX

The following lemma for combinatorial number may be of independent in-
terest. We cannot locate a reference, and a proof is included here.

LEMMA 3.1. For each multi-index γ = (γ1, . . . , γn) ∈ Zn
+,

∑
|α|=i, α>γ

α!
γ!(α− γ)!

=
(

n− 1 + i
i− |γ|

)
,

where i is a fixed natural number. Here α > γ means αj > γj (1 6 j 6 n).
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Proof. We will finish the proof by induction on n. When n = 1, the identity
is trivial.

Now assume the identity holds for n = k− 1. In the case of n = k,

∑
|α|=i, α>γ

α!
γ!(α− γ)!

= ∑
|α|=i, α>γ

α′!αk!
γ′!(α′ − γ′)!γk!(αk − γk)!

=
γk+i−|γ|

∑
αk=γk

(
k− 2 + i− αk
i− αk − |γ′|

)(
αk
γk

)
,

where α′ = (α1, . . . , αk−1) and γ′ = (γ1, . . . , γk−1). The second identity follows
by induction hypothesis. Write t = αk − γk, and then

γk+i−|γ|

∑
αk=γk

(
k− 2 + i− αk
i− αk − |γ′|

)(
αk
γk

)
=

i−|γ|

∑
t=0

(
k− 2 + i− γk − t

i− |γ| − t

)(
γk + t

γk

)
,

=
i−|γ|

∑
t=0

(
k− 2 + i− γk − t

i− |γ| − t

)(
γk + t

t

)
=
(

k− 1 + i
i− |γ|

)
.

The last identity follows from the combinatorial identity [11]:
m

∑
k=0

(
y + m− k

m− k

)(
x + k

k

)
=
(

x + y + m + 1
m

)
.

The proof is completed.
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