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INTRODUCTION

The usual pseudodifferential calculus in phase space Ξ := T∗Rn is con-
nected to crossed product C∗-algebras Aoθ X associated to the action by trans-
lations θ of the group X := Rn on an abelian C∗-algebra A composed of func-
tions defined on X . Such a formalism has been used in the quantization of a
physical system composed of a spin-less particle moving in X , where the op-
erators acting on L2(X ) can be decomposed into the building block observables
position and momentum which are associated to X and its dual X ∗. When deal-
ing with Hamiltonian operators, the algebraA encapsulates properties of electric
potentials, for instance.

During the last decade, it was shown how to incorporate correctly a vari-
able magnetic field in the picture, cf. [4], [5], [6], [7], [12], [14], [15], [16], [17] (see
also [1], [2], [3] for extensions involving nilpotent groups). This relies on twist-
ing both the pseudodifferential calculus and the crossed product algebras by a
2-cocycle defined on the group X and taking values in the (Polish, non-locally
compact group) U (A) of unitary elements of the algebra A. This 2-cocycle is
given by imaginary exponentials of the magnetic flux through triangles. The
resulting gauge-covariant formalism has position and kinetic momentum as its
basic observables. The latter no longer commute amongst each other due to the
presence of the magnetic field. It was shown in [13] that the family of twisted
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crossed products indexed by h̄ ∈ (0, 1] can be understood as a strict deformation
quantization (in the sense of Marc Rieffel) of a natural Poisson algebra defined by
a symplectic form which is the sum of the canonical symplectic form in Ξ and a
magnetic contribution.

A natural question is what happens when the algebraA (composed of func-
tions defined on X ) is replaced by a general abelian C∗-algebra. By Gelfand the-
ory this one is isomorphic to C0(Ω), the C∗-algebra of all the complex continuous
functions vanishing at infinity defined on the locally compact space Ω. To define
crossed products and pseudodifferential operators we also need a continuous ac-
tion θ of X on Ω by homeomorphisms. C0(Ω) can be seen as a C∗-algebra of
functions on X exactly when Ω happens to have a distinguished dense orbit. In
the general case, the twisting ingredient will be “a general magnetic field”, i.e. a
continuous family B of magnetic fields indexed by the points of Ω and satisfying
an equivariance condition with respect to the action θ.

The purpose of this article is to investigate the emerging formalism, both
classical and quantal.

To the quadruplet (Ω, θ, B, X ) described above we first assign in Section 1
a Poisson algebra that is the setting for classical mechanics. The Poisson bracket
is written with derivatives defined by the abstract action θ and it also contains the
magnetic field B. Since Ω does not have the structure of a manifold, this Poisson
algebra does not live on a Poisson manifold, let alone a symplectic manifold (as
it is the case when a dense orbit exists). But it admits symplectic representations
and, at least in the free action case, Ω×X ∗ is a Poisson space [8] in which sym-
plectic manifolds (the orbits of the action raised to the phase-space Ξ) are only
glued together continuously.

Twisted crossed product C∗-algebras are available in a great generality [19],
[20]. We use them in Section 2 to define algebras of quantum observables with
magnetic fields. By a partial Fourier transformation they can be rewritten as al-
gebras of generalized magnetic pseudodifferential symbols. The outcome has
some common points with Rieffel’s pseudodifferential calculus [22], which starts
from an action of RN on a C∗-algebra. In our case this algebra is abelian and the
action has a somehow restricted form; on the other hand the magnetic twisting
cannot be covered by Rieffel’s formalism. We also study Hilbert-space represen-
tations of the algebras of symbols. Their interpretation as equivariant families of
usual magnetic pseudodifferential operators with anisotropic coefficients [10] is
available. This will be developed in a forthcoming article and applied to spectral
analysis of deterministic and random magnetic quantum Hamiltonians.

Section 4 is dedicated to a development of the magnetic composition law
involving Planck’s constant. The first and second terms are written using the
classical Poisson algebra conterpart. We insist on reminder estimates valid in the
relevant C∗-norms.

All these are used in Section 5 to show that the quantum formalism con-
verges to the classical one when Planck’s constant h̄ converges to zero, in the
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sense of strict deformation quantization [8], [9], [22], [23]. The semiclassical limit
of dynamics [8], [24] generated by generalized magnetic Hamiltonians will be
studied elsewhere.

An appendix is devoted to some technical results about the behavior of the
magnetic flux through triangles. These results are used in the main body of the
text.

1. CLASSICAL

1.1. ACTIONS. Let A denote an abelian C∗-algebra. By Gelfand theory, this al-
gebra is isomorphic to the algebra C0(Ω) of continuous functions vanishing at
infinity on some locally compact (Hausdorff) topological space Ω, and we shall
treat this isomorphism as an identification. Furthermore, we shall always assume
thatA is endowed with a continuous action θ of the group X := Rn by automor-
phisms: For any x, y ∈ X and ϕ ∈ A one has θ0[ϕ] = ϕ and θx[θy[ϕ]] = θx+y[ϕ]
and the map X 3 x 7→ θx[ϕ] ∈ A is continuous for any ϕ ∈ A. The triple
(A, θ, X ) is usually called an (abelian) X -algebra.

Equivalently, we can assume that the spectrum Ω of A is endowed with a
continuous action of X by homeomorphisms, which with abuse of notation will
also be denoted by θ. In other words, (Ω, θ, X ) is a locally compact dynamical
system. We shall use all of the notations θ(ω, x) = θx[ω] = θω(x) for (ω, x) ∈
Ω ×X and choose the convention (θx[ϕ])(ω) = ϕ(θx[ω]) to connect the two
actions.

An important, but very particular family of examples of X -algebras is con-
structed using functions on X . Denote by BC(X ) the C∗-algebra of all bounded,
continuous functions φ : X → C. Let τ denote the action of the locally compact
group X = Rn on itself, i.e. for any x, y ∈ X we set τ(x, y) = τx[y] := y + x.
This notation is also used for the action of X on BC(X ) given by τx[ϕ](y) :=
ϕ(y+ x). The action is continuous only on BCu(X ), the C∗-subalgebra composed
of bounded and uniformly continuous functions. Any C∗-subalgebra of BCu(X )
which is invariant under translations is an X -algebra. Motivated by the above
examples, we define BC(Ω) := {ϕ : Ω→ C : f is bounded and continuous} and

B ≡ BCu(Ω) := {ϕ ∈ BC(Ω) : X 3 x 7→ θx[ϕ] ∈ BC(Ω) is continuous}.

By a X -morphism we denote either a continuous map between the under-
lying spaces of two dynamical systems which intertwines the respective actions,
or a morphism between two X -algebras which also intertwines their respective
actions.

Let us recall some definitions related to the dynamical system (Ω, θ, X ).
For any ω ∈ Ω we set Oω := {θx[ω] : x ∈ X } for the orbit of ω and Qω := Oω

for the quasi-orbit of ω, which is the closure of Oω in Ω. We shall denote by
O(Ω) ≡ O(Ω, θ, X ) the set of orbits of (Ω, θ, X ) and by Q(Ω) ≡ Q(Ω, θ, X )



36 FABIAN BELMONTE, MAX LEIN, AND MARIUS MĂNTOIU

the set of quasi-orbits of (Ω, θ, X ). For fixed ω ∈ Ω, ϕ ∈ C0(Ω) and x ∈ X , we
set ϕω(x) := ϕ(θx[ω]) ≡ ϕ(θω(x)). It is easily seen that ϕω : X → C belongs to
BCu(X ). Furthermore, the C∗-algebra

Aω := {ϕω : ϕ ∈ C0(Ω)} = θω [C0(Ω)]

is isomorphic to the C∗-algebra C0(Qω) obtained by restricting the elements of
C0(Ω) to the closed invariant subset Qω. Then, one clearly obtains that

(1.1) θω : C0(Ω) 3 ϕ 7→ ϕω = ϕ ◦ θω ∈ BCu(X )

is a X -morphism between (C0(Ω), θ, X ) and (BCu(X ), τ, X ) which induces a
X -isomorphism between (C0(Qω), θ, X ) and (Aω, τ, X ).

We recall that the dynamical system is topologically transitive if an orbit is
dense, or equivalently if Ω ∈ Q(Ω). This happens exactly when the morphism
(1.1) is injective for some ω. The dynamical system (Ω, θ, X ) is minimal if all the
orbits are dense, i.e. Q(Ω) = {Ω}. This property is equivalent to the fact that the
only closed invariant subsets are ∅ and Ω.

DEFINITION 1.1. Let (A, θ, X ) be an X -algebra. We define the spaces of
smooth vectors

A∞ := {ϕ ∈ A : X 3 x 7→ θx(ϕ) ∈ A is C∞}.

For the X -algebras C0(Ω) and BCu(Ω) we will often use the notations
C∞

0 (Ω), respectively. Despite these notations, we stress that in general Ω is not
a manifold; the notion of differentiability is defined only along orbits. By setting
for any α ∈ Nn

δα : C∞
0 (Ω)→ C∞

0 (Ω), δα ϕ := ∂α
x(ϕ ◦ θx)|x=0,

one defines a Fréchet structure on C∞
0 (Ω) by the semi-norms

sα(ϕ) := ‖δα ϕ‖C0(Ω) = sup
ω∈Ω

|(δα ϕ)(ω)|.

The spaces C∞
0 (Ω) and A∞

ω are dense Fréchet ∗-subalgebra of the corresponding
C∗-algebra.

LEMMA 1.2. (i) For each ω ∈ Ω one has A∞
ω = {φ ∈ C∞(X ) : ∂βφ ∈

Aω, ∀β ∈ Nn}. In particular A∞
ω ⊂ BC∞(X ) := {φ ∈ C∞(X ) : ∂βφ is bounded

∀β ∈ Nn}.
(i) Let ϕ ∈ C0(Ω). Then

ϕ ∈ C∞
0 (Ω) ↔ ϕ ◦ θω ∈ A∞

ω , ∀ω ∈ Ω.

Proof. The proof consists in some routine manipulations of the definitions.
The only slightly non-trivial fact is to show that point-wise derivations are equiv-
alent to the uniform ones, required by the uniform norms. This follows from the
Fundamental Theorem of Calculus, using the higher order derivatives, which are
assumed to be bounded. A model for such a standard argument is the proof of
Lemma 2.7 in [10].
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REMARK 1.3. In the following, we will use repeatedly and without further
comment the identification of point-wise and uniform derivatives under the as-
sumption that higher-order point-wise derivatives exist and are bounded.

Although in our setting the classical observables are functions defined on
Ω×X ∗, we are going to relate them to functions on phase space Ξ := X ×X ∗

whose points are denoted by capital letters X = (x, ξ), Y = (y, η), Z = (z, ζ).
The dual space X ∗ also acts on itself by translations: τ∗η (ξ) := ξ + η, and this
action is raised to various function spaces as above. Similarly, phase space Ξ can
also be regarded as a group acting on itself by translations, (τ ⊗ τ∗)(y,η)(x, ξ) :=
(x + y, ξ + η). Phase space Ξ acts on Ω×X ∗ as well, via the action θ ⊗ τ∗, and
this defines naturally function spaces on Ω ×X ∗ as above; they will be used
without further comment.

1.2. COCYCLES AND MAGNETIC FIELDS. Recall the definition of a 2-cocycle κ on
the abelian algebraA = C0(Ω) endowed with an action θ of X . We mention that
the group U (A) of unitary elements of the unital C∗-algebra BC(Ω) coincides
with C(Ω;T) := {ϕ ∈ C(Ω) : |ϕ(ω)| = 1, ∀ω ∈ Ω}, on which we consider the
topology of uniform convergence on compact sets.

DEFINITION 1.4. A normalized 2-cocycle on A is a continuous map κ : X ×
X → U (A) satisfying for all x, y, z ∈ X :

(1.2) κ(x + y, z) κ(x, y) = θx[κ(y, z)] κ(x, y + z)

and κ(x, 0) = κ(0, x) = 1.

PROPOSITION 1.5. If κ : X ×X → C(Ω;T) is a 2-cocycle of C0(Ω) then for
any ω ∈ Ω, κω(·, ·) := κ(·, ·) ◦ θω is a 2-cocycle of Aω with respect to the action τ.

Proof. Everything is straightforward. To check the 2-cocycle property, one
uses

θx ◦ θω = θω ◦ τx, x ∈ X , ω ∈ Ω.

It is easy to show that κ : X ×X → C(Ω,T) is continuous if and only if the
function

Ω×X ×X 3 (ω, x, y) 7→ κ(ω; x, y) := (κ(x, y))(ω) ∈ T

is continuous. Recalling the isomorphism Aω
∼= C(Qω) one easily finishes the

proof.

We shall be interested in magnetic 2-cocycles.

DEFINITION 1.6. We call magnetic field on Ω a continuous function B : Ω →∧2 X such that Bω := B ◦ θω is a magnetic field (continuous closed 2-form on X )
for any ω.

Using coordinates, B can be seen as an anti-symmetric matrix (Bjk)j,k where
the entries are continuous functions Bjk : Ω → R satisfying (in the distributional
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sense)

∂jBkl
ω + ∂kBl j

ω + ∂l B
jk
ω = 0, ∀ω ∈ Ω, ∀j, k, l = 1, . . . , n.

PROPOSITION 1.7. Let B a magnetic field on Ω. Set

(κB(x, y))(ω) ≡ κB(ω; x, y) := exp(−iΓBω 〈0, x, x + y〉),

where ΓBω 〈a, b, c〉 :=
∫

〈a,b,c〉
Bω is the integral (flux) of the 2-form Bω through the triangle

〈a, b, c〉 with corners a, b, c ∈ X . Then κB is a 2-cocycle on C0(Ω).

Proof. The algebraic properties follow from the properties of the integration
of 2-forms. For example, (1.2) is a consequence of the identity

ΓBω 〈0, x, x+y〉+ΓBω 〈0, x+y, x+y+z〉=ΓBθx [ω]〈0, y, y+z〉+ΓBω 〈0, x, x+y+z〉.

This one follows from Stokes’ Theorem, after noticing that

(1.3) ΓBθx [ω]〈0, y, y + z〉 = ΓBω 〈x, x + y, x + y + z〉.

One still has to check that κB ∈ C(Ω ×X ×X ). This reduces to the obvious
continuity of

(ω, x, y) 7→ ΓBω 〈0, x, x + y〉 =
n

∑
j,k=1

xjyk

1∫
0

dt
1∫

0

ds sθsx+sty[Bjk](ω),

where we have used a parametrization of the flux involving the components of
the magnetic field in the canonical basis of X = Rn.

By (1.3) one easily sees that (κB)ω = κBω , where the l.h.s. was defined in
Proposition 1.5, while

κBω (z; x, y) := exp(−iΓBω 〈z, z + x, z + x + y〉).

1.3. POISSON ALGEBRAS. We intend now to define a Poisson structure (cf. [8],
[11]) on spaces of functions that are smooth under the action θ × τ∗ of Ξ on
Ω ×X ∗. This Poisson algebras can be represented by families of subalgebras
of BC∞(Ξ), indexed essentially by the orbits of Ω, each one endowed with the
Poisson structure induced by a magnetic symplectic form [13]. For simplicity,
we shall concentrate on a Poisson subalgebra consisting of functions which have
Schwartz-type behavior in the variable ξ ∈ X ∗. For this smaller algebra of func-
tions, we will prove strict deformation quantization in Section 4. One can also
define C∞(Ω×X ∗) in terms of the action θ ⊗ τ∗; this one is also a Poisson alge-
bra, but we will not need it here.

We shall use f (ξ) as short-hand notation for f (·, ξ), i.e. f (ω, ξ) = ( f (ξ))(ω)
for (ω, ξ) ∈ Ω×X ∗, and we will think of f (·, ξ) as an element of some algebra
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of functions on Ω. Note that

BC∞(Ω×X ∗) = { f ∈ BC(Ω×X ∗) : f (·, ξ) ∈ BC∞(Ω)

and f (ω, ·) ∈ BC∞(X ∗), ∀ω ∈ Ω, ξ ∈ X ∗}.

DEFINITION 1.8. We say that f ∈BC∞(Ω×X ∗) belongs to S(X ∗; C∞
0 (Ω)) if

(i) ∂
β
ξ f (ξ) ∈ C∞

0 (Ω), ∀ξ ∈ X ∗ and

(ii) ‖ f ‖aαβ := sup
ξ∈X ∗

‖ξaδα∂
β
ξ f (ξ)‖C0(Ω) < ∞ for all a, α, β ∈ Nn.

PROPOSITION 1.9. We assume from now on that Bjk ∈ BC∞(Ω) for any j, k =
1, . . . , n.

(i) BC∞(Ω ×X ∗) is a Poisson algebra under point-wise multiplication and the
Poisson bracket

(1.4) { f , g}B :=
n

∑
j=1

(∂ξ j f δjg− δj f ∂ξ j g)−∑
j,k

Bjk∂ξ j f ∂ξk g.

(ii) S(X ∗; C∞
0 (Ω)) is a Poisson subalgebra of BC∞(Ω×X ∗).

Proof. The two vector spaces are stable under point-wise multiplication and
derivations with respect to ξ and along orbits in Ω via ∂ξ and δ, respectively. They
are also stable under multiplication with elements of BC∞(Ω). The axioms of a
Poisson algebra are verified by direct computation.

To analyze the quantum calculus which is to be defined below, a change of
realization is useful. Defining S(X ; C∞

0 (Ω)) as in Definition 1.8, but with X ∗

replaced with X , we transport by the partial Fourier transformation the Poisson
structure from S(X ∗; C∞

0 (Ω)) to S(X ; C∞
0 (Ω)) setting

(Φ �0 Ψ)(ω; x) := (1⊗F )−1((1⊗F )Φ · (1⊗F )Ψ)(ω; x)

=
∫
X

dy Φ(ω; y)Ψ(ω; x− y), and(1.5)

{Φ, Ψ}B := (1⊗F )−1{(1⊗F )Φ, (1⊗F )Ψ}B

= −i
n

∑
j=1

(QjΦ �0 δjΨ− δjΦ �0 QjΨ) +
n

∑
j,k=1

Bjk(QjΦ �0 QkΨ),(1.6)

where (QjΦ)(x) = xjΦ(x) defines the multiplication operator by xj. Obviously
this also makes sense on larger spaces.

To get a better idea of the Poisson structure of BC∞(Ω×X ∗), we will ex-
ploit the orbit structure of the dynamical system (Ω×X ∗, θ⊗ τ∗, X ×X ∗) and
relate this big Poisson algebra to a family of smaller, symplectic-type ones. For
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each ω ∈ Ω, we can endow Ξ = X ×X ∗ with a symplectic form

[σB
ω ]Z(X, Y) :=y · ξ−x · η+Bω(z)(x, y)=

n

∑
j=1

(yjξ j−xjηj)+
n

∑
j,k=1

Bjk(θz[ω])xjyk,

which makes the pair (Ξ, σB
ω) into a symplectic space. This canonically defines a

Poisson bracket

(1.7) { f , g}Bω :=
n

∑
j=1

(∂ξ j f ∂xj g− ∂xj f ∂ξ j g)−
n

∑
j,k=1

Bjk
ω ∂ξ j f ∂ξk g.

PROPOSITION 1.10. (i) For each ω ∈ Ω, the map

πω := θω ⊗ 1 : (BC∞(Ω×X ∗), ·, {·, ·}B)→ (BC∞(Ξ), ·, {·, ·}Bω )

is a Poisson map, i.e. for all f , g ∈ BC∞(Ω×X ∗)

πω( f · g) = πω( f ) · πω(g), πω({ f , g}B) = {πω( f ), πω(g)}Bω .

(ii) If ω, ω′ ∈ Ω belong to the same orbit, the corresponding Poisson maps are con-
nected by a symplectomorphism (they may be called equivalent representations of the
Poisson algebra).

Proof. We use the notation fω := πω( f ) for f ∈ BC∞(Ω×X ∗) and ω ∈ Ω.
(i) For any ω ∈ Ω, f , g ∈ BC∞(Ω×X ∗), we have

( f g)ω(x, ξ) =(( f g) ◦ (θω ⊗ 1))(x, ξ) = f (θω(x), ξ)g(θω(x), ξ) = ( fωgω)(x, ξ).

Similarly, ({ f , g}B)ω = { fω, gω}Bω follows from direct computation, using

∂xj fω = ∂xj( f ◦ (θω ⊗ 1)) = (δj f ) ◦ (θω ⊗ 1) = (δj f )ω.

(ii) If there exists z ∈ X such that θz[ω] = ω′, then

θω′ ⊗ 1 = (θω ⊗ 1) ◦ (τz ⊗ 1),

where τz ⊗ 1 : (Ξ, σB
ω)→ (Ξ, σB

ω′) is a symplectomorphism.

REMARK 1.11. It is easy to see that the mapping

πω := θω ⊗ 1 : S(X ∗, C∞
0 (Ω))→ S(X ∗,A∞

ω )

is a surjective morphism of Poisson algebras, for any ω ∈ Ω. On the second space
we consider the Poisson structure defined by the magnetic field Bω, as in [13].

For any ω ∈ Ω we define the stabilizer Xω := {x ∈ X : θx[ω] = ω}.
This is a closed subgroup of X , the same for all ω belonging to a given orbit. We
define the subspace of Ω on which the action θ is free:

Ω0 := {ω ∈ Ω : Xω = {0}}.

Obviously Ω0 is invariant under θ and Ω0×X ∗ is invariant under the free action
θ ⊗ τ∗, so we can consider the Poisson algebra BC∞(Ω0 ×X ∗) with point-wise
multiplication and Poisson bracket (1.4).
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For any O ∈ O(Ω0) (the family of all the orbits of the space Ω0) we choose
a point ω(O) ∈ O. Then θω(O) ⊗ 1 : X ×X ∗ → Ω0 ×X ∗ is a continuous
injection with range O ×X ∗ (which is one of the orbits of Ω0 ×X ∗ under the
action θ × τ∗). Of course, one has (disjoint union)

Ω0 ×X ∗ =
⊔

O∈O(Ω0)

O ×X ∗.

In addition, θω(O) ⊗ 1 is a Poisson mapping on Ξ = X ×X ∗ if one considers the
Poisson structure induced by the symplectic form σB

ω(O).
Referring to Definition I.2.6.2 in [8], we notice that Ω0 ×X ∗ is a Poisson

space.

2. QUANTUM

2.1. MAGNETIC TWISTED CROSSED PRODUCTS.

DEFINITION 2.1. We call twisted C∗-dynamical system a quadruplet, denoted
(A, θ, κ, X ), where θ is an action of X = Rn on the (abelian) C∗-algebra A and κ
is a normalized 2-cocycle on A with respect to θ.

Starting from a twisted C∗-dynamical system, one can construct twisted
crossed product C∗-algebras [15], [19], [20] (see also references therein). Let
L1(X ;A) be the complex vector space of A-valued Bochner integrable functions
on X and L1-norm

‖Φ‖L1 :=
∫
X

dx ‖Φ(x)‖A.

For any Φ, Ψ ∈ L1(X ;A) and x ∈ X , we define the product

(Φ �κ Ψ)(x) :=
∫
X

dy θ y−x
2
[Φ(y)] θ y

2
[Ψ(x− y)] θ− x

2
[κ(y, x− y)]

and the involution Φ�
κ
(x) := Φ(−x).

With these two operations, (L1(X ;A), �κ , �
κ
) forms a Banach-∗-algebra.

DEFINITION 2.2. The enveloping C∗-algebra of L1(X ;A) is called the twisted
crossed product Aoκ

θ X .

We are going to indicate now the relevant twisted crossed products, also
introducing Planck’s constant h̄ in the formalism. We define

θh̄
x := θh̄x and κB,h̄(x, y) = κ

B
h̄ (h̄x, h̄y),

which means

κB,h̄(ω; x, y) = e−
i
h̄ ΓBω 〈0,h̄x,h̄x+h̄y〉, ∀x, y ∈ X , ω ∈ Ω,
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and check easily that (C0(Ω), θh̄, κB,h̄, X ) is a twisted C∗-dynamical system for
any h̄ ∈ (0, 1]. It will be useful to introduce ΛB

h̄ (x, y) via

θ− h̄
2 x[κ

B,h̄(ω; x, y)] = e−
i
h̄ ΓBω 〈− h̄

2 x,h̄y− h̄
2 x, h̄

2 x〉 =: e−ih̄ΛBω
h̄ (x,y),

as short-hand notation for the phase factor. This scaled magnetic flux can be
parametrized explicitly as

ΛB
h̄ (x, y) =

n

∑
j,k=1

yj(xk − yk)

1∫
0

dt
t∫

0

ds θh̄(s− 1
2 )x+h̄(t−s)y[B

jk].(2.1)

Plugging this particular choice of 2-cocycle and X action into the general form
of the product, one gets

(Φ �B
h̄ Ψ)(x) =

∫
X

dy θ h̄
2 (y−x)[Φ(y)]θ h̄

2 y[Ψ(x− y)]e−ih̄ΛB
h̄ (x,y).

The twisted crossed product C∗-algebra AoκB,h̄

θh̄ X will be denoted simply
by CB

h̄ with self-adjoint part CB
h̄,R and norm ‖ · ‖B

h̄ . We also call C0 the enveloping
C∗-algebra of L1(X ;A) with the commutative product �0; it is isomorphic with
C0(X

∗;A) ∼= C(X ∗)⊗A.
A quick computation shows that πh̄

ω := θh̄
ω ⊗ 1 intertwines the involutions

associated to the C∗-algebras CB
h̄ and Aω oκBω ,h̄

τh̄ X , i.e. πh̄
ω(Φ

�B
h̄ ) = πh̄

ω(Φ)�
Bω
h̄ is

satisfied for every Φ ∈ CB
h̄ . A slightly more cumbersome task is the verification

of πh̄
ω(Φ �B

h̄ Ψ) = πh̄
ω(Φ) �Bω

h̄ πh̄
ω(Ψ). For any Φ, Ψ ∈ L1(X ;A) and z, x ∈ X , we

have

[πh̄
ω(Φ �B

h̄ Ψ)](z; x)

=
∫
X

dy (θ h̄
2 (y−·)

[Φ(y)]θ h̄
2 y[Ψ(· − y)]e−

i
h̄ ΓB〈·− h̄

2 ·,−
h̄
2 ·+h̄y, h̄

2 ·〉) ◦ (θh̄
ω ⊗ 1)(z; x)

=
∫
X

dy Φ(θh̄z+ h̄
2 (y−x)[ω], y)Ψ(θh̄z+ h̄

2 y[ω], x− y)e−
i
h̄ Γ

Bθh̄z [ω] 〈− h̄
2 x,− h̄

2 x+h̄y, h̄
2 x〉

=
∫
X

dy τ h̄
2 (y−x)[π

h̄
ω(Φ)(y)](z)τ h̄

2 y[π
h̄
ω(Ψ)(x− y)](z)e−

i
h̄ ΓBω 〈h̄z− h̄

2 x,h̄z− h̄
2 x+h̄y,h̄z+ h̄

2 x〉

= [πh̄
ω(Φ) �Bω

h̄ πh̄
ω(Ψ)](z; x).

It follows easily that {πh̄
ω}ω∈Ω defines by extension a family of epimor-

phisms

πh̄
ω : CB

h̄ → Aω oκBω ,h̄

τh̄ X

that map a twisted crossed product defined in terms of C0(Ω) onto more concrete
C∗-algebras defined in terms of subalgebras Aω of BCu(X ).
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As we have seen, S(X ∗; C∞
0 (Ω)) is a Poisson subalgebra of BC∞(Ω×X ∗).

For strict deformation quantization we also need that it is a ∗-subalgebra of each
of the C∗-algebras CB

h̄ . Since S(X ∗; C∞
0 (Ω)) is stable under involution, this will

follow from

PROPOSITION 2.3. If Bjk ∈ BC∞(Ω), then S(X ; C∞
0 (Ω)) is a subalgebra of

(L1(X ; C0(Ω)), �B
h̄ ).

Proof. Let Φ, Ψ ∈ S(X ; C∞
0 (Ω)). As S(X ; C∞

0 (Ω)) is a subspace of
L1(X ; C0(Ω)), Φ �B

h̄ Ψ exists in L1(X ; C0(Ω)). To prove the product Φ �B
h̄ Ψ is

also in S(X ; C∞
0 (Ω)), we need to estimate all semi-norms: let a, α, β ∈ Nn. First,

we show that we can exchange differentiation with respect to x and along orbits
with integration with respect to y via Dominated Convergence, i.e. that for all x
and ω

(xa∂α
xδβ(Φ �B

h̄ Ψ))(ω; x)=
∫
X

dy xa∂α
xδβ(Φ(θ h̄

2 (y−x)[ω], y)Ψ(θ h̄
2 y[ω], x−y)e−ih̄ΛBω

h̄ (x,y))

=:
∫
X

dy Ia
αβ(ω; x, y)

holds. Hence, we need to estimate the absolute value of Ia
αβ uniformly in x and

ω by an integrable function. To do that, we write out the derivatives involved
in Ia

αβ,

Ia
αβ(x, y)

= xa∂α
xδβ(θ h̄

2 (y−x)[Φ(y)]θ h̄
2 y[Ψ(x− y)]e−ih̄ΛB

h̄ (x,y))

= xa ∑
α′+α′′+α′′′=α
β′+β′′+β′′′=β

(−h̄
2

)|α′ |
θ h̄

2 (y−x)[δ
α′+β′Φ(y)]θ h̄

2 y[∂
α′′
x δβ′′Ψ(x− y)]∂α′′′

x δβ′′′e−ih̄ΛB
h̄ (x,y).

Taking the C0(Ω) norm of the above expression and using the triangle inequality,
h̄ 6 1, the fact that θz is an isometry as well as the estimates on the exponential of
the magnetic flux from Lemma 5.1(ii), we get

‖Ia
αβ(x, y)‖A

6 |xa| ∑
α′+α′′+α′′′=α
β′+β′′+β′′′=β

( h̄
2

)|α′ |
‖θ h̄

2 (y−x)[δ
α′+β′Φ(y)]‖A‖θ h̄

2 y[∂
α′′
x δβ′′Ψ(x−y)]‖A

· ‖∂α′′′
x δβ′′′e−ih̄ΛB

h̄ (x,y)‖A 6
( n

∏
j=1

(|yj|+ |xj − yj|)aj
)

· ∑
α′+α′′+α′′′=α
β′+β′′+β′′′=β

‖δα′+β′Φ(y)‖A‖∂α′′
x δβ′′Ψ(x− y)‖A · ∑

|b|+|c|=2(|α′′′ |+|β′′′ |)
Kbc|yb||(x− y)c|
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= ∑
α′+α′′+α′′′=α
β′+β′′+β′′′=β

∑
|b|+|c|6|a|+2|α′′′ |+2|β′′′ |̃

Kbc‖(Qbδα′+β′Φ)(y)‖A‖(Qc∂α′′
x δβ′′Ψ)(x− y)‖A.

The polynomial with coefficients K̃bc comes from multiplying the other two
polynomials in the |yj| and |xj− yj|. Taking the supremum in x only yields a func-
tion in y (independent of x and ω) which is integrable and dominates |Ia

αβ(ω; x, y)|
since the right-hand side is a finite sum of Schwartz functions in y,

sup
x∈X

‖Ia
αβ(x, y)‖A 6 ∑

α′+α′′+α′′′=α
β′+β′′+β′′′=β

|b|+|c|6|a|+2|α′′′ |+2|β′′′ |

K̃bc‖(Qbδα′+β′Φ)(y)‖A‖Qc∂α′′
x δβ′′Ψ‖000

= ∑
α′+α′′+α′′′=α
β′+β′′+β′′′=β

|b|+|c|6|a|+2|α′′′ |+2|β′′′ |

K̃bc‖(Qbδα′+β′Φ)(y)‖A‖Ψ‖cα′′β′′ .

Hence, by Dominated Convergence, it is permissible to interchange differentia-
tion and integration. To estimate the semi-norm of the product, we write for an
integer N such that 2N > n + 1

‖Φ �B
h̄ Ψ‖aαβ = sup

x∈X
ω∈Ω

∣∣∣ ∫
X

dyIa
αβ(ω; x, y)

∣∣∣ 6 ∫
X

dy
〈y〉2N 〈y〉

2N sup
x∈X

‖Ia
αβ(x, y)‖A

6C1(N) sup
x,y∈X

(〈y〉2N‖Ia
αβ(x, y)‖A)6C2(N) max

|b|62N
sup

x,y∈X
‖yb Ia

αβ(x, y)‖A.(2.2)

The right-hand side involves semi-norms associated to S(X ×X ; C∞
0 (Ω)) which

we will estimate in terms of the semi-norms of Φ and Ψ, by arguments similar to
those leading to the domination of ‖Ia

αβ(x, y)‖A.

Thus, we have estimated ‖Φ �B
h̄ Ψ‖aαβ from above by a finite number of

semi-norms of Φ and Ψ and Φ �B
h̄ Ψ ∈ S(X ; C∞(Ω)).

2.2. TWISTED SYMBOLIC CALCULUS. It is useful to transport the composition law
�B

h̄ by partial Fourier transform 1⊗F : S(X ; C∞
0 (Ω))→ S(X ∗; C∞

0 (Ω)), setting

(2.3) f ]B
h̄ g := (1⊗F )[(1⊗F )−1 f �B

h̄ (1⊗F )−1g].

In this way one gets a multiplication on S(X ∗; C∞
0 (Ω)) which generalizes the

magnetic Weyl composition of symbols of [12], [13], [4] (and to which it reduces,
actually, if Ω is just a compactification of the configuration space X ). Together
with complex conjugation, they endow S(X ∗; C∞

0 (Ω)) with the structure of a
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∗-algebra. After a short computation one gets

( f ]B
h̄ g)(ω, ξ)

= (πh̄)−2n
∫
X

dy
∫

X ∗

dη
∫
X

dz
∫

X ∗

dζ ei 2
h̄ (z·η−y·ζ)e−

i
h̄ ΓBω 〈h̄y−h̄z,h̄y+h̄z,h̄z−h̄y〉

· f (θy[ω], ξ + η)g(θz[ω], ξ + ζ)

= (πh̄)−2n
∫
X

dy
∫

X ∗

dη
∫
X

dz
∫

X ∗

dζ ei 2
h̄ σ[(y,η),(z,ζ)]e−

i
h̄ ΓBω 〈h̄y−h̄z,h̄y+h̄z,h̄z−h̄y〉(2.4)

· (Θ(y,η)[ f ])(ω, x)(Θ(z,ζ)[g])(ω, x),

where σ[(y, η), (z, ζ)] := z · η − y · ζ is the canonical symplectic form on Ξ :=
X ×X ∗ and

(Θ(y,η)[ f ])(ω, ξ) ≡ ((θy ⊗ τ∗η )[ f ])(ω, ξ) = f (θy[ω], ξ + η).

This formula should be compared with the product giving Rieffel’s quantiza-
tion [22].

We note that 1⊗ F can be extended to L1(X ; C0(Ω)) and then to CB
h̄ . So

we get a C∗-algebra BB
h̄ , isomorphic to CB

h̄ , on which the product is an extension
of the twisted composition law (2.4). From the bijectivity of the partial Fourier
transform and Proposition 2.3 we get the following

COROLLARY 2.4. If the components of the magnetic field B are of class BC∞(Ω),
then S(X ∗; C∞

0 (Ω)) is a Fréchet ∗-subalgebra of BB
h̄ .

2.3. REPRESENTATIONS. We first recall the definition of covariant representations
of a magnetic C∗-dynamical system and the way they are used to construct rep-
resentations of the corresponding C∗-algebras. We denote by U (H) the group of
unitary operators in the Hilbert space H and by B(H) the C∗-algebra of all the
linear bounded operators onH.

DEFINITION 2.5. Given a magnetic C∗-dynamical system (A, θh̄, κB,h̄, X ),
we call covariant representation (H, r, T) a Hilbert spaceH together with two maps
r : A → B(H) and T : X → U (H) satisfying:

(i) r is a non-degenerate representation,
(ii) T is strongly continuous and T(x)T(y)= r[κB,h̄(x, y)]T(x+y), ∀x, y∈X ,

(iii) T(x) r(ϕ) T(x)∗ = r[θh̄
x(ϕ)], ∀x ∈ X , ϕ ∈ A.

LEMMA 2.6. If (H, r, T) is a covariant representation of (A, θh̄, κB,h̄, X ), then
RepT

r defined on L1(X ;A) by

RepT
r (Φ) :=

∫
X

dy r[θh̄
y/2(Φ(y))]T(y)

extends to a representation of CB
h̄ .
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By composing with the partial Fourier transformation, one gets representa-
tions of the pseudodifferential C∗-algebra BB

h̄ , denoted by

(2.5) OpT
r : BB

h̄ → B(H), OpT
r ( f ) := RepT

r [(1⊗F )−1( f )].

Given any ω ∈ Ω, we shall now construct a representation of CB
h̄ in H =

L2(X ). Let rω be the representation of A in B(H) given for ϕ ∈ A, u ∈ H and
x ∈ X by

[rω(ϕ)u](x) = [θx(ϕ)](ω) u(x) ≡ ϕ(θx[ω]) u(x).

Let also Th̄
ω be the map from X into the set of unitary operators onH given by

[Th̄
ω(y)u](x) := κB,h̄(ω;

x
h̄

, y) u(x + h̄y) = e−
i
h̄ ΓBω 〈0,x,x+h̄y〉u(x + h̄y).

PROPOSITION 2.7. (H, rω, Th̄
ω) is a covariant representation of the magnetic

twisted C∗-dynamical system.

Proof. Use the definitions, Stokes theorem for the magnetic field Bω and the
identities

ΓBω 〈x, x + h̄y, x + h̄y + h̄z〉 = ΓBθx [ω]〈0, h̄y, h̄y + h̄z〉, and

ΓBω 〈0, x + h̄y, x〉 = −ΓBω 〈0, x, x + h̄y〉,

valid for all x, y, z ∈ X and ω ∈ Ω.

The integrated form Reph̄
ω := Rep

Th̄
ω

rω has the following action on L1(X ;A):

[Reph̄
ω(Φ)u](x) =

∫
X

dz Φ(θx+ h̄z
2
[ω]; z) κB,h̄(ω;

x
h̄

, z) u(x + h̄z)

= h̄−n
∫
X

dy Φ
(

θ x+y
2
[ω];

1
h̄
(y− x)

)
e−

i
h̄ ΓBω 〈0,x,y〉 u(y),(2.6)

and the corresponding representation Oph̄
ω of the C∗-algebra BB

h̄ has the follow-
ing form on suitable f ∈ BB

h̄ :

(2.7) [Oph̄
ω( f )u](x)=(2πh̄)−n

∫
X

dy
∫

X ∗

dξ e
i
h̄ (x−y)·ξ f (θ x+y

2
[ω]; ξ)e−

i
h̄ ΓBω 〈0,x,y〉u(y).

It is clear that Oph̄
ω is not a faithful representation, since (2.7) only involves the val-

ues taken by f onOω ×X ∗, whereOω is the orbit passing through ω. It is rather
easy to show that the kernel of Oph̄

ω can be identified with the twisted crossed

product C0(Qω)oκB ,h̄
θh̄ X , constructed as explained above, with Ω replaced by

Qω := Oω, the quasi-orbit generated by the point ω.

REMARK 2.8. The expert in the theory of quantum magnetic fields might
recognize in (2.7) the expression of a magnetic pseudodifferential operator with
symbol f ◦ (θω ⊗ 1), written in the transverse gauge for the magnetic field Bω.
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Then it will be a simple exercise to write down analogous representations asso-
ciated to continuous (fields of) vector potentials A : Ω → ∧1X generating the
magnetic field (i.e. Bω = dAω, ∀ω ∈ Ω) and to check an obvious principle of
gauge-covariance.

We show now that the family of representations {Oph̄
ω : ω ∈ Ω} actually

has as a natural index set the orbit space of the dynamical system, up to unitary
equivalence.

PROPOSITION 2.9. Let ω, ω′ be two elements of Ω, belonging to the same orbit
under the action θ. Then, for any h̄ ∈ (0, 1], one has Reph̄

ω
∼= Reph̄

ω′ and Oph̄
ω
∼= Oph̄

ω′

(unitary equivalence of representations).

Proof. By assumption, there exists an element x0 of X such that θx0 [ω
′] = ω.

For u ∈ H and x ∈ X we define the unitary operator

(Uh̄
ω,ω′ u)(x) := e−

i
h̄ Γ

B
ω′ 〈0,x0,x0+x〉 u(x + x0) .

To show unitary equivalence of the two representations, it is enough to show that
for all ϕ ∈ A and y ∈ X

Uh̄
ω,ω′rω′(ϕ) = rω(ϕ)Uh̄

ω,ω′ and Uh̄
ω,ω′T

h̄
ω′(y) = Th̄

ω(y)U
h̄
ω,ω′ .

The first one is obvious. The second one reduces to

ΓBω′ 〈0, x0, x0 + x〉+ ΓBω′ 〈0, x0 + x, x0 + x + h̄y〉

= ΓBω′ 〈x0, x0 + x, x0 + x + h̄y〉+ ΓBω′ 〈0, x0, x0 + x + h̄y〉,

which is true by Stokes theorem.

REMARK 2.10. The proposition reveals what we consider to be the main
practical interest of the formalism we develop in the present article. To a fixed
real symbol f and to a fixed value h̄ of Planck’s constant one associates a family
{Hh̄

ω := Oph̄
ω( f ) : ω ∈ Ω} of self-adjoint magnetic pseudodifferential operators

on the Hilbert space H := L2(X ), indexed by the points of a dynamical system
(Ω, θ, X ) and satisfying the equivariance condition

(2.8) Hh̄
θx [ω] = (Uh̄

ω,θx [ω])
−1Hh̄

ωUh̄
ω,θx [ω], ∀(ω, x) ∈ Ω×X .

In concrete situations, such equivariance conditions usually carry some physi-
cal meaning. In a future publication we are going to extend the formalism to
unbounded symbols f , getting realistic magnetic Quantum Hamiltonians orga-
nized in equivariant families, which will be studied in the framework of spectral
theory.

To define other types of representations, we consider now Ω endowed with
a θ-invariant measure µ. Such measures always exist, since X is abelian hence
amenable. We setH′ for the Hilbert space L2(Ω, µ) and consider first the faithful
representation: r̃ : A → B(H′) with [r̃(ϕ)v](ω) := ϕ(ω) v(ω) for all v ∈ H′ and
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ω ∈ Ω. Then, (by a standard construction in the theory of twisted crossed prod-
ucts) the regular representation of the magnetic C∗-dynamical system (A, θh̄, κB,h̄, X )
induced by r̃ is the covariant representation (L2(X ;H′), r, Th̄):

r : A → B[L2(X ;H′)], [r(ϕ)w](ω; x) := (r̃(θx(ϕ))[w(x)])(ω)= ϕ(θx(ω))w(ω; x),

Th̄ : X → U [L2(X ;H′)], [Th̄(y)w](ω; x) := κB,h̄(ω;
x
h̄

, y) w(ω; x + h̄y).

We identify freely L2(X ;H′) with L2(Ω ×X ) with the obvious product mea-
sure, so r(ϕ) is the operator of multiplication by ϕ ◦ θ in L2(Ω ×X ). Due to
Stokes’ Theorem, this is again a covariant representation. The integrated form
REPh̄ := RepTh̄

r associated to (r, Th̄) is given on L1(X ;A) by

[REPh̄(Φ)w](ω; x) = h̄−n
∫
X

dy Φ(θ x+y
2
[ω];

y− x
h̄

) e−
i
h̄ ΓBω 〈0,x,y〉 w(ω; y)

and it admits the direct integral decomposition

(2.9) REPh̄(Φ) =
∫
Ω

⊕
dµ (ω) Reph̄

ω(Φ).

The group X , being abelian, is amenable, and thus the regular representation
REPh̄ is faithful. The corresponding representation OPh̄ : BB

h̄ → B[L2(X ;H′)]
is given for f with partial Fourier transform in L1(X ;A) by

[OPh̄( f )w](ω; x)=(2πh̄)−n
∫
X

∫
X ∗

dy dη e
i
h̄ (x−y)·η f (θ x+y

2
[ω], η)e−

i
h̄ ΓBω 〈0,x,y〉w(ω; y).

3. ASYMPTOTIC EXPANSION OF THE PRODUCT

The proof of strict deformation quantization hinges on the following theo-
rem:

THEOREM 3.1 (Asymptotic expansion of the product). Assume the compo-
nents of B are in BC∞(Ω). Let Φ, Ψ ∈ S(X ; C∞

0 (Ω)) and h̄ ∈ (0, 1]. Then the
product Φ �B

h̄ Ψ can be expanded in powers of h̄,

(3.1) Φ �B
h̄ Ψ = Φ �0 Ψ− h̄

i
2
{Φ, Ψ}B + h̄2R�,2h̄ (Φ, Ψ),

where {Φ, Ψ}B is defined as in equation (1.6). All terms are in S(X ; C∞
0 (Ω)) and

R�,2h̄ (Φ, Ψ) is bounded uniformly in h̄, ‖ R�,2h̄ (Φ, Ψ) ‖B
h̄6 C.

Proof. We are going to use Einstein’s summation convention, i.e. repeated
indices in a product are summed over. Two types of terms in the product formula
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need to be expanded in h̄, the group action of X on Ω,

(θ h̄
2 y[Φ(x)])(ω)=Φ(θ h̄

2 y[ω]; x) = Φ(ω; x) + h̄
1∫

0

dτ
1
2

yjθτ h̄
2 y[(δjΦ)(ω; x)]

=: Φ(ω; x) + h̄(Rθ,1
h̄,y(Φ))(ω; x)

=Φ(ω; x)+
h̄
2

yj(δjΦ)(ω; x)+h̄2
1∫

0

dτ
1
4
(1−τ)yjykθ

τ h̄
2 y[(δjδkΦ)(ω; x)]

=: Φ(ω; x) +
h̄
2

yj(δjΦ)(ω; x) + h̄2(Rθ,2
h̄,y(Φ))(ω; x),

and the exponential of the magnetic flux,

e−ih̄ΛB
h̄ (x,y) = 1 + h̄

1∫
0

dτ
d
dε

(e−iεΛB
ε (x,y))|ε=τh̄ =: 1 + h̄Rκ,1

h̄ (x, y)

= 1− h̄iΛB
0 (x, y) + h̄2

1∫
0

dτ (1− τ)
d2

dε2 (e
−iεΛB

ε (x,y))|ε=τh̄

=: 1− h̄
i
2

Bjkyj(xk − yk) + h̄2Rκ,2
h̄ (x, y).

We will successively plug these expansions into the product formula, keeping
only terms of O(h̄2):

(Φ �B
h̄ Ψ)(x)

=
∫
X

dy
(

Φ(y)+
h̄
2
(yj−xj)(δjΦ)(y)+h̄2(Rθ,2

h̄,y−x(Φ))(y)
)

θ h̄
2 y[Ψ(x−y)]e−ih̄ΛB

h̄ (x,y)

=
∫
X

dy Φ(y)
(

Ψ(x− y) +
h̄
2

yj(δjΨ)(x− y) + h̄2(Rθ,2
h̄,y(Ψ))(x− y)

)
e−ih̄ΛB

h̄ (x,y)

+
h̄
2

∫
X

dy (yj − xj)(δjΦ)(y)(Ψ(x− y) + h̄(Rθ,1
h̄,y(Ψ))(x− y))e−ih̄ΛB

h̄ (x,y)

+ h̄2
∫
X

dy (Rθ,2
h̄,y−x(Φ))(y)θ h̄

2 y[Ψ(x− y)]e−ih̄ΛB
h̄ (x,y)

=
∫
X

dy Φ(y)Ψ(x− y)(1− h̄iΛB
0 (x, y) + h̄2Rκ,2

h̄ (x, y))

+
h̄
2

∫
X

dy (−(δjΦ)(y)(QjΨ)(x− y)+(QjΦ)(y)(δjΨ)(x−y))(1+h̄Rκ,1
h̄ (x, y))
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+ h̄2
∫
X

dy
[
(Rθ,2

h̄,y−x(Φ))(y)θ h̄
2 y[Ψ(x− y)]e−ih̄ΛB

h̄ (x,y)

+ Φ(y)(Rθ,2
h̄,y(Ψ))(x−y)e−ih̄ΛB

h̄ (x,y)− 1
2
(δjΦ)(y)(QjR

θ,1
h̄,y(Ψ))(x−y)e−ih̄ΛB

h̄ (x,y)
]

=
∫
X

dy Φ(y)Ψ(x− y) +
h̄
2

∫
X

dy ((QjΦ)(y)(δjΨ)(x− y)

− (δjΦ)(y)(QjΨ)(x− y)− iBjk(QjΦ)(y)(QkΨ)(x− y))

+ h̄2
∫
X

dy
[
((Rθ,2

h̄,y−x(Φ))(y)θ h̄
2 y[Ψ(x−y)]+Φ(y)(Rθ,2

h̄,y(Ψ))(x−y))e−ih̄ΛB
h̄ (x,y)

− 1
2
(δjΦ)(y)(QjR

θ,1
h̄,y(Ψ))(x− y)e−ih̄ΛB

h̄ (x,y) +
1
2
((QjΦ)(y)(δjΨ)(x− y)

− (δjΦ)(y)(QjΨ)(x− y))Rκ,1
h̄ (x, y) + Φ(y)Ψ(x− y)Rκ,2

h̄ (x, y)
]

=: (Φ �0 Ψ)(x)− h̄
i
2
{Φ, Ψ}B(x) + h̄2(R�,2h̄ (Φ, Ψ))(x).

In the above, we have used (yj − xj)Ψ(x− y) = −(QjΨ)(x− y), yjΦ(y) =
(QjΦ)(y) and the explicit expression for ΛB

0 (x, y). Clearly, the leading-order
and sub-leading-order terms are again in S(X ; C∞

0 (Ω)). Thus also R�,2h̄ (Φ, Ψ)=

h̄−2(Φ �B
h̄ Ψ−Φ �0 Ψ+h̄ i

2{Φ, Ψ}B) is an element of S(X ; C∞
0 (Ω)) for all h̄∈ (0, 1].

The most difficult part of the proof is to show that the h̄-dependent C∗-norm
of the remainder R�,2h̄ (Φ, Ψ) can be uniformly bounded in h̄. The first ingredient
is the fact that the h̄-dependent C∗-norm of the twisted crossed product is domi-
nated by the L1(X ;A)-norm for all values of h̄ ∈ (0, 1],

‖Φ‖B
h̄ 6 ‖Φ‖L1 , ∀Φ ∈ S(X ; C∞

0 (Ω)) ⊂ L1(X ; C0(Ω)) ⊂ CB
h̄ .

Hence, if we can find h̄-independent L1 bounds on each term of the remainder,
we have also estimated the h̄-dependent C∗-norm uniformly in h̄.

There are four distinct types of terms in the remainder. Let us start with the
first: we define

(R�,2h̄,1(Φ, Ψ))(x) :=
∫
X

dy (Rθ,2
h̄,y−x(Φ))(y)θ h̄

2 y[Ψ(x− y)]e−ih̄ΛB
h̄ (x,y).

Then we have

‖R�,2h̄,1(Φ, Ψ)‖B
h̄ 6 ‖R�,2h̄,1(Φ, Ψ)‖L1(X ;A)

6
∫
X

dx
∫
X

dy ‖(Rθ,2
h̄,y−x(Φ))(y)‖A‖θ h̄

2 y[Ψ(x− y)]‖A‖e−ih̄ΛB
h̄ (x,y)‖A

=
∫
X

dx
∫
X

dy ‖(Rθ,2
h̄,y−x(Φ))(y)‖A‖Ψ(x− y)‖A
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=
∫
X

dx
∫
X

dy ‖(Rθ,2
h̄,−x(Φ))(y)‖A‖Ψ(x)‖A.

We inspect ‖(Rθ,2
h̄,−x(Φ))(y)‖A more closely:

‖(Rθ,2
h̄,−x(Φ))(y)‖A 6

1
4

1∫
0

dτ |(−xj)(−xk)|‖θ−τ h̄
2 x[(δjδkΦ)(y)]‖A

=
1
8
|xjxk|‖(δjδkΦ)(y)‖A.

If we plug that back into the estimate of the L1 norm, we get

‖R�,2h̄,1(Φ, Ψ)‖B
h̄ 6

1
8

∫
X

dx
∫
X

dy ‖(δjδkΦ)(y)‖A‖(QjQkΨ)(x)‖A

=
1
8
‖δjδkΦ‖L1‖QjQkΨ‖L1 .

The right-hand side is finite by the definition of S(X ; C∞
0 (Ω)). Similarly, the

second term can be estimated, just the roles of Φ and Ψ are reversed.
Now to the second type of term: we define

(R�,2h̄,3(Φ, Ψ))(x) := −1
2

∫
X

dy (δjΦ)(y)(QjR
θ,1
h̄,y(Ψ))(x− y)e−ih̄ΛB

h̄ (x,y)

and estimate

2‖R�,2h̄,3(Φ, Ψ)‖B
h̄ 6 2‖R�,2h̄,3(Φ, Ψ)‖L1 6

∫
X

dx
∫
X

dy ‖(δjΦ)(y)‖A‖(QjR
θ,1
h̄,y(Ψ))(x)‖A.

The last factor needs to be estimated by hand:

‖(QjR
θ,1
h̄,y(Ψ))(x)‖A 6

1
2

1∫
0

dτ |xjyk|‖θτ h̄
2 y[(δkΨ)(x)]‖A =

1
2
|xjyk|‖(δkΨ)(x)‖A.

This leads to the bound

‖R�,2h̄,3(Φ, Ψ)‖B
h̄6

1
4

∫
X

dx
∫
X

dy ‖(δjΦ)(y)‖A|xjyk|‖(δkΨ)(x)‖A=
1
4
‖QkδjΦ‖L1‖QjδkΨ‖L1 .

The right-hand side is again finite since Φ, Ψ∈S(X ; C∞
0 (Ω)) does not depend on h̄.

Estimating the two magnetic terms is indeed a bit more involved: we define

(R�,2h̄,4(Φ, Ψ))(x) :=
1
2

∫
X

dy (QjΦ)(y)(δjΨ)(x− y)Rκ,1
h̄ (x, y).

The usual arguments show the C∗-norm can be estimated by

‖R�,2h̄,4(Φ, Ψ)‖B
h̄ 6

∫
X

dx
∫
X

dy ‖(QjΦ)(y)‖A‖(δjΨ)(x− y)‖A‖Rκ,1
h̄ (x, y)‖A
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which warrants a closer inspection of the last term: first of all, we note that

Rκ,1
h̄ (x, y) =

1∫
0

dτ
d
dε

(e−iεΛB
ε (x,y))|ε=τh̄

=

1∫
0

dτ
(
− iΛB

ε (x, y)− iε
d
dε

ΛB
ε (x, y)

)
e−iεΛB

ε (x,y)|ε=τh̄.

If we use Lemma 5.1 and h̄ 6 1, this leads to the following norm estimate of
Rκ,1

h̄ (x, y):

‖Rκ,1
h̄ (x, y)‖A 6

1∫
0

dτ
(
‖ΛB

τh̄(x, y)‖A + h̄τ
{ d

dε
ΛB

ε (x, y)|ε=τh̄

}
A

)
‖e−iεΛB

τh̄(x,y)‖A

6 ‖Bjk‖A|yj||xk − yk|+
1
2
‖δl Bjk‖A|yj||xk − yk|(|xl − yl |+ |yl |).

Put together, this allows us to estimate the norm of R�,2h̄,4 by

‖R�,2h̄,4(Φ, Ψ)‖B
h̄ 6 ‖Bmk‖A‖QjQmΦ‖L1‖QkδjΨ‖L1

+
1
2
‖δl Bmk‖A(‖QjQmQlΦ‖L1‖QkδjΨ‖L1

+ ‖QjQmΦ‖L1‖QkQlδjΨ‖L1).

Now on to the last term,

(R�,2h̄,6(Φ, Ψ))(x) :=
∫
X

dy Φ(y)Ψ(x− y)Rκ,2
h̄ (x, y).

Using the explicit form of Rκ,2
h̄ (x, y),

Rκ,2
h̄ (x, y) =

1∫
0

dτ (1− τ)
d2

dε2 (e
−iεΛB

ε (x,y))|ε=τh̄

=

1∫
0

dτ (1− τ)
[
− i2

d
dε

ΛB
ε (x, y)− iε

d2

dε2 ΛB
ε (x, y)

−
(

ΛB
ε (x, y) + ε

d
dε

ΛB
ε (x, y)

)2]∣∣∣
ε=τh̄

e−iτh̄ΛB
τh̄(x,y),

in conjunction with the estimates of Lemma 5.1 (which are uniform in τ), we get

‖Rκ,2
h̄ (x, y)‖A 6

1∫
0

dτ (1− τ)
[
2
∥∥∥ d

dε
ΛB

ε (x, y)|ε=τh̄

∥∥∥
A
+ τ

∥∥∥ d2

dε2 ΛB
ε (x, y)|ε=τh̄

∥∥∥
A

+
(
‖ΛB

h̄τ(x, y)‖A + τ
∥∥∥ d

dε
ΛB

ε (x, y)|ε=τh̄

∥∥∥)2]
‖e−iτh̄ΛB

τh̄(x,y)‖A



MAGNETIC TWISTED ACTIONS ON GENERAL ABELIAN C∗ -ALGEBRAS 53

=

1∫
0

dτ (1− τ)
[
2
∥∥∥ d

dε
ΛB

ε (x, y)|ε=τh̄

∥∥∥
A
+ τ

∥∥∥ d2

dε2 ΛB
ε (x, y)|ε=τh̄

∥∥∥
A

+ ‖ΛB
h̄τ(x, y)‖2

A + 2τ‖ΛB
h̄τ(x, y)‖A

∥∥∥ d
dε

ΛB
ε (x, y)|ε=τh̄

∥∥∥
A

+ τ2
∥∥∥ d

dε
ΛB

ε (x, y)|ε=τh̄

∥∥∥2

A

]
.

Hence, we can bound the h̄-dependent C∗-norm of R�,2h̄,6 by

‖R�,2h̄,6‖
B
h̄

6 ‖δl Bjk‖A(‖QjΦ‖L1‖QkQlΨ‖L1 + ‖QjQlΦ‖L1‖QkΨ‖L1)

+
1
6
‖δlδmBjk‖A(‖QjΦ‖L1‖QkQlQmΨ‖L1 + ‖QjQmΦ‖L1‖QkQlΨ‖L1

+ ‖QjQlQmΦ‖L1‖QkΨ‖L1) +
1
2
‖Bjk‖A‖Bj′k′‖A‖QjQj′Φ‖L1‖QkQk′Ψ‖L1

+
1
3
‖Bjk‖A‖δl′B

j′k′‖A(‖QjQj′Φ‖L1‖QkQk′Ql′Ψ‖L1

+ ‖QjQj′Ql′Φ‖L1‖QkQk′Ψ‖L1)

+
1

12
‖δl Bjk‖A‖δl′B

j′k′‖A(‖QjQj′Φ‖L1‖QkQk′QlQl′Ψ‖L1

+ 2‖QjQj′QlΦ‖L1‖QkQk′Ql′Ψ‖L1 + ‖QjQj′QlQl′Φ‖L1‖QkQk′Ψ‖L1).

Putting all these individual estimates together, the result yields a bound on
‖R�,2h̄ (Φ, Ψ)‖B

h̄ which is uniform in h̄ and the proof of the theorem is finished.

COROLLARY 3.2. Assume the components of B are in BC∞(Ω). Let f , g ∈
S(X ∗; C∞

0 (Ω)) and h̄∈ (0, 1]. Then the product f ]B
h̄ g can be expanded in powers of h̄,

(3.2) f ]B
h̄ g = f g− h̄

i
2
{ f , g}B + h̄2R],2

h̄ ( f , g),

where f g is the pointwise product and { f , g}B is the magnetic Poisson bracket defined as
in equation (1.4). All terms are in S(X ∗; C∞

0 (Ω)) and the remainder satisfies

‖ R],2
h̄ ( f , g) ‖BB

h̄
6 C

uniformly in h̄.

Proof. The proof follows from equations (2.3), (1.5), (1.6) and Theorem 3.1,
keeping in mind that the partial Fourier transforms are isomorphisms

S(X ∗; C∞(Ω))
→←− S(X ; C∞(Ω))

that extend to automorphisms between the C∗-algebras BB
h̄ and CB

h̄ .
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4. STRICT DEFORMATION QUANTIZATION

To make this precise, we repeat an already standard concept. For more de-
tails and motivation, the reader could see [8], [22], [23] and references therein.

DEFINITION 4.1. Let (S , ◦, {·, ·}) be a real Poisson algebra which is densely
contained on the selfadjoint part C0,R of an abelian C∗-algebra C0. A strict de-
formation quantization of the Poisson algebra S is a family of R-linear injections
(Qh̄ : S → Ch̄,R)h̄∈I , where I ⊂ R contains 0 as an accumulation point, Ch̄,R is
the selfadjoint part of the C∗-algebra Ch̄, with products and norms denoted by �h̄
and ‖ · ‖h̄, Q0 is just the inclusion map and Qh̄(S) is a subalgebra of Ch̄,R.

The following conditions are required for each Φ, Ψ ∈ S :

(i) Rieffel axiom: the mapping I 3 h̄ 7→ ‖Qh̄(Φ)‖h̄ is continuous.
(ii) Von Neumann axiom:

lim
h̄→0

∥∥∥1
2
[Qh̄(Φ) �h̄ Qh̄(Ψ) +Qh̄(Ψ) �h̄ Qh̄(Φ)]−Qh̄(Φ ◦Ψ)

∥∥∥
h̄
= 0.

(iii) Dirac axiom:

lim
h̄→0

∥∥∥ i
h̄
[Qh̄(Φ) �h̄ Qh̄(Ψ)−Qh̄(Ψ) �h̄ Qh̄(Φ)]−Qh̄({Φ, Ψ})

∥∥∥
h̄
= 0.

Putting this into the present context, we have

THEOREM 4.2. Assume that Bjk ∈ BC∞(Ω) and I = [0, 1]. Then the family of
injections

(S(X , C∞
0 (Ω))R ↪→ CB

h̄,R)h̄∈I

defines a strict deformation quantization.

Proof. By Proposition 1.9 and Proposition 2.3, S(X , C∞
0 (Ω))R can be seen a

Poisson algebra with respect to �0 and {·, ·}B as well as a subalgebra of the real
part of each of the twisted crossed product CB

h̄ .
Von Neumann and Dirac axioms are direct consequences of Theorem 3.1.
The Rieffel axiom can be checked exactly as in [13], which builds on results

from [18], [21]. The fact that the algebra A in [13] consisted of continuous func-
tions defined on the group X itself does not play any role here.

A partial Fourier transform transfers these results directly to S(X ∗, C∞
0 (Ω))

and BB
h̄ , objects which are natural in the context of Weyl calculus. In this way we

extend the main result of [13] to magnetic twisted actions on general abelian C∗-
algebras.

COROLLARY 4.3. Assume that Bjk ∈ C∞(Ω). Let I = [0, 1]. Then the family of
injections

(S(X ∗, C∞
0 (Ω))R ↪→ BB

h̄,R)h̄∈I

defines a strict deformation quantization, where the Poisson structure in S(X ∗, C∞
0 (Ω))R

is given by point-wise multiplication and the Poisson bracket {·, ·}B.
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Proof. The proof is straightforward from the Corollary 3.2 and the above
theorem, after noticing that the partial Fourier transform is an isomorphism be-
tween the Poisson algebras S(X ∗; C∞

0 (Ω)) and S(X ; C∞
0 (Ω)), and it extends to

an isomorphisms between the C∗-algebras BB
h̄ and CB

h̄ .

5. APPENDIX: ESTIMATES ON THE MAGNETIC FLUX

In the next lemma we gather some useful estimates on the scaled magnetic
flux and its exponential, that are used in the proofs of Propositions 2.3 and 3.1.

LEMMA 5.1. Assume the components of B are in BC∞(Ω) and h̄ ∈ (0, 1].
(i) For all a, α ∈ Nn there exist constants Cj > 0, Cjk > 0, j, k ∈ {1, . . . , n},

depending on Bjk and its δ-derivatives up to (|a|+ |α|)th order, such that

‖∂a
xδαΛB

h̄ (x, y)‖A 6
n

∑
j=1

Cj
1|yj|+

n

∑
j,k=1

Cjk
2 |yj||xk − yk|.

(ii) For all a, α ∈ Nn there exists a polynomial paα in 2n variables, with coefficients
Kbc > 0, such that

‖∂a
xδαe−ih̄ΛB

h̄ (x,y)‖A 6 paα(|y1|, . . . , |yn|, |x1 − y1|, . . . , |xn − yn|)

= ∑
|b|+|c|62(|a|+|α|)

Kbc|yb||(x− y)c|.

(iii) The following estimates which are uniform in h̄ and τ hold :

‖ΛB
h̄τ(x, y)‖A 6 ∑

jk
‖Bjk‖A|yj||xk − yk|,

∥∥∥ d
dε

ΛB
ε (x, y)|ε=τh̄

∥∥∥
A
6 ∑

jkl
‖δl Bjk‖A|yj||xk − yk|(|xl − yl |+ |yl |),

∥∥∥ d2

dε2 ΛB
ε (x, y)|ε=τh̄

∥∥∥
A

6 ∑
jklm
‖δlδmBjk‖A|yj||xk − yk|(|xl − yl ||xm − ym|+ |yl ||xm − ym|+ |yl ||ym|).

Proof. (i) and (ii) follow directly from the explicit parametrization of the
magnetic flux.

(iii) Throughout the proof we are going to use Einstein’s summation con-
vention, i.e. repeated indices in a product are summed over from 1 to dim(X ).
From the explicit parametrization (2.1)

ΛB
ε (x, y) = yj(xk − yk)

1∫
0

dt
t∫

0

ds θε(s− 1
2 )x+ε(t−s)y[B

jk],
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we compute first and second derivative of ΛB
ε (x, y) with respect to ε, using dom-

inated convergence to interchange differentiation with respect to the parameter ε
and integration with respect to t and s,

d
dε

ΛB
ε (x, y)=yj(xk − yk)

1∫
0

dt
t∫

0

ds
(

s(xl − yl) + tyl −
1
2

xl

)
θε(s− 1

2 )x+ε(t−s)y[δl Bjk],

d2

dε2 ΛB
ε (x, y)=yj(xk−yk)

1∫
0

dt
t∫

0

ds
(

s(xl−yl)+tyl−
1
2

xl

)(
s(xm−ym)+tym−

1
2

xm

)
· θε(s− 1

2 )x+ε(t−s)y[δlδmBjk].

The estimate on the flux itself follows from the fact that all the automor-
phisms θz are isometric in A:

‖ΛB
τh̄(x, y)‖A 6 |yj||xk − yk|

1∫
0

dt
t∫

0

ds ‖θε(s− 1
2 )x+ε(t−s)y[B

jk]‖A

6 ‖Bjk‖A|yj||xk − yk|.

Using the triangle inequality to estimate |xl | from above by |xl − yl |+ |yl |,
we get∥∥∥ d

dε
ΛB

ε (x, y)|ε=τh̄

∥∥∥
A

6 |yj||xk − yk|
1∫

0

dt
t∫

0

ds
(

s|xl − yl |+ t|yl |+
1
2
|xl |
)
‖θτh̄(s− 1

2 )x+τh̄(t−s)y[δl Bjk]‖A

= ‖δl Bjk‖A|yj||xk − yk|
1∫

0

dt
t∫

0

ds
(

s|xl − yl |+ t|yl |+
1
2
|xl |
)

6 ‖δl Bjk‖A|yj||xk − yk|(|xl − yl |+ |yl |).

In a similar fashion, we obtain the estimate for the second-order derivative,∥∥∥ d2

dε2 ΛB
ε (x, y)|ε=τh̄

∥∥∥
A

6 |yj||xk − yk|
1∫

0

dt
t∫

0

ds
∣∣∣(s(xl − yl) + tyl −

1
2

xl

)(
s(xm − ym) + tym −

1
2

xm

)∣∣∣
· ‖θτh̄(s− 1

2 )x+τh̄(t−s)y[δlδmBjk]‖A

6 ‖δlδmBjk‖A|yj||xk − yk|
1∫

0

dt
t∫

0

ds
(

s2|xl − yl ||xm − ym|+ 2st|yl ||xm − ym|
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+ s|xl − yl ||xm|+ t|yl ||xm|+ t2|yl ||ym|+
1
4
|xl ||xm|

)
6 ‖δlδmBjk‖A|yj||xk − yk|(|xl − yl ||xm − ym|+ |yl ||xm − ym|+ |yl ||ym|).

This finishes the proof.
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[16] M. MĂNTOIU, R. PURICE, S. RICHARD, Spectral and propagation results for mag-
netic Schrödinger operators; a C∗-algebraic framework, J. Funct. Anal. 250(2007), 42–
67.

[17] M. MÜLLER, Product rule for Gauge invariant Weyl symbols and its application to the
semiclassical description of guiding center motion, J. Phys. A. 32(1999), 1035–1052.

[18] M. NIELSEN, C∗-bundles and C0(X)-algebras, Indiana Univ. Math. J. 45(1995), 436–
477.

[19] J. PACKER, I. RAEBURN, Twisted crossed products of C∗-algebras, Math. Proc. Cam-
bidge Phylos. Soc. 106(1989), 293–311.

[20] J. PACKER, I. RAEBURN, Twisted crossed products of C∗-algebras. II, Math. Ann.
287(1990), 595–612.

[21] M.A. RIEFFEL, Continuous fields of C∗-algebras coming from group cocycles and
actions, Math. Ann. 283(1989), 631–643.

[22] M.A. RIEFFEL, Deformation quantization for actions of Rd, Mem. Amer. Math. Soc.
506(1993).

[23] M.A. RIEFFEL, Quantization and C∗-algebras, in C∗-Algebras: 1943–1993 (San Antonio,
TX, 1993), Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI 1994, pp. 67–
97.

[24] M.A, RIEFFEL, The classical limit of dynamics for spaces quantized by an action of
Rd, Canad. J. Math. 49(1996), 160–174.

FABIAN BELMONTE, SISSA-ISAS, VIA BONOMEA, 265, 728, BUILDING A, 34136
TRIESTE, ITALY

E-mail address: fabianbelmonte@sissa.it

MAX LEIN, EBERHARD KARLS UNIVERSITÄT TÜBINGEN, MATHEMATISCHES IN-
STITUT, AUF DER MORGENSTELLE 10, 72076 TÜBINGEN, GERMANY

E-mail address: lein@ma.tum.de
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