Journal of Operator Theory
Volume 69, Issue 1, Winter 2013 pp. 161-193.
The $L^p$-Fourier transform on locally compact quantum groupsAuthors: Martijn Caspers
Author institution: IMAPP, Radboud Universiteit, Nijmegen, 6525 AJ, The Netherlands
Summary: Using interpolation properties of non-commutative $L^p$-spaces associated with an arbitrary von Neumann algebra, we define an $L^p$-Fourier transform $1 \leqslant p \leqslant 2$ on locally compact quantum groups. We show that the Fourier transform determines a distinguished choice for the interpolation parameter as introduced by Izumi. We define a convolution product in the $L^p$-setting and show that the Fourier transform turns the convolution product into a product.
Keywords: locally compact quantum groups, Fourier transform, interpolation spaces
Contents Full-Text PDF