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INTRODUCTION

Let X be a compact metric space provided with a finite measure dx. Let
H0 be a non-negative self-adjoint operator acting on L2(X, dx). We assume that
H0 has discrete spectrum {λn}∞

n=1, where the eigenvalues are written in increas-
ing order and repeated according to multiplicity, and that its smallest eigen-
value λ1 = 0 has multiplicity 1 with corresponding eigenfunction φ1 = |X|−1/2,
where |X| is the volume of X. Given a bounded real potential V on X, we put
H = H0 + V, so that H also has discrete spectrum, which we denote by {µn}∞

n=1.
The problem is to write down a general list of abstract conditions on H0 which im-
ply that if H and H0 have the same spectrum, taking multiplicities into account,
then V is identically zero.

The classical theorem of Ambarzumyan solved this problem when X =
[a, b] and H0 f = −d2 f /dx2, subject to Neumann boundary conditions at a and
b, [1]. The result is also known for periodic boundary conditions, but the corre-
sponding result for Dirichlet boundary conditions is false; the best known inverse
spectral theorem in this context depends on knowing the spectrum of H for two
different sets of boundary conditions at a, b, [2]. Ambarzumyan’s theorem has
recently been extended to trees with a finite number of edges, [4], [16], [14], by
combining the Sturm–Liouville theory with a careful boundary value analysis. It
was also extended to compact symmetric spaces many years ago by Harrell [12],
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citing even earlier work by Guillemin and Weinstein. The present paper extends
it to a much broader context by adapting a range of standard techniques from the
theory of the heat equation in several dimensions. Theorem 3.3 establishes that if
µ1 > 0 and lim sup

n→∞
(µn− λn) 6 0 then V = 0, subject to certain generic conditions

on the heat kernels involved.
We apply our general theorem to arbitrary compact Riemannian manifolds

in Theorem 3.5, to compact quantum graphs in Section 4 and to finite combina-
torial graphs in Example 3.4, subject to Neumann (or Kirchhoff) boundary con-
ditions. Our proof depends on a list of abstract hypotheses that are known to
be satisfied in a wide variety of situations. The hypotheses are by no means the
weakest possible; the strategy of our proof is more important than the detailed
assumptions, and can be adapted to other cases.

In Sections 1 and 2 we prove some general facts about heat kernels, and
the reader may prefer to start in Section 3. In Section 4 we prove that all of the
hypotheses hold for a finite connected quantum graph X, subject to Kirchhoff
boundary conditions at every vertex.

1. PROPERTIES OF H0

We start by listing the hypotheses that will be used in the proofs.
(H1): The operator e−H0t has a non-negative integral kernel K0(t, x, y) for

t > 0, which is continuous on (0, ∞)× X× X.
(H2): There exist constants c > 0 and d > 0 such that 0 6 K0(t, x, x) 6

ct−d/2 for all t ∈ (0, 1).
(H3): There exists a constant a > 0 such that lim

t→0
td/2K0(t, x, x) = a for all

x /∈ N, where N is a set of zero measure.
(H4): The smallest eigenvalue λ1 of the operator H0 equals 0 and has mul-

tiplicity 1. The corresponding eigenfunction is φ1 = |X|−1/2.
We do not assume that H0 is a second order elliptic differential operator,

because we wish to allow other possibilities. For example H0 could be a fractional
power of a Laplacian. The case in which H0 is a discrete Laplacian on l2(X) for
some finite set X is discussed in Example 3.4. The case of the Laplace–Beltrami
operator on a compact Riemannian manifold is discussed in Theorem 3.5. The
conditions (H1) to (H4) have been examined in some detail in [6], from which we
quote the following consequences of (H1) and (H4).

The quadratic form defined on Quad(H0) = Dom(H1/2
0 ) by

Q0( f ) = 〈H1/2
0 f , H1/2

0 f 〉
is a Dirichlet form; see Theorem 1.3.2 of [6]. The one-parameter semigroup Tt =
e−H0t on L2(X, dx) is an irreducible symmetric Markov semigroup. It extends to
a one-parameter contraction semigroup on Lp(X, dx) for all 1 6 p 6 ∞, with
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the proviso that for p = ∞ the semigroup is not strongly continuous; see Proposi-
tion 1.4.3 of [6]. Mercer’s theorem ([9], Proposition 5.6.9) implies that the operator
e−H0t is trace class for all t > 0 and

tr[e−H0t] =
∫
X

K0(t, x, x)dx.

In particular
∞

∑
n=1

e−λnt < ∞

for all t > 0, where {λn}∞
n=1 are the eigenvalues of H0 written in increasing order

and repeated according to multiplicities. If φn are the corresponding normalized
eigenfunctions then by applying the formula

e−λntφn(x) =
∫
X

K0(t, x, y)φn(y)dy

we deduce that every eigenfunction φn is bounded and continuous on X. The
semigroup Tt is ultracontractive in the sense of Section 2.1 in [6] and the series

K0(t, x, y) =
∞

∑
n=1

e−λntφn(x)φn(y)

converges uniformly on [α, ∞)× X× X for every α > 0; see Theorem 2.1.4 of [6].
This implies that K0(t, x, y) converges uniformly to |X|−1 on X× X as t→ ∞, so

(1.1)
1

2|X| 6 K0(t, x, y) 6
3

2|X|
for all large enough t > 0.

The condition (H2) is much more specific, but necessary and sufficient con-
ditions for its validity are now classical.

PROPOSITION 1.1. Let H be a self-adjoint operator acting in L2(X, dx). If H is
bounded below and e−Ht is positivity preserving for all t > 0 then the following are
equivalent, the constant d > 0 being the same in all cases.

(i) The operator e−Ht satisfies

‖e−Ht f ‖∞ 6 c1t−d/4‖ f ‖2

for some c1 > 0, all f ∈ L2(X, dx) and all t ∈ (0, 1).
(ii) The bound∫

X

f 2 log( f )dx 6 εQ( f ) + β(ε)‖ f ‖2
2 + ‖ f ‖2

2 log(‖ f ‖2)

holds for all 0 6 f ∈ Quad(H) ∩ L1 ∩ L∞ and all ε ∈ (0, 1), where β(ε) = c2 −
(d/4) log(ε) for some c2 > 0; see Example 2.3.3 of [6].

(iii) The bound
‖ f ‖2+4/d

2 6 c3(Q( f ) + ‖ f ‖2
2)‖ f ‖4/d

1
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holds for some c3 > 0 and all 0 6 f ∈ Quad(H) ∩ L1; see Corollary 2.4.7 of [6].
(iv) Assuming d > 2, the bound

‖ f ‖2
2d/(d−2) 6 c4(Q( f ) + ‖ f ‖2

2)

holds for some c4 > 0 and all f ∈ Quad(H); see Corollary 2.4.3 of [6].
All of the above conditions imply that e−Ht has a measurable heat kernel K that

satisfies

(1.2) 0 6 K(t, x, y) 6 c5t−d/2

for some c5 > 0, almost all x, y ∈ X and all t ∈ (0, 1). Conversely, if ‖e−Ht‖L∞→L∞ 6
c6 for all t ∈ (0, 1) then (1.2) implies the previous conditions; see Lemma 2.1.2 of [6].

An important feature of all these conditions is that they depend on the qua-
dratic form Q and can therefore be transferred from one operator to another if the
quadratic forms are comparable.

EXAMPLE 1.2. Let H0 = −d2/dx2 act in L2((0, ∞), dx) subject to Neumann
boundary conditions at 0. Then

K0(t, x, y) = (4πt)−1/2(e−(x−y)2/(4t) + e−(x+y)2/(4t))

so
0 6 K0(t, x, y) 6 2(4πt)−1/2

for all t > 0 and x, y ∈ (0, ∞). Moreover

lim
t→0

(4πt)1/2K0(t, x, x) =

{
1 if x > 0,
2 if x = 0.

This explains the need for an exceptional set of zero measure in (H3).
One may also solve the corresponding example in Rn

+ = (0, ∞)n subject to
Neumann boundary conditions on the boundary. In this case the possible values
of lim

t→0
(4πt)1/2K0(t, x, x) are the integers 2r where 0 6 r 6 n. A related result for

general convex sets is given in Theorem 12 of [7].

2. PROPERTIES OF H = H0 + V

Given a self-adjoint operator H0 satisfying the hypotheses (H1) to (H4), we
put H = H0 + V where V is a bounded, measurable, real-valued potential; this
condition can surely be weakened. An application of the Trotter product formula
or a perturbation expansion imply that

‖e−Ht‖Lp→Lp 6 e‖V‖∞t

for all p ∈ [1, ∞] and t > 0. By using standard variational methods one sees that
H has discrete spectrum and that its eigenvalues {µn}∞

n=1, written in increasing
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order and repeated according to multiplicity, satisfy

λn − ‖V‖∞ 6 µn 6 λn + ‖V‖∞

for all n > 1. Hence

0 6 e−‖V‖∞ttr[e−H0t] 6 tr[e−Ht] 6 e‖V‖∞ttr[e−H0t]

for all t > 0.
The proof of the following theorem involves standard ingredients, [5], [6],

but we write it out in detail for the sake of completeness.

THEOREM 2.1. The operator e−Ht has a non-negative continuous kernel K for all
t > 0 and x, y ∈ X. The kernel satisfies

(2.1) 0 6 e−‖V‖∞tK0(t, x, y) 6 K(t, x, y) 6 e‖V‖∞tK0(t, x, y)

for all t > 0. The smallest eigenvalue µ1 of H has multiplicity 1.

Proof. We will assume throughout the proof that 0 < t < 1; once (2.1) has
been proved in this case it can be extended to larger t by using the semigroup
property. Since the quadratic form

Q( f ) = Q0( f ) +
∫
X

V(x)| f (x)|2 dx

is a Dirichlet form in the sense of Theorem 1.3.2 of [6], the operators e−Ht are all
positivity preserving. The quadratic forms of H0 and H are comparable, so we
may use Proposition 1.1 to deduce that for every t ∈ (0, 1) there is a bounded,
measurable integral kernel K(t, x, y) satisfying 0 6 K(t, x, y) 6 ct−d/2 if 0 < t < 1
and

(e−Ht f )(x) =
∫
X

K(t, x, y) f (y)dy

for all f ∈ L2. Since

e−Ht = e−Hεe−H(t−2ε)e−Hε

for all ε > 0 and t > 2ε, we can use the norm analyticity of e−H(t−2ε) in L2 to
deduce the norm analyticity of e−Ht from L1 to L∞. This implies that K(t, ·, ·)
depends analytically on t in the L∞(X× X) norm for 0 < t < ∞.

The upper and lower bounds in (2.1) are now direct applications of the Trot-
ter product formula. (1.1) and (2.1) together imply that the operator A = e−Ht

is irreducible for all large enough t > 0. Therefore its largest eigenvalue has
multiplicity 1 by a direct application of Theorem 13.3.6 of [9] to A/‖A‖.

The operator e−Ht has an operator norm convergent infinite series expan-
sion involving e−H0t and V, but we will use the more compact expression

(2.2) e−Ht = e−H0t − A(t) + B(t)
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where

A(t)=
t∫

s=0

e−H0(t−s)Ve−H0s ds, B(t)=
t∫

s=0

s∫
u=0

e−H0(t−s)Ve−H(s−u)Ve−H0u duds.

The integrands are norm continuous in {s : 0 < s < t}, respectively {(s, u) : 0 <
u < s < t}, and they are uniformly bounded in norm, so the integrals are norm
convergent and A(t), B(t) depend norm continuously on t.

The equation (2.2) has a version involving integral kernels, namely

(2.3) K(t, x, y) = K0(t, x, y)− L(t, x, y) + M(t, x, y)

for all t > 0 and x, y ∈ X, where

L(t, x, y) =
t∫

s=0

∫
z∈X

K0(t− s, x, z)V(z)K0(s, z, y)dz,

and we will prove that

(2.4) |M(t, x, y)| 6 ct2−d/2

for all t ∈ (0, 1) and x, y ∈ X.
We will also prove that all the kernels on the right-hand side of (2.3) are

continuous on (0, 1)× X × X, and this will establish that K is continuous on the
same set. The estimates below involve the uniform norm ‖ · ‖∞ on B = C(X×X).

The integral kernel of A(t) is

(2.5) L(t, x, y) =
t∫

s=0

Ls,t(x, y)ds

where Ls,t : X× X → R is defined by

Ls,t(x, y) =
∫
X

K0(t− s, x, z)V(z)K0(s, z, y)dz.

Now Ls,t ∈ B for all 0 < s < t and Ls,t depends norm continuously on s, t subject
to these conditions. We have to prove that the integral (2.5) is norm convergent
in B. This follows from

t∫
s=0

‖Ls,t‖∞ ds 6 ‖V‖∞

t∫
s=0

sup
x,y

{ ∫
X

K0(t− s, x, z)K0(s, z, y)dz
}

ds

= ‖V‖∞

t∫
s=0

sup
x,y
{K0(t, x, y)}ds 6 c‖V‖∞t1−d/2

provided 0 < t < 1.
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The integral kernel of B(t) is

(2.6) M(t, x, y) =
t∫

s=0

s∫
u=0

Mu,s,t(x, y)duds

where Mu,s,t : X× X → R is defined by

Mu,s,t(x, y) =
∫

X2

K0(t− s, x, z)V(z)K(s− u, z, w)V(w)K0(u, w, y)dwdz.

Without assuming that K(s− u, z, w) is continuous in z, w, one sees by (2.1) that
Mu,s,t ∈ B for all 0 < u < s < t, and that Mu,s,t depends norm continuously on
u, s, t subject to these conditions. We have to prove that the integral (2.6) is norm
convergent in B. We have

‖Mu,s,t‖∞ 6 ‖V‖2
∞‖Nu,s,t‖∞

where

Nu,s,t(x, y) =
∫

X2

K0(t− s, x, z)K(s− u, z, w)K0(u, w, y)dwdz

6 e‖V‖∞t
∫

X2

K0(t− s, x, z)K0(s− u, z, w)K0(u, w, y)dwdz

= e‖V‖∞tK0(t, x, y) 6 e‖V‖∞ ct−d/2,

provided 0 < t < 1. Therefore
t∫

s=0

s∫
u=0

‖Mu,s,t‖∞ duds 6 bt2−d/2

where b depends on ‖V‖∞.

COROLLARY 2.2. One has

(2.7) tr[e−Ht] = tr[e−H0t]− t
∫
X

K0(t, x, x)V(x)dx + ρ(t)

where ρ(t) = O(t2−d/2) as t→ 0.

Proof. One puts x = y in (2.3) and integrates with respect to x. The bound
on ρ(t) follows from (2.4).

3. THE MAIN RESULTS

In this section we assume that H0 satisfies (H1) to (H4) and that H = H0 +V
where V is a real, bounded, measurable potential on X. Both operators have
discrete spectrum, and their eigenvalues are denoted by {λn}∞

n=1, respectively
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{µn}∞
n=1, written in increasing order and repeated according to multiplicity. We

assumed that λ1 = 0 and proved that µ1 has multiplicity 1; see Theorem 2.1.
Our following theorem has something in common with Theorems 2.5, 3.4 of [17],
which obtain a related result for Schrödinger operators in one and two dimen-
sions subject to (3.1).

THEOREM 3.1. If µ1 > 0 and

(3.1)
∫
X

V(x)dx 6 0

then V = 0.

Proof. The variational estimate

µ1 6 Q(φ1) = |X|−1
∫
X

V(x)dx 6 0,

where φ1(x) = |X|−1/2, shows that µ1 = 0 under the stated conditions. We apply
the results of the last section to Hs = H0 + sV where s is a real parameter. The
smallest eigenvalue F(s) = µ1(s) of Hs has multiplicity 1 for all s ∈ R and there-
fore is an analytic function of s by a standard argument in perturbation theory.
The variational formula

F(s) = inf{〈(H + sV)φ, φ〉 : φ ∈ Dom(H) and ‖φ‖ = 1}
implies that F is concave, as the infimum of a family of linear functions; see Sec-
tion 4.5 of [8]. Finally F(0) = 0 and

F′(0) = 〈Vφ1, φ1〉 = |X|−1
∫
X

V(x)dx 6 0.

Since F(1) = 0, its concavity implies that F(s) must equal 0 for all s ∈ [0, 1]. By
its analyticity, F(s) = 0 for all s ∈ R.

If V does not vanish identically then (3.1) implies that its negative part can-
not vanish identically. Therefore there exists a function ψ ∈ L2(X, dx) such
that 〈Vψ, ψ〉 < 0. An approximation argument allows us to assume that ψ ∈
Quad(H0). We now conclude that

F(s) = Q0(ψ) + s〈Vψ, ψ〉 < 0

for all large enough s > 0. The contradiction implies that V = 0.

The following is our main inverse spectral theorem.

THEOREM 3.2. If µ1 > 0 and lim sup
t→0

σ(t) 6 0 where

σ(t) = td/2−1
∞

∑
n=1

(e−λnt − e−µnt)

then V = 0.
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Proof. We rewrite (2.7) in the form

td/2
∫
X

K0(t, x, x)V(x)dx= td/2−1{tr[e−H0t]−tr[e−Ht]}+td/2−1ρ(t)=σ(t)+td/2−1ρ(t)

and then take the limit of both sides as t → 0. The left hand side converges to
a
∫
X

V(x)dx where a > 0, by (H2) and (H3). We deduce that
∫
X

V(x)dx 6 0 and

may therefore apply Theorem 3.1.

The following corollary of Theorem 3.2 contains the original Ambarzumyan
theorem as a special case.

THEOREM 3.3. If µ1 > 0 and lim sup
n→∞

(µn − λn) 6 0 then V = 0.

Proof. Given ε > 0 there exists N = N(ε) such that µn − λn 6 ε for all
n > N. We then have

σ(t) = σ1(t) + σ2(t)

where

σ1(t) = td/2−1
N−1

∑
n=1

(e−λnt − e−µnt) 6 td/2
N−1

∑
n=1
|λn − µn|,

and

σ2(t) = td/2−1
∞

∑
n=N

(e−λnt − e−µnt) 6 td/2−1
∞

∑
n=N

(e−λnt(1− e−εt))

6 εtd/2
∞

∑
n=1

e−λnt 6 cε

for all t ∈ (0, 1), by an application of (H2). We conclude that lim sup
t→0

σ(t) 6 cε for

all ε > 0, and may therefore apply Theorem 3.2.

EXAMPLE 3.4. Let H0 be a (non-negative) discrete Laplacian on l2(X) for
some finite, combinatorial graph X, with |X| = n. One can bypass many of our
calculations by using the elementary formula

n

∑
r=1

µr −
n

∑
r=1

λr = tr[H − H0] = tr[V] = ∑
x∈X

V(x).

The relevant conditions on the eigenvalues in this case are

µ1 > 0 and
n

∑
r=1

µr 6
n

∑
r=1

λr.

However the analysis of the function F in Theorem 3.1 requires the assumptions
(H1) and (H4), and the use of the theory of irreducible symmetric Markov semi-
groups.
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THEOREM 3.5. The hypotheses (H1) to (H4) and therefore the conclusions of The-
orems 3.2 and 3.3 are valid if H0 is the Laplace–Beltrami operator on a compact, connected
Riemannian manifold X, subject to Neumann boundary conditions if X has a boundary
∂X; the boundary should satisfy the Lipschitz condition.

Proof. All of the hypotheses except (H2) and (H3) are minor variations on
results in [6]. The Lipschitz boundary condition is needed to obtain (H2), d being
the dimension of X. This is a result of a general principle that bounded changes
of the metric, and therefore of the local coordinate system, do not affect bounds
such as (H2), [7]. The precise heat kernel asymptotics required in (H3) holds for
all x /∈ ∂X, and is a small part of classical results of Minakshisundaram, Pleijel
and others concerning the small time asymptotics of the heat kernel; see [3], [5],
[11], [15]. One only obtains a complete asymptotic expansion if the potential is
smooth, but we only need the second coefficient in the full heat expansion, which
is known to satisfy

a1(g, V) = a1(g, 0)−
∫
X

Vdx.

See [11]. In this context the nature of the boundary is irrelevant by the principle
of “not feeling the boundary”; see Theorem 4.3 and [13].

4. COMPACT QUANTUM GRAPHS

In this section we prove that Theorems 3.2 and 3.3 are applicable when X is
a compact connected quantum graph. We assume that X is the union of a finite
number of edges e ∈ E , each of finite length. Each edge terminates at two vertices
out of a finite set V , and we assume that the graph as a whole is connected. The
operator H0 acts in L2(X, dx) by the formula H0 f (x) = −d2 f /dx2, subject to
Kirchhoff boundary conditions at each vertex; more precisely we require that all
functions in the domain of H0 are continuous and that the sum of the outgoing
derivatives vanishes at each vertex. All of our calculations depend on the fact
that the quadratic form associated with H0 is given by

Q0( f ) =
∫
X

| f ′(x)|2 dx

with domain Quad(H0) = Dom(H1/2
0 ) = W1,2(X) where this is the space of

all functions f whose restriction to any edge e lies in W1,2(e), together with the
requirement that f is continuous at every vertex. We observe that W1,2(X) is
continuously embedded in C(X). It is immediate from its definition that Q0 is a
Dirichlet form, so the operators e−H0t are positivity preserving for all t > 0. The
identity H01 = 0 implies that e−H0t1 = 1 for all t > 0, so e−H0t is a symmetric
Markov semigroup.
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LEMMA 4.1. The operator H0 on L2(X, dx) satisfies (H1), (H2) and (H4).

Proof. If we disconnect X by imposing Neumann boundary conditions in-
dependently at the end of each edge, then we obtain a new operator H1 associated
to a quadratic form Q1; this has the same formula as Q0, but a larger domain, con-
sisting of all functions f ∈ L2(X, dx) such that the restriction of f to any edge e
lies in W1,2(e). The operator H1 acts independently in each L2(e, dx) and its heat
kernel in e is of the form

Ke(t, x, y) =
1
a
+

2
a

∞

∑
n=1

e−π2n2t/a2
cos(πnx/a) cos(πny/a),

where we parametrize e by (0, a). One readily sees that each Ke is continuous and
that

|Ke(t, x, y)| 6 c1t−1/2

for some c1 > 0, all x, y ∈ e and all 0 < t < 1. Moreover Ke(t, x, y) > 0 because Q1
is a Dirichlet form. It follows from these observations that the various equivalent
conditions of Proposition 1.1 hold for Q1 with d = 1. Since Q0 is a restriction of
Q1, Proposition 1.1 implies that

0 6 K0(t, x, y) 6 c2t−1/2

for some c2 > 0, all x, y ∈ X and all 0 < t < 1. This completes the proof of (H2).
To prove (H1) we note that if {φn}∞

n=1 is an orthonormal basis of eigenfunc-
tions of H0 and λn are the corresponding eigenvalues, then

φn ∈ Dom(H0) ⊆ Dom(H1/2
0 ) = W1,2(X) ⊂ C(X).

Since the series

K0(t, x, y) =
∞

∑
n=1

e−λntφn(x)φn(y)

converges uniformly on [α, ∞)× X × X for every α > 0 by Theorem 2.1.4 of [6],
we deduce that K0 is continuous on (0, 1)× X× X.

The proof of (H4) depends on the observation that H0φ = 0 if and only if
φ ∈W1,2(X) ⊂ C(X) and

0 = Q0(φ) =
∫
X

|φ′(x)|2 dx.

This implies that φ is constant. Therefore 0 is an eigenvalue of multiplicity 1.

Our final task is to prove (H3).

LEMMA 4.2. Let Ka(t, x, y) be the heat kernel of the operator −d2/dx2 acting in
L2(−a, a) subject to Dirichlet boundary conditions at ±a. Then

(4.1) 0 6 Ka(t, x, y) 6 K∞(t, x, y) = (4πt)−1/2e−|x−y|2/(4t)
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for all t > 0 and x, y ∈ (−a, a). Moreover

(4.2) 1 >

a∫
−a

Ka(t, 0, x)dx > 1− 4e−a2/(8t)

and

(4.3) (4πt)−1/2 > Ka(t, 0, 0) > (4πt)−1/2(1− 15e−a2/(4t))

for all t > 0.

Proof. The inequality (4.1) follows directly from the monotonicity of the
Dirichlet heat kernel as a function of the region. Sharper versions of the inequal-
ities (4.2) and (4.3) may be proved by applying the Poisson summation formula
to the explicit eigenfunction expansion of Ka, [18]. An alternative proof of (4.2)
based on the properties of the underlying Brownian motion is given in Lemma 6.5
of [10].

One may prove (4.3) from (4.2) as follows. We define f , g : R→ (0, ∞) by

f (x) =

{
Ka(t, 0, x) if |x| 6 a,
0 otherwise,

g(x) = K∞(t, 0, x) = (4πt)−1/2e−x2/(4t),

so that 0 6 f (x) 6 g(x) 6 (4πt)−1/2 for all x ∈ R and
∫
R

g(x)dx = 1. Therefore

0 6 (8πt)−1/2 − Ka(2t, 0, 0) = K∞(2t, 0, 0)− Ka(2t, 0, 0)

=
∫
R

{g(x)2 − f (x)2}dx 6
∫
R

{g(x)− f (x)}2g(x)dx

6 (πt)−1/2
∫
R

{g(x)− f (x)}dx = (πt)−1/2
(

1−
a∫
−a

f (x)dx
)

6 (πt)−1/24e−a2/(8t),

by (H2). We finally obtain (4.3) upon replacing t by t/2.

We prove (H3) by using the principle of “not feeling the boundary”, [13].

THEOREM 4.3. The operator H0 on L2(X, dx) satisfies (H3), the exceptional set
N being the set of all vertices on X.

Proof. This repeats the argument used to prove (4.3). We assume that z ∈ X
is not a vertex and that a > 0 is its distance from the closest vertex. We then let
Ka denote the Dirichlet heat kernel for the interval I with centre z and length 2a.
Our task is to compare the heat kernel K of X with Ka. We use the following facts:

0 6 Ka(t, x, y) 6 K0(t, x, y)
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for all t > 0 and x, y ∈ X, where we put Ka(t, x, y) = 0 if x or y does not lie in the
interval I. In addition 0 6 K0(t, x, y) 6 ct−1/2 for all 0 < t < 1 and all x, y ∈ X.
Finally ∫

X

K0(t, x, y)dy = 1

for all t > 0 and x ∈ X.
Let f (x) = Ka(t, z, x) and g(x) = K0(t, z, x) so that 0 6 f (x) 6 g(x) for all

x ∈ X. We have

0 6
∫
X

{g(x)− f (x)}dx = 1−
∫
I

Ka(t, z, x)dx 6 4e−a2/(8t)

by (4.2). Therefore

K0(2t, z, z)− Ka(2t, z, z) =
∫
X

{g(x)2 − f (x)2}dx

6
∫
X

{g(x)− f (x)}2g(x)dx

6 c1t−1/2e−a2/(8t).

The theorem follows by combining this with (4.3).

Acknowledgements. Before proceeding, I should like to thank Professor Chun-Kong
Law for a very stimulating lecture in the Isaac Newton Institute in July 2010, where the
author learned about this problem.

REFERENCES

[1] V. AMBARZUMIAN, Über eine Frage der Eigenwerttheorie, Z. Phys. 53(1929), 690–695.

[2] G. BORG, Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe, Acta Math.
78(1946), 1–96.

[3] T.P. BRANSON, P.B. GILKEY, B. ORSTED, Leading terms in the heat invariants, Proc.
Amer. Math. Soc. 109(1990), 437–450.

[4] R. CARLSON, V. PIVOVARCHIK, Ambarzumian’s theorem for trees, Electro. J. Differen-
tial Equations 142(2007), 1–9.

[5] I. CHAVEL, Eigenvalues in Riemannian Geometry, Pure Appl. Math., vol. 115, Acad.
Press Inc., Orlando, Florida 1984.

[6] E.B. DAVIES, Heat Kernels and Spectral Theory, Cambridge Univ. Press, Cambridge
1989.

[7] E.B. DAVIES, Spectral properties of compact manifolds and changes of metric, Amer.
J. Math. 112(1990), 15–39.



208 E.B. DAVIES

[8] E.B. DAVIES, Spectral Theory and Differential Operators, Cambridge Univ. Press, Cam-
bridge 1995.

[9] E.B. DAVIES, Linear Operators and their Spectra, Cambridge Univ. Press, Cambridge
2007.

[10] E.B. DAVIES, M. VAN DEN BERG, Heat flow out of regions in Rm. Math. Z. 202(1989),
463–482.

[11] P.B. GILKEY, Invariance Theory, the Heat Equation and the Atiyah–Singer Index Theorem,
Math. Lecture Ser, vol. 11, Publish or Perish Inc., Wilmington, Delaware 1984.

[12] E.M. HARRELL, On the extension of Ambarzumian’s inverse spectral theorem to
compact symmetric spaces, Amer. J. Math. 109(1987), 787–795.

[13] E.P. HSU, On the principle of not feeling the boundary for diffusion processes, J.
London. Math. Soc. (2) 51(1995), 373–382.

[14] C.K. LAW, E. YANAGIDA, A solution to an Ambarzumyan problem on trees, Kodai
Math. J. 35(2012), 358–373.

[15] H.P. MCKEAN, JR., I.M. SINGER, Curvature and the eigenvalues of the Laplacian, J.
Differential Geom. 1(1967), 43–69.

[16] V.N. PIVOVARCHIK, Ambarzumian’s Theorem for a Sturm–Liouville boundary value
problem on a star-shaped graph, Funct. Anal. Appl. 39(2005), 148–151.

[17] B. SIMON, The bound state of weakly coupled Schrödinger operators in one and two
dimensions, Ann. Phys. 97(1976), 279–288.

[18] M. VAN DEN BERG, Bounds on Green’s functions of second-order differential equa-
tions, J. Math. Phys. 22(1981), 2452–2455.

E.B. DAVIES, DEPARTMENT OF MATHEMATICS, KING’S COLLEGE LONDON,
STRAND, LONDON, SE21 7BS, U.K.

E-mail address: E.Brian.Davies@kcl.ac.uk

Received September 14, 2010; posted on February 8, 2013.


	INTRODUCTION
	1. PROPERTIES OF H0
	2. PROPERTIES OF H=H0+V
	3. THE MAIN RESULTS
	4. COMPACT QUANTUM GRAPHS
	REFERENCES

