A FAMILY OF NON-COCYCLE CONJUGATE E_{0}-SEMIGROUPS OBTAINED FROM BOUNDARY WEIGHT DOUBLES

CHRISTOPHER JANKOWSKI

Communicated by William Arveson

Abstract

Let $\rho \in M_{n}(\mathbb{C})^{*}$ and $\rho^{\prime} \in M_{n^{\prime}}(\mathbb{C})^{*}$ be states, and define unital q-positive maps ϕ and ψ by $\phi(A)=\rho(A) I_{n}$ and $\psi(D)=\rho^{\prime}(D) I_{n^{\prime}}$ for all $A \in$ $M_{n}(\mathbb{C})$ and $D \in M_{n^{\prime}}(\mathbb{C})$. We show that if v and η are type II Powers weights, then the boundary weight doubles (ϕ, v) and (ψ, η) induce non-cocycle conjugate E_{0}-semigroups if ρ and ρ^{\prime} have different eigenvalue lists. We then classify the q-corners and hyper maximal q-corners from ϕ to ψ, finding that if v is a type II Powers weight of the form $v(\sqrt{I-\Lambda(1)} B \sqrt{I-\Lambda(1)})=(f, B f)$, where $\Lambda(1) \in B\left(L^{2}(0, \infty)\right)$ is the operator of multiplication by e^{-x}, then the E_{0}-semigroups induced by (ϕ, v) and (ψ, v) are cocycle conjugate if and only if $n=n^{\prime}$ and ϕ and ψ are conjugate.

KEYWORDS: E_{0}-semigroup, completely positive map, q-positive map.
MSC (2010): 46L57, 46L07.

1. INTRODUCTION

Let H be a separable Hilbert space, denoting its inner product by the symbol (\cdot, \cdot) which is conjugate-linear in its first entry and linear in its second. An E_{0}-semigroup $\alpha=\left\{\alpha_{t}\right\}_{t \geqslant 0}$ is a semigroup of unital $*$-endomorphisms of $B(H)$ which is weakly continuous in t. E_{0}-semigroups are divided into three types, depending on the existence and structure of their units. More specifically, if α is an E_{0}-semigroup and there is a strongly continuous semigroup $U=\left\{U_{t}\right\}_{t \geqslant 0}$ of bounded operators acting on H such that $\alpha_{t}(A) U_{t}=U_{t} A$ for all $A \in B(H)$ and $t \geqslant 0$, then we say that U is a unit for α. An E_{0}-semigroup is said to be spatial if it has at least one unit, and a spatial E_{0}-semigroup is called completely spatial if, in essence, its units can reconstruct H. We say an E_{0}-semigroup α is type I if it is completely spatial and type II if it is spatial but not completely spatial. If α has no units, we say it is of type III. Every spatial E_{0}-semigroup α is assigned an index $n \in \mathbb{Z}_{\geqslant 0} \cup\{\infty\}$ which corresponds to the dimension of a particular Hilbert space associated to its units. The type I E_{0}-semigroups have been classified up
to cocycle conjugacy by their index in [2]: If α is of type I_{n} (type I, index n) for $n \in \mathbb{N} \cup\{\infty\}$, then α is cocycle conjugate to the CCR/CAR flow of rank n, while if α is of type I_{0}, then it is a semigroup of $*$-automorphisms. Arveson's comprehensive book on E_{0}-semigroups [4] provides a detailed exploration of the index (Sections 2.5, 2.6, 3.6, and others), the CCR and CAR flows (Section 2.1), and other fundamental results in the theory of E_{0}-semigroups, along with many relatively recent results in the subject.

In contrast to the type I case, uncountably many examples of non-cocycle conjugate E_{0}-semigroups of types II and III are known (see, for example, [8], [7], [14], [13], [12], and [16]). Bhat's dilation theorem [5] and developments in the theory of CP-flows ([15] and [14]) have led to the introduction of boundary weight doubles and related cocycle conjugacy results for E_{0}-semigroups in [9]. A boundary weight double is a pair (ϕ, v), where $\phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ is q-positive (that is, $\phi(I+t \phi)^{-1}$ is completely positive for all $t \geqslant 0$) and v is a positive boundary weight over $L^{2}(0, \infty)$. If ϕ is unital and v is normalized and unbounded (in which case we say v is a type II Powers weight), then (ϕ, v) induces a unital CP-flow whose Bhat minimal dilation is a type $\mathrm{I}_{0} E_{0}$-semigroup α^{d}. If $\phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ is unital and q-positive and $U \in M_{n}(\mathbb{C})$ is unitary, then the $\operatorname{map} \phi_{U}(A)=U^{*} \phi\left(U A U^{*}\right) U$ is also unital and q-positive. The relationship between ϕ and ϕ_{U} is analogous to the definition of conjugacy for E_{0}-semigroups. With this in mind, we say that q-positive $\operatorname{maps} \phi, \psi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ are conjugate if $\psi=\phi_{U}$ for some unitary $U \in M_{n}(\mathbb{C})$. If v is a type II Powers weight of the form $v(\sqrt{I-\Lambda(1)} B \sqrt{I-\Lambda(1)})=(f, B f)$, where $\Lambda(1) \in B\left(L^{2}(0, \infty)\right)$ is defined by $(\Lambda(1) g)(x)=\mathrm{e}^{-x} g(x)$ for all $g \in L^{2}(0, \infty)$ and $x>0$, then (ϕ, v) and $(\phi U, v)$ induce cocycle conjugate E_{0}-semigroups (for details, see Proposition 2.11 of [10] and the discussion preceding it).

Suppose $\phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ and $\psi: M_{n^{\prime}}(\mathbb{C}) \rightarrow M_{n^{\prime}}(\mathbb{C})$ are unital rank one q-positive maps, so for some states $\rho \in M_{n}(\mathbb{C})^{*}$ and $\rho^{\prime} \in M_{n^{\prime}}(\mathbb{C})^{*}$, we have $\phi(A)=\rho(A) I_{n}$ and $\psi(D)=\rho^{\prime}(D) I_{n^{\prime}}$ for all $A \in M_{n}(\mathbb{C}), D \in M_{n^{\prime}}(\mathbb{C})$. Let v and η be type II Powers weights. We prove three main results. First, we find that if (ϕ, v) and (ψ, η) induce cocycle conjugate E_{0}-semigroups, then ρ and ρ^{\prime} have identical eigenvalue lists (Definition 2.13 and Proposition 3.4). We then find all q-corners and hyper maximal q-corners from ϕ to ψ (see Remark 3.3 and Theorems 3.8 and 3.9). With this result in hand, we complete the cocycle conjugacy comparison theory for E_{0}-semigroups α^{d} and β^{d} induced by (ϕ, v) and (ψ, v) in the case that v is of the form $v(\sqrt{I-\Lambda(1)} B \sqrt{I-\Lambda(1)})=(f, B f)$, finding that α^{d} and β^{d} are cocycle conjugate if and only if $n=n^{\prime}$ and ϕ is conjugate to ψ (Theorem 3.10.

2. BACKGROUND

2.1. q-POSITIVE AND q-PURE MAPS. Let $\phi: \mathfrak{A} \rightarrow \mathfrak{B}$ be a linear map between unital C^{*}-algebras. For each $n \in \mathbb{N}$, define $\phi_{n}: M_{n}(\mathfrak{A}) \rightarrow M_{n}(\mathfrak{B})$ by

$$
\phi_{n}\left(\begin{array}{ccc}
A_{11} & \cdots & A_{1 n} \\
\vdots & \ddots & \vdots \\
A_{n 1} & \cdots & A_{n n}
\end{array}\right)=\left(\begin{array}{ccc}
\phi\left(A_{11}\right) & \cdots & \phi\left(A_{1 n}\right) \\
\vdots & \ddots & \vdots \\
\phi\left(A_{n 1}\right) & \cdots & \phi\left(A_{n n}\right)
\end{array}\right)
$$

We say that ϕ is completely positive if ϕ_{n} is positive for all $n \in \mathbb{N}$. From the work of Choi [6] and Arveson [1], we know that every normal completely positive map $\phi: B(H) \rightarrow B(K)(H, K$ separable Hilbert spaces) can be written in the form

$$
\phi(A)=\sum_{i=1}^{n} S_{i} A S_{i}^{*}
$$

for some $n \in \mathbb{N} \cup\{\infty\}$ and bounded operators $S_{i}: H \rightarrow K$ which are linearly independent over $\ell_{2}(\mathbb{N})$.

We will be interested in a particular kind of completely positive map:
DEFINITION 2.1. Let $\phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a linear map with no negative eigenvalues. We say ϕ is q-positive (and write $\phi \geqslant_{q} 0$) if $\phi(I+t \phi)^{-1}$ is completely positive for all $t \geqslant 0$.

Powers introduced the term " q-positive" in Definition 4.28 of [15] in order to describe boundary weight maps which give rise to CP-flows. Our definition of q-positivity serves the same purpose with regard to constructing unital CP-flows through boundary weight doubles, as we will see in Proposition 2.7. We make two observations in light of Definition 2.1 First, it is not uncommon for a completely positive map to have negative eigenvalues. Second, there is no "slowest rate of failure" for q-positivity: For every $s \geqslant 0$, there exists a linear map ϕ with no negative eigenvalues such that $\phi(I+t \phi)^{-1}(t \geqslant 0)$ is completely positive if and only if $t \leqslant s$. These observations are discussed in detail in Section 2.1 of [10].

There is a natural order structure for q-positive maps. If $\phi, \psi: M_{n}(\mathbb{C}) \rightarrow$ $M_{n}(\mathbb{C})$ are q-positive, we say ϕq-dominates $\psi\left(\right.$ i.e. $\left.\phi \geqslant_{q} \psi\right)$ if $\phi(I+t \phi)^{-1}-\psi(I+$ $t \psi)^{-1}$ is completely positive for all $t \geqslant 0$. It is not always true that $\phi \geqslant q \lambda \phi$ if $\lambda \in(0,1)$ (for a large family of counterexamples, see Theorem 6.11 of [9]). However, if ϕ is q-positive, then for every $s \geqslant 0$, we have $\phi \geqslant_{q} \phi(I+s \phi)^{-1} \geqslant_{q} 0$ ([9], Proposition 4.1). If these are the only nonzero q-subordinates of ϕ, we say ϕ is q-pure. The unital q-pure maps which are either rank one or invertible have been classified ([9], Proposition 5.2 and Theorem 6.11).

If ϕ is a unital q-positive map, then as $t \rightarrow \infty$, the maps $t \phi(I+t \phi)^{-1}$ converge to an idempotent completely positive map L_{ϕ} which has interesting properties (see Lemma 3.1 of [10]):

Lemma 2.2. Suppose $\phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ is q-positive and $\left\|t \phi(I+t \phi)^{-1}\right\|<$ 1 for all $t \geqslant 0$. Then the maps $t \phi(I+t \phi)^{-1}$ have a unique norm limit L_{ϕ} as $t \rightarrow \infty$, and L_{ϕ} is completely positive. Furthermore,
(i) $\phi=\phi \circ L_{\phi}=L_{\phi} \circ \phi$,
(ii) $L_{\phi}^{2}=L_{\phi}$,
(iii) $\operatorname{range}\left(L_{\phi}\right)=\operatorname{range}(\phi)$, and
(iv) nullspace $\left(L_{\phi}\right)=$ nullspace (ϕ).
2.2. E_{0}-SEMIGROUPS AND CP-FLOWS. From a celebrated result of Wigner [17], we know that every one-parameter group $\alpha=\left\{\alpha_{t}\right\}_{t \in \mathbb{R}}$ of $*$-automorphisms of $B(H)$ arises from a strongly continuous unitary group $\left\{V_{t}\right\}_{t \in \mathbb{R}}$ in the sense that $\alpha_{t}(A)=V_{t} A V_{t}^{*}$ for all $t \in \mathbb{R}$ and $A \in B(H)$.

Definition 2.3. Let H be a separable Hilbert space. We say a family $\alpha=$ $\left\{\alpha_{t}\right\}_{t \geqslant 0}$ of $*$-endomorphisms of $B(H)$ is an E_{0}-semigroup if:
(i) $\alpha_{s} \circ \alpha_{t}=\alpha_{s+t}$ for all $s, t \geqslant 0$ and $\alpha_{0}(A)=A$ for all $A \in B(H)$;
(ii) for each $f, g \in H$ and $A \in B(H)$, the inner product $\left(f, \alpha_{t}(A) g\right)$ is continuous in t;
(iii) $\alpha_{t}(I)=I$ for all $t \geqslant 0$.

We have two notions of equivalence for E_{0}-semigroups:
DEFINITION 2.4. Let α and β be E_{0}-semigroups acting on $B\left(H_{1}\right)$ and $B\left(H_{2}\right)$, respectively. We say α and β are conjugate if there is a $*$-isomorphism θ from $B\left(H_{1}\right)$ onto $B\left(H_{2}\right)$ such that $\theta \circ \alpha_{t}=\beta_{t} \circ \theta$ for all $t \geqslant 0$.

We say α and β are cocycle conjugate if α is conjugate to β^{\prime}, where β^{\prime} is an E_{0} semigroup of $B\left(H_{2}\right)$ satisfying the following condition: For some strongly continuous family of unitaries $W=\left\{W_{t}\right\}_{t \geqslant 0}$ acting on H_{2} and satisfying $W_{t} \beta_{t}\left(W_{s}\right)=$ W_{t+s} for all $s \geqslant 0$ and $t \geqslant 0$, we have $\beta_{t}^{\prime}(A)=W_{t} \beta_{t}(A) W_{t}^{*}$ for all $A \in B\left(H_{2}\right)$ and $t \geqslant 0$.

Let K be a separable Hilbert space, and form $H=K \otimes L^{2}(0, \infty)$, which we identify with the space of K-valued measurable functions on $(0, \infty)$ which are square integrable. Let $U=\left\{U_{t}\right\}_{t \geqslant 0}$ be the right shift semigroup on H, so for all $t \geqslant 0, f \in H$, and $x>0$, we have

$$
\left(U_{t} f\right)(x)=f(x-t) \quad \text { if } x>t ; \quad\left(U_{t} f\right)(x)=0 \quad \text { if } x \leqslant t
$$

A strongly continuous semigroup $\alpha=\left\{\alpha_{t}\right\}_{t \geqslant 0}$ of completely positive contractions from $B(H)$ into itself is called a $C P$-flow over K if $\alpha_{t}(A) U_{t}=U_{t} A$ for all $A \in B(H)$ and $t \geqslant 0$. A result of Bhat in [5] shows that if α is unital, then it minimally dilates to a unique (up to conjugacy) E_{0}-semigroup α^{d}. We may naturally construct a CP-flow $\beta=\left\{\beta_{t}\right\}_{t \geqslant 0}$ over K using the right shift semigroup by defining

$$
\beta_{t}(A)=U_{t} A U_{t}^{*}
$$

for all $A \in B(H), t \geqslant 0$. In fact, if α is any CP-flow over K, then α dominates β in the sense that $\alpha_{t}-\beta_{t}$ is completely positive for all $t \geqslant 0$.

Define $\Lambda: B(K) \rightarrow B(H)$ by

$$
(\Lambda(A) f)(x)=\mathrm{e}^{-x} A f(x)
$$

for all $A \in B(K), f \in H$, and $x \in(0, \infty)$, and let $\mathfrak{A}(H)$ be the algebra

$$
\mathfrak{A}(H)=\sqrt{I-\Lambda\left(I_{K}\right)} B(H) \sqrt{I-\Lambda\left(I_{K}\right)}
$$

We say a linear functional τ acting on $\mathfrak{A}(H)$ is a boundary weight (denoted $\tau \in$ $\left.\mathfrak{A}(H)_{*}\right)$ if the functional ℓ defined on $B(H)$ by

$$
\ell(A)=\tau\left(\sqrt{I-\Lambda\left(I_{K}\right)} A \sqrt{I-\Lambda\left(I_{K}\right)}\right)
$$

satisfies $\ell \in B(H)_{*}$. Boundary weights were first defined in Definition 4.16 of [15], where their relationship to CP-flows was explored in depth. For an additional discussion of boundary weights and their properties, we refer the reader to Definition 1.10 of [11] and the remarks that follow it.

Every CP-flow over K corresponds to a boundary weight map $\rho \rightarrow \omega(\rho)$ from $B(K)_{*}$ to $\mathfrak{A}(H)_{*}([15])$. On the other hand, it is an extremely important and nontrivial fact that, under certain conditions, a map from $B(K)_{*}$ to $\mathfrak{A}(H)_{*}$ can induce a CP-flow (see Theorems 4.17, 4.23, and 4.27 of [15]):

THEOREM 2.5. Let $\rho \rightarrow \omega(\rho)$ be a completely positive mapping from $B(K)_{*}$ into $\mathfrak{A}(H)_{*}$ satisfying $\omega(\rho)\left(I-\Lambda\left(I_{K}\right)\right) \leqslant \rho\left(I_{K}\right)$ for all positive ρ. Let $\left\{U_{t}\right\}_{t \geqslant 0}$ be the right shift semigroup acting on H. For each $t>0$, define a truncated boundary weight map $\rho \in B(K)_{*} \rightarrow \omega_{t}(\rho) \in B(H)_{*} b y$

$$
\omega_{t}(\rho)(A)=\omega(\rho)\left(U_{t} U_{t}^{*} A U_{t} U_{t}^{*}\right)
$$

for all $A \in B(H)$. If the maps

$$
\widehat{\pi}_{t}:=\omega_{t}\left(I+\widehat{\Lambda} \omega_{t}\right)^{-1}
$$

are completely positive contractions from $B(K)_{*}$ into $B(H)_{*}$ for all $t>0$, then $\rho \rightarrow$ $\omega(\rho)$ is the boundary weight map of a CP-flow over K. The CP-flow is unital if and only if $\omega(\rho)\left(I-\Lambda\left(I_{K}\right)\right)=\rho\left(I_{K}\right)$ for all $\rho \in B(K)_{*}$.

If α is a CP-flow over \mathbb{C}, then we identify its boundary weight map $c \rightarrow \omega(c)$ with the single positive boundary weight $\omega:=\omega(1)$, so ω has the form

$$
\omega(\sqrt{I-\Lambda(1)} A \sqrt{I-\Lambda(1)})=\sum_{i=1}^{k}\left(f_{i}, A f_{i}\right)
$$

for some mutually orthogonal nonzero L^{2}-functions $\left\{f_{i}\right\}_{i=1}^{k}(k \in \mathbb{N} \cup\{\infty\})$ with $\sum_{i=1}^{k}\left\|f_{i}\right\|^{2}<\infty$. We call ω a positive boundary weight over $L^{2}(0, \infty)$, and, following the notation of [11], we write $\omega \in \mathfrak{A}\left(L^{2}(0, \infty)\right)_{*}^{+}$. We say ω is bounded if there exists some $r>0$ such that $|\omega(B)| \leqslant r\|B\|$ for all $B \in \mathfrak{A}(H)$. Otherwise, we say ω is unbounded. Suppose $\omega(I-\Lambda(1))=1$ (i.e. ω is normalized), so α is unital and therefore dilates to an E_{0}-semigroup α^{d}. Results from [15] show that α^{d} is of type I_{k} if ω is bounded but of type II_{0} if ω is unbounded, leading us to make the following definition:

Definition 2.6. A boundary weight $v \in \mathfrak{A}\left(L^{2}(0, \infty)\right)_{*}$ is called a Powers weight if v is positive and normalized. We say a Powers weight v is type I if it is bounded and type II if it is unbounded.

We note that if v is a type II Powers weight, then for the weights v_{t} defined by $v_{t}(A)=v\left(U_{t} U_{t}^{*} A U_{t} U_{t}^{*}\right)$ for $A \in B\left(L^{2}(0, \infty)\right)$ and $t>0$, both $v_{t}(I)$ and $v_{t}(\Lambda(1))$ approach infinity as $t \rightarrow 0+$. We can combine unital q-positive maps with type II Powers weights to obtain E_{0}-semigroups (see Proposition 3.2 and Corollary 3.3 of [9]):

Proposition 2.7. Let $H=\mathbb{C}^{n} \otimes L^{2}(0, \infty)$. Let $\phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a unital q-positive map, and let v be a type II Powers weight. Let $\Omega_{v}: \mathfrak{A}(H) \rightarrow M_{n}(\mathbb{C})$ be the map that sends $A=\left(A_{i j}\right) \in M_{n}\left(\mathfrak{A}\left(L^{2}(0, \infty)\right)\right) \cong \mathfrak{A}(H)$ to the matrix $\left(v\left(A_{i j}\right)\right) \in$ $M_{n}(\mathbb{C})$. The map $\rho \rightarrow \omega(\rho)$ from $M_{n}(\mathbb{C})^{*}$ into $\mathfrak{A}(H)_{*}$ defined by

$$
\omega(\rho)(A)=\rho\left(\phi\left(\Omega_{v}(A)\right)\right)
$$

is the boundary weight map of a unital CP-flow a over \mathbb{C}^{n} whose Bhat minimal dilation α^{d} is a type $\mathrm{I}_{0} E_{0}$-semigroup.

In the notation of the previous proposition, we call α^{d} the E_{0}-semigroup induced by the boundary weight double (ϕ, v). In order to compare E_{0}-semigroups induced by boundary weight doubles, we appeal to results of [15], where Powers defined corners between CP-semigroups and showed that two E_{0}-semigroups are cocycle conjugate if and only if only if there is a corner from one to the other ([15], Definition 3.7 and Lemma 3.8). Furthermore, if α and β are unital CP-flows which induce type $\mathrm{I}_{0} E_{0}$-semigroups α^{d} and β^{d}, then α^{d} and β^{d} are cocycle conjugate if and only if there is a hyper maximal flow corner from α to β ([15], Definition 4.53 and Theorem 4.56).

In [14], Powers defined q-corners and hyper maximal q-corners ([14], Definition 3.11) between Powers weights. As a consequence of Theorem 4.56 of [15], type II Powers weights v and η induce cocycle conjugate E_{0}-semigroups if and only if there is a hyper maximal q-corner from v to η. Powers also found a condition involving the trace density operators for v and η which was necessary and sufficient for v and η to induce cocycle conjugate E_{0}-semigroups ([14], Theorem 3.23). Motivated by the above results, we define corners, q-corners, and hyper maximal q-corners in an analogous context ([9], Definitions 3.4 and 4.4):

DEFINITION 2.8. Suppose $\phi: B\left(H_{1}\right) \rightarrow B\left(K_{1}\right)$ and $\psi: B\left(H_{2}\right) \rightarrow B\left(K_{2}\right)$ are normal completely positive maps. Write each $A \in B\left(H_{1} \oplus H_{2}\right)$ as $A=\left(A_{i j}\right)$, where $A_{i j} \in B\left(H_{j}, H_{i}\right)$ for each $i, j=1,2$. We say a linear map $\gamma: B\left(H_{2}, H_{1}\right) \rightarrow$ $B\left(K_{2}, K_{1}\right)$ is a corner from α to β if $\Theta: B\left(H_{1} \oplus H_{2}\right) \rightarrow B\left(K_{1} \oplus K_{2}\right)$ defined by

$$
\Theta\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)=\left(\begin{array}{cc}
\phi\left(A_{11}\right) & \gamma\left(A_{12}\right) \\
\gamma^{*}\left(A_{21}\right) & \psi\left(A_{22}\right)
\end{array}\right)
$$

is normal and completely positive.

Suppose $H_{1}=K_{1}=\mathbb{C}^{n}$ and $H_{2}=K_{2}=\mathbb{C}^{m}$. We say $\gamma: M_{n, m}(\mathbb{C}) \rightarrow$ $M_{n, m}(\mathbb{C})$ is a q-corner from ϕ to ψ if $\Theta \geqslant_{q} 0$. A q-corner γ is hyper maximal if, whenever

$$
\Theta \geqslant_{q} \Theta^{\prime}=\left(\begin{array}{cc}
\phi^{\prime} & \gamma \\
\gamma^{*} & \psi^{\prime}
\end{array}\right) \geqslant_{q} 0
$$

we have $\Theta=\Theta^{\prime}$.
Hyper maximal q-corners between unital q-positive maps ϕ and ψ allow us to compare E_{0}-semigroups induced by (ϕ, v) and (ψ, v) if v is a particular kind of type II Powers weight ([]9], Proposition 4.6):

Proposition 2.9. Let $\phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ and $\psi: M_{k}(\mathbb{C}) \rightarrow M_{k}(\mathbb{C})$ be unital q-positive maps, and let v be a type II Powers weight of the form

$$
v(\sqrt{I-\Lambda(1)} B \sqrt{I-\Lambda(1)})=(f, B f)
$$

The boundary weight doubles (ϕ, v) and (ψ, v) induce cocycle conjugate E_{0}-semigroups if and only if there is a hyper maximal q-corner from ϕ to ψ.

From [9], we know that a unital rank one map $\phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ is q positive if and only if it has the form $\phi(A)=\rho(A) I$ for a state $\rho \in M_{n}(\mathbb{C})^{*}$, and that ϕ is q-pure if and only if ρ is faithful. We also have the following comparison result ([9], Theorem 5.4), which we will extend in this paper to all unital rank one q-positive maps (Theorem 3.10):

THEOREM 2.10. Let $\phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ and $\psi: M_{n^{\prime}}(\mathbb{C}) \rightarrow M_{n^{\prime}}(\mathbb{C})$ be rank one unital q-pure maps, so for some faithful states $\rho \in M_{n}(\mathbb{C})^{*}$ and $\rho^{\prime} \in M_{n^{\prime}}(\mathbb{C})^{*}$, we have

$$
\phi(A)=\rho(A) I_{n} \quad \text { and } \quad \psi(D)=\rho^{\prime}(D) I_{n^{\prime}}
$$

for all $A \in M_{n}(\mathbb{C})$ and $D \in M_{n^{\prime}}(\mathbb{C})$. Let v be a type II Powers weight of the form

$$
v(\sqrt{I-\Lambda(1)} B \sqrt{I-\Lambda(1)})=(f, B f)
$$

The E_{0}-semigroups induced by (ϕ, v) and (ψ, v) are cocycle conjugate if and only if $n=n^{\prime}$ and for some unitary $U \in M_{n}(\mathbb{C})$ we have $\rho^{\prime}(A)=\rho\left(U A U^{*}\right)$ for all $A \in$ $M_{n}(\mathbb{C})$.
2.3. CONJUGACY FOR q-POSITIVE MAPS. We will consider equivalence classes of q-positive maps up to a relation we call conjugacy. More specifically, if ϕ : $M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ is a unital q-positive map and $U \in M_{n}(\mathbb{C})$ is any unitary matrix, the $\operatorname{map} \phi_{U}(A):=U^{*} \phi\left(U A U^{*}\right) U$ is also unital and q-positive. We have the following definition from [10]:

DEFINITION 2.11. Let $\phi, \psi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be q-positive maps. We say ϕ is conjugate to ψ if $\psi=\phi_{U}$ for some unitary $U \in M_{n}(\mathbb{C})$.

Conjugacy is clearly an equivalence relation, and its definition is analogous to that of conjugacy for E_{0}-semigroups. Indeed, since every $*$-isomorphism of $M_{n}(\mathbb{C})$ is implemented by unitary conjugation, it follows that two q-positive maps $\phi, \psi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ are conjugate if and only if $\theta \circ \phi=\psi \circ \theta$ for some *-isomorphism θ of $M_{n}(\mathbb{C})$. If v is a type II Powers weight of the form

$$
v(\sqrt{I-\Lambda(1)} B \sqrt{I-\Lambda(1)})=(f, B f)
$$

then conjugacy between unital q-positive maps ϕ and ψ is always a sufficient condition for (ϕ, v) and (ψ, v) to induce cocycle conjugate E_{0}-semigroups. To see this, we note that if $\phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ is unital and q-positive, then the map $\gamma: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ defined by $\gamma(A)=\phi\left(A U^{*}\right) U$ is a hyper maximal q-corner from ϕ to ϕ_{U} (for details, see the discussion preceding Proposition 2.11 of [10]), whereby Proposition 2.9 gives us:

Proposition 2.12. Let $\phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be unital and q-positive, and suppose ψ is conjugate to ϕ. If v is a type II Powers weight of the form

$$
v(\sqrt{I-\Lambda(1)} B \sqrt{I-\Lambda(1)})=(f, B f)
$$

then (ϕ, v) and (ψ, v) induce cocycle conjugate E_{0}-semigroups.
In the case that ϕ and ψ are unital rank one q-pure maps and v is a type II Powers weight of the form $v(\sqrt{I-\Lambda(1)} B \sqrt{I-\Lambda(1)})=(f, B f)$, Theorem 2.10 states that conjugacy between ϕ and ψ is both necessary and sufficient for (ϕ, v) and (ψ, v) induce cocycle conjugate E_{0}-semigroups.

Let $\phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a unital rank one q-positive map, so $\phi(A)=$ $\rho(A) I$ for some state $\rho \in M_{n}(\mathbb{C})^{*}$. It is well-known that we can write ρ in the form

$$
\begin{equation*}
\rho(A)=\sum_{i=1}^{k \leqslant n} \lambda_{i}\left(g_{i}, A g_{i}\right) \tag{2.1}
\end{equation*}
$$

for some mutually orthogonal unit vectors $\left\{g_{i}\right\}_{i=1}^{k} \subset \mathbb{C}^{n}$ and some positive numbers $\lambda_{1} \geqslant \cdots \geqslant \lambda_{k}>0$ such that $\sum_{i=1}^{k} \lambda_{i}=1$. With the conditions of the previous sentence satisfied, the number k and the monotonically decreasing set $\left\{\lambda_{i}\right\}_{i=1}^{k}$ are unique.

Definition 2.13. Assume the notation of the previous paragraph. We call $\left\{\lambda_{i}\right\}_{i=1}^{k}$ the eigenvalue list for ρ.

We should note that our definition differs from a previous definition of eigenvalue list in the literature (for example, [3]) in that our eigenvalue lists do not include zeros.

Let $\left\{e_{i}\right\}_{i=1}^{n}$ be the standard basis for \mathbb{C}^{n}. If ρ has the form (2.1) and $U \in$ $M_{n}(\mathbb{C})$ is any unitary matrix such that $U e_{i}=g_{i}$ for all $i=1, \ldots, k$, then

$$
\rho\left(U A U^{*}\right)=\sum_{i=1}^{k} \lambda_{i}\left(g_{i}, U A U^{*} g_{i}\right)=\sum_{i=1}^{k} \lambda_{i}\left(U^{*} g_{i}, A U^{*} g_{i}\right)=\sum_{i=1}^{k} \lambda_{i}\left(e_{i}, A e_{i}\right)
$$

and

$$
\begin{equation*}
\phi_{U}(A)=U^{*} \phi\left(U A U^{*}\right) U=U^{*}\left[\left(\sum_{i=1}^{k} \lambda_{i}\left(e_{i}, A e_{i}\right)\right) I\right] U=\left(\sum_{i=1}^{k} \lambda_{i} a_{i i}\right) I \tag{2.2}
\end{equation*}
$$

for all $A \in M_{n}(\mathbb{C})$. We will use this fact repeatedly.

3. OUR RESULTS

We begin with the following observation:
LEMMA 3.1. Let $\phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ and $\psi: M_{n^{\prime}}(\mathbb{C}) \rightarrow M_{n^{\prime}}(\mathbb{C})$ be unital q positive maps, and let v and η be type II Powers weights. If the boundary weight doubles (ϕ, v) and (ψ, η) induce cocycle conjugate E_{0}-semigroups, there is a corner γ from L_{ϕ} to L_{ψ} such that $\|\gamma\|=1$.

Proof. This is a slight generalization of Lemma 5.3 of [9] (where ϕ and ψ were assumed to have rank one and be q-pure), but its proof is identical. The exact same argument as in the proof of Lemma 5.3 shows that there is a corner γ from $\lim _{t \rightarrow 0^{+}} v_{t}(\Lambda(1)) \phi\left(I+v_{t}(\Lambda(1)) \phi\right)^{-1}$ to $\lim _{t \rightarrow 0^{+}} \eta_{t}(\Lambda(1)) \psi\left(I+\eta_{t}(\Lambda(1)) \psi\right)^{-1}$ (if the limits exist) such that $\|\gamma\|=1$. We observe that the former limit is L_{ϕ} and the latter limit is L_{ψ}. Indeed, the values $\left\{v_{t}(\Lambda(1))\right\}_{t>0}$ and $\left\{\eta_{t}(\Lambda(1))\right\}_{t>0}$ are monotonically decreasing in t, and since v and η are unbounded, we have

$$
\lim _{t \rightarrow 0+} v_{t}(\Lambda(1))=\lim _{t \rightarrow 0+} \eta_{t}(\Lambda(1))=\infty
$$

We have the following lemma (a consequence of Lemma 3.5 of [9]):
LEMMA 3.2. Let $\phi: M_{n}(\mathbb{C}) \rightarrow M_{r}(\mathbb{C}), \psi: M_{n^{\prime}}(\mathbb{C}) \rightarrow M_{r^{\prime}}(\mathbb{C})$ be completely positive maps, so for some $k, k^{\prime} \in \mathbb{N}$ and sets of linearly independent matrices $\left\{S_{i}\right\}_{i=1}^{k} \subset$ $M_{r, n}(\mathbb{C})$ and $\left\{T_{i}\right\}_{i=1}^{k^{\prime}} \subset M_{r^{\prime}, n^{\prime}}(\mathbb{C})$, we have

$$
\begin{equation*}
\phi(A)=\sum_{i=1}^{k} S_{i} A S_{i}^{*}, \quad \psi(D)=\sum_{i=1}^{k^{\prime}} T_{i} A T_{i}^{*} \tag{3.1}
\end{equation*}
$$

for all $A \in M_{n}(\mathbb{C}), D \in M_{n^{\prime}}(\mathbb{C})$.
A linear map $\gamma: M_{n, n^{\prime}}(\mathbb{C}) \rightarrow M_{r, r^{\prime}}(\mathbb{C})$ is a corner from ϕ to ψ if and only if, for some $C=\left(c_{i j}\right) \in M_{k, k^{\prime}}(\mathbb{C})$ with $\|C\| \leqslant 1$, we have, for all $B \in M_{n, n^{\prime}}(\mathbb{C})$,

$$
\gamma(B)=\sum_{i=1}^{k} \sum_{j=1}^{k^{\prime}} c_{i j} S_{i} B T_{j}^{*} .
$$

REMARK 3.3. Suppose γ is a q-corner from ϕ to ψ. Let $U \in M_{n}(\mathbb{C})$ and $V \in M_{n^{\prime}}(\mathbb{C})$ be arbitrary unitary matrices, and let

$$
\vartheta=\left(\begin{array}{cc}
\phi & \gamma \\
\gamma^{*} & \psi
\end{array}\right) \geqslant_{q} 0 .
$$

For the unitary matrix

$$
Z=\left(\begin{array}{cc}
U & 0_{n, n^{\prime}} \\
0_{n^{\prime}, n} & V
\end{array}\right) \in M_{n+n^{\prime}}(\mathbb{C})
$$

we have $\vartheta_{Z} \geqslant_{q} 0$ (since $\left.\vartheta \geqslant_{q} 0\right)$, where

$$
\vartheta_{Z}\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
\phi_{U}(A) & U^{*} \gamma\left(U B V^{*}\right) V \\
V^{*} \gamma^{*}\left(V C U^{*}\right) U & \psi_{V}(D)
\end{array}\right)
$$

Therefore, $B \rightarrow U^{*} \gamma\left(U B V^{*}\right) V$ is a q-corner from ϕ_{U} to ψ_{V}. By Proposition 4.5 of [9], we know that if $\Phi: M_{n+n^{\prime}}(\mathbb{C}) \rightarrow M_{n+n^{\prime}}(\mathbb{C})$ is a linear map, then $\vartheta \geqslant_{q} \Phi \geqslant_{q} 0$ if and only if $\vartheta_{Z} \geqslant_{q} \Phi_{Z} \geqslant_{q} 0$. It follows that γ is a hyper maximal q-corner from ϕ to ψ if and only if $B \rightarrow U^{*} \gamma\left(U B V^{*}\right) V$ is a hyper maximal q-corner from ϕ_{U} to ψ_{V}. The same argument gives us a bijection between norm one corners from ϕ to ψ and norm one corners from ϕ_{U} to ψ_{V}.

Proposition 3.4. Let $\phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ and $\psi: M_{n^{\prime}}(\mathbb{C}) \rightarrow M_{n^{\prime}}(\mathbb{C})$ be unital rank one q-positive maps, so for some states $\ell \in M_{n}(\mathbb{C})^{*}$ and $\ell^{\prime} \in M_{n^{\prime}}(\mathbb{C})^{*}$ with eigenvalue lists $\left\{\lambda_{i}\right\}_{i=1}^{k}$ and $\left\{\mu_{i}\right\}_{i=1}^{k^{\prime}}$, respectively, we have

$$
\phi(A)=\ell(A) I_{n}, \quad \psi(D)=\ell^{\prime}(D) I_{n^{\prime}}
$$

for all $A \in M_{n}(\mathbb{C})$ and $D \in M_{n^{\prime}}(\mathbb{C})$. Let v and η be type II Powers weights.
If the boundary weight doubles (ϕ, v) and (ψ, η) induce cocycle conjugate $E_{0^{-}}$ semigroups α^{d} and β^{d}, then $k=k^{\prime}$ and $\lambda_{i}=\mu_{i}$ for all $i=1, \ldots, k$.

Proof. Our proof is similar to the proof of Theorem 5.4 of [9]. Suppose α^{d} and β^{d} are cocycle conjugate. For some unitaries $U \in M_{n}(\mathbb{C})$ and $V \in M_{n^{\prime}}(\mathbb{C})$, we have

$$
\phi_{U}(A)=\left(\sum_{i=1}^{k} \lambda_{i} a_{i i}\right) I_{n}, \quad \psi_{V}(D)=\left(\sum_{i=1}^{k^{\prime}} \mu_{i} d_{i i}\right) I_{n^{\prime}}
$$

for all $A \in M_{n}(\mathbb{C})$ and $D \in M_{n^{\prime}}(\mathbb{C})$. Let $\left\{e_{i}\right\}_{i=1}^{n}$ and $\left\{e_{i}^{\prime}\right\}_{i=1}^{n^{\prime}}$ be the standard bases for \mathbb{C}^{n} and $\mathbb{C}^{n^{\prime}}$, respectively, and let $\rho \in M_{n}(\mathbb{C})^{*}$ and $\rho^{\prime} \in M_{n^{\prime}}(\mathbb{C})^{*}$ be the functionals

$$
\begin{equation*}
\rho(A)=\sum_{i=1}^{k} \lambda_{i} e_{i}^{*} A e_{i}=\sum_{i=1}^{k} \lambda_{i} a_{i i}, \quad \rho^{\prime}(D)=\sum_{i=1}^{k^{\prime}} \mu_{i} e_{i}^{\prime *} D e_{i}^{\prime}=\sum_{i=1}^{k^{\prime}} \mu_{i} d_{i i} \tag{3.2}
\end{equation*}
$$

so $\phi_{U}(A)=\rho(A) I_{n}$ and $\psi_{V}(D)=\rho^{\prime}(D) I_{n^{\prime}}$ for all $A \in M_{n}(\mathbb{C})$ and $D \in M_{n^{\prime}}(\mathbb{C})$. Note that $L_{\phi}=\phi$ and $L_{\psi}=\psi$, so by Lemma 3.1. there is a norm one corner from
ϕ to ψ. Therefore, by Remark 3.3. there is a norm one corner γ from ϕ_{U} to ψ_{V}, so the map $\Theta: M_{n+n^{\prime}}(\mathbb{C}) \rightarrow M_{n+n^{\prime}}(\mathbb{C})$ defined by

$$
\Theta\left(\begin{array}{cc}
A_{n, n} & B_{n, n^{\prime}} \\
C_{n^{\prime}, n} & D_{n^{\prime}, n^{\prime}}
\end{array}\right)=\left(\begin{array}{cc}
\rho(A) I_{n} & \gamma(B) \\
\gamma^{*}(C) & \rho^{\prime}(D) I_{n^{\prime}}
\end{array}\right)
$$

is completely positive.
Since $\|\gamma\|=1$, there is some $X \in M_{n, n^{\prime}}(\mathbb{C})$ with $\|X\|=1$ and some unit vector $g \in \mathbb{C}^{n^{\prime}}$ such that $\|\gamma(X) g\|^{2}=(\gamma(X) g, \gamma(X) g)=1$. Let $\tau \in M_{n, n^{\prime}}(\mathbb{C})^{*}$ be the functional defined by

$$
\tau(B)=(\gamma(X) g, \gamma(B) g)
$$

Letting

$$
S=\left(\begin{array}{cc}
\gamma(X) g & 0_{n, 1} \\
0_{n^{\prime}, 1} & g
\end{array}\right) \in M_{n+n^{\prime}, 2}(\mathbb{C})
$$

we observe that

$$
\left(\begin{array}{cc}
\rho(A) & \tau(B) \\
\tau^{*}(C) & \rho^{\prime}(D)
\end{array}\right)=S^{*} \Theta\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) S \quad \text { for all }\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \in M_{n+n^{\prime}}(\mathbb{C})
$$

hence τ is a corner from ρ to ρ^{\prime}. Note that $\|\tau\|=\tau(X)=1$.
Let $D_{\lambda} \in M_{k}(\mathbb{C})$ and $D_{\mu} \in M_{k^{\prime}}(\mathbb{C})$ be the diagonal matrices whose $i i$ entries are $\sqrt{\lambda_{i}}$ and $\sqrt{\mu_{i}}$, respectively. Since τ is a corner from ρ to ρ^{\prime}, equation 3.2) and Lemma 3.2 imply that τ has the form $\tau(B)=\sum_{i, j} c_{i j} \sqrt{\lambda_{i} \mu_{j}}\left(e_{i}, B e_{j}^{\prime}\right)$ for some $C=\left(c_{i j}\right) \in M_{k, k^{\prime}}(\mathbb{C})$ such that $\|C\| \leqslant 1$. For each $B \in M_{n, n^{\prime}}(\mathbb{C})$, let $\widetilde{B} \in M_{k^{\prime}, k}(\mathbb{C})$ be the top left $k^{\prime} \times k$ minor of B^{T}, observing that

$$
\tau(B)=\sum_{i=1}^{k} \sum_{j=1}^{k^{\prime}} c_{i j} \sqrt{\lambda_{i} \mu_{j}} b_{i j}=\operatorname{tr}\left(C D_{\mu} \widetilde{B} D_{\lambda}\right)=\operatorname{tr}\left(C D_{\mu}\left(D_{\lambda}(\widetilde{B})^{*}\right)^{*}\right)
$$

Let $M=\widetilde{X} \in M_{k^{\prime}, k}(\mathbb{C})$. Applying the Cauchy-Schwarz inequality to the inner product $\langle A, B\rangle=\operatorname{tr}\left(B A^{*}\right)$ on $M_{k, k^{\prime}}(\mathbb{C})$, we see

$$
\begin{align*}
1 & =|\tau(X)|^{2}=\left|\operatorname{tr}\left(C D_{\mu}\left(D_{\lambda} M^{*}\right)^{*}\right)\right|^{2}=\left|\left\langle D_{\lambda} M^{*}, C D_{\mu}\right\rangle\right|^{2} \\
& \leqslant\left\|C D_{\mu}\right\|_{\operatorname{tr}}^{2}\left\|D_{\lambda} M^{*}\right\|_{\operatorname{tr}}^{2}=\operatorname{tr}\left(D_{\mu} C^{*} C D_{\mu}\right) \operatorname{tr}\left(D_{\lambda} M^{*} M D_{\lambda}\right) \\
& \leqslant \operatorname{tr}\left(D_{\mu} I_{k^{\prime}} D_{\mu}\right) \operatorname{tr}\left(D_{\lambda} I_{k} D_{\lambda}\right)=\left(\sum_{i=1}^{k^{\prime}} \mu_{i}\right)\left(\sum_{i=1}^{k} \lambda_{i}\right)=1 * 1=1 \tag{3.3}
\end{align*}
$$

Since equality holds in Cauchy-Schwarz, it follows that for some $m \in \mathbb{C}$,

$$
\begin{equation*}
m C D_{\mu}=D_{\lambda} M^{*} \tag{3.4}
\end{equation*}
$$

where $|m|=1$ since $\left\|C D_{\mu}\right\|_{\text {tr }}=\left\|D_{\lambda} M^{*}\right\|_{\text {tr }}=1$. In fact, $m=1$ since $\tau(X)=1$.
Since equality holds in (3.3) and the trace map is faithful, we have $C^{*} C=I_{k^{\prime}}$ and $M^{*} M=I_{k}$. Note that

$$
\min \left\{k, k^{\prime}\right\} \geqslant \operatorname{rank}(C)=k^{\prime}, \quad \min \left\{k, k^{\prime}\right\} \geqslant \operatorname{rank}(M)=k
$$

hence $k=k^{\prime}$ and the previous sentence shows that C and M are unitary. Therefore, from (3.4) we have

$$
D_{\mu}=C^{*} D_{\lambda} M^{*}=C^{*} M^{*}\left(M D_{\lambda} M^{*}\right)
$$

whereby uniqueness of the right polar decomposition for the invertible positive matrix D_{μ} implies $D_{\mu}=M D_{\lambda} M^{*}$. Since the eigenvalues of D_{μ} and D_{λ} are listed in decreasing order, we have $D_{\mu}=D_{\lambda}$, hence $\lambda_{i}=\mu_{i}$ for all $i=1, \ldots, k$.

REMARK 3.5. Let $\phi: M_{k}(\mathbb{C}) \rightarrow M_{k}(\mathbb{C})$ be a unital rank one q-pure map, and suppose γ is a nonzero q-corner from ϕ to ϕ, so the $\operatorname{map} \Theta: M_{2 k}(\mathbb{C}) \rightarrow M_{2 k}(\mathbb{C})$ below is unital and q-positive:

$$
\Theta\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{ll}
\phi(A) & \gamma(B) \\
\gamma^{*}(C) & \phi(D)
\end{array}\right)
$$

Applying Lemma 2.2 to Θ yields the idempotent completely positive map

$$
L_{\Theta}=\left(\begin{array}{cc}
\lim _{t \rightarrow \infty} t \phi(I+t \phi)^{-1} & \lim _{t \rightarrow \infty} t \gamma(I+t \gamma)^{-1} \\
\lim _{t \rightarrow \infty} t \gamma^{*}\left(I+t \gamma^{*}\right)^{-1} & \lim _{t \rightarrow \infty} t \phi(I+t \phi)^{-1}
\end{array}\right)=\left(\begin{array}{cc}
\phi & \sigma \\
\sigma^{*} & \phi
\end{array}\right)
$$

so $\sigma:=\lim _{t \rightarrow \infty} t \gamma(I+t \gamma)^{-1}$ is a corner from ϕ to ϕ satisfying $\sigma^{2}=\sigma$. We note that $\|\sigma\|=1$. Indeed, since $\sigma^{2}=\sigma$ and range $(\sigma)=\operatorname{range}(\gamma) \supsetneq\{0\}$, we have $\|\sigma\| \geqslant 1$, while the fact that σ is a corner between norm one completely positive maps implies $\|\sigma\| \leqslant 1$, hence $\|\sigma\|=1$. The following lemma gives us the form of σ :

LEMMA 3.6. Let $\phi: M_{k}(\mathbb{C}) \rightarrow M_{k}(\mathbb{C})$ be a unital q-positive map of the form $\phi(A)=\rho(A)$ I. Assume ρ is a faithful state of the form

$$
\rho(A)=\sum_{i=1}^{k} \mu_{i} a_{i i}
$$

where μ_{1}, \ldots, μ_{k} are positive numbers and $\sum_{i=1}^{k} \mu_{i}=1$. Let D_{μ} be the diagonal matrix with ii entries $\sqrt{\mu_{i}}$ for $i=1, \ldots, k$, so $\Omega:=\left(D_{\mu}\right)^{2}$ is the trace density matrix for ρ.

Let $\sigma: M_{k}(\mathbb{C}) \rightarrow M_{k}(\mathbb{C})$ be a nonzero linear map such that $\sigma^{2}=\sigma$. Then σ is a corner from ϕ to ϕ if, and only if, for some unitary $X \in M_{k}(\mathbb{C})$ that commutes with Ω, we have

$$
\sigma(B)=\operatorname{tr}\left(X^{*} B \Omega\right) X
$$

for all $B \in M_{k}(\mathbb{C})$.
Proof. For the forward direction, suppose that σ is a nonzero corner from ϕ to ϕ and $\sigma^{2}=\sigma$, so the map $\Theta: M_{2 k}(\mathbb{C}) \rightarrow M_{2 k}(\mathbb{C})$ defined below is completely positive:

$$
\Theta\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
\phi(A) & \sigma(B) \\
\sigma^{*}(C) & \phi(D)
\end{array}\right)
$$

Note that $\|\sigma\|=1$ by Remark 3.5. We first show that σ has rank one. If $\operatorname{rank}(\sigma) \geqslant$ 2 , then there is a non-zero non-invertible element $A \in \operatorname{range}(\sigma)$. Scaling A if necessary, we may assume $\|A\|=1$. Let P be the orthogonal projection onto the range of A, so $P A=A$ and $A^{*}=A^{*} P$. Since $P \neq I$ and ρ is faithful, we have $\phi(P)=\rho(A) I=a I$ for some $a<1$. We note that

$$
\left(\begin{array}{cc}
P & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
I & A \\
A^{*} & I
\end{array}\right)\left(\begin{array}{cc}
P & 0 \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
P & P A \\
A^{*} P & I
\end{array}\right)=\left(\begin{array}{cc}
P & A \\
A^{*} & I
\end{array}\right) \geqslant 0
$$

so by complete positivity of Θ and the fact that $\sigma^{2}=\sigma$, we have

$$
\left(\begin{array}{cc}
\phi(P) & \sigma(A) \\
\sigma^{*}\left(A^{*}\right) & \phi(I)
\end{array}\right)=\left(\begin{array}{cc}
a I & A \\
A^{*} & I
\end{array}\right) \geqslant 0
$$

which is impossible since $a<1$ and $\|A\|=1$. This shows that not only does σ have rank one, but that every non-zero element of its range is invertible. In other words, for some linear functional $\tau \in M_{k}(\mathbb{C})^{*}$ and some invertible matrix $X \in M_{k}(\mathbb{C})$ with $\|X\|=1$, we have $\sigma(B)=\tau(B) X$ for all $B \in M_{k}(\mathbb{C})$. Since σ fixes its range and $\|\sigma\|=1$, we have $\|\tau\|=\tau(X)=1$.

Let $g \in \mathbb{C}^{k}$ be a unit vector such that $\|X g\|=1$. We observe that τ is merely the functional $\tau(B)=(\sigma(X) g, \sigma(B) g)$ for all $B \in M_{k}(\mathbb{C})$, and an argument analogous to the one given in the proof of Proposition 3.4 shows that τ is a corner from ρ to ρ. By Lemma 3.2, there is some $C \in M_{k}(\mathbb{C})$ with $\|C\| \leqslant 1$ such that

$$
\tau(B)=\sum_{i, j=1}^{k} c_{i j} \sqrt{\mu_{i} \mu_{j}}\left(e_{i}, B e_{j}\right)=\operatorname{tr}\left(C D_{\mu} B^{\mathrm{T}} D_{\mu}\right)
$$

for all $A \in M_{k}(\mathbb{C})$. By the above equation and the fact that $\tau(X)=1$, we may use the exact same Cauchy-Schwarz argument as in the proof of Proposition 3.4 to conclude that C and X^{T} are unitary and that

$$
D_{\mu}=C^{*} D_{\mu}\left(X^{\mathrm{T}}\right)^{*}=C^{*}\left(X^{\mathrm{T}}\right)^{*}\left(X^{\mathrm{T}} D_{\mu}\left(X^{\mathrm{T}}\right)^{*}\right)
$$

Uniqueness of the polar decomposition for the invertible positive matrix D_{μ} gives us $C^{*}\left(X^{\mathrm{T}}\right)^{*}=I$ and $X^{\mathrm{T}} D_{\mu}\left(X^{\mathrm{T}}\right)^{*}=D_{\mu}$, where the transpose of the last equality is $X^{*} D_{\mu} X=D_{\mu}$. Therefore, $C=\left(X^{*}\right)^{\mathrm{T}}$ and X commutes with Ω, so for all $B \in M_{k}(\mathbb{C})$ we have

$$
\tau(B)=\operatorname{tr}\left(\left(X^{*}\right)^{\mathrm{T}} D_{\mu} B^{\mathrm{T}} D_{\mu}\right)=\operatorname{tr}\left(D_{\mu} B D_{\mu} X^{*}\right)=\operatorname{tr}\left(X^{*} B \Omega\right)
$$

and $\sigma(B)=\tau(B) X=\operatorname{tr}\left(X^{*} B \Omega\right) X$.
Now assume the hypotheses of the backward direction and define $\tau \in$ $M_{k}(\mathbb{C})^{*}$ by $\tau(B)=\operatorname{tr}\left(X^{*} B \Omega\right)$, noting that $\sigma^{2}=\sigma$ and $\sigma(B)=\tau(B) X$ for all $B \in M_{k}(\mathbb{C})$. Let $\eta, \eta^{\prime}: M_{2 k}(\mathbb{C}) \rightarrow M_{2 k}(\mathbb{C})$ be the maps
$\eta\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)=\left(\begin{array}{cc}\rho(A) I & \tau(B) X \\ \tau^{*}(C) X^{*} & \rho(D) I\end{array}\right), \quad \eta^{\prime}\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)=\left(\begin{array}{cc}\rho(A) I & \tau(B) I \\ \tau^{*}(C) I & \rho(D) I\end{array}\right)$.

Define $\Upsilon: M_{2 k}(\mathbb{C}) \rightarrow M_{2 k}(\mathbb{C})$ by

$$
\Upsilon\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
X^{*} & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{cc}
X & 0 \\
0 & I
\end{array}\right) .
$$

Note that Y and Y^{-1} are completely positive, $\Upsilon \circ \eta=\eta^{\prime}$, and $\Upsilon^{-1} \circ \eta^{\prime}=\eta$. Therefore, η is completely positive if and only if η^{\prime} is completely positive. Since a complex matrix $\left(m_{i j}\right) \in M_{r}(\mathbb{C})(r \in \mathbb{N})$ is positive if and only if $\left(m_{i j} I_{n}\right) \in$ $M_{r}\left(M_{n}(\mathbb{C})\right)=M_{r n}(\mathbb{C})$ is positive for every $n \in \mathbb{N}$, it follows that η^{\prime} is completely positive if and only if $\eta^{\prime \prime}$ below is completely positive:

$$
\eta^{\prime \prime}\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
\rho(A) & \tau(B) \\
\tau^{*}(C) & \rho(D)
\end{array}\right)
$$

Thus, η is completely positive if and only if $\eta^{\prime \prime}$ is. In other words, σ is a corner from ϕ to ϕ if and only if τ is a corner from ρ to ρ. But for all $B \in M_{k}(\mathbb{C})$, we have

$$
\tau(B)=\sum_{i, j=1}^{k} c_{i j} \sqrt{\mu_{i} \mu_{j}}\left(e_{i}, B e_{j}\right)
$$

for the unitary matrix $C=\left(X^{*}\right)^{\mathrm{T}}$, so τ is a corner from ρ to ρ by Lemma 3.2. .
We will make use of the following standard result regarding completely positive maps, providing a proof here for the sake of completeness:

LEMMA 3.7. Let $\phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a completely positive map. If $\phi(E)=$ 0 for a projection E, then $\phi(A)=\phi(F A F)$ for all $A \in M_{n}(\mathbb{C})$, where $F=I-E$.

Proof. We know from [6] and [1] that ϕ can be written $\phi(A)=\sum_{i=1}^{p} S_{i} A S_{i}^{*}$ for some $p \leqslant n^{2}$ and $\left\{S_{i}\right\}_{i=1}^{p} \subset M_{n}(\mathbb{C})$. If $\phi(E)=0$ for a projection E, then

$$
0=S_{i} E S_{i}^{*}=S_{i} E E S_{i}^{*}=\left(S_{i} E\right)\left(S_{i} E\right)^{*}
$$

for all i, so $S_{i} E=E S_{i}^{*}=0$ for all i. Therefore, $\phi(E A E)=\phi(E A F)=\phi(F A E)=0$ for every $A \in M_{n}(\mathbb{C})$. Letting $F=I-E$, we observe that for every $A \in M_{n}(\mathbb{C})$,

$$
\phi(A)=\phi(E A E+E A F+F A E+F A F)=\phi(F A F)
$$

Let $\phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ and $\psi: M_{n^{\prime}}(\mathbb{C}) \rightarrow M_{n^{\prime}}(\mathbb{C})$ be unital rank one q-positive maps. We ask two very important questions: Is there a q-corner from ϕ to ψ ? If so, can we find all such q-corners, and, even further, determine which q-corners are hyper maximal? The following two theorems give us a complete answer to both questions when ϕ and ψ are implemented by diagonal states. This suffices, since for any unital rank one q-positive maps ϕ and ψ, there are always unitaries $U \in M_{n}(\mathbb{C})$ and $V \in M_{n^{\prime}}(\mathbb{C})$ such that ϕ_{U} and ψ_{V} are implemented by diagonal states, where Remark 3.3 tells us exactly how to transform the q-corners and hyper maximal q-corners from ϕ_{U} to ψ_{V} into those from ϕ to ψ.

THEOREM 3.8. Let $\left\{\mu_{i}\right\}_{i=1}^{k}$ and $\left\{r_{i}\right\}_{i=1}^{k^{\prime}}$ be monotonically decreasing sequences of strictly positive numbers such that $\sum_{i=1}^{k} \mu_{k}=\sum_{i=1}^{k^{\prime}} r_{i}=1$. Define unital q-positive maps $\phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ and $\psi: M_{n^{\prime}}(\mathbb{C}) \rightarrow M_{n^{\prime}}(\mathbb{C})$ (where $n \geqslant k$ and $n^{\prime} \geqslant k^{\prime}$) by

$$
\begin{equation*}
\phi(A)=\left(\sum_{i=1}^{k} \mu_{i} a_{i i}\right) I_{n} \quad \text { and } \quad \psi(D)=\left(\sum_{i=1}^{k^{\prime}} r_{i} d_{i i}\right) I_{n^{\prime}} \tag{3.5}
\end{equation*}
$$

for all $A=\left(a_{i j}\right) \in M_{n}(\mathbb{C})$ and $D=\left(d_{i j}\right) \in M_{n^{\prime}}(\mathbb{C})$. Let $\Omega \in M_{k}(\mathbb{C})$ be the trace density matrix for the faithful state $\rho \in M_{k}(\mathbb{C})^{*}$ defined by $\rho(A)=\sum_{i=1}^{k} \mu_{i} a_{i i}$.

If there is a nonzero q-corner from ϕ to ψ, then $k=k^{\prime}$ and $\mu_{i}=r_{i}$ for all $i=$ $1, \ldots, k$. In that case, a linear map $\gamma: M_{n, n^{\prime}}(\mathbb{C}) \rightarrow M_{n, n^{\prime}}(\mathbb{C})$ is a q-corner from ϕ to ψ if and only if: for some unitary $X \in M_{k}(\mathbb{C})$ that commutes with Ω, some contraction $E \in M_{n-k, n^{\prime}-k}(\mathbb{C})$, and some $\lambda \in \mathbb{C}$ with $|\lambda|^{2} \leqslant \operatorname{Re}(\lambda)$, we have

$$
\gamma\left(\begin{array}{cc}
B_{k, k} & W_{k, n^{\prime}-k} \\
Q_{n-k, k} & Y_{n-k, n^{\prime}-k}
\end{array}\right)=\lambda \operatorname{tr}\left(X^{*} B_{k, k} \Omega\right)\left(\begin{array}{cc}
X & 0_{k, n^{\prime}-k} \\
0_{n-k, k} & E
\end{array}\right)
$$

for all

$$
\left(\begin{array}{cc}
B_{k, k} & W_{k, n^{\prime}-k} \\
Q_{n-k, k} & Y_{n-k, n^{\prime}-k}
\end{array}\right) \in M_{n, n^{\prime}}(\mathbb{C}) .
$$

Proof. Suppose that γ is a nonzero q-corner from ϕ to ψ, so $\vartheta: M_{n+n^{\prime}}(\mathbb{C}) \rightarrow$ $M_{n+n^{\prime}}(\mathbb{C})$ below is q-positive:

$$
\vartheta\left(\begin{array}{cc}
A_{n, n} & B_{n, n^{\prime}} \\
C_{n^{\prime}, n} & D_{n^{\prime}, n^{\prime}}
\end{array}\right)=\left(\begin{array}{cc}
\phi\left(A_{n, n}\right) & \gamma\left(B_{n, n^{\prime}}\right) \\
\gamma^{*}\left(C_{n^{\prime}, n}\right) & \psi\left(D_{n^{\prime}, n^{\prime}}\right)
\end{array}\right) .
$$

We observe that

$$
L_{\vartheta}\left(\begin{array}{cc}
A_{n, n} & B_{n, n^{\prime}} \\
C_{n^{\prime}, n} & D_{n^{\prime}, n^{\prime}}
\end{array}\right)=\left(\begin{array}{cc}
\phi\left(A_{n, n}\right) & \sigma\left(B_{n, n^{\prime}}\right) \\
\sigma^{*}\left(C_{n^{\prime}, n}\right) & \psi\left(D_{n^{\prime}, n^{\prime}}\right)
\end{array}\right)
$$

where by Lemma 2.2. the map $\sigma:=\lim _{t \rightarrow \infty} t \gamma(I+t \gamma)^{-1}$ is a corner of norm one from ϕ to ψ satisfying $\sigma^{2}=\sigma$, range $(\sigma)=\operatorname{range}(\gamma)$, and $\gamma \circ \sigma=\sigma \circ \gamma=\gamma$. Since $\|\sigma\|=1$, the proof of Proposition 3.4 implies $k=k^{\prime}$ and $r_{i}=\mu_{i}$ for all $i=1, \ldots, k$.

We observe that $L_{\vartheta}(P)=0$ for the projection

$$
P=\left(\sum_{i=k+1}^{n} e_{i i}+\sum_{i=n+k+1}^{n+n^{\prime}} e_{i i}\right) \in M_{n+n^{\prime}}(\mathbb{C})
$$

Therefore, $L_{\vartheta}(A)=L_{\vartheta}((I-P) A(I-P))$ for all $A \in M_{n+n^{\prime}}(\mathbb{C})$ by Lemma 3.7. In particular, σ satisfies

$$
\sigma\left(\begin{array}{cc}
0_{k, k} & W_{k, n^{\prime}-k} \\
Q_{n-k, k} & Y_{n-k, n^{\prime}-k}
\end{array}\right) \equiv 0
$$

In other words, σ depends only on its top left $k \times k$ minor, so for some $\widetilde{\sigma}$: $M_{k}(\mathbb{C}) \rightarrow M_{k}(\mathbb{C})$ and some maps ℓ_{i} from $M_{k}(\mathbb{C})$ into the appropriate matrix spaces, we have

$$
\sigma\left(\begin{array}{cc}
B_{k, k} & W_{k, n^{\prime}-k} \\
Q_{n-k, k} & Y_{n-k, n^{\prime}-k}
\end{array}\right)=\left(\begin{array}{cc}
\widetilde{\sigma}\left(B_{k, k}\right) & \ell_{1}\left(B_{k, k}\right) \\
\ell_{2}\left(B_{k, k}\right) & \ell_{3}\left(B_{k, k}\right)
\end{array}\right) .
$$

From the facts $\sigma^{2}=\sigma$ and $\|\sigma\|=1$, it follows that $\widetilde{\sigma}^{2}=\widetilde{\sigma}$ and $\|\widetilde{\sigma}\|=1$.
Let $\widetilde{\phi}: M_{k}(\mathbb{C}) \rightarrow M_{k}(\mathbb{C})$ be the map

$$
\widetilde{\phi}(A)=\rho(A) I_{k}=\left(\sum_{i=1}^{k} \mu_{i} a_{i i}\right) I_{k}
$$

for all $A=\left(a_{i j}\right) \in M_{k}(\mathbb{C})$. Define $\Theta: M_{2 k}(\mathbb{C}) \rightarrow M_{2 k}(\mathbb{C})$ by

$$
\Theta\left(\begin{array}{cc}
A_{k, k} & B_{k, k} \\
C_{k, k} & D_{k, k}
\end{array}\right)=\left(\begin{array}{cc}
\widetilde{\phi}\left(A_{k, k}\right) & \widetilde{\sigma}\left(B_{k, k}\right) \\
\widetilde{\sigma}^{*}\left(C_{k, k}\right) & \widetilde{\phi}\left(D_{k, k}\right)
\end{array}\right)
$$

and let

$$
S=\left(\begin{array}{cccc}
I_{k, k} & 0_{k, n-k} & 0_{k, k} & 0_{k, n^{\prime}-k} \\
0_{k, k} & 0_{k, n-k} & I_{k, k} & 0_{k, n^{\prime}-k}
\end{array}\right) \in M_{2 k, n+n^{\prime}}(\mathbb{C})
$$

Note that

$$
\Theta(N)=S L_{\vartheta}\left(S^{*} N S\right) S^{*}
$$

for all $N \in M_{2 k}(\mathbb{C})$, so Θ is completely positive. Therefore, $\widetilde{\sigma}$ is a norm one corner from $\widetilde{\phi}$ to $\widetilde{\phi}$. Since $\|\widetilde{\sigma}\|=1$ and $\widetilde{\sigma}^{2}=\widetilde{\sigma}$, Lemma 3.6 implies that for some unitary $X \in M_{k}(\mathbb{C})$ that commutes with Ω, we have

$$
\begin{equation*}
\widetilde{\sigma}(B)=\operatorname{tr}\left(X^{*} B \Omega\right) X \tag{3.6}
\end{equation*}
$$

for all $B \in M_{k}(\mathbb{C})$. For simplicity of notation in what follows, let $\tau \in M_{k}(\mathbb{C})^{*}$ be the functional $\tau(B)=\operatorname{tr}\left(X^{*} B \Omega\right)$.

We claim that $\ell_{1}=\ell_{2} \equiv 0$. For this, let

$$
M=\left(\begin{array}{cc}
B_{k, k} & W_{k, n^{\prime}-k} \\
Q_{n-k, k} & Y_{n-k, n^{\prime}-k}
\end{array}\right) \in M_{n, n^{\prime}}(\mathbb{C})
$$

be arbitrary. We will suppress the subscripts for B, Q, W, and Y for the remainder of the proof. From (3.6) and the fact that $\sigma^{2}(M)=\sigma(M)$, we have

$$
\begin{equation*}
\ell_{i}(B)=\ell_{i}(\widetilde{\sigma}(B))=\ell_{i}(\tau(B) X)=\tau(B) \ell_{i}(X) \tag{3.7}
\end{equation*}
$$

for $i=1,2,3$. Since σ is a contraction, it follows that

$$
1 \geqslant\left\|\sigma\left(\begin{array}{cc}
X & 0 \\
0 & 0
\end{array}\right)\right\|=\left\|\left(\begin{array}{cc}
X & \ell_{1}(X) \\
\ell_{2}(X) & \ell_{3}(X)
\end{array}\right)\right\| .
$$

But X is unitary, so the line above implies that $\ell_{1}(X)=\ell_{2}(X)=0$, hence $\ell_{1}=$ $\ell_{2} \equiv 0$ by (3.7). Let $E=\ell_{3}(X) \in M_{n-k, n^{\prime}-k}(\mathbb{C})$, noting that $\|E\| \leqslant 1$ since σ is a contraction. Therefore, σ has the form

$$
\sigma\left(\begin{array}{cc}
B & W \\
Q & Y
\end{array}\right)=\tau(B)\left(\begin{array}{cc}
X & 0_{k, n^{\prime}-k} \\
0_{n-k, k} & E
\end{array}\right)
$$

Since $\gamma=\gamma \circ \sigma$ and

$$
\operatorname{range}(\gamma)=\operatorname{range}(\sigma)=\left\{c\left(\begin{array}{cc}
X & 0 \\
0 & E
\end{array}\right): c \in \mathbb{C}\right\},
$$

we have

$$
\begin{aligned}
\gamma\left(\begin{array}{cc}
B & W \\
Q & Y
\end{array}\right) & =\gamma\left(\sigma\left(\begin{array}{cc}
B & W \\
Q & Y
\end{array}\right)\right)=\gamma\left(\tau(B)\left(\begin{array}{cc}
X & 0 \\
0 & E
\end{array}\right)\right) \\
& =\tau(B) \gamma\left(\begin{array}{cc}
X & 0 \\
0 & E
\end{array}\right)=\tau(B)\left[\lambda\left(\begin{array}{cc}
X & 0 \\
0 & E
\end{array}\right)\right]=\lambda \tau(B)\left(\begin{array}{cc}
X & 0 \\
0 & E
\end{array}\right)
\end{aligned}
$$

for some $\lambda \in \mathbb{C}$. Since γ is a nonzero q-corner between unital completely positive maps and is thus necessarily a contraction with no negative eigenvalues, we have $\lambda \not \leq 0$ and $|\lambda| \leqslant 1$.

In summary: we have proved that if γ is a nonzero q-corner, then it is of the form

$$
\gamma\left(\begin{array}{cc}
B & W \\
Q & Y
\end{array}\right)=\lambda \operatorname{tr}\left(X^{*} B \Omega\right)\left(\begin{array}{cc}
X & 0 \\
0 & E
\end{array}\right)
$$

for some $\lambda \not \leq 0$ with $|\lambda| \leqslant 1$, where X and E satisfy the conditions stated in the theorem. To complete the proof, we show that such a map γ is a q-corner if and only if $|\lambda|^{2} \leqslant \operatorname{Re}(\lambda)$.

Straightforward computations show that for all $t \geqslant 0$,

$$
\begin{aligned}
& (I+t \gamma)^{-1}\left(\begin{array}{cc}
B & W \\
Q & Y
\end{array}\right)=\left(\begin{array}{cc}
B-\frac{t \lambda \tau(B)}{1+t \lambda} X & W \\
Q & Y-\frac{t \lambda \tau(B)}{1+t \lambda} E
\end{array}\right), \text { and } \\
& \gamma(I+t \gamma)^{-1}\left(\begin{array}{cc}
B & W \\
Q & Y
\end{array}\right)=\left(\begin{array}{cc}
\frac{\lambda \tau(B)}{1+t \lambda} X & 0 \\
0 & \frac{\lambda \tau(B)}{1+t \lambda} E
\end{array}\right)=\frac{1}{1+t \lambda} \gamma\left(\begin{array}{cc}
B & W \\
Q & Y
\end{array}\right) .
\end{aligned}
$$

For each $t \geqslant 0$, define maps $\Theta_{t}: M_{2 k}(\mathbb{C}) \rightarrow M_{2 k}(\mathbb{C}), L_{t}: M_{2 k}(\mathbb{C}) \rightarrow$ $M_{n+n^{\prime}-2 k}(\mathbb{C})$, and $Y_{t}: M_{2 k}(\mathbb{C}) \rightarrow M_{n+n^{\prime}-2 k}(\mathbb{C})$ by

$$
\begin{align*}
& \Theta_{t}\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{1+t} \rho(A) I_{k, k} & \frac{\lambda}{1+t \lambda} \tau(B) X \\
\frac{\lambda}{1+t \bar{\lambda}} \tau^{*}(C) X^{*} & \frac{1}{1+t} \rho(D) I_{k, k}
\end{array}\right) \tag{3.8}\\
& L_{t}\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{1+t} \rho(A) E E^{*} & \frac{\lambda}{1+t \lambda} \tau(B) E \\
\frac{\lambda}{1+t \bar{\lambda}} \tau^{*}(C) E^{*} & \frac{1}{1+t} \rho(D) I_{n^{\prime}-k, n^{\prime}-k}
\end{array}\right), \text { and }
\end{align*}
$$

$$
\gamma_{t}\left(\begin{array}{cc}
A & B \tag{3.10}\\
C & D
\end{array}\right)=L_{t}\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)+\left(\begin{array}{cc}
\frac{1}{1+t} \rho(A)\left(I_{n-k, n-k}-E E^{*}\right) & 0_{n-k, n^{\prime}-k} \\
0_{n^{\prime}-k, n-k} & 0_{n^{\prime}-k, n^{\prime}-k}
\end{array}\right)
$$

Let

$$
T=\left(\begin{array}{cccc}
0_{n-k, k} & I_{n-k, n-k} & 0_{n-k, k} & 0_{n-k, n^{\prime}-k} \\
0_{n^{\prime}-k, k} & 0_{n^{\prime}-k, n-k} & 0_{n^{\prime}-k, k} & I_{n^{\prime}-k, n^{\prime}-k}
\end{array}\right) \in M_{n+n^{\prime}-2 k, n+n^{\prime}}(\mathbb{C})
$$

and let $M \in M_{n+n^{\prime}}(\mathbb{C})$ be arbitrary, writing

$$
M=\left(\begin{array}{cccc}
A_{k, k} & q_{k, n-k} & B_{k, k} & r_{k, n^{\prime}-k} \tag{3.11}\\
s_{n-k, k} & t_{n-k, n-k} & u_{n-k, k} & v_{n-k, n^{\prime}-k} \\
C_{k, k} & w_{k, n-k} & D_{k, k} & c_{k, n^{\prime}-k} \\
d_{n^{\prime}-k, k} & e_{n^{\prime}-k, n-k} & f_{n^{\prime}-k, k} & g_{n^{\prime}-k, n^{\prime}-k}
\end{array}\right), \quad \text { so } S M S^{*}=\left(\begin{array}{cc}
A_{k, k} & B_{k, k} \\
C_{k, k} & D_{k, k}
\end{array}\right) .
$$

For every $t \geqslant 0, \vartheta(I+t \vartheta)^{-1}(M)$ is equal to the quantity below:

$$
\left(\begin{array}{cccc}
\frac{1}{1+t} \rho(A) I_{k, k} & 0_{k, n-k} & \frac{\lambda}{1+t \lambda} \tau(B) X & 0_{k, n^{\prime}-k} \\
0_{n-k, k} & \frac{1}{1+t} \rho(A) I_{n-k, n-k} & 0_{n-k, k} & \frac{\lambda}{1+t \lambda} \tau(B) E \\
\frac{\bar{\lambda}}{1+t \bar{\lambda}} \tau^{*}(C) X^{*} & 0_{k, n-k} & \frac{1}{1+t} \rho(D) I_{k, k} & 0_{k, n^{\prime}-k} \\
0_{n^{\prime}-k, k} & \frac{\bar{\lambda}}{1+t \bar{\lambda}} \tau^{*}(C) E^{*} & 0_{n^{\prime}-k, k} & \frac{1}{1+t} \rho(D) I_{n^{\prime}-k, n^{\prime}-k}
\end{array}\right)
$$

In other words,

$$
\begin{equation*}
\vartheta(I+t \vartheta)^{-1}(M)=S^{*} \Theta_{t}\left(S M S^{*}\right) S+T^{*} \Upsilon_{t}\left(S M S^{*}\right) T \tag{3.12}
\end{equation*}
$$

Note also that for all $N \in M_{2 k}(\mathbb{C})$,

$$
\begin{equation*}
\Theta_{t}(N)=S\left(\vartheta(I+t \vartheta)^{-1}\left(S^{*} N S\right)\right) S^{*}, \quad Y_{t}(N)=T\left(\vartheta(I+t \vartheta)^{-1}\left(S^{*} N S\right)\right) T^{*} \tag{3.13}
\end{equation*}
$$

It follows from (3.12) and 3.13 that ϑ is q-positive if and only if Θ_{t} and γ_{t} are completely positive for all $t \geqslant 0$.

We may easily argue as in the proof of Lemma 3.6 to conclude that Θ_{t} is completely positive for all $t \geqslant 0$ if and only if the maps $\eta_{t}^{\prime \prime}: M_{2 k}(\mathbb{C}) \rightarrow M_{2}(\mathbb{C})$ below are completely positive for all $t \geqslant 0$:

$$
\eta_{t}^{\prime \prime}\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{1+t} \rho(A) & \frac{\lambda}{1+t \lambda} \tau(B) \\
\frac{\lambda}{1+t \bar{\lambda}} \tau^{*}(C) & \frac{1}{1+t} \rho(D)
\end{array}\right)
$$

Recall that in the proof of Lemma 3.6, we showed that τ is a corner from ρ to ρ. Since $\|\rho\|=\|\tau\|=1$, it follows from Lemma 3.2 that $c \tau$ is a corner from ρ to ρ if and only if $|c| \leqslant 1$. Since

$$
(1+t) \eta_{t}^{\prime \prime}\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
\rho(A) & \frac{\lambda(1+t)}{1+t \lambda} \tau(B) \\
\frac{\bar{\lambda}(1+t)}{1+\bar{\lambda}} \tau^{*}(C) & \rho(D)
\end{array}\right)
$$

we see that $\eta_{t}^{\prime \prime}$ is completely positive for all $t \geqslant 0$ if and only if

$$
\left|\frac{\lambda(1+t)}{1+t \lambda}\right| \leqslant 1 \quad(\text { where we already know } \lambda \not \leq 0 \text { and }|\lambda| \leqslant 1)
$$

for all $t \geqslant 0$. Squaring both sides of the above equation and then cross multiplying gives us

$$
|\lambda|^{2}\left(1+2 t+t^{2}\right) \leqslant 1+2 t \operatorname{Re}(\lambda)+|\lambda|^{2} t^{2}, \quad(\lambda \not \leq 0,|\lambda| \leqslant 1)
$$

which is equivalent to

$$
\begin{equation*}
|\lambda|^{2} \leqslant \frac{1+2 t \operatorname{Re}(\lambda)}{1+2 t} \quad(\lambda \not \approx 0,|\lambda| \leqslant 1) \tag{3.14}
\end{equation*}
$$

for all nonnegative t. Note that if $|\lambda|^{2} \leqslant \operatorname{Re}(\lambda)$, then $\operatorname{Re}(\lambda) \leqslant 1$ and equation (3.14) holds for $t \geqslant 0$. On the other hand, suppose that λ is any complex number that satisfies $\sqrt{3.14}$ for all $t \geqslant 0$. We conclude immediately that $\operatorname{Re}(\lambda)>0$, whereby the fact that $|\lambda| \leqslant 1$ implies $\operatorname{Re}(\lambda) \in(0,1]$. A computation shows that the net $\left\{\frac{1+2 t \operatorname{Re}(\lambda)}{1+2 t}\right\}_{t \geqslant 0}$ is monotonically decreasing and converges to $\operatorname{Re}(\lambda)$, hence $|\lambda|^{2} \leqslant \operatorname{Re}(\lambda)$ by 3.14 . We have now shown that $\eta_{t}^{\prime \prime}$ (and thus Θ_{t}) is completely positive for all $t \geqslant 0$ if and only if $|\lambda|^{2} \leqslant \operatorname{Re}(\lambda)$. Therefore, if $|\lambda|^{2}>\operatorname{Re}(\lambda)$ then (3.13) implies that ϑ is not q-positive, which is to say that γ is not a q-corner from ϕ to ψ.

Suppose that $|\lambda|^{2} \leqslant \operatorname{Re}(\lambda)$. Then from above, the maps $\left\{\Theta_{t}\right\}_{t \geqslant 0}$ are all completely positive. Let

$$
G=\left(\begin{array}{cc}
E & 0_{n-k, n^{\prime}-k} \\
0_{n^{\prime}-k, n^{\prime}-k} & I_{n^{\prime}-k}
\end{array}\right) \in M_{n+n^{\prime}-2 k, 2 n^{\prime}-2 k}(\mathbb{C}) .
$$

We observe that

$$
(1+t) L_{t}\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=G\left(\begin{array}{cc}
\rho(A) I_{n^{\prime}-k} & \frac{\lambda(1+t)}{1+t \lambda} \tau(B) I_{n^{\prime}-k} \\
\frac{\bar{\lambda}(1+t)}{1+t \bar{\lambda}} \tau^{*}(C) I_{n^{\prime}-k} & \rho(D) I_{n^{\prime}-k}
\end{array}\right) G^{*}
$$

where we have already shown that the map in the middle is completely positive since $|\lambda|^{2} \leqslant \operatorname{Re}(\lambda)$. Thus, L_{t} is completely positive for every $t \geqslant 0$. Also, $\Upsilon_{t}-L_{t}$ has the form

$$
\left(Y_{t}-L_{t}\right)\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
\rho(A)\left(I_{n-k}-E E^{*}\right) & 0_{n-k, n^{\prime}-k} \\
0_{n^{\prime}-k, n-k} & 0_{n^{\prime}-k, n^{\prime}-k}
\end{array}\right)
$$

where the right hand side is completely positive since $\|E\| \leqslant 1$. Therefore, the maps $\left\{Y_{t}\right\}_{t \geqslant 0}$ are all completely positive, so 3.12 implies that $\vartheta(I+t \vartheta)^{-1}$ is completely positive for all $t \geqslant 0$, hence γ is a q-corner from ϕ to ψ.

THEOREM 3.9. Assume the notation of the previous theorem, and suppose that $k=k^{\prime}$ and $\mu_{i}=r_{i}$ for all $i=1, \ldots, k$. A q-corner $\gamma: M_{n, n^{\prime}}(\mathbb{C}) \rightarrow M_{n, n^{\prime}}(\mathbb{C})$ from ϕ to ψ is hyper maximal if and only if $n=n^{\prime}, 0<|\lambda|^{2}=\operatorname{Re}(\lambda)$, and E is unitary.

Proof. We first show that γ is not hyper maximal if $n \neq n^{\prime}$, regardless of the assumptions for λ or E. If $n>n^{\prime}$, then $E E^{*} \in M_{n-k}(\mathbb{C})$ is a positive contraction of rank at most $n^{\prime}-k$, so $E E^{*} \neq I_{n-k}$.

Define $\phi^{\prime}: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ by

$$
\phi^{\prime}(R)=\phi(R)\left(\begin{array}{cc}
I_{k, k} & 0_{k, n-k} \\
0_{n-k, k} & E E^{*}
\end{array}\right)
$$

observing that $\phi^{\prime}\left(I+t \phi^{\prime}\right)^{-1}=\frac{1}{1+t} \phi^{\prime}$ for all $\geqslant 0$. Define $\vartheta^{\prime}: M_{n+n^{\prime}}(\mathbb{C}) \rightarrow$ $M_{n+n^{\prime}}(\mathbb{C})$ by

$$
\vartheta^{\prime}=\left(\begin{array}{ll}
\phi^{\prime} & \gamma \\
\gamma^{*} & \psi
\end{array}\right)
$$

noting that ϑ^{\prime} has no negative eigenvalues. Define maps $\left\{\Theta_{t}\right\}_{t \geqslant 0},\left\{L_{t}\right\}_{t \geqslant 0}$, and $\left\{Y_{t}\right\}_{t \geqslant 0}$ as in equations (3.8), 3.9), and 3.10. Writing each $M \in M_{n+n^{\prime}}(\mathbb{C})$ in the form (3.11), we see that $\vartheta^{\prime}\left(I+t \vartheta^{\prime}\right)^{-1}(M)$ is equal to

$$
\left(\begin{array}{cccc}
\frac{1}{1+t} \rho(A) I_{k, k} & 0_{k, n-k} & \frac{\lambda}{1+t \lambda} \tau(B) X & 0_{k, n^{\prime}-k} \\
0_{n-k, k} & \frac{1}{1+t} \rho(A) E E^{*} & 0_{n-k, k} & \frac{\lambda}{1+t \lambda} \tau(B) E \\
\frac{\bar{\lambda}}{1+t \bar{\lambda}} \tau^{*}(C) X^{*} & 0_{k, n-k} & \frac{t}{1+t} \rho(D) I_{k, k} & 0_{k, n^{\prime}-k} \\
0_{n^{\prime}-k, k} & \frac{\bar{\lambda}}{1+t \bar{\lambda}} \tau^{*}(C) E^{*} & 0_{n^{\prime}-k, k} & \frac{1}{1+t} \rho(D) I_{n^{\prime}-k, n^{\prime}-k}
\end{array}\right)
$$

In other words,

$$
\begin{equation*}
\vartheta^{\prime}\left(I+t \vartheta^{\prime}\right)^{-1}(M)=S^{*} \Theta_{t}\left(S M S^{*}\right) S+T^{*} L_{t}\left(S M S^{*}\right) T \tag{3.15}
\end{equation*}
$$

for every $t \geqslant 0$ and $M \in M_{n+n^{\prime}}(\mathbb{C})$, hence ϑ^{\prime} is q-positive. By 3.12 and 3.15, we have

$$
\left(\vartheta(I+t \vartheta)^{-1}-\vartheta^{\prime}\left(I+t \vartheta^{\prime}\right)^{-1}\right)(M)=T^{*}\left(\left(Y_{t}-L_{t}\right)\left(S M S^{*}\right)\right) T
$$

Since $Y_{t}-L_{t}$ is completely positive for all $t \geqslant 0$ (as shown in the previous proof), the above equation implies that $\vartheta \geqslant_{q} \vartheta^{\prime}$. However, $\vartheta \neq \vartheta^{\prime}$ since $E E^{*} \leq I_{n-k}$, so γ is not hyper maximal.

If $n<n^{\prime}$, then since $E^{*} E \lesseqgtr I_{n^{\prime}-k}$, we may replace $\left\{L_{t}\right\}_{t=0}^{\infty}$ with the maps $\left\{R_{t}\right\}_{t=0}^{\infty}$ below and argue analogously (this time cutting down ψ using $E^{*} E$) to show that γ is not hyper maximal:

$$
R_{t}\left(\begin{array}{cc}
A_{k, k} & B_{k, k} \\
C_{k, k} & D_{k, k}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{1+t} \rho(A) I_{n-k} & \frac{\lambda}{1+t \lambda} \tau(B) E \\
\frac{\lambda}{1+t \bar{\lambda}} \tau^{*}(C) E^{*} & \frac{1}{1+t} \rho(D) E^{*} E
\end{array}\right) .
$$

Of course, if $n=n^{\prime}$ but E is not unitary, then $E E^{*} \lesseqgtr I_{n-k}$, and the same argument given in the case that $n>n^{\prime}$ shows that γ is not hyper maximal.

Therefore, we may suppose for the remainder of the proof that $n=n^{\prime}$ and E is unitary. Note that $\phi=\psi$ since $n=n^{\prime}$. For some $a \in(0,1]$, we have $|\lambda|^{2}=$ $a \operatorname{Re}(\lambda)$. We first show that γ is not hyper maximal if $a \neq 1$. We claim that the $\operatorname{map} \vartheta^{\prime \prime}: M_{2 n}(\mathbb{C}) \rightarrow M_{2 n}(\mathbb{C})$ defined by

$$
\vartheta^{\prime \prime}\left(\begin{array}{cc}
A_{n, n} & B_{n, n} \\
C_{n, n} & D_{n, n}
\end{array}\right)=\left(\begin{array}{cc}
a \phi\left(A_{n, n}\right) & \gamma\left(B_{n, n}\right) \\
\gamma^{*}\left(C_{n, n}\right) & a \phi\left(D_{n, n}\right)
\end{array}\right)
$$

satisfies $\vartheta^{\prime \prime} \geqslant_{q} 0$. For each $t \geqslant 0$, let $\eta_{t}^{(a)}: M_{2 k}(\mathbb{C}) \rightarrow M_{2}(\mathbb{C})$ be the map

$$
\eta_{t}^{(a)}\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
\frac{a}{1+a t} \rho(A) & \frac{\lambda}{1+t \lambda} \tau(B) \\
\frac{\lambda}{1+t \bar{\lambda}} \tau^{*}(C) & \frac{a}{1+a t} \rho(D)
\end{array}\right)
$$

It is routine to check that since τ is a corner from ρ to ρ, the condition $|\lambda|^{2}=$ $a \operatorname{Re}(\lambda)$ implies that $\frac{\lambda}{1+t \lambda} \tau$ is a corner from $\frac{a}{1+a t} \rho$ to $\frac{a}{1+a t} \rho$ for every $t \geqslant 0$, so $\eta_{t}^{(a)}$
is completely positive for all $t \geqslant 0$. Defining $\Theta_{t}^{(a)}$ and $\gamma_{t}^{(a)}$ for each $t \geqslant 0$ by

$$
\begin{aligned}
\Theta_{t}^{(a)}\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) & =\left(\begin{array}{cc}
\frac{a}{1+a t} \rho(A) I_{k} & \frac{\lambda}{1+t \lambda} \tau(B) X \\
\frac{\bar{\lambda}}{1+t \bar{\lambda}} \tau^{*}(C) X^{*} & \frac{a}{1+a t} \rho(D) I_{k}
\end{array}\right), \text { and } \\
\Upsilon_{t}^{(a)}\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) & =G\left(\begin{array}{cc}
\frac{a}{1+a t} \rho(A) I_{n-k} & \frac{\lambda}{1+t \lambda} \tau(B) I_{n-k} \\
\frac{\lambda}{1+t \bar{\lambda}} \tau^{*}(C) I_{n-k} & \frac{a}{1+a t} \rho(D) I_{n-k}
\end{array}\right) G^{*} \\
& =\left(\begin{array}{cc}
\frac{a}{1+\frac{a}{\lambda} t} \rho(A) I_{n-k} & \frac{\lambda}{1+t \lambda} \tau(B) E \\
\frac{\lambda}{1+t \bar{\lambda}} \tau^{*}(C) E^{*} & \frac{a}{1+a t} \rho(D) I_{n-k}
\end{array}\right),
\end{aligned}
$$

we observe that the maps $\left\{\Theta_{t}^{(a)}\right\}_{t \geqslant 0}$ and $\left\{Y_{t}^{(a)}\right\}_{t \geqslant 0}$ are all completely positive since $\eta_{t}^{(a)}$ is completely positive for all $t \geqslant 0$. Note that

$$
(a \phi)(I+t a \phi)^{-1}=\frac{a}{1+a t} \phi
$$

for all $t \geqslant 0$, so for every $M \in M_{2 n}(\mathbb{C})$, we have

$$
\vartheta^{\prime \prime}\left(I+t \vartheta^{\prime \prime}\right)^{-1}(M)=S^{*}\left(\Theta_{t}^{(a)}\left(S M S^{*}\right)\right) S+T^{*}\left(Y_{t}^{(a)}\left(S M S^{*}\right)\right) T
$$

Therefore, $\vartheta^{\prime \prime} \geqslant_{q} 0$, and trivially $\vartheta \geqslant_{q} \vartheta^{\prime \prime}$. If $a \neq 1$, then $\vartheta^{\prime \prime} \neq \vartheta$, hence γ is not hyper maximal. To finish the proof, it suffices to show that γ is hyper maximal if $a=1$ (of course, maintaining our assumption that E is unitary).

Suppose $a=1$, and let ϕ^{\prime} be any q-subordinate of ϕ such that

$$
\chi:=\left(\begin{array}{ll}
\phi^{\prime} & \gamma \\
\gamma^{*} & \phi
\end{array}\right) \geqslant_{q} 0 .
$$

If $L_{\phi^{\prime}}(I) \neq I$, then $L_{\phi^{\prime}}(I)=R \leq I$ for some positive $R \in M_{n}(\mathbb{C})$. Recall that $\sigma=\lim _{t \rightarrow \infty} t \gamma(I+t \gamma)^{-1}$, so applying Lemma 2.2 to χ gives us

$$
L_{\chi}=\left(\begin{array}{cc}
L_{\phi^{\prime}} & \sigma \\
\sigma^{*} & \phi
\end{array}\right)
$$

Letting Z be the unitary matrix

$$
Z=\left(\begin{array}{cc}
X & 0_{k, n-k} \\
0_{n-k, k} & E
\end{array}\right) \in M_{n}(\mathbb{C})
$$

we observe that $\sigma(Z)=Z$, so by complete positivity of L_{χ},

$$
0 \leqslant L_{\chi}\left(\begin{array}{cc}
I & Z \tag{3.16}\\
Z^{*} & I
\end{array}\right)=\left(\begin{array}{cc}
R & Z \\
Z^{*} & I
\end{array}\right)
$$

Since $R \lesseqgtr I$, we have $(f, R f)<1$ for some unit vector $f \in \mathbb{C}^{n}$. A quick calculation shows that

$$
\left\langle\binom{ f}{-Z^{*} f},\left(\begin{array}{cc}
R & Z \\
Z^{*} & I
\end{array}\right)\binom{f}{-Z^{*} f}\right\rangle=(f, R f)-1<0
$$

contradicting 3.16.

Therefore, $L_{\phi^{\prime}}(I)=I$. Since $\phi \geqslant_{q} \phi^{\prime}$, it follows that $L_{\phi}-L_{\phi^{\prime}}$ is completely positive, so

$$
\left\|L_{\phi}-L_{\phi^{\prime}}\right\|=\left\|L_{\phi}(I)-L_{\phi^{\prime}}(I)\right\|=0
$$

hence $L_{\phi^{\prime}}(A)=L_{\phi}(A)=\phi(A)=\ell(A) I$ for the state $\ell \in M_{n}(\mathbb{C})^{*}$ defined by $\ell(A)=\sum_{i=1}^{k} \mu_{i} a_{k k}$. But range $\left(\phi^{\prime}\right)=\operatorname{range}\left(L_{\phi^{\prime}}\right)=\{c I: c \in \mathbb{C}\}$ and $\phi^{\prime}=\phi^{\prime} \circ L_{\phi^{\prime}}$, so $\phi^{\prime}(I)=r I$ for some $r \leqslant 1$ and

$$
\phi^{\prime}(A)=\phi^{\prime}\left(L_{\phi^{\prime}}(A)\right)=\phi(\ell(A) I)=\ell(A) \phi^{\prime}(I)=r \ell(A) I=r \phi(A)
$$

for all $A \in M_{n}(\mathbb{C})$.
We claim that $r=1$. To prove this, we define $V_{t}: M_{2 k}(\mathbb{C}) \rightarrow M_{2 k}(\mathbb{C})$ for each $t \geqslant 0$ by

$$
\left.\begin{array}{rl}
V_{t}\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) & =S\left(\chi(I+t \chi)^{-1}\left[S^{*}\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) S\right]\right) S^{*} \\
& =\left(\begin{array}{cc}
\frac{r}{1+r t} \rho(A) I_{k} & \frac{\lambda}{1+t \lambda} \tau(B) X \\
\frac{1}{\lambda}+t \bar{\lambda} & \tau^{*}(C) X^{*}
\end{array} \frac{\frac{1}{1+t} \rho(D) I_{k}}{1+1}\right.
\end{array}\right) .
$$

Since $\chi \geqslant_{q} 0$, each V_{t} is completely positive. Therefore,

$$
0 \leqslant\left(\begin{array}{cc}
X^{*} & 0 \\
0 & I
\end{array}\right)\left[V_{t}\left(\begin{array}{cc}
I & X \\
X^{*} & I
\end{array}\right)\right]\left(\begin{array}{cc}
X & 0 \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
\frac{r}{1+r t} I & \frac{\lambda}{1+t \lambda} I \\
\frac{\frac{\lambda}{\lambda}}{1+t \bar{\lambda}} I & \frac{1}{1+t} I
\end{array}\right)
$$

hence

$$
\frac{r}{(1+r t)(1+t)} \geqslant \frac{|\lambda|^{2}}{|1+t \lambda|^{2}}=\frac{\operatorname{Re}(\lambda)}{1+\left(t^{2}+2 t\right) \operatorname{Re}(\lambda)}
$$

for all $t \geqslant 0$. This is equivalent to

$$
\begin{equation*}
r \geqslant \frac{(1+t) \operatorname{Re}(\lambda)}{1+t \operatorname{Re}(\lambda)} \tag{3.17}
\end{equation*}
$$

for all $t \geqslant 0$. We take the limit as $t \rightarrow \infty$ in 3.17) and observe $r \geqslant 1$. Since $r \leqslant 1$ we have $r=1$, so $\phi^{\prime}=\phi$.

We have shown that if

$$
\left(\begin{array}{cc}
\phi & \gamma \\
\gamma^{*} & \phi
\end{array}\right) \geqslant_{q}\left(\begin{array}{ll}
\phi^{\prime} & \gamma \\
\gamma^{*} & \phi
\end{array}\right) \geqslant_{q} 0
$$

then $\phi=\phi^{\prime}$. An analogous argument shows that if

$$
\left(\begin{array}{cc}
\phi & \gamma \\
\gamma^{*} & \phi
\end{array}\right) \geqslant_{q}\left(\begin{array}{cc}
\phi & \gamma \\
\gamma^{*} & \phi^{\prime}
\end{array}\right) \geqslant_{q} 0
$$

then $\phi=\phi^{\prime}$. Therefore, γ is hyper maximal.
We are now ready to prove the following:

THEOREM 3.10. Let $\phi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ and $\psi: M_{n^{\prime}}(\mathbb{C}) \rightarrow M_{n^{\prime}}(\mathbb{C})$ be rank one unital q-positive maps, and let v be a type II Powers weight of the form

$$
v(\sqrt{I-\Lambda(1)} B \sqrt{I-\Lambda(1)})=(f, B f)
$$

The E-semigroups induced by (ϕ, v) and (ψ, v) are cocycle conjugate if and only if $n=$ n^{\prime} and ϕ is conjugate to ψ.

Proof. The backward direction follows trivially from Proposition 2.12. For the forward direction, suppose (ϕ, v) and (ψ, v) induce cocycle conjugate E_{0-} semigroups α^{d} and β^{d}. For some sets $\left\{\mu_{i}\right\}_{i=1}^{k}$ and $\left\{r_{i}\right\}_{i=1}^{k^{\prime}}$ satisfying the conditions of Theorem 3.8 and some unitaries $U \in M_{n}(\mathbb{C})$ and $V \in M_{n^{\prime}}(\mathbb{C}), \phi_{U}$ and ψ_{V} have the form of 3.5 . Let α_{U}^{d} and β_{V}^{d} be the E_{0}-semigroups induced by $\left(\phi_{U}, v\right)$ and $\left(\psi_{V}, v\right)$, respectively. Since $\alpha_{U}^{d} \simeq \alpha^{d}$ and $\beta_{V}^{d} \simeq \beta^{d} \simeq \alpha^{d}$, we have $\alpha_{U}^{d} \simeq \beta_{V}^{d}$, so by Proposition 2.9, there is a hyper maximal q-corner from ϕ_{U} to ψ_{V}. Theorems 3.8 and 3.9 imply that $n=n^{\prime}, k=k^{\prime}$, and $\mu_{i}=r_{i}$ for all $i=1, \ldots, k$. In other words, $\phi_{U}=\psi_{V}$. Therefore, $\phi=\psi_{\left(V U^{*}\right)}$, so ϕ and ψ are conjugate.

Acknowledgements. The author's research was partially supported by the Skirball Foundation via the Center for Advanced Studies in Mathematics at Ben-Gurion University of the Negev.

REFERENCES

[1] W.B. Arveson, The index of a quantum dynamical semigroup, J. Funct. Anal. 146(1997), 557-588.
[2] W.B. Arveson, Continuous analogues of Fock space, Mem. Amer. Math. Soc. 80(1989), no. 409.
[3] W.B. Arveson, Four lectures on noncommutative dynamics, in Advances in Quantum Dynamics, Contemp. Math., vol. 335, Amer. Math. Soc., Providence, RI 2003, pp. 1-55.
[4] W.B. Arveson, Noncommutative Dynamics and E-semigroups, Springer Monographs in Math., Springer-Verlag, New York 2003.
[5] B.V.R. Bhat, An index theory for quantum dynamical semigroups, Trans. Amer. Math. Soc. 348(1996), 561-583.
[6] M. Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. 10(1975), 285-290.
[7] M. Izumi, A perturbation problem for the shift semigroup, J. Funct. Anal. 251(2007), 498-545.
[8] M. Izumi, R. Srinivasan, Generalized CCR flows, Comm. Math. Phys. 281(2008), 529-571.
[9] C. Jankowski, On type $\mathrm{II}_{0} E_{0}$-semigroups induced by boundary weight doubles, J. Funct. Anal. 258(2010), 3413-3451.
[10] C. JANKOWSKI, Unital q-positive maps on $M_{2}(\mathbb{C})$ and cocycle conjugacy of E_{0} semigroups, Houston J. Math., to appear.
[11] D. Markiewicz, R.T. Powers, Local unitary cocycles of E_{0}-semigroups, J. Funct. Anal. 256(2009), 1511-1543.
[12] R.T. POWERS, A nonspatial continous semigroup of *-endomorphisms of $B(\mathfrak{H})$, Publ. Res. Inst. Math. Sci. 23(1987), 1053-1069.
[13] R.T. POWERS, New examples of continuous spatial semigroups of $*$-endomorphisms of $B(\mathfrak{H})$, Internat. J. Math. 10(1999), 215-288.
[14] R.T. POWERS, Construction of E_{0}-semigroups of $B(\mathfrak{H})$ from CP-flows, in Advances in Quantum Dynamics, Contemp. Math., vol. 335, Amer. Math. Soc., Providence, RI 2003, pp. 57-97.
[15] R.T. POWERS, Continous spatial semigroups of completely positive maps of $B(H)$, New York J. Math. 9(2003), 165-269.
[16] B. Tsirelson, Non-isomorphic product systems, in Advances in Quantum Dynamics, Contemp. Math., vol. 335, Amer. Math. Soc., Providence, RI 2003, pp. 273-328.
[17] E.P. WIGNER, On unitary representations of the inhomogeneous Lorentz group, Ann. of Math. 40(1939), 149-204.

[^0]Received October 6, 2010; revised November 10, 2010; posted on February 8, 2013.

[^0]: CHRISTOPHER JANKOWSKI, Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105 Israel

 E-mail address: chrisj@cims.nyu.edu

