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ABSTRACT. Let ρ ∈ Mn(C)∗ and ρ′ ∈ Mn′ (C)∗ be states, and define unital
q-positive maps φ and ψ by φ(A) = ρ(A)In and ψ(D) = ρ′(D)In′ for all A ∈
Mn(C) and D ∈ Mn′ (C). We show that if ν and η are type II Powers weights,
then the boundary weight doubles (φ, ν) and (ψ, η) induce non-cocycle con-
jugate E0-semigroups if ρ and ρ′ have different eigenvalue lists. We then clas-
sify the q-corners and hyper maximal q-corners from φ to ψ, finding that if ν

is a type II Powers weight of the form ν(
√

I −Λ(1)B
√

I −Λ(1)) = ( f , B f ),
where Λ(1) ∈ B(L2(0, ∞)) is the operator of multiplication by e−x, then the
E0-semigroups induced by (φ, ν) and (ψ, ν) are cocycle conjugate if and only
if n = n′ and φ and ψ are conjugate.
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1. INTRODUCTION

Let H be a separable Hilbert space, denoting its inner product by the sym-
bol (·, ·) which is conjugate-linear in its first entry and linear in its second. An
E0-semigroup α = {αt}t>0 is a semigroup of unital ∗-endomorphisms of B(H)
which is weakly continuous in t. E0-semigroups are divided into three types, de-
pending on the existence and structure of their units. More specifically, if α is
an E0-semigroup and there is a strongly continuous semigroup U = {Ut}t>0 of
bounded operators acting on H such that αt(A)Ut = Ut A for all A ∈ B(H) and
t > 0, then we say that U is a unit for α. An E0-semigroup is said to be spatial
if it has at least one unit, and a spatial E0-semigroup is called completely spatial
if, in essence, its units can reconstruct H. We say an E0-semigroup α is type I if
it is completely spatial and type II if it is spatial but not completely spatial. If α
has no units, we say it is of type III. Every spatial E0-semigroup α is assigned an
index n ∈ Z>0 ∪ {∞} which corresponds to the dimension of a particular Hilbert
space associated to its units. The type I E0-semigroups have been classified up
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to cocycle conjugacy by their index in [2]: If α is of type In (type I, index n) for
n ∈ N ∪ {∞}, then α is cocycle conjugate to the CCR/CAR flow of rank n, while
if α is of type I0, then it is a semigroup of ∗-automorphisms. Arveson’s compre-
hensive book on E0-semigroups [4] provides a detailed exploration of the index
(Sections 2.5, 2.6, 3.6, and others), the CCR and CAR flows (Section 2.1), and other
fundamental results in the theory of E0-semigroups, along with many relatively
recent results in the subject.

In contrast to the type I case, uncountably many examples of non-cocycle
conjugate E0-semigroups of types II and III are known (see, for example, [8],
[7], [14], [13], [12], and [16]). Bhat’s dilation theorem [5] and developments in
the theory of CP-flows ([15] and [14]) have led to the introduction of bound-
ary weight doubles and related cocycle conjugacy results for E0-semigroups in
[9]. A boundary weight double is a pair (φ, ν), where φ : Mn(C) → Mn(C)
is q-positive (that is, φ(I + tφ)−1 is completely positive for all t > 0) and ν is a
positive boundary weight over L2(0, ∞). If φ is unital and ν is normalized and un-
bounded (in which case we say ν is a type II Powers weight), then (φ, ν) induces
a unital CP-flow whose Bhat minimal dilation is a type II0 E0-semigroup αd. If
φ : Mn(C) → Mn(C) is unital and q-positive and U ∈ Mn(C) is unitary, then
the map φU(A) = U∗φ(UAU∗)U is also unital and q-positive. The relationship
between φ and φU is analogous to the definition of conjugacy for E0-semigroups.
With this in mind, we say that q-positive maps φ, ψ : Mn(C)→ Mn(C) are conju-
gate if ψ = φU for some unitary U ∈ Mn(C). If ν is a type II Powers weight of the
form ν(

√
I −Λ(1)B

√
I −Λ(1)) = ( f , B f ), where Λ(1) ∈ B(L2(0, ∞)) is defined

by (Λ(1)g)(x) = e−xg(x) for all g ∈ L2(0, ∞) and x > 0, then (φ, ν) and (φU , ν)
induce cocycle conjugate E0-semigroups (for details, see Proposition 2.11 of [10]
and the discussion preceding it).

Suppose φ : Mn(C) → Mn(C) and ψ : Mn′(C) → Mn′(C) are unital rank
one q-positive maps, so for some states ρ ∈ Mn(C)∗ and ρ′ ∈ Mn′(C)∗, we have
φ(A) = ρ(A)In and ψ(D) = ρ′(D)In′ for all A ∈ Mn(C), D ∈ Mn′(C). Let ν and η
be type II Powers weights. We prove three main results. First, we find that if (φ, ν)
and (ψ, η) induce cocycle conjugate E0-semigroups, then ρ and ρ′ have identical
eigenvalue lists (Definition 2.13 and Proposition 3.4). We then find all q-corners
and hyper maximal q-corners from φ to ψ (see Remark 3.3 and Theorems 3.8 and
3.9). With this result in hand, we complete the cocycle conjugacy comparison
theory for E0-semigroups αd and βd induced by (φ, ν) and (ψ, ν) in the case that
ν is of the form ν(

√
I −Λ(1)B

√
I −Λ(1)) = ( f , B f ), finding that αd and βd are

cocycle conjugate if and only if n = n′ and φ is conjugate to ψ (Theorem 3.10).

2. BACKGROUND

2.1. q-POSITIVE AND q-PURE MAPS. Let φ : A → B be a linear map between
unital C∗-algebras. For each n ∈ N, define φn : Mn(A)→ Mn(B) by
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φn

 A11 · · · A1n
...

. . .
...

An1 · · · Ann

 =

 φ(A11) · · · φ(A1n)
...

. . .
...

φ(An1) · · · φ(Ann)

 .

We say that φ is completely positive if φn is positive for all n ∈ N. From the work
of Choi [6] and Arveson [1], we know that every normal completely positive map
φ : B(H)→ B(K) (H, K separable Hilbert spaces) can be written in the form

φ(A) =
n

∑
i=1

Si AS∗i

for some n ∈ N ∪ {∞} and bounded operators Si : H → K which are linearly
independent over `2(N).

We will be interested in a particular kind of completely positive map:

DEFINITION 2.1. Let φ : Mn(C)→ Mn(C) be a linear map with no negative
eigenvalues. We say φ is q-positive (and write φ >q 0) if φ(I + tφ)−1 is completely
positive for all t > 0.

Powers introduced the term “q-positive” in Definition 4.28 of [15] in order
to describe boundary weight maps which give rise to CP-flows. Our definition of
q-positivity serves the same purpose with regard to constructing unital CP-flows
through boundary weight doubles, as we will see in Proposition 2.7. We make
two observations in light of Definition 2.1. First, it is not uncommon for a com-
pletely positive map to have negative eigenvalues. Second, there is no “slowest
rate of failure” for q-positivity: For every s > 0, there exists a linear map φ with
no negative eigenvalues such that φ(I + tφ)−1 (t > 0) is completely positive if
and only if t 6 s. These observations are discussed in detail in Section 2.1 of [10].

There is a natural order structure for q-positive maps. If φ, ψ : Mn(C) →
Mn(C) are q-positive, we say φ q-dominates ψ (i.e. φ >q ψ) if φ(I + tφ)−1−ψ(I +
tψ)−1 is completely positive for all t > 0. It is not always true that φ >q λφ
if λ ∈ (0, 1) (for a large family of counterexamples, see Theorem 6.11 of [9]).
However, if φ is q-positive, then for every s > 0, we have φ >q φ(I + sφ)−1 >q 0
([9], Proposition 4.1). If these are the only nonzero q-subordinates of φ, we say
φ is q-pure. The unital q-pure maps which are either rank one or invertible have
been classified ([9], Proposition 5.2 and Theorem 6.11).

If φ is a unital q-positive map, then as t → ∞, the maps tφ(I + tφ)−1 con-
verge to an idempotent completely positive map Lφ which has interesting prop-
erties (see Lemma 3.1 of [10]):

LEMMA 2.2. Suppose φ : Mn(C)→ Mn(C) is q-positive and ‖tφ(I + tφ)−1‖ <
1 for all t > 0. Then the maps tφ(I + tφ)−1 have a unique norm limit Lφ as t→ ∞, and
Lφ is completely positive. Furthermore,

(i) φ = φ ◦ Lφ = Lφ ◦ φ,
(ii) L2

φ = Lφ,
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(iii) range(Lφ) = range(φ), and
(iv) nullspace(Lφ) = nullspace(φ).

2.2. E0-SEMIGROUPS AND CP-FLOWS. From a celebrated result of Wigner [17],
we know that every one-parameter group α = {αt}t∈R of ∗-automorphisms of
B(H) arises from a strongly continuous unitary group {Vt}t∈R in the sense that
αt(A) = Vt AV∗t for all t ∈ R and A ∈ B(H).

DEFINITION 2.3. Let H be a separable Hilbert space. We say a family α =
{αt}t>0 of ∗-endomorphisms of B(H) is an E0-semigroup if:

(i) αs ◦ αt = αs+t for all s, t > 0 and α0(A) = A for all A ∈ B(H);
(ii) for each f , g ∈ H and A ∈ B(H), the inner product ( f , αt(A)g) is continu-

ous in t;
(iii) αt(I) = I for all t > 0.

We have two notions of equivalence for E0-semigroups:

DEFINITION 2.4. Let α and β be E0-semigroups acting on B(H1) and B(H2),
respectively. We say α and β are conjugate if there is a ∗-isomorphism θ from
B(H1) onto B(H2) such that θ ◦ αt = βt ◦ θ for all t > 0.

We say α and β are cocycle conjugate if α is conjugate to β′, where β′ is an E0-
semigroup of B(H2) satisfying the following condition: For some strongly con-
tinuous family of unitaries W = {Wt}t>0 acting on H2 and satisfying Wtβt(Ws) =
Wt+s for all s > 0 and t > 0, we have β′t(A) = Wtβt(A)W∗t for all A ∈ B(H2) and
t > 0.

Let K be a separable Hilbert space, and form H = K ⊗ L2(0, ∞), which we
identify with the space of K-valued measurable functions on (0, ∞) which are
square integrable. Let U = {Ut}t>0 be the right shift semigroup on H, so for all
t > 0, f ∈ H, and x > 0, we have

(Ut f )(x) = f (x− t) if x > t; (Ut f )(x) = 0 if x 6 t.

A strongly continuous semigroup α = {αt}t>0 of completely positive contrac-
tions from B(H) into itself is called a CP-flow over K if αt(A)Ut = Ut A for all
A ∈ B(H) and t > 0. A result of Bhat in [5] shows that if α is unital, then it
minimally dilates to a unique (up to conjugacy) E0-semigroup αd. We may natu-
rally construct a CP-flow β = {βt}t>0 over K using the right shift semigroup by
defining

βt(A) = Ut AU∗t

for all A ∈ B(H), t > 0. In fact, if α is any CP-flow over K, then α dominates β in
the sense that αt − βt is completely positive for all t > 0.

Define Λ : B(K)→ B(H) by

(Λ(A) f )(x) = e−x A f (x)
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for all A ∈ B(K), f ∈ H, and x ∈ (0, ∞), and let A(H) be the algebra

A(H) =
√

I −Λ(IK)B(H)
√

I −Λ(IK).

We say a linear functional τ acting on A(H) is a boundary weight (denoted τ ∈
A(H)∗) if the functional ` defined on B(H) by

`(A) = τ
(√

I −Λ(IK)A
√

I −Λ(IK)
)

satisfies ` ∈ B(H)∗. Boundary weights were first defined in Definition 4.16 of
[15], where their relationship to CP-flows was explored in depth. For an addi-
tional discussion of boundary weights and their properties, we refer the reader
to Definition 1.10 of [11] and the remarks that follow it.

Every CP-flow over K corresponds to a boundary weight map ρ→ ω(ρ) from
B(K)∗ to A(H)∗ ([15]). On the other hand, it is an extremely important and non-
trivial fact that, under certain conditions, a map from B(K)∗ to A(H)∗ can induce
a CP-flow (see Theorems 4.17, 4.23, and 4.27 of [15]):

THEOREM 2.5. Let ρ→ ω(ρ) be a completely positive mapping from B(K)∗ into
A(H)∗ satisfying ω(ρ)(I −Λ(IK)) 6 ρ(IK) for all positive ρ. Let {Ut}t>0 be the right
shift semigroup acting on H. For each t > 0, define a truncated boundary weight map
ρ ∈ B(K)∗ → ωt(ρ) ∈ B(H)∗ by

ωt(ρ)(A) = ω(ρ)(UtU∗t AUtU∗t )

for all A ∈ B(H). If the maps

π̂t := ωt(I + Λ̂ωt)
−1

are completely positive contractions from B(K)∗ into B(H)∗ for all t > 0, then ρ →
ω(ρ) is the boundary weight map of a CP-flow over K. The CP-flow is unital if and only
if ω(ρ)(I −Λ(IK)) = ρ(IK) for all ρ ∈ B(K)∗.

If α is a CP-flow overC, then we identify its boundary weight map c→ ω(c)
with the single positive boundary weight ω := ω(1), so ω has the form

ω
(√

I −Λ(1)A
√

I −Λ(1)
)
=

k

∑
i=1

( fi, A fi)

for some mutually orthogonal nonzero L2-functions { fi}k
i=1 (k ∈ N ∪ {∞}) with

k
∑

i=1
‖ fi‖2 < ∞. We call ω a positive boundary weight over L2(0, ∞), and, following

the notation of [11], we write ω ∈ A(L2(0, ∞))+∗ . We say ω is bounded if there
exists some r > 0 such that |ω(B)| 6 r‖B‖ for all B ∈ A(H). Otherwise, we say
ω is unbounded. Suppose ω(I −Λ(1)) = 1 (i.e. ω is normalized), so α is unital
and therefore dilates to an E0-semigroup αd. Results from [15] show that αd is of
type Ik if ω is bounded but of type II0 if ω is unbounded, leading us to make the
following definition:
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DEFINITION 2.6. A boundary weight ν ∈ A(L2(0, ∞))∗ is called a Powers
weight if ν is positive and normalized. We say a Powers weight ν is type I if it is
bounded and type II if it is unbounded.

We note that if ν is a type II Powers weight, then for the weights νt de-
fined by νt(A) = ν(UtU∗t AUtU∗t ) for A ∈ B(L2(0, ∞)) and t > 0, both νt(I) and
νt(Λ(1)) approach infinity as t → 0+. We can combine unital q-positive maps
with type II Powers weights to obtain E0-semigroups (see Proposition 3.2 and
Corollary 3.3 of [9]):

PROPOSITION 2.7. Let H = Cn ⊗ L2(0, ∞). Let φ : Mn(C) → Mn(C) be a
unital q-positive map, and let ν be a type II Powers weight. Let Ων : A(H)→ Mn(C) be
the map that sends A = (Aij) ∈ Mn(A(L2(0, ∞))) ∼= A(H) to the matrix (ν(Aij)) ∈
Mn(C). The map ρ→ ω(ρ) from Mn(C)∗ into A(H)∗ defined by

ω(ρ)(A) = ρ(φ(Ων(A)))

is the boundary weight map of a unital CP-flow α over Cn whose Bhat minimal dilation
αd is a type II0 E0-semigroup.

In the notation of the previous proposition, we call αd the E0-semigroup
induced by the boundary weight double (φ, ν). In order to compare E0-semigroups
induced by boundary weight doubles, we appeal to results of [15], where Powers
defined corners between CP-semigroups and showed that two E0-semigroups are
cocycle conjugate if and only if only if there is a corner from one to the other ([15],
Definition 3.7 and Lemma 3.8). Furthermore, if α and β are unital CP-flows which
induce type II0 E0-semigroups αd and βd, then αd and βd are cocycle conjugate if
and only if there is a hyper maximal flow corner from α to β ([15], Definition 4.53
and Theorem 4.56).

In [14], Powers defined q-corners and hyper maximal q-corners ([14], Defi-
nition 3.11) between Powers weights. As a consequence of Theorem 4.56 of [15],
type II Powers weights ν and η induce cocycle conjugate E0-semigroups if and
only if there is a hyper maximal q-corner from ν to η. Powers also found a con-
dition involving the trace density operators for ν and η which was necessary
and sufficient for ν and η to induce cocycle conjugate E0-semigroups ([14], The-
orem 3.23). Motivated by the above results, we define corners, q-corners, and
hyper maximal q-corners in an analogous context ([9], Definitions 3.4 and 4.4):

DEFINITION 2.8. Suppose φ : B(H1) → B(K1) and ψ : B(H2) → B(K2) are
normal completely positive maps. Write each A ∈ B(H1 ⊕ H2) as A = (Aij),
where Aij ∈ B(Hj, Hi) for each i, j = 1, 2. We say a linear map γ : B(H2, H1) →
B(K2, K1) is a corner from α to β if Θ : B(H1 ⊕ H2)→ B(K1 ⊕ K2) defined by

Θ

(
A11 A12
A21 A22

)
=

(
φ(A11) γ(A12)
γ∗(A21) ψ(A22)

)
is normal and completely positive.
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Suppose H1 = K1 = Cn and H2 = K2 = Cm. We say γ : Mn,m(C) →
Mn,m(C) is a q-corner from φ to ψ if Θ >q 0. A q-corner γ is hyper maximal if,
whenever

Θ >q Θ′ =

(
φ′ γ
γ∗ ψ′

)
>q 0;

we have Θ = Θ′.

Hyper maximal q-corners between unital q-positive maps φ and ψ allow us
to compare E0-semigroups induced by (φ, ν) and (ψ, ν) if ν is a particular kind of
type II Powers weight ([9], Proposition 4.6):

PROPOSITION 2.9. Let φ : Mn(C) → Mn(C) and ψ : Mk(C) → Mk(C) be
unital q-positive maps, and let ν be a type II Powers weight of the form

ν
(√

I −Λ(1)B
√

I −Λ(1)
)
= ( f , B f ).

The boundary weight doubles (φ, ν) and (ψ, ν) induce cocycle conjugate E0-semigroups
if and only if there is a hyper maximal q-corner from φ to ψ.

From [9], we know that a unital rank one map φ : Mn(C) → Mn(C) is q-
positive if and only if it has the form φ(A) = ρ(A)I for a state ρ ∈ Mn(C)∗, and
that φ is q-pure if and only if ρ is faithful. We also have the following comparison
result ([9], Theorem 5.4), which we will extend in this paper to all unital rank one
q-positive maps (Theorem 3.10):

THEOREM 2.10. Let φ : Mn(C)→ Mn(C) and ψ : Mn′(C)→ Mn′(C) be rank
one unital q-pure maps, so for some faithful states ρ ∈ Mn(C)∗ and ρ′ ∈ Mn′(C)∗, we
have

φ(A) = ρ(A)In and ψ(D) = ρ′(D)In′

for all A ∈ Mn(C) and D ∈ Mn′(C) . Let ν be a type II Powers weight of the form

ν
(√

I −Λ(1)B
√

I −Λ(1)
)
= ( f , B f ).

The E0-semigroups induced by (φ, ν) and (ψ, ν) are cocycle conjugate if and only
if n = n′ and for some unitary U ∈ Mn(C) we have ρ′(A) = ρ(UAU∗) for all A ∈
Mn(C).

2.3. CONJUGACY FOR q-POSITIVE MAPS. We will consider equivalence classes
of q-positive maps up to a relation we call conjugacy. More specifically, if φ :
Mn(C) → Mn(C) is a unital q-positive map and U ∈ Mn(C) is any unitary ma-
trix, the map φU(A) := U∗φ(UAU∗)U is also unital and q-positive. We have the
following definition from [10]:

DEFINITION 2.11. Let φ, ψ : Mn(C) → Mn(C) be q-positive maps. We say
φ is conjugate to ψ if ψ = φU for some unitary U ∈ Mn(C).
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Conjugacy is clearly an equivalence relation, and its definition is analogous
to that of conjugacy for E0-semigroups. Indeed, since every ∗-isomorphism of
Mn(C) is implemented by unitary conjugation, it follows that two q-positive
maps φ, ψ : Mn(C) → Mn(C) are conjugate if and only if θ ◦ φ = ψ ◦ θ for some
∗-isomorphism θ of Mn(C). If ν is a type II Powers weight of the form

ν
(√

I −Λ(1)B
√

I −Λ(1)
)
= ( f , B f ),

then conjugacy between unital q-positive maps φ and ψ is always a sufficient
condition for (φ, ν) and (ψ, ν) to induce cocycle conjugate E0-semigroups. To see
this, we note that if φ : Mn(C) → Mn(C) is unital and q-positive, then the map
γ : Mn(C) → Mn(C) defined by γ(A) = φ(AU∗)U is a hyper maximal q-corner
from φ to φU (for details, see the discussion preceding Proposition 2.11 of [10]),
whereby Proposition 2.9 gives us:

PROPOSITION 2.12. Let φ : Mn(C) → Mn(C) be unital and q-positive, and
suppose ψ is conjugate to φ. If ν is a type II Powers weight of the form

ν
(√

I −Λ(1)B
√

I −Λ(1)
)
= ( f , B f ),

then (φ, ν) and (ψ, ν) induce cocycle conjugate E0-semigroups.

In the case that φ and ψ are unital rank one q-pure maps and ν is a type II
Powers weight of the form ν(

√
I −Λ(1)B

√
I −Λ(1)) = ( f , B f ), Theorem 2.10

states that conjugacy between φ and ψ is both necessary and sufficient for (φ, ν)
and (ψ, ν) induce cocycle conjugate E0-semigroups.

Let φ : Mn(C) → Mn(C) be a unital rank one q-positive map, so φ(A) =
ρ(A)I for some state ρ ∈ Mn(C)∗. It is well-known that we can write ρ in the
form

(2.1) ρ(A) =
k6n

∑
i=1

λi(gi, Agi),

for some mutually orthogonal unit vectors {gi}k
i=1 ⊂ Cn and some positive num-

bers λ1 > · · · > λk > 0 such that
k
∑

i=1
λi = 1. With the conditions of the previous

sentence satisfied, the number k and the monotonically decreasing set {λi}k
i=1 are

unique.

DEFINITION 2.13. Assume the notation of the previous paragraph. We call
{λi}k

i=1 the eigenvalue list for ρ.

We should note that our definition differs from a previous definition of
eigenvalue list in the literature (for example, [3]) in that our eigenvalue lists do
not include zeros.
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Let {ei}n
i=1 be the standard basis for Cn. If ρ has the form (2.1) and U ∈

Mn(C) is any unitary matrix such that Uei = gi for all i = 1, . . . , k, then

ρ(UAU∗) =
k

∑
i=1

λi(gi, UAU∗gi) =
k

∑
i=1

λi(U∗gi, AU∗gi) =
k

∑
i=1

λi(ei, Aei)

and

(2.2) φU(A) = U∗φ(UAU∗)U = U∗
[( k

∑
i=1

λi(ei, Aei)
)

I
]
U =

( k

∑
i=1

λiaii

)
I

for all A ∈ Mn(C). We will use this fact repeatedly.

3. OUR RESULTS

We begin with the following observation:

LEMMA 3.1. Let φ : Mn(C)→ Mn(C) and ψ : Mn′(C)→ Mn′(C) be unital q-
positive maps, and let ν and η be type II Powers weights. If the boundary weight doubles
(φ, ν) and (ψ, η) induce cocycle conjugate E0-semigroups, there is a corner γ from Lφ to
Lψ such that ‖γ‖ = 1.

Proof. This is a slight generalization of Lemma 5.3 of [9] (where φ and ψ
were assumed to have rank one and be q-pure), but its proof is identical. The
exact same argument as in the proof of Lemma 5.3 shows that there is a corner
γ from lim

t→0+
νt(Λ(1))φ(I + νt(Λ(1))φ)−1 to lim

t→0+
ηt(Λ(1))ψ(I + ηt(Λ(1))ψ)−1 (if

the limits exist) such that ‖γ‖ = 1. We observe that the former limit is Lφ and
the latter limit is Lψ. Indeed, the values {νt(Λ(1))}t>0 and {ηt(Λ(1))}t>0 are
monotonically decreasing in t, and since ν and η are unbounded, we have

lim
t→0+

νt(Λ(1)) = lim
t→0+

ηt(Λ(1)) = ∞.

We have the following lemma (a consequence of Lemma 3.5 of [9]):

LEMMA 3.2. Let φ : Mn(C) → Mr(C), ψ : Mn′(C) → Mr′(C) be completely
positive maps, so for some k, k′ ∈ N and sets of linearly independent matrices {Si}k

i=1 ⊂
Mr,n(C) and {Ti}k′

i=1 ⊂ Mr′ ,n′(C), we have

(3.1) φ(A) =
k

∑
i=1

Si AS∗i , ψ(D) =
k′

∑
i=1

Ti AT∗i

for all A ∈ Mn(C), D ∈ Mn′(C).
A linear map γ : Mn,n′(C) → Mr,r′(C) is a corner from φ to ψ if and only if, for

some C = (cij) ∈ Mk,k′(C) with ‖C‖ 6 1, we have, for all B ∈ Mn,n′(C),

γ(B) =
k

∑
i=1

k′

∑
j=1

cijSiBT∗j .
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REMARK 3.3. Suppose γ is a q-corner from φ to ψ. Let U ∈ Mn(C) and
V ∈ Mn′(C) be arbitrary unitary matrices, and let

ϑ =

(
φ γ
γ∗ ψ

)
>q 0.

For the unitary matrix

Z =

(
U 0n,n′

0n′ ,n V

)
∈ Mn+n′(C),

we have ϑZ >q 0 (since ϑ >q 0), where

ϑZ

(
A B
C D

)
=

(
φU(A) U∗γ(UBV∗)V

V∗γ∗(VCU∗)U ψV(D)

)
.

Therefore, B → U∗γ(UBV∗)V is a q-corner from φU to ψV . By Proposition 4.5 of
[9], we know that if Φ : Mn+n′(C)→ Mn+n′(C) is a linear map, then ϑ >q Φ >q 0
if and only if ϑZ >q ΦZ >q 0. It follows that γ is a hyper maximal q-corner from
φ to ψ if and only if B → U∗γ(UBV∗)V is a hyper maximal q-corner from φU to
ψV . The same argument gives us a bijection between norm one corners from φ to
ψ and norm one corners from φU to ψV .

PROPOSITION 3.4. Let φ : Mn(C) → Mn(C) and ψ : Mn′(C) → Mn′(C) be
unital rank one q-positive maps, so for some states ` ∈ Mn(C)∗ and `′ ∈ Mn′(C)∗ with
eigenvalue lists {λi}k

i=1 and {µi}k′
i=1, respectively, we have

φ(A) = `(A)In, ψ(D) = `′(D)In′

for all A ∈ Mn(C) and D ∈ Mn′(C). Let ν and η be type II Powers weights.
If the boundary weight doubles (φ, ν) and (ψ, η) induce cocycle conjugate E0-

semigroups αd and βd, then k = k′ and λi = µi for all i = 1, . . . , k.

Proof. Our proof is similar to the proof of Theorem 5.4 of [9]. Suppose αd

and βd are cocycle conjugate. For some unitaries U ∈ Mn(C) and V ∈ Mn′(C),
we have

φU(A) =
( k

∑
i=1

λiaii

)
In, ψV(D) =

( k′

∑
i=1

µidii

)
In′

for all A ∈ Mn(C) and D ∈ Mn′(C). Let {ei}n
i=1 and {e′i}n′

i=1 be the standard
bases for Cn and Cn′ , respectively, and let ρ ∈ Mn(C)∗ and ρ′ ∈ Mn′(C)∗ be the
functionals

(3.2) ρ(A) =
k

∑
i=1

λie∗i Aei =
k

∑
i=1

λiaii, ρ′(D) =
k′

∑
i=1

µie′∗i De′i =
k′

∑
i=1

µidii,

so φU(A) = ρ(A)In and ψV(D) = ρ′(D)In′ for all A ∈ Mn(C) and D ∈ Mn′(C).
Note that Lφ = φ and Lψ = ψ, so by Lemma 3.1, there is a norm one corner from
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φ to ψ. Therefore, by Remark 3.3, there is a norm one corner γ from φU to ψV , so
the map Θ : Mn+n′(C)→ Mn+n′(C) defined by

Θ

(
An,n Bn,n′

Cn′ ,n Dn′ ,n′

)
=

(
ρ(A)In γ(B)
γ∗(C) ρ′(D)In′

)
is completely positive.

Since ‖γ‖ = 1, there is some X ∈ Mn,n′(C) with ‖X‖ = 1 and some unit
vector g ∈ Cn′ such that ‖γ(X)g‖2 = (γ(X)g, γ(X)g) = 1. Let τ ∈ Mn,n′(C)∗ be
the functional defined by

τ(B) = (γ(X)g, γ(B)g).

Letting

S =

(
γ(X)g 0n,1

0n′ ,1 g

)
∈ Mn+n′ ,2(C),

we observe that(
ρ(A) τ(B)
τ∗(C) ρ′(D)

)
= S∗Θ

(
A B
C D

)
S for all

(
A B
C D

)
∈ Mn+n′(C),

hence τ is a corner from ρ to ρ′. Note that ‖τ‖ = τ(X) = 1.
Let Dλ ∈ Mk(C) and Dµ ∈ Mk′(C) be the diagonal matrices whose ii entries

are
√

λi and
√

µi, respectively. Since τ is a corner from ρ to ρ′, equation (3.2)

and Lemma 3.2 imply that τ has the form τ(B) = ∑
i,j

cij

√
λiµj(ei, Be′j) for some

C = (cij) ∈ Mk,k′(C) such that ‖C‖ 6 1. For each B ∈ Mn,n′(C), let B̃ ∈ Mk′ ,k(C)
be the top left k′ × k minor of BT, observing that

τ(B) =
k

∑
i=1

k′

∑
j=1

cij

√
λiµjbij = tr(CDµ B̃Dλ) = tr(CDµ(Dλ(B̃)∗)∗).

Let M = X̃ ∈ Mk′ ,k(C). Applying the Cauchy–Schwarz inequality to the inner
product 〈A, B〉 = tr(BA∗) on Mk,k′(C), we see

1 = |τ(X)|2 = | tr(CDµ(Dλ M∗)∗)|2 = |〈Dλ M∗, CDµ〉|2

6 ‖CDµ‖2
tr‖Dλ M∗‖2

tr = tr(DµC∗CDµ) tr(Dλ M∗MDλ)

6 tr(Dµ Ik′Dµ) tr(Dλ IkDλ) =
( k′

∑
i=1

µi

)( k

∑
i=1

λi

)
= 1 ∗ 1 = 1.(3.3)

Since equality holds in Cauchy–Schwarz, it follows that for some m ∈ C,

(3.4) mCDµ = Dλ M∗,

where |m| = 1 since ‖CDµ‖tr = ‖Dλ M∗‖tr = 1. In fact, m = 1 since τ(X) = 1.
Since equality holds in (3.3) and the trace map is faithful, we have C∗C = Ik′

and M∗M = Ik. Note that

min{k, k′} > rank(C) = k′, min{k, k′} > rank(M) = k,
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hence k = k′ and the previous sentence shows that C and M are unitary. There-
fore, from (3.4) we have

Dµ = C∗Dλ M∗ = C∗M∗(MDλ M∗),

whereby uniqueness of the right polar decomposition for the invertible positive
matrix Dµ implies Dµ = MDλ M∗. Since the eigenvalues of Dµ and Dλ are listed
in decreasing order, we have Dµ = Dλ, hence λi = µi for all i = 1, . . . , k.

REMARK 3.5. Let φ : Mk(C)→ Mk(C) be a unital rank one q-pure map, and
suppose γ is a nonzero q-corner from φ to φ, so the map Θ : M2k(C) → M2k(C)
below is unital and q-positive:

Θ

(
A B
C D

)
=

(
φ(A) γ(B)
γ∗(C) φ(D)

)
.

Applying Lemma 2.2 to Θ yields the idempotent completely positive map

LΘ =

(
lim
t→∞

tφ(I + tφ)−1 lim
t→∞

tγ(I + tγ)−1

lim
t→∞

tγ∗(I + tγ∗)−1 lim
t→∞

tφ(I + tφ)−1

)
=

(
φ σ
σ∗ φ

)
,

so σ := lim
t→∞

tγ(I + tγ)−1 is a corner from φ to φ satisfying σ2 = σ. We note

that ‖σ‖ = 1. Indeed, since σ2 = σ and range(σ) = range(γ) ) {0}, we have
‖σ‖ > 1, while the fact that σ is a corner between norm one completely positive
maps implies ‖σ‖61, hence ‖σ‖=1. The following lemma gives us the form of σ:

LEMMA 3.6. Let φ : Mk(C) → Mk(C) be a unital q-positive map of the form
φ(A) = ρ(A)I. Assume ρ is a faithful state of the form

ρ(A) =
k

∑
i=1

µiaii,

where µ1, . . . , µk are positive numbers and
k
∑

i=1
µi = 1. Let Dµ be the diagonal matrix

with ii entries
√

µi for i = 1, . . . , k, so Ω := (Dµ)2 is the trace density matrix for ρ.
Let σ : Mk(C) → Mk(C) be a nonzero linear map such that σ2 = σ. Then σ is a

corner from φ to φ if, and only if, for some unitary X ∈ Mk(C) that commutes with Ω,
we have

σ(B) = tr(X∗BΩ)X

for all B ∈ Mk(C).

Proof. For the forward direction, suppose that σ is a nonzero corner from φ

to φ and σ2 = σ, so the map Θ : M2k(C) → M2k(C) defined below is completely
positive:

Θ

(
A B
C D

)
=

(
φ(A) σ(B)
σ∗(C) φ(D)

)
.
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Note that ‖σ‖ = 1 by Remark 3.5. We first show that σ has rank one. If rank(σ) >
2, then there is a non-zero non-invertible element A ∈ range(σ). Scaling A if
necessary, we may assume ‖A‖ = 1. Let P be the orthogonal projection onto the
range of A, so PA = A and A∗ = A∗P. Since P 6= I and ρ is faithful, we have
φ(P) = ρ(A)I = aI for some a < 1. We note that(

P 0
0 I

)(
I A

A∗ I

)(
P 0
0 I

)
=

(
P PA

A∗P I

)
=

(
P A

A∗ I

)
> 0,

so by complete positivity of Θ and the fact that σ2 = σ, we have(
φ(P) σ(A)

σ∗(A∗) φ(I)

)
=

(
aI A
A∗ I

)
> 0,

which is impossible since a < 1 and ‖A‖ = 1. This shows that not only does
σ have rank one, but that every non-zero element of its range is invertible. In
other words, for some linear functional τ ∈ Mk(C)∗ and some invertible matrix
X ∈ Mk(C) with ‖X‖ = 1, we have σ(B) = τ(B)X for all B ∈ Mk(C). Since σ
fixes its range and ‖σ‖ = 1, we have ‖τ‖ = τ(X) = 1.

Let g ∈ Ck be a unit vector such that ‖Xg‖ = 1. We observe that τ is
merely the functional τ(B) = (σ(X)g, σ(B)g) for all B ∈ Mk(C), and an argument
analogous to the one given in the proof of Proposition 3.4 shows that τ is a corner
from ρ to ρ. By Lemma 3.2, there is some C ∈ Mk(C) with ‖C‖ 6 1 such that

τ(B) =
k

∑
i,j=1

cij
√

µiµj(ei, Bej) = tr(CDµBTDµ)

for all A ∈ Mk(C). By the above equation and the fact that τ(X) = 1, we may
use the exact same Cauchy–Schwarz argument as in the proof of Proposition 3.4
to conclude that C and XT are unitary and that

Dµ = C∗Dµ(XT)∗ = C∗(XT)∗(XTDµ(XT)∗).

Uniqueness of the polar decomposition for the invertible positive matrix Dµ gives
us C∗(XT)∗ = I and XTDµ(XT)∗ = Dµ, where the transpose of the last equality
is X∗DµX = Dµ. Therefore, C = (X∗)T and X commutes with Ω, so for all
B ∈ Mk(C) we have

τ(B) = tr
(
(X∗)TDµBTDµ

)
= tr(DµBDµX∗) = tr(X∗BΩ)

and σ(B) = τ(B)X = tr(X∗BΩ)X.
Now assume the hypotheses of the backward direction and define τ ∈

Mk(C)∗ by τ(B) = tr(X∗BΩ), noting that σ2 = σ and σ(B) = τ(B)X for all
B ∈ Mk(C). Let η, η′ : M2k(C)→ M2k(C) be the maps

η

(
A B
C D

)
=

(
ρ(A)I τ(B)X

τ∗(C)X∗ ρ(D)I

)
, η′

(
A B
C D

)
=

(
ρ(A)I τ(B)I
τ∗(C)I ρ(D)I

)
.
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Define Υ : M2k(C)→ M2k(C) by

Υ

(
A B
C D

)
=

(
X∗ 0
0 I

)(
A B
C D

)(
X 0
0 I

)
.

Note that Υ and Υ−1 are completely positive, Υ ◦ η = η′, and Υ−1 ◦ η′ = η.
Therefore, η is completely positive if and only if η′ is completely positive. Since
a complex matrix (mij) ∈ Mr(C) (r ∈ N) is positive if and only if (mij In) ∈
Mr(Mn(C)) = Mrn(C) is positive for every n ∈ N, it follows that η′ is completely
positive if and only if η′′ below is completely positive:

η′′
(

A B
C D

)
=

(
ρ(A) τ(B)
τ∗(C) ρ(D)

)
.

Thus, η is completely positive if and only if η′′ is. In other words, σ is a corner
from φ to φ if and only if τ is a corner from ρ to ρ. But for all B ∈ Mk(C), we have

τ(B) =
k

∑
i,j=1

cij
√

µiµj(ei, Bej)

for the unitary matrix C = (X∗)T, so τ is a corner from ρ to ρ by Lemma 3.2.

We will make use of the following standard result regarding completely
positive maps, providing a proof here for the sake of completeness:

LEMMA 3.7. Let φ : Mn(C) → Mn(C) be a completely positive map. If φ(E) =
0 for a projection E, then φ(A) = φ(FAF) for all A ∈ Mn(C), where F = I − E.

Proof. We know from [6] and [1] that φ can be written φ(A) =
p
∑

i=1
Si AS∗i for

some p 6 n2 and {Si}
p
i=1 ⊂ Mn(C). If φ(E) = 0 for a projection E, then

0 = SiES∗i = SiEES∗i = (SiE)(SiE)∗

for all i, so SiE = ES∗i = 0 for all i. Therefore, φ(EAE) = φ(EAF) = φ(FAE) = 0
for every A ∈ Mn(C). Letting F = I − E, we observe that for every A ∈ Mn(C),

φ(A) = φ(EAE + EAF + FAE + FAF) = φ(FAF).

Let φ : Mn(C) → Mn(C) and ψ : Mn′(C) → Mn′(C) be unital rank one
q-positive maps. We ask two very important questions: Is there a q-corner from
φ to ψ ? If so, can we find all such q-corners, and, even further, determine which
q-corners are hyper maximal? The following two theorems give us a complete
answer to both questions when φ and ψ are implemented by diagonal states. This
suffices, since for any unital rank one q-positive maps φ and ψ, there are always
unitaries U ∈ Mn(C) and V ∈ Mn′(C) such that φU and ψV are implemented by
diagonal states, where Remark 3.3 tells us exactly how to transform the q-corners
and hyper maximal q-corners from φU to ψV into those from φ to ψ.
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THEOREM 3.8. Let {µi}k
i=1 and {ri}k′

i=1 be monotonically decreasing sequences of

strictly positive numbers such that
k
∑

i=1
µk =

k′

∑
i=1

ri = 1. Define unital q-positive maps

φ : Mn(C)→ Mn(C) and ψ : Mn′(C)→ Mn′(C) (where n > k and n′ > k′) by

(3.5) φ(A) =
( k

∑
i=1

µiaii

)
In and ψ(D) =

( k′

∑
i=1

ridii

)
In′

for all A = (aij) ∈ Mn(C) and D = (dij) ∈ Mn′(C). Let Ω ∈ Mk(C) be the trace

density matrix for the faithful state ρ ∈ Mk(C)∗ defined by ρ(A) =
k
∑

i=1
µiaii.

If there is a nonzero q-corner from φ to ψ, then k = k′ and µi = ri for all i =
1, . . . , k. In that case, a linear map γ : Mn,n′(C) → Mn,n′(C) is a q-corner from φ to
ψ if and only if: for some unitary X ∈ Mk(C) that commutes with Ω, some contraction
E ∈ Mn−k,n′−k(C), and some λ ∈ C with |λ|2 6 Re(λ), we have

γ

(
Bk,k Wk,n′−k

Qn−k,k Yn−k,n′−k

)
= λ tr(X∗Bk,kΩ)

(
X 0k,n′−k

0n−k,k E

)
for all (

Bk,k Wk,n′−k
Qn−k,k Yn−k,n′−k

)
∈ Mn,n′(C).

Proof. Suppose that γ is a nonzero q-corner from φ to ψ, so ϑ : Mn+n′(C)→
Mn+n′(C) below is q-positive:

ϑ

(
An,n Bn,n′

Cn′ ,n Dn′ ,n′

)
=

(
φ(An,n) γ(Bn,n′)

γ∗(Cn′ ,n) ψ(Dn′ ,n′)

)
.

We observe that

Lϑ

(
An,n Bn,n′

Cn′ ,n Dn′ ,n′

)
=

(
φ(An,n) σ(Bn,n′)

σ∗(Cn′ ,n) ψ(Dn′ ,n′)

)
,

where by Lemma 2.2, the map σ := lim
t→∞

tγ(I + tγ)−1 is a corner of norm one

from φ to ψ satisfying σ2 = σ, range(σ) = range(γ), and γ ◦ σ = σ ◦ γ = γ. Since
‖σ‖ = 1, the proof of Proposition 3.4 implies k = k′ and ri = µi for all i = 1, . . . , k.

We observe that Lϑ(P) = 0 for the projection

P =
( n

∑
i=k+1

eii +
n+n′

∑
i=n+k+1

eii

)
∈ Mn+n′(C).

Therefore, Lϑ(A) = Lϑ((I − P)A(I − P)) for all A ∈ Mn+n′(C) by Lemma 3.7. In
particular, σ satisfies

σ

(
0k,k Wk,n′−k

Qn−k,k Yn−k,n′−k

)
≡ 0.
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In other words, σ depends only on its top left k × k minor, so for some σ̃ :
Mk(C) → Mk(C) and some maps `i from Mk(C) into the appropriate matrix
spaces, we have

σ

(
Bk,k Wk,n′−k

Qn−k,k Yn−k,n′−k

)
=

(
σ̃(Bk,k) `1(Bk,k)
`2(Bk,k) `3(Bk,k)

)
.

From the facts σ2 = σ and ‖σ‖ = 1, it follows that σ̃2 = σ̃ and ‖σ̃‖ = 1.
Let φ̃ : Mk(C)→ Mk(C) be the map

φ̃(A) = ρ(A)Ik =
( k

∑
i=1

µiaii

)
Ik

for all A = (aij) ∈ Mk(C). Define Θ : M2k(C)→ M2k(C) by

Θ

(
Ak,k Bk,k
Ck,k Dk,k

)
=

(
φ̃(Ak,k) σ̃(Bk,k)
σ̃∗(Ck,k) φ̃(Dk,k)

)
,

and let

S =

(
Ik,k 0k,n−k 0k,k 0k,n′−k
0k,k 0k,n−k Ik,k 0k,n′−k

)
∈ M2k,n+n′(C).

Note that
Θ(N) = SLϑ(S∗NS)S∗

for all N ∈ M2k(C), so Θ is completely positive. Therefore, σ̃ is a norm one corner
from φ̃ to φ̃. Since ‖σ̃‖ = 1 and σ̃2 = σ̃, Lemma 3.6 implies that for some unitary
X ∈ Mk(C) that commutes with Ω, we have

(3.6) σ̃(B) = tr(X∗BΩ)X

for all B ∈ Mk(C). For simplicity of notation in what follows, let τ ∈ Mk(C)∗ be
the functional τ(B) = tr(X∗BΩ).

We claim that `1 = `2 ≡ 0. For this, let

M =

(
Bk,k Wk,n′−k

Qn−k,k Yn−k,n′−k

)
∈ Mn,n′(C)

be arbitrary. We will suppress the subscripts for B, Q, W, and Y for the remainder
of the proof. From (3.6) and the fact that σ2(M) = σ(M), we have

(3.7) `i(B) = `i(σ̃(B)) = `i(τ(B)X) = τ(B)`i(X)

for i = 1, 2, 3. Since σ is a contraction, it follows that

1 >
∥∥∥σ

(
X 0
0 0

)∥∥∥ =
∥∥∥( X `1(X)

`2(X) `3(X)

)∥∥∥.

But X is unitary, so the line above implies that `1(X) = `2(X) = 0, hence `1 =
`2 ≡ 0 by (3.7). Let E = `3(X) ∈ Mn−k,n′−k(C), noting that ‖E‖ 6 1 since σ is a
contraction. Therefore, σ has the form

σ

(
B W
Q Y

)
= τ(B)

(
X 0k,n′−k

0n−k,k E

)
.
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Since γ = γ ◦ σ and

range(γ) = range(σ) =
{

c
(

X 0
0 E

)
: c ∈ C

}
,

we have

γ

(
B W
Q Y

)
= γ

(
σ

(
B W
Q Y

))
= γ

(
τ(B)

( X 0
0 E

))
= τ(B) γ

(
X 0
0 E

)
= τ(B)

[
λ

(
X 0
0 E

) ]
= λτ(B)

(
X 0
0 E

)
for some λ ∈ C. Since γ is a nonzero q-corner between unital completely positive
maps and is thus necessarily a contraction with no negative eigenvalues, we have
λ � 0 and |λ| 6 1.

In summary: we have proved that if γ is a nonzero q-corner, then it is of the
form

γ

(
B W
Q Y

)
= λ tr(X∗BΩ)

(
X 0
0 E

)
for some λ � 0 with |λ| 6 1, where X and E satisfy the conditions stated in the
theorem. To complete the proof, we show that such a map γ is a q-corner if and
only if |λ|2 6 Re(λ).

Straightforward computations show that for all t > 0,

(I + tγ)−1
(

B W
Q Y

)
=

(
B− tλτ(B)

1+tλ X W
Q Y− tλτ(B)

1+tλ E

)
, and

γ(I + tγ)−1
(

B W
Q Y

)
=

(
λτ(B)
1+tλ X 0

0 λτ(B)
1+tλ E

)
=

1
1 + tλ

γ

(
B W
Q Y

)
.

For each t > 0, define maps Θt : M2k(C) → M2k(C), Lt : M2k(C) →
Mn+n′−2k(C), and Υt : M2k(C)→ Mn+n′−2k(C) by

Θt

(
A B
C D

)
=

(
1

1+t ρ(A)Ik,k
λ

1+tλ τ(B)X
λ

1+tλ
τ∗(C)X∗ 1

1+t ρ(D)Ik,k

)
,(3.8)

Lt

(
A B
C D

)
=

(
1

1+t ρ(A)EE∗ λ
1+tλ τ(B)E

λ
1+tλ

τ∗(C)E∗ 1
1+t ρ(D)In′−k,n′−k

)
, and(3.9)

Υt

(
A B
C D

)
= Lt

(
A B
C D

)
+

( 1
1+t ρ(A)(In−k,n−k−EE∗) 0n−k,n′−k

0n′−k,n−k 0n′−k,n′−k

)
.(3.10)

Let

T =

(
0n−k,k In−k,n−k 0n−k,k 0n−k,n′−k
0n′−k,k 0n′−k,n−k 0n′−k,k In′−k,n′−k

)
∈ Mn+n′−2k,n+n′(C),
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and let M ∈ Mn+n′(C) be arbitrary, writing

(3.11) M=


Ak,k qk,n−k Bk,k rk,n′−k

sn−k,k tn−k,n−k un−k,k vn−k,n′−k
Ck,k wk,n−k Dk,k ck,n′−k

dn′−k,k en′−k,n−k fn′−k,k gn′−k,n′−k,

 , so SMS∗=
(
Ak,k Bk,k
Ck,k Dk,k

)
.

For every t > 0, ϑ(I + tϑ)−1(M) is equal to the quantity below:
1

1+t ρ(A)Ik,k 0k,n−k
λ

1+tλ τ(B)X 0k,n′−k
0n−k,k

1
1+t ρ(A)In−k,n−k 0n−k,k

λ
1+tλ τ(B)E

λ
1+tλ

τ∗(C)X∗ 0k,n−k
1

1+t ρ(D)Ik,k 0k,n′−k

0n′−k,k
λ

1+tλ
τ∗(C)E∗ 0n′−k,k

1
1+t ρ(D)In′−k,n′−k

 .

In other words,

(3.12) ϑ(I + tϑ)−1(M) = S∗Θt(SMS∗)S + T∗Υt(SMS∗)T.

Note also that for all N ∈ M2k(C),

(3.13) Θt(N) = S(ϑ(I + tϑ)−1(S∗NS))S∗, Υt(N) = T(ϑ(I + tϑ)−1(S∗NS))T∗.

It follows from (3.12) and (3.13) that ϑ is q-positive if and only if Θt and Υt are
completely positive for all t > 0.

We may easily argue as in the proof of Lemma 3.6 to conclude that Θt is
completely positive for all t > 0 if and only if the maps η′′t : M2k(C) → M2(C)
below are completely positive for all t > 0:

η′′t

(
A B
C D

)
=

(
1

1+t ρ(A) λ
1+tλ τ(B)

λ
1+tλ

τ∗(C) 1
1+t ρ(D)

)
.

Recall that in the proof of Lemma 3.6, we showed that τ is a corner from ρ to ρ.
Since ‖ρ‖ = ‖τ‖ = 1, it follows from Lemma 3.2 that cτ is a corner from ρ to ρ if
and only if |c| 6 1. Since

(1 + t)η′′t

(
A B
C D

)
=

(
ρ(A) λ(1+t)

1+tλ τ(B)
λ(1+t)

1+λ
τ∗(C) ρ(D)

)
,

we see that η′′t is completely positive for all t > 0 if and only if∣∣∣λ(1 + t)
1 + tλ

∣∣∣ 6 1 (where we already know λ � 0 and |λ| 6 1)

for all t > 0. Squaring both sides of the above equation and then cross multiply-
ing gives us

|λ|2(1 + 2t + t2) 6 1 + 2t Re(λ) + |λ|2t2, (λ � 0, |λ| 6 1)

which is equivalent to

(3.14) |λ|2 6
1 + 2t Re(λ)

1 + 2t
(λ � 0, |λ| 6 1)
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for all nonnegative t. Note that if |λ|2 6 Re(λ), then Re(λ) 6 1 and equation
(3.14) holds for t > 0. On the other hand, suppose that λ is any complex num-
ber that satisfies (3.14) for all t > 0. We conclude immediately that Re(λ) > 0,
whereby the fact that |λ| 6 1 implies Re(λ) ∈ (0, 1]. A computation shows that
the net { 1+2t Re(λ)

1+2t }t>0 is monotonically decreasing and converges to Re(λ), hence
|λ|2 6 Re(λ) by (3.14). We have now shown that η′′t (and thus Θt) is completely
positive for all t > 0 if and only if |λ|2 6 Re(λ). Therefore, if |λ|2 > Re(λ) then
(3.13) implies that ϑ is not q-positive, which is to say that γ is not a q-corner from
φ to ψ.

Suppose that |λ|2 6 Re(λ). Then from above, the maps {Θt}t>0 are all
completely positive. Let

G =

(
E 0n−k,n′−k

0n′−k,n′−k In′−k

)
∈ Mn+n′−2k,2n′−2k(C).

We observe that

(1 + t)Lt

(
A B
C D

)
= G

(
ρ(A)In′−k

λ(1+t)
1+tλ τ(B)In′−k

λ(1+t)
1+tλ

τ∗(C)In′−k ρ(D)In′−k

)
G∗,

where we have already shown that the map in the middle is completely positive
since |λ|2 6 Re(λ). Thus, Lt is completely positive for every t > 0. Also, Υt − Lt
has the form

(Υt − Lt)

(
A B
C D

)
=

(
ρ(A)(In−k − EE∗) 0n−k,n′−k

0n′−k,n−k 0n′−k,n′−k

)
,

where the right hand side is completely positive since ‖E‖ 6 1. Therefore, the
maps {Υt}t>0 are all completely positive, so (3.12) implies that ϑ(I + tϑ)−1 is
completely positive for all t > 0, hence γ is a q-corner from φ to ψ.

THEOREM 3.9. Assume the notation of the previous theorem, and suppose that
k = k′ and µi = ri for all i = 1, . . . , k. A q-corner γ : Mn,n′(C)→ Mn,n′(C) from φ to
ψ is hyper maximal if and only if n = n′, 0 < |λ|2 = Re(λ), and E is unitary.

Proof. We first show that γ is not hyper maximal if n 6= n′, regardless of the
assumptions for λ or E. If n > n′, then EE∗ ∈ Mn−k(C) is a positive contraction
of rank at most n′ − k, so EE∗ 6= In−k.

Define φ′ : Mn(C)→ Mn(C) by

φ′(R) = φ(R)
(

Ik,k 0k,n−k
0n−k,k EE∗

)
,

observing that φ′(I + tφ′)−1 = 1
1+t φ′ for all > 0. Define ϑ′ : Mn+n′(C) →

Mn+n′(C) by

ϑ′ =

(
φ′ γ
γ∗ ψ

)
,
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noting that ϑ′ has no negative eigenvalues. Define maps {Θt}t>0, {Lt}t>0, and
{Υt}t>0 as in equations (3.8), (3.9), and (3.10). Writing each M ∈ Mn+n′(C) in the
form (3.11), we see that ϑ′(I + tϑ′)−1(M) is equal to

1
1+t ρ(A)Ik,k 0k,n−k

λ
1+tλ τ(B)X 0k,n′−k

0n−k,k
1

1+t ρ(A)EE∗ 0n−k,k
λ

1+tλ τ(B)E
λ

1+tλ
τ∗(C)X∗ 0k,n−k

t
1+t ρ(D)Ik,k 0k,n′−k

0n′−k,k
λ

1+tλ
τ∗(C)E∗ 0n′−k,k

1
1+t ρ(D)In′−k,n′−k

 .

In other words,

(3.15) ϑ′(I + tϑ′)−1(M) = S∗Θt(SMS∗)S + T∗Lt(SMS∗)T

for every t > 0 and M ∈ Mn+n′(C), hence ϑ′ is q-positive. By (3.12) and (3.15),
we have

(ϑ(I + tϑ)−1 − ϑ′(I + tϑ′)−1)(M) = T∗((Υt − Lt)(SMS∗))T.

Since Υt − Lt is completely positive for all t > 0 (as shown in the previous proof),
the above equation implies that ϑ >q ϑ′. However, ϑ 6= ϑ′ since EE∗ � In−k, so γ
is not hyper maximal.

If n < n′, then since E∗E � In′−k, we may replace {Lt}∞
t=0 with the maps

{Rt}∞
t=0 below and argue analogously (this time cutting down ψ using E∗E) to

show that γ is not hyper maximal:

Rt

(
Ak,k Bk,k
Ck,k Dk,k

)
=

(
1

1+t ρ(A)In−k
λ

1+tλ τ(B)E
λ

1+tλ
τ∗(C)E∗ 1

1+t ρ(D)E∗E

)
.

Of course, if n = n′ but E is not unitary, then EE∗ � In−k, and the same argument
given in the case that n > n′ shows that γ is not hyper maximal.

Therefore, we may suppose for the remainder of the proof that n = n′ and
E is unitary. Note that φ = ψ since n = n′. For some a ∈ (0, 1], we have |λ|2 =
a Re(λ). We first show that γ is not hyper maximal if a 6= 1. We claim that the
map ϑ′′ : M2n(C)→ M2n(C) defined by

ϑ′′
(

An,n Bn,n
Cn,n Dn,n

)
=

(
aφ(An,n) γ(Bn,n)
γ∗(Cn,n) aφ(Dn,n)

)
satisfies ϑ′′ >q 0. For each t > 0, let η

(a)
t : M2k(C)→ M2(C) be the map

η
(a)
t

(
A B
C D

)
=

(
a

1+at ρ(A) λ
1+tλ τ(B)

λ
1+tλ

τ∗(C) a
1+at ρ(D)

)
.

It is routine to check that since τ is a corner from ρ to ρ, the condition |λ|2 =

a Re(λ) implies that λ
1+tλ τ is a corner from a

1+at ρ to a
1+at ρ for every t > 0, so η

(a)
t
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is completely positive for all t > 0. Defining Θ
(a)
t and Υ

(a)
t for each t > 0 by

Θ
(a)
t

(
A B
C D

)
=

(
a

1+at ρ(A)Ik
λ

1+tλ τ(B)X
λ

1+tλ
τ∗(C)X∗ a

1+at ρ(D)Ik

)
, and

Υ
(a)
t

(
A B
C D

)
= G

(
a

1+at ρ(A)In−k
λ

1+tλ τ(B)In−k
λ

1+tλ
τ∗(C)In−k

a
1+at ρ(D)In−k

)
G∗

=

(
a

1+at ρ(A)In−k
λ

1+tλ τ(B)E
λ

1+tλ
τ∗(C)E∗ a

1+at ρ(D)In−k

)
,

we observe that the maps {Θ(a)
t }t>0 and {Υ(a)

t }t>0 are all completely positive

since η
(a)
t is completely positive for all t > 0. Note that

(aφ)(I + taφ)−1 =
a

1 + at
φ

for all t > 0, so for every M ∈ M2n(C), we have

ϑ′′(I + tϑ′′)−1(M) = S∗(Θ(a)
t (SMS∗))S + T∗(Υ(a)

t (SMS∗))T.

Therefore, ϑ′′ >q 0, and trivially ϑ >q ϑ′′. If a 6= 1, then ϑ′′ 6= ϑ, hence γ is not
hyper maximal. To finish the proof, it suffices to show that γ is hyper maximal if
a = 1 (of course, maintaining our assumption that E is unitary).

Suppose a = 1, and let φ′ be any q-subordinate of φ such that

χ :=
(

φ′ γ
γ∗ φ

)
>q 0.

If Lφ′(I) 6= I, then Lφ′(I) = R � I for some positive R ∈ Mn(C). Recall that
σ = lim

t→∞
tγ(I + tγ)−1, so applying Lemma 2.2 to χ gives us

Lχ =

(
Lφ′ σ

σ∗ φ

)
.

Letting Z be the unitary matrix

Z =

(
X 0k,n−k

0n−k,k E

)
∈ Mn(C),

we observe that σ(Z) = Z, so by complete positivity of Lχ,

(3.16) 0 6 Lχ

(
I Z

Z∗ I

)
=

(
R Z
Z∗ I

)
.

Since R � I, we have ( f , R f ) < 1 for some unit vector f ∈ Cn. A quick calculation
shows that〈( f

−Z∗ f

)
,
(

R Z
Z∗ I

)(
f

−Z∗ f

)〉
= ( f , R f )− 1 < 0,

contradicting (3.16).
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Therefore, Lφ′(I) = I. Since φ >q φ′, it follows that Lφ − Lφ′ is completely
positive, so

‖Lφ − Lφ′‖ = ‖Lφ(I)− Lφ′(I)‖ = 0,

hence Lφ′(A) = Lφ(A) = φ(A) = `(A)I for the state ` ∈ Mn(C)∗ defined by

`(A) =
k
∑

i=1
µiakk. But range(φ′) = range(Lφ′) = {cI : c ∈ C} and φ′ = φ′ ◦ Lφ′ , so

φ′(I) = rI for some r 6 1 and

φ′(A) = φ′(Lφ′(A)) = φ(`(A)I) = `(A)φ′(I) = r`(A)I = rφ(A)

for all A ∈ Mn(C).
We claim that r = 1. To prove this, we define Vt : M2k(C) → M2k(C) for

each t > 0 by

Vt

(
A B
C D

)
= S

(
χ(I + tχ)−1

[
S∗
( A B

C D

)
S
])

S∗

=

(
r

1+rt ρ(A)Ik
λ

1+tλ τ(B)X
λ

1+tλ
τ∗(C)X∗ 1

1+t ρ(D)Ik

)
.

Since χ >q 0, each Vt is completely positive. Therefore,

0 6
(

X∗ 0
0 I

) [
Vt

(
I X

X∗ I

) ]( X 0
0 I

)
=

(
r

1+rt I λ
1+tλ I

λ
1+tλ

I 1
1+t I

)
,

hence
r

(1 + rt)(1 + t)
>

|λ|2
|1 + tλ|2 =

Re(λ)
1 + (t2 + 2t)Re(λ)

for all t > 0. This is equivalent to

(3.17) r >
(1 + t)Re(λ)
1 + t Re(λ)

for all t > 0. We take the limit as t → ∞ in (3.17) and observe r > 1. Since r 6 1
we have r = 1, so φ′ = φ.

We have shown that if(
φ γ
γ∗ φ

)
>q

(
φ′ γ
γ∗ φ

)
>q 0,

then φ = φ′. An analogous argument shows that if(
φ γ
γ∗ φ

)
>q

(
φ γ
γ∗ φ′

)
>q 0,

then φ = φ′. Therefore, γ is hyper maximal.

We are now ready to prove the following:
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THEOREM 3.10. Let φ : Mn(C)→ Mn(C) and ψ : Mn′(C)→ Mn′(C) be rank
one unital q-positive maps, and let ν be a type II Powers weight of the form

ν
(√

I −Λ(1)B
√

I −Λ(1)
)
= ( f , B f ).

The E0-semigroups induced by (φ, ν) and (ψ, ν) are cocycle conjugate if and only if n =
n′ and φ is conjugate to ψ.

Proof. The backward direction follows trivially from Proposition 2.12. For
the forward direction, suppose (φ, ν) and (ψ, ν) induce cocycle conjugate E0-
semigroups αd and βd. For some sets {µi}k

i=1 and {ri}k′
i=1 satisfying the conditions

of Theorem 3.8 and some unitaries U ∈ Mn(C) and V ∈ Mn′(C), φU and ψV have
the form of (3.5). Let αd

U and βd
V be the E0-semigroups induced by (φU , ν) and

(ψV , ν), respectively. Since αd
U ' αd and βd

V ' βd ' αd, we have αd
U ' βd

V , so by
Proposition 2.9, there is a hyper maximal q-corner from φU to ψV . Theorems 3.8
and 3.9 imply that n = n′, k = k′, and µi = ri for all i = 1, . . . , k. In other words,
φU = ψV . Therefore, φ = ψ(VU∗), so φ and ψ are conjugate.
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