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ABSTRACT. We exhibit unbounded operators on Banach spaces having the
single-valued extension property, for which the local spectrum can be deter-
mined at suitable points, and for which a local spectral radius formula holds,
analogous to that for a bounded operator on a Banach space with the single-
valued extension property. Such an operator can occur as (an extension of)
a differential operator which, roughly speaking, can be diagonalized on its
domain of smooth test functions via a discrete transform which is an isomor-
phism of topological vector spaces between the domain, in its own topology,
and a sequence space. We give examples (constant coefficient differential op-
erators on the d-torus, Jacobi operators, the Hermite operator, Laguerre oper-
ators) and indicate further perspectives.
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1. INTRODUCTION AND RESULTS

We are concerned with a class of unbounded operators on Banach spaces
for which questions concerning the single-valued extension property, local spec-
tra and local spectral radius formulas can be answered satisfactorily. The opera-
tors in question are, roughly speaking, those operators that can be diagonalised
on their domain via a discrete transform, with very good convergence results for
the inverse transform, or extensions of such operators. Such operators are not un-
common in the study of differential operators, on Euclidean spaces or on compact
symmetric spaces, and it is for this reason that we hope that our results are not
only a further step in the investigation of local spectral radius formulas for un-
bounded operators, but are of some interest in concrete cases as well, also beyond
the examples we will present in this paper.
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In this section, we start with an introduction in Section 1.1, also collecting
what seems to be known about local spectral radius formulas for unbounded op-
erators in general. To our knowledge, this is rather limited. We then continue in
Section 1.2 with the general framework in which our results hold, and we sum-
marise those results. The general framework is motivated by, in particular, differ-
ential operators, and we comment how these fit in. Section 2 contains the precise
statements and proofs. In Section 3 several examples are given, applying the re-
sults in Section 2 along the lines as discussed in Section 1.2. In some of these,
estimates obtained in special function theory are used. In our final example, we
indicate how further results can be obtained on basis of not so well known, but
quite interesting, work of Zerner’s.

1.1. INTRODUCTION AND EXISTING LITERATURE. Let X be a Banach space, D ⊂
X a linear subspace, and T : D → X a possibly unbounded linear operator, not
necessarily closed. A point z0 ∈ C is said to be in the local resolvent set of x ∈ X,
denoted by ρT(x), if there is an open neighborhood U of z0 in C, and an analytic
function φ : U → D, sending z to φz, such that

(1.1) (T − z)φz = x (z ∈ U).

The local spectrum σT(x) of T at x is the complement of ρT(x) in C; it is a closed

subset of C. If x ∈ D(T∞) =
∞⋂

n=0
D(Tn), then the local spectral radius rT(x) of T

at x is defined as
rT(x) = lim sup

n→∞
‖Tnx‖1/n

in the extended positive real numbers. The terminology is, to some extent, not
entirely optimal, because the extended positive real number

sup{|z| : z ∈ σT(x)}
could justifiably also be called the local spectral radius of T at x, and perhaps even
more so. If X is complex, D = X and T is bounded, then the two globally defined
real numbers lim

n→∞
‖Tn‖1/n and max{|z| : z ∈ σT}, where σT is the spectrum of T

in the Banach algebra of bounded operators on X, are of course always equal by
the classical spectral radius formula, so ambiguity in the terminology is unlikely
to arise, but for their local counterparts things are different. We will now briefly
discuss this.

If T is closed, then

(1.2) sup{|z| : z ∈ σT(x)} 6 lim sup
n→∞

‖Tnx‖1/n (x ∈ D(T∞))

always holds in the extended positive real numbers. (This statement is similar
in spirit to Proposition IV.3.10 of [22], where it is assumed that a local resolvent
exists and is analytic on an open neighborhood of ∞ on the Riemann sphere. In
that case, the hypothesis that x ∈ D is sufficient, and one concludes that actually
x ∈ D(T∞). Moreover, the right hand side in (1.2) is then necessarily finite.)



LOCAL SPECTRAL RADIUS FORMULAS FOR UNBOUNDED OPERATORS 437

Indeed, we may assume that the right hand side in (1.2) is finite. In that case, the
Neumann-type series

(1.3) −
∞

∑
n=0

Tnx
zn+1

converges in X for |z| > rT(x), and from the fact that T is closed it follows easily
that the sum φz, which clearly depends analytically on z on {z ∈ C : |z| > rT(x)},
is in fact in D, and satisfies (T − z)φz = x. Hence z ∈ ρT(x) for all z > rT(x), as
desired.

The reverse inequality in (1.2), and hence equality, need not always hold,
however, not even for globally defined bounded operators, and we will briefly
review a few relevant results. Recall that an operator T with domain D is said
to have the single-valued extension property if, for every non-empty open subset
U ⊂ C, the only analytic solution φ : U → D of the equation (T − z)φz = 0
(z ∈ U) is the zero solution. This is equivalent to requiring that the analytic local
resolvent function φ in (1.1) is determined uniquely, so that we can speak of “the"
analytic local resolvent function on ρT(x). If T is globally defined and bounded,
then this property is also equivalent to 0 being the only element in D with empty
local spectrum ([11], Proposition 1.2.16). If D = X, T is bounded, and T has the
single-valued extension property, then

(1.4) lim sup
n→∞

‖Tnx‖1/n = sup{|z| : z ∈ σT(x)} (x ∈ X),

cf. Proposition 3.3.13 of [11]. Namely, the annulus of convergence of the

Neumann-type series in (1.3) is
{

z : |z| > lim sup
n→∞

‖Tnx‖1/n
}

, and, since T has the

single-valued extension property, the sum of the series on this annulus necessar-
ily equals the local resolvent on that open set. Hence from the standard theory of
vector valued analytic functions it follows that this annulus must coincide with
{z : |z| > sup{|z| : z ∈ σT(x)}}, yielding (1.4). Naturally, the supremum in the
right hand side of (1.4) is a maximum if T is bounded, but for unbounded oper-
ators this need not be the case. For obvious reasons, we will refer to the validity
of (1.4) in the extended positive real numbers as a local spectral radius formula
for T at x, in the general context where X is a (complex) Banach space, D ⊂ X is
a linear subspace, T : D → X is a possibly unbounded and not necessarily closed
operator with domain D, and x ∈ D(T∞), and where the analytic local resolvent
functions are assumed to take their values in D.

More is known for globally defined bounded operators than just the validity
of (1.4), for all x ∈ X, if T has the single-valued extension property. If T has this
property, then, by [13], [23], [25], the set of those x in X for which σT(x) 6= σT is of
the first category in X. By Proposition 3.3.14 of [11], it is always true, also in the
absence of the single-valued extension property, that the set of x ∈ X for which
rT(x) is equal to the spectral radius of T is of the second category in X. If T has
Bishop’s property (β) (see Definition 1.2.5 of [11] — it is immediate that property
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(β) implies the single-valued extension property), then, by Proposition 3.3.17 of
[11], rT(x) = lim

n→∞
‖Tnx‖1/n, for all x in X, so that the local spectral radius formula

(1.4) holds in a stronger form as

(1.5) lim
n→∞

‖Tnx‖1/n = max{|z| : z ∈ σT(x)} (x ∈ X).

Furthermore, a decomposable (see Definition 1.1.1 of [11]) operator has property
(β) by Theorem 1.2.7 of [11], hence (1.5) holds for decomposable operators.

For globally defined bounded operators, therefore, there exist general theo-
rems asserting the validity of the local spectral radius formulas (1.4) or (1.5) for
fairly general classes of operators. Much less seems to be known, however, for
unbounded operators. Even for closed operators, we are not aware of results
in that direction, even though there are dedicated monographs for local spectral
theory for unbounded operators available, cf. [8], [22]. The key tool in the case
of globally defined bounded operators is the a priori knowledge that there exists,
for all large enough z, an analytic local resolvent function given by (1.3). This
argument breaks down in the unbounded case and that may account for the (to
our knowledge) absence of results asserting the validity of a local spectral radius
formula for unbounded operators, in a generality comparable to that in the case
of a globally defined bounded operator. As already mentioned, for closed oper-
ators, ([5], Proposition 4.9) yields a stronger version of (1.2), but under a more
restrictive hypothesis, and that is still only one of the two inequalities needed.
Apart from that, only a few results related to (the two possible definitions of) the
local spectral radius for an unbounded operator at an element of its domain seem
to be known, and these are of a more specialised nature. We will now discuss
these.

First of all, if T is a paranormal operator with domain D in a Hilbert space,
i.e., such that ‖Tx‖2 6 ‖T2x‖‖x‖, for all x in D(T2), then lim

n→∞
‖Tnx‖1/n exists in

the extended positive real numbers; see Proposition 4.9 of [5]. A possible relation
with the local spectrum of T at x is still open to investigation, however.

The second example, again from [5], is for an algebraic operator T on a do-
mainD in a Hilbert space, i.e., an operator such that exists a non-zero polynomial
P ∈ C[X] such that p(T)x = 0 for all x ∈ D(Tdeg P). In that case, one factors the
unique monic minimal such polynomial as (X − z1)

n1 · · · (X − zm)nm , and there
is decomposition of D(T∞), which is assumed to be a non-zero subspace, as

D(T∞) =
m⊕

i=0

ker (TD(T∞) − zi)
ni ,

where TD(T∞) denotes the restriction of T to D(T∞). For x in D(T∞), write x =
m
∑

i=0
xi, with xi ∈ ker (TD(T∞) − zi)

ni (i = 1, . . . , m). Then, by Proposition 6.2 of [5],

(1.6) lim
n→∞

‖Tn f ‖1/n = max{|zj| : j = 1, . . . , m, xj 6= 0}.
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Although it is not investigated in [5], the analogy with the finite dimensional
case suggests that the right hand side in (1.6) is the local spectrum at x of the
restriction of T to a suitable domain, in which case (1.6) could be interpreted as a
local spectral radius formula for that restriction.

The third example is taken from [3]. If P ∈ C[X1, . . . , Xd] is a polynomial
in d variables, let P(∂) be the corresponding constant coefficient differential op-
erator. Consider the Schwartz space S(Rd) of rapidly decreasing functions as a
subspace of L1(Rd, dx). Then P(∂) : S(Rd) → L1(Rd) is closable, and we let
T be its closure. Naturally, S(Rd) ⊂ D(T∞). By Corollary 5.4 of [3], the un-
bounded operator T on L1(Rd) has the single-valued extension property, and, for
f ∈ S(Rd),

(1.7) σT( f ) = {P(iλ) : λ ∈ suppF f }cl ,

where Acl denotes the closure of a subset A of the complex plane, and where the
Fourier transform F f of f is defined as

F f (λ) =
1

(2π)d/2

∫
Rd

f (x)e−iλ·x dx (λ ∈ Rd).

Since, by Theorem 2.5 of [3],

(1.8) lim
n→∞

‖Tn f ‖1/n
1 = sup{|z| : z ∈ {P(iλ) : λ ∈ suppF f }cl } ( f ∈ S(Rd)),

we infer from the combination of (1.7) and (1.8) the validity of the local spectral
radius formula

(1.9) lim
n→∞

‖Tn f ‖1/n
1 = sup{|z| : z ∈ σT1( f )} ( f ∈ S(Rd))

in the extended positive real numbers ([3], Corollary 5.4). Furthermore, although
it was not stated as such in [3], (1.7) and (1.9) are, together with the assertion that
T has the single-valued extension property, equally true, and with similar proofs,
for T = P(∂) defined on the original domain D = S(Rd), viewed as a subspace
of Lp(Rd), for all 1 6 p 6 ∞. For 1 < p 6 ∞, the questions concerning the valid-
ity of (1.7) and the single-valued extension property of T, when one considers, as
for p = 1, a closed extension T of P(∂), are open at the time of writing, cf. Con-
jecture 5.5 of [3]. The case p = 1 is more manageable, because then the Fourier
transform of an element of the domain of an arbitrary extension of P(∂) is a priori
known to be a continuous function, cf. the proofs of Lemma 5.1 and 5.2 in [3].

It should be noted here that the first result in the vein of (1.8) was obtained
(as late as 1990) by Bang [4], in one dimension and for the polynomial P(t) = t,
and with proofs which are less elementary than those in [3]. Several papers in
this vein have appeared since, also for other “diagonalising" transforms, with
continuous or discrete spectral parameter. The corresponding analogues of (1.8)
are also known as “real Paley–Wiener theorems", because they relate the growth
rate of sequences such as {‖P(∂)n f ‖p}∞

n=1 to the support of F f , just as for the
complex Paley–Wiener theorems, but with everything taking place in the real
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domain. We refer to Section 4 of [3] for an extensive overview of the literature on
real Paley–Wiener theorems. The possible link with local spectral theory seems
to have been worked out first in Section 5 of [3].

The fourth example is concerned with the local spectrum, at an element of
C∞(G), of a closed extension, in Lp(G) (1 6 p 6 ∞), of an element of the cen-
ter of the complexified universal enveloping algebra of a compact connected Lie
group, with original domain C∞(G) ⊂ Lp(G). In [2], using [16], the local spec-
trum of such an operator at a smooth function is determined, and, paralleling
the result in [3] for the Fourier transform on Rd as mentioned above, it is shown
that the local spectral radius formula holds. In the case of the 1-torus and the
operator d/dt, this formula was also obtained by Bang [4], but without its inter-
pretation in terms of local spectral theory, and with different proofs. In Section 3.1
we will return to this example. The key property that was used in [2], is that the
(operator valued) Fourier transform on G establishes a topological isomorphism
between C∞(G) and a space of rapidly decreasing (operator valued) sequences.
We surmise, supported by the observation that results such as Theorem 0.3.4 of
[10] (for the n-sphere) indicate that this topological isomorphism property in [16]
may hold in greater generality, that the results in [2] can be generalised, so that
one can determine the local spectrum of (extensions of) invariant differential op-
erators at C∞-functions on compact symmetric spaces, viewed as elements of Lp-
spaces (1 6 p 6 ∞) with respect to the invariant measure, and establish a local
spectral radius formula for such operators at C∞-functions.

1.2. FRAMEWORK AND RESULTS. We will now formulate the basic context and
assumption, and possible additional assumptions, which allow us to obtain local
spectral results for unbounded operators. These results are summarised, and
subsequently we will comment on the relation of the general framework with
concrete situations, indicating the range of applications.

CONTEXT AND BASIC ASSUMPTION. Let X be a complex Banach space,D ⊂
De ⊂ X two not necessarily dense linear subspaces, and T : D → X, Te : De → X
two linear operators, not necessarily bounded or closed, with Te extending T.

Let Λ be a non-empty set and, for each λ ∈ Λ, let Lλ be a normed space. If s
is an element of ∏

λ∈Λ
Lλ, then, for λ ∈ Λ, we let s(λ) denote the λth-coordinate of

s. We will assume in what follows that there exist a linear map F : X → ∏
λ∈Λ

Lλ,

injective on De, and a map ε : Λ→ C, such that

(1.10) F (Tex)(λ) = ε(λ)Fx(λ),

for all λ ∈ Λ, and all x ∈ De.

Of course, Te and T can coincide. In the examples to be considered in Sec-
tion 3, T is typically a differential operator on a space D of smooth functions, and
Te is a suitable extension of T.
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Under the basic assumption, we will investigate whether Te as above has
the single-valued extension property, determine the local spectrum of Te at an
element of D (not De) and establish a local spectral radius formula for Te at an
element of D(T∞) (not D(T∞

e )) under (a combination of) suitable additional as-
sumptions, which we now formulate.

POSSIBLE ADDITIONAL ASSUMPTIONS. (A1) Assume that, for each λ ∈ Λ,
the map x 7→ Fx(λ) is continuous on De in the topology induced by X.

(A2) Assume that there exists a family Gλ (λ ∈ Λ) of not necessarily bounded
linear maps Gλ : Lλ → D, such that, for all x ∈ D, the series

∑
λ∈Λ

Gλ(Fx(λ)),

converges absolutely in X, with sum equal to x.
(A3) Assume that D has a topology of its own, such that the inclusion map
D ↪→ X is continuous.

Furthermore, let Γ be a non-empty family of functions γ : Λ → [0, ∞), and
let S(Λ) be the subspace of those s∈ ∏

λ∈Λ
Lλ with the property that sup

λ∈Λ

γ(λ)‖s(λ)‖

< ∞, for all γ ∈ Γ, equipped with the locally convex topology determined by the
seminorms qγ (γ ∈ Γ), where qγ(s) = sup

λ∈Λ

γ(λ)‖s(λ)‖ (s ∈ S(Λ)). Furthermore,

assume that F (D) = S(Λ) and that F : D → S(Λ), where D carries its own
topology, is an isomorphism of topological vector spaces.

Our results can then be summarised as follows.

SUMMARY OF RESULTS. Under the basic assumption:
(1) (A1) implies the single-valued extension property for Te (Theorem 2.1);
(2) (A1) and (A2) together imply that lim

n→∞
‖Tn

e x‖1/n exist, for x ∈ D(T∞), and

can be related to the set which will occur as a local spectrum in (3) (Theorem 2.4);
(3) (A3) affords a description of σTe(x), for x ∈ D (Theorem 2.5);
(4) (A1), (A2), and (A3) together imply, as a direct consequence of (2) and (3),

the validity of a local spectral radius formula for Te at x ∈ D(T∞) (Theorem 2.6).

Let us discuss the general framework in the basic and possible additional
assumptions, and relate it with more concrete situations.

Obviously, the basic assumption stipulates that De is, as an abstract vector
space, isomorphic, via the transform F , with a subspace of ∏

λ∈Λ
Lλ. In practical

situations, F will be injective on the whole of X, but for the proofs injectivity on
De is sufficient. This abstract embedding of De diagonalises Te, with ε describing
the eigenvalues. In the examples in the present paper, Λ will be a subset of a
lattice in Rd, and the Lλ will all be equal to C. An element s of ∏

λ∈Λ
Lλ can then

be identified with a complex-valued sequence. The formalism and the proofs
support more general situations, however, so we need not restrict our attention
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to this particular situation. In fact, the results in [2] would not be covered by such
more restrictive hypotheses, whereas they do fall within the scope of our more
general formalism; see also Remark 3.2 in Section 3.1.

The possible additional assumptions (A1), (A2) and (A3) are all related to
the properties of F and the image of D. A typical example would be the follow-
ing, where we first concentrate on the case where Te = T. Suppose that D is a
subspace of a separable complex Hilbert space H (which we take for the Banach
space X), with inner product ( · , · ), and that {en}∞

n=0 is an orthonormal basis of
H contained in D. Hence D is dense in H. We suppose, furthermore, that T is
(for simplicity) symmetric (which is meaningful because D is now known to be
dense), and that, for n ∈ N0, there exists ε(n) ∈ C such that Ten = ε(n)en. Then
ε : N0 → C is real-valued. Let Λ = N0, and put Ln = C, for n ∈ N0. Define
F : H → ∏

n∈N0

C by Fx(n) = (x, en) (x ∈ H, n ∈ N0), and, for n ∈ N0, define

Gn : C → D by Gn(z) = zen (z ∈ C = Ln). Then, for x ∈ D, (1.10) holds, as
we have already observed that ε is real-valued. Hence the basic diagonalising as-
sumption is satisfied for T, and F is even injective on the whole of H. Certainly
(A1) holds, and, furthermore, for all x ∈ D, we have

(1.11) x =
∞

∑
n=0

(x, en)en =
∞

∑
n=0

Gn(Fx(n)),

where the series is norm convergent in H. It is, however, not automatic that the
series is absolutely convergent in H, as required in (A2): this is equivalent with
the sequence {(x, en)}∞

n=0 being in the proper subspace `1(N0) of `2(N0). Contin-
uing with (A3), for k = 0, 1, 2, . . ., let γk(n) = (1 + n)k (n ∈ N0), and let Γ consist
of the functions γk : N0 → [0, ∞) (k = 0, 1, 2, . . .). Then S(N0) is the space of
rapidly decreasing sequences, supplied with its usual Fréchet topology. As we
had already observed, it is not guaranteed that F maps D into `1(N0), and much
less so that it maps D into S(N0). However, this latter property does hold in a
number of well known cases, where, in fact, F then even establishes the topolog-
ical isomorphism between D and S(N0) as required in (A3). Certainly (A2) will
then also be satisfied, since the fact that ‖(x, en)en‖ = |(x, en)| (n ∈ N0) implies
that the series in (1.11) is absolutely convergent if the sequence {(x, en)}∞

n=0 is
rapidly decreasing.

The cases, where F as defined above is a topological isomorphism between
D and S(N0), that we have in mind, are those where D is, for example, the space
of C∞ functions on a sufficiently regular subset of Rd, for some d, viewed as a
subspace of a suitable L2-space H, and where T is a differential operator, defined
onD and leavingD invariant (so thatD = D(T∞)). If T is symmetric on H, and if
there exists an orthonormal basis {en}∞

n=0 ⊂ D of H consisting of eigenfunctions
of T, where the eigenvalue ε(n) in Ten = ε(n)en grows at least polynomially with
n, then, for x ∈ D, the sequence {(x, en)}∞

n=0 is in S(N0), by the standard argu-
ment involving the symmetry of T and the fact that the Fourier coefficients with
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respect to an orthonormal basis tend to zero. This rapid decay can be thought of
as a manifestation of the informal general principle that “smoothness often gives
good convergence”. Certainly, the absolute convergence in (A2) will then hold.
However, in a number of cases, this principle manifests itself in an even better
form: when D is supplied with a topology appropriate for a space of test func-
tions, F turns out, in those cases, to be a topological isomorphism betweenD and
S(N0), and the series in (1.11) even converges in the own topology of D. As the
continuity of the inclusion of D into H is usually an innocent one, (A3) will then
be satisfied.

Once it has thus been established that the basic assumption, and the as-
sumptions (A1), (A2), and (A3), are satisfied with T = Te, it is in this class of
practical examples usually easy to find a proper extension Te of T on a domain
De, such that all assumptions, and in particular (1.10), are satisfied.

Actually, one can in these situations often go further and pass from an L2

Hilbert space as above to Lp-spaces. We will now discuss this, and again we first
concentrate on the case where Te = T. The important point is that the require-
ment in (A3) that F is a topological isomorphism does not involve the Hilbert
space. This space in which D can be viewed “originally" may be a means, or a
guide, to obtain F , but once the required properties have been established, there
is no need to retain it. One can often consider D, in its own topology, as a sub-
space of an Lp-space, and regard T accordingly. All but one of the remaining
hypotheses are then easily verified or falsified. To start with, it is often possible
to view such an Lp-space as a subspace of the continuous dual D′ of D, i.e., as a
space of distributions, and since F usually has a natural injective extension from
D to D′, F can be defined injectively on such Lp-spaces as well. The verification
that this extension satisfies the basic assumption again will then be a mere for-
mality. Furthermore, the question whether the inclusion of D into an Lp-space is
continuous, is easily answered in concrete situation, as is the question concerning
continuity in (A1). There is only one matter that needs serious attention, and that
is the absolute convergence of the series in (1.11). As already observed above,
this series is evidently absolutely convergent in an L2-context if the coefficients
{(x, en)}∞

n=0 form a rapidly decreasing sequence, since the norm of en is then
equal to 1, for all n ∈ N0. When viewing the en as elements of Lp-spaces, an extra
argument is needed at this point. In the examples in the present paper, this will
be provided by known estimates on the special functions involved. These will
show that the sequence formed by the norms of the en, in each of the Lp-spaces
then under consideration, is slowly increasing. Since, for x ∈ D, {(x, en)}∞

n=0 is
already known to be a rapidly decreasing sequence, this shows that, for x ∈ D,
the series in (1.11) is absolutely convergent in each of the Lp-spaces then under
consideration, as required in (A2).

Having arrived at this point, our results will then apply with Te = T,
viewed as an operator onD in an Lp-space under consideration. As in the Hilbert
space context discussed previously, suitable extensions of T in these Lp-spaces to
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which these results also apply are then usually easily determined. We refer to the
examples in Section 3 for illustrations.

As an informal summary of the above discussion: if T is a differential oper-
ator on a spaceD of test functions, which is (for example) symmetric with respect
to a suitable inner product, and which can be diagonalised such that the corre-
sponding Fourier-type transform establishes a topological isomorphism between
D and S(N0) (i.e., when “very good convergence results for eigenfunction expan-
sions of smooth functions hold"), then the basic assumption and the assumptions
(A1), (A2), and (A3) can be expected to be satisfied with T = Te, viewed as an op-
erator with domain D in suitable Lp-spaces, and the results in local spectral the-
ory as summarised above can expected to be valid. Moreover, it is to be expected
that these results will also apply to suitable extensions of T in those Lp-spaces.

2. PROOFS

We will now investigate the local spectral properties of Te under (a combi-
nation of) the hypotheses (A1), (A2), and (A3), stating and proving the precise
versions of the results already summarised in Section 1.2.

The support supp s of an element s ∈ ∏
λ∈Λ

Lλ, which will be needed in the

description of local spectra, is naturally defined as

supp s = {λ ∈ Λ : s(λ) 6= 0}.

We will adhere to the convention that the supremum of an empty set of real num-
bers is 0. If A is a subset of the complex plane, then Acl denotes its closure.

THEOREM 2.1. Suppose that the basic assumption and (A1) hold. Then the oper-
ator Te has the single-valued extension property.

Proof. Suppose that U ⊂ C is open and non-empty, that φ : U → De is
analytic in the topology ofDe induced by X, and that (Te− z)φz = 0, for all z ∈ U.
We must show that φ = 0. Applying F , we see that (ε(λ)− z)Fφz(λ) = 0, for all
z ∈ U, and all λ ∈ Λ. If λ ∈ Λ is fixed, we conclude from this that Fφz(λ) = 0,
for all z ∈ U, with at most one exception. However, the continuity of φ and (A1)
imply that z 7→ Fφz(λ) is continuous on U, so there cannot be an exceptional
point. We thus have Fφz(λ) = 0, for all z ∈ U. From the injectivity of F we then
conclude that φz = 0 for all z ∈ U, as required.

PROPOSITION 2.2. Suppose that the basic assumption and (A1) hold. If x ∈
D(T∞

e ), then

(2.1) sup{|ε(λ)| : λ ∈ suppFx} 6 lim inf
n→∞

‖Tn
e x‖1/n,

in the extended positive real numbers.
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Proof. Let x ∈ D(T∞
e ). We may assume that the right hand side in (2.1) is

finite. For n = 1, 2, . . ., we have

|ε(λ)|n‖Fx(λ)‖ = ‖(F (Tn
e x))(λ)‖ 6 ‖Fλ‖‖Tn

e x‖,

where ‖Fλ‖ is the norm of the map x 7→ Fx(λ), from De to Lλ, which is finite by
assumption (A1). If λ ∈ suppFx, then this implies

|ε(λ)|n 6
‖Fλ‖‖(Tn

e x)(λ)‖
‖Fx(λ)‖ (n = 1, 2, 3 . . .).

From this we see that |ε(λ)| 6 lim inf
n→∞

‖Tn
e x‖1/n, both when ‖Fλ‖ 6= 0 and when

‖Fλ‖ = 0. Hence the result follows.

PROPOSITION 2.3. Suppose that the basic assumption and (A2) hold. If x ∈
D(T∞), then

(2.2) lim sup
n→∞

‖Tnx‖1/n 6 sup{|ε(λ)| : λ ∈ suppFx},

in the extended positive real numbers.

Proof. Let x ∈ D(T∞). By assumption (A2), we have

Tnx = ∑
λ∈Λ

Gλ(F (Tnx)(λ)) = ∑
λ∈Λ

ε(λ)nGλ(Fx(λ)) (n = 1, 2, . . .),

hence

‖Tnx‖ 6 sup{|ε(λ)|n : λ ∈ suppFx} ∑
λ∈Λ

‖Gλ(Fx(λ))‖(2.3)

= [sup{|ε(λ)| : λ ∈ suppFx}]n ∑
λ∈Λ

‖Gλ(Fx(λ))‖ (n = 1, 2, . . .),

where the series is convergent in the positive real numbers by assumption (A2).
We may assume that the right hand side in (2.2) is finite. Hence (2.3) implies the
statement in the proposition for all x in D(T∞), such that ∑

λ∈Λ
‖Gλ(Fx(λ))‖ 6= 0.

The remaining case where ∑
λ∈Λ
‖Gλ(Fx(λ))‖ = 0 is equivalent with x = 0, by as-

sumption (A2), and then the statement in the proposition holds by convention.

Combining the Propositions 2.2 and 2.3 with the observation that, for A ⊂
C, sup{|z| : z ∈ A} = sup{|z| : z ∈ Acl } in the extended positive real numbers,
we have the following result.

THEOREM 2.4. Suppose that the basic assumption, (A1) and (A2) hold. If x ∈
D(T∞), then

lim
n→∞

‖Tn
e x‖1/n = sup{|z| : z ∈ [ε(suppFx)]cl }

in the extended positive real numbers.

Next we turn to the description of a local spectrum.
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THEOREM 2.5. Suppose that the basic assumption and (A3) hold. If x ∈ D, then

σTe(x) = [ε(suppFx)]cl .

Proof. We first establish that

(2.4) {ε(λ) : λ ∈ suppFx}cl ⊂ σTe(x).

Suppose that λ0 ∈ Λ is such that ε(λ0) ∈ ρTe(x). Then there exist a neighborhood
U of ε(λ0), and an analytic function φ : U → De, such that (Te − z)φz = x, for all
z ∈ U. Applying the map F , we find that

(ε(λ)− z)(Fφz)(λ) = Fx(λ) (z ∈ U, λ ∈ Λ).

Since ε(λ0) is in U, we can choose z = ε(λ0), and on simultaneously specialising
to λ = λ0, we find that Fx(λ0) = 0. Hence

{ε(λ) : λ ∈ suppFx} ⊂ σTe(x).

Since the right hand side is closed, (2.4) follows.
Next, we show the reverse inclusion of (2.4), which is equivalent to

(2.5) C \ {ε(λ) : λ ∈ suppFx}cl ⊂ ρTe(x).

Suppose z0 /∈ {ε(λ) : λ ∈ suppFx}cl , and let ε > 0 be such that |ε(λ)− z0| > ε,
for all λ ∈ suppFx. Let U = {z ∈ C : |z − z0| < ε/2}. We will construct an
analytic function φ : U → D, such that

(T − z)φz = x (z ∈ U).

Since D ⊂ De, and Te extends T, this implies that z0 ∈ ρTe(x), so that the proof of
(2.5), and consequently that of the theorem, will then be complete.

Hence it remains to construct φ. This is done by first solving the problem
in the transformed picture. To start with, note that, for z ∈ U, and λ ∈ suppFx,
one has |ε(λ)− z| > ε/2. Hence, for z ∈ U, we can define ψz ∈ ∏

λ∈Λ
Lλ as

ψz(λ) =

{ Fx(λ)
ε(λ)−z if λ ∈ suppFx;

0 if λ /∈ suppFx.

For z ∈ U fixed, note that ‖ψz(λ)‖ 6 (2/ε)‖Fx(λ)‖, if λ ∈ suppFx, and that this
is equally true if λ /∈ suppFx. Since Fx ∈ S(Λ), this implies that ψz ∈ S(Λ).
Hence we have a map ψ : U → S(Λ), defined by z 7→ ψz. We claim that ψ is
analytic. In establishing this claim, we will show that its derivative is the map
χ : U → S(Λ), given, for z ∈ U, by

χz(λ) =

{ Fx(λ)
(ε(λ)−z)2 if λ ∈ suppFx;

0 if λ /∈ suppFx.

Just as for ψz, χz is actually in S(Λ), for z ∈ U, and not just in ∏
λ∈Λ

Lλ.
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We now show that ψ is analytic at an arbitrary fixed point z1 in U. If h ∈ C
and |h| < ε/2− |z1 − z0|, then z1 + h ∈ U. For such h with h 6= 0 one has, for
λ ∈ suppFx,

ψz1+h(λ)− ψz1(λ)

h
− χz1(λ) =

hFx(λ))
(ε(λ)− z1)2(ε(λ)− z1 − h)

.

If |h| < ε/4, then, for λ ∈ suppFx, we have |ε(λ)− z1 − h| > |ε(λ)− z1| − |h| >
ε/2− ε/4 = ε/4, so that, for 0 < h ∈ C with |h| < min(ε/4, ε/2− |z1 − z0|),∥∥∥ψz1+h(λ)− ψz1(λ)

h
− χz1(λ)

∥∥∥ 6 (2
ε

)2 4
ε
|h| ‖Fx(λ)‖ = 16

ε3 |h|‖Fx(λ)‖.

As this is trivially true for λ /∈ suppFx, we conclude that, for all such h,

sup
λ∈Λ

γ(λ)
∥∥∥ψz1+h(λ)− ψz1(λ)

h
− χz(λ)

∥∥∥ 6 16
ε3 |h| sup

λ∈Λ

γ(λ)‖Fx(λ)‖,

for all γ in Γ. It is immediate from this that ψ is analytic at z1, as claimed, and
that its derivative at z1 is χz1 , as announced.

After these preparations, the actual local resolvent φ : U → D is easily
constructed. Indeed, let φz = F−1ψz, for z ∈ U. Then φ is analytic on U when
D carries the topology from X, as a consequence of the above and both parts of
(A3). Furthermore, for z ∈ U, and λ ∈ Λ,

F ((T − z)φz)(λ) = (ε(λ)− z)(Fφz)(λ) = (ε(λ)− z)ψz(λ) = Fx(λ).

Hence (T − z)φz = x, for all z ∈ U, as needed.

Finally, we can state the local spectral radius formula for the operator T.

THEOREM 2.6. Suppose that the basic assumption, (A1), (A2), and (A3) hold. If
x ∈ D(T∞), then the local spectral radius formula

lim
n→∞

‖Tn
e x‖1/n = sup{|z| : z ∈ σTe(x)}

holds in the extended positive real numbers.

REMARK 2.7. Under the hypotheses of Theorem 2.6, the Theorems 2.1 and
2.5 also hold. Hence Te has the single-valued extension property, and the local
spectrum σTe(x) of Te at x ∈ D(T∞) ⊂ D is known.

REMARK 2.8. The validity of a local spectral radius formula as asserted in
Theorem 2.6 is, one could say, established “by inspection". Indeed, for the diag-
onalisable operator operator under consideration, one can explicitly determine
what the local spectrum at a suitable point is, hence what the corresponding
local spectral radius (in its natural definition) is, and one can also determine
lim sup

n→∞
‖Tnx‖1/n (which, incidentally, is the corresponding limit). Then one sim-

ply observes that these two extended positive real numbers are equal. This is a
difference with the demonstration, in Section 1.1, of the validity of a local spectral
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radius formula for a globally defined bounded operator with the single-valued
extension property, where the local spectrum itself did not appear.

3. EXAMPLES

In this section, we collect a number of concrete applications of the results
in Section 2, along the lines as discussed in Section 1.2. Based on the informal
general principle on the relation between smoothness and convergence, as men-
tioned in that discussion, we trust that there are more, even though they have
perhaps not yet been identified as such (see also Section 3.5).

3.1. CONSTANT COEFFICIENT DIFFERENTIAL OPERATORS ON T. Let T be the 1-
torus, with total rotation invariant measure equal to 1, and let D = C∞(T). As
usual, we will identify functions on T with 2π-periodic functions on R. Review-
ing basic notions from Fourier analysis and distribution theory, we introduce a
Fréchet topology on D by means of the seminorms pk, for k ∈ N0, where, for
g ∈ D, pk(g) = max

t∈[0,2π]
|g(k)(t)|, and we let D′ denote the continuous dual of D,

i.e., D′ is the space of distributions on T. For Ξ ∈ D′, and g ∈ D, we write 〈Ξ, g〉
for the canonical pairing. Then D can be identified with a subspace of D′ when,
via the usual pairing

〈 f , g〉 = 1
2π

2π∫
0

f (t)g(t)dt (g ∈ D),

we view f ∈ D as an element of D′.
Let P ∈ C[X] be a polynomial in one variable, and let

T = P(d/dt)

be the corresponding constant coefficient differential operator, with domain D.
Obviously, D is invariant under T, and T : D → D is continuous. Since

(3.1) 〈T f , g〉 = 〈 f , P(−d/dt)g〉 ( f , g ∈ D),

we can extend T from the embedded copy of D in D′ to D′ by

(3.2) 〈TΞ, g〉 = 〈Ξ, P(−d/dt)g〉 (Ξ ∈ D′, g ∈ D).

We will employ the usual Fourier transform as a diagonalising transform
for T on D. In fact, since it also diagonalises T on D′ it will, as a consequence,
diagonalise the extensions of T to be defined below in particular. For n ∈ Z, let

en(t) = eint (t ∈ [0, 2π]),

so that

(3.3) Ten = P(in)en (n ∈ Z).
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Let S(Z) be the space of rapidly decreasing sequences on Z, in its usual
Fréchet topology, and define F : D → S(Z) by

F ( f )(n) = 〈 f , en〉 =
1

2π

2π∫
0

f (t)e−int dt ( f ∈ D, n ∈ Z).(3.4)

Since D ⊂ L2(T), and {en}n∈Z is an orthonormal basis of L2(T), a standard ar-
gument, using (3.1) for P = X and (3.3), implies that the image of an element of
D under F is, in fact, an element of S(Z), as was implicitly used in the notation
above. However, as is well known, cf. Theorem 51.3 of [19], F is actually even an
isomorphism of topological vector spaces between D and S(Z), and, for f ∈ D,
the series

(3.5) ∑
n∈Z
F ( f )(n)en

does not just converge to f in L2(T), as is obvious, but it also converges to f in
the topology of D.

We can extend F from D to D′, obtaining an injective map F : D′ → ∏
n∈Z

C,

by defining

F (Ξ)(n) = 〈Ξ, en〉 (Ξ ∈ D′, n ∈ Z).

Naturally, the image of F consists precisely of the slowly increasing se-
quences on Z (the continuous dual of S(Z)), but we will not need this. The rele-
vant property is that F diagonalises T on D′, by the usual argument. Indeed, for
Ξ ∈ D′, and n ∈ Z,

F (TΞ)(n)= 〈TΞ, en〉= 〈Ξ, P(−d/dt)en〉= 〈Ξ, P(in)en〉=P(in)(FΞ)(n).(3.6)

We now come to the application of the results in Section 2. Let X = Lp(T),
for some fixed 1 6 p 6 ∞. We view D as a subspace of X, so that T is an operator
on X on D. Furthermore, we embed X as an abstract vector space into D′ via the
pairing

〈 f , g〉 = 1
2π

2π∫
0

f (t)g(t)dt ( f ∈ X, g ∈ D).

Let Tc be the operator on X with domain Dc, consisting of those f ∈ X such
that the distribution T f , as defined in (3.2), is in X, and defined, for such f , by
Tc f = T f . Then Tc is an extension of T, which, incidentally, is easily seen to be
closed.

We will now proceed to show that the results in Section 2 apply to each
operator Te on X, such that

(3.7) T ⊂ Te ⊂ Tc.
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To start with, as a consequence of (3.6), the injective map F on De then certainly
diagonalises Te on De ⊂ D′, as required in the basic assumption (1.10), the eigen-
values being given by ε(n) = P(in) (n ∈ Z). Hence the basic assumption is
satisfied. Assumption (A1) is satisfied since en ∈ Lq(T) (n ∈ Z), where q is the
conjugate exponent of p. Assumption (A2) is also valid, since, for f ∈ D, the
series in (3.5) is absolutely convergent in X. Indeed,

∑
n∈Z
‖F ( f )(n)en‖p = ∑

n∈Z
|F f (n)| < ∞,

as F f ∈ S(Z). Moreover, since we know already that the series in (3.5) converges
to f in the topology ofD, it also converges to f in X, by continuity of the inclusion
of D into X (which, in the passing, is the first part of assumption (A3)). Hence
assumption (A2) is satisfied. As already observed above, F is a topological iso-
morphism betweenD and S(Z), which is the remaining part of (A3). We thus see
that the basic assumption and (A1), (A2), and (A3) in Section 1.2 are all satisfied.
Consequently, the Theorems 2.1, 2.4, 2.5, and 2.6 hold for each operator Te as in
(3.7). To summarise, we have the following.

THEOREM 3.1. Let 1 6 p 6 ∞. Let D = C∞(T), let P be a polynomial in
one variable, and let T = P(d/dt) be the corresponding constant coefficient differential
operator, viewed as an operator on Lp(T) with domain D. Let Te be an extension of T on
Lp(T) as in (3.7). Then Te has the single-valued extension property.

Let f ∈ D, and let F f : Z→ C be the Fourier transform of f as in (3.4). Then

(3.8) lim
n→∞

‖Tn
e f ‖1/n

p = sup{|z| : z ∈ {P(in) : n ∈ Z, F f (n) 6= 0}cl }

in the extended positive real numbers. Moreover,

σTe( f ) = {P(in) : n ∈ Z, F f (n) 6= 0}cl ,

so that (3.8) is a local spectral radius formula for Te at f .

REMARK 3.2. As a particular case of the above, we see that, for 1 6 p 6 ∞:

lim
n→∞

∥∥∥dn f
dtn

∥∥∥1/n

p
= sup{|F f (k)| : k ∈ suppF f },

for f ∈ C∞(T). This is Theorem 2 of [4], where the result was established using
Paley–Wiener theory and the Bernstein inequality.

REMARK 3.3. Theorem 3.1 has an obvious generalisation to the d-torus for
d > 2, in which case the set-theoretical closure in the statement is not superflu-
ous, as it is for d = 1. In fact, it can be generalised to all compact connected Lie
groups. This general case was treated in detail in [2]. As already mentioned when
discussing this generalisation as the fourth example in Section 1.1, we surmise
that similar results hold in still greater generality, namely for general compact
symmetric spaces. The diagonalising transform will then have sequences as its
image, indexed by the irreducible unitary representations of the group occurring
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in the Plancherel formula for the symmetric space, and taking values in the op-
erators on the corresponding Hilbert spaces. Such a situation is covered by the
general formulation in Section 1.2.

3.2. JACOBI OPERATORS. Let D = C∞[−1, 1], supplied with its usual Fréchet
topology generated by the seminorms pk, for k ∈ N0, where, for g ∈ D, pk(g) =
max

t∈[−1,1]
|g(k)(t)|. We let D′ denote the continuous dual of D. As in Section 3.1, for

Ξ ∈ D′, and g ∈ D, we write 〈Ξ, g〉 for the canonical pairing. Let α, β > −1, and
consider the weight function

(3.9) w(α,β)(t) = (1− t)α(1 + t)β (t ∈ (0, 1)).

We identify D with a subspace of D′ by letting f ∈ D act on D via

〈 f , g〉 =
1∫
−1

f (t)g(t)w(α,β)(t)dt (g ∈ D).

We will be concerned with the Jacobi-type differential operator

(3.10) T(α,β) = (1− t2)
d2

dt2 + [β− α− (α + β + 2)t]
d
dt

with domain D. Obviously, D is invariant under T(α,β), and T : D → D is contin-
uous. A routine computation yields that, for f , g,∈ D,

(3.11) 〈T(α,β) f , g〉 = 〈 f , T(α,β)g〉.
Since T(α,β) : D → D is continuous, we can extend (in view of (3.11)) T(α,β) from
the embedded copy of D in D′ to D′ by

(3.12) 〈T(α,β)Ξ, g〉 = 〈Ξ, T(α,β)g〉 (Ξ ∈ D′, g ∈ D).
We will use normalised Jacobi polynomials to diagonalise T onD, in fact on

D′. For n ∈ N0, let

(3.13) p(α,β)
n (t) =

( (2n + α + β + 1)Γ(n + α + β + 1)n!
2α+β+1Γ(n + α + 1)Γ(n + β + 1)

)1/2
P(α,β)

n (t)

be the normalised Jacobi polynomial, where the Jacobi polynomial P(α,β)
n of order

n is, as in 22.2.1 of [1], 10.8.(3) of [7], and (4.1.1) of [17], standardised by

P(α,β)
n (1) =

(
n + α

n

)
.

Then, for n ∈ N0, p(α,β)
n is a real-valued element of D, and, by 22.6.1 of [1],

10.8.(14) of [7], or (4.2.1) of [17],

(3.14) T(α,β)p(α,β)
n = −n(n + α + β + 1)p(α,β)

n .

For all α, β > −1, {p(α,β)
n }∞

n=0 is an orthonormal basis of L2([−1, 1], w(α,β) dt), cf.
22.2.1 of [1], or (4.3.4) of [17].
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Let S(N0) be the space of rapidly decreasing sequences on N0, in its usual
Fréchet topology, and define F(α,β) : D → S(N0) by

F(α,β)( f )(n)= 〈 f , p(α,β)
n 〉=

1∫
−1

f (t)p(α,β)
n (t)w(α,β)(t), dt ( f ∈D, n∈N0).(3.15)

As in the previous example, it follows from (3.11) and (3.14) that the image of
an element of D under F(α,β) is, in fact, an element of S(N0). Moreover, by The-
orem 3.2 of [9], if α, β > −(1/2), then F(α,β) is an isomorphism of topological
vector spaces between D and S(N0), and, for f ∈ D, the series

(3.16)
∞

∑
n=0
F(α,β)( f )(n)p(α,β)

n

converges to f in the topology of D. (The topological isomorphism between D
and S(N0) in [9] is defined in terms of polynomials with a normalisation other
than ours. Since, as a consequence of Stirling’s formula, that normalisation and
ours differ by a slowly increasing sequence in n, the transform as defined with our
normalisation is a topological isomorphism as well. The series in Theorem 3.2 of
[9] coincides with ours in (3.16).)

We can extend F(α,β) from D to D′, obtaining an injective map F : D′ →
∏

n∈N0

C, by defining

F(α,β)(Ξ)(n) = 〈Ξ, p(α,β)
n 〉 (Ξ ∈ D′, n ∈ N0).

As in (3.6), we find that

F(α,β)(T(α,β)Ξ)(n) = −n(n + α + β + 1)FΞ(n) (Ξ ∈ D′, n ∈ N0).

We will now apply the results in Section 2, in a similar manner as in Sec-
tion 3.1, but with an extra ingredient. Let X = Lp([−1, 1], w(α,β)(t)dt), for some
fixed 1 6 p 6 ∞. We view D as a subspace of X, so that T(α,β) is an operator on
X with domain D. We embed X as an abstract vector subspace into D′ via the
pairing

〈 f , g〉 =
1∫
−1

f (t)g(t)w(α,β)(t)dt ( f ∈ X, g ∈ D).

Let T(α,β),c be the operator on X with domain Dc, consisting of those f ∈ X such
that the distribution T(α,β) f , as defined in (3.12), is in X, and defined, for such f ,
by T(α,β),c f = T(α,β) f . Then T(α,β),c is a closed extension of T(α,β).

Let Te be an operator on X, such that

(3.17) T(α,β) ⊂ Te ⊂ T(α,β),c .

As in Section 3.1, one verifies easily that the basic assumption and the assump-
tions (A1) and (A3) are satisfied. As to assumption (A2), however, it now needs
proof that, for f ∈ D, the series in (3.16) converges absolutely in X, and with
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sum f . For the Fourier series in the previous example this was immediately clear
since ‖en‖p = 1 (n ∈ Z, 1 6 p 6 ∞), but here we need the following additional
argument. By 22.14.1 of [1], or (7.32.2) of [17], we have the estimate

(3.18) |P(α,β)
n (t)| 6

(
n + max(α, β)

n

)
(n ∈ N0, t ∈ [−1, 1]), )

for all α, β > −1 such that max(α, β) > −(1/2). (A different upper bound
(n+max(α,β)−1

n ) is given in 10.18.(12) of [7]. While this seems to be a misprint, this
upper bound would also fit into our argument.) For such α and β, hence in partic-
ular when α, β > −(1/2), the combination of (3.13), (3.18), and Stirling’s formula

shows that the sequence
{

max
t∈[−1,1]

|p(α,β)
n (t)|

}∞

n=0
is slowly increasing. The same is

then true for the sequence of norms {‖p(α,β)
n ‖}∞

n=0 in X = Lp([−1, 1], w(α,β)(t)dt).
Since the coefficients F(α,β)( f )(n) in (3.16) form a rapidly decreasing sequence
whenever f ∈ D, this implies that, for such f , the series in (3.16) is absolutely
convergent in X, as required. That the series converges to f in X follows, as in
the previous example, from the fact that this is the case in D, combined with the
continuity of the inclusion of D into X. Hence assumption (A2) is also satisfied
after all, and we have the following result.

THEOREM 3.4. Let 1 6 p 6 ∞, let α, β > −(1/2), and let w(α,β) and T(α,β)
be as in (3.9) and (3.10), respectively. Let D = C∞[−1, 1]. View T as an operator on
Lp([−1, 1], w(α,β) dt) with domain D. Let Te be an extension of T(α,β) on this space
Lp([−1, 1], w(α,β) dt) as in (3.17). Then Te has the single-valued extension property.

Let f ∈ D, and let F(α,β) f : N0 → C be the Jacobi transform of f as in (3.15).
Then

(3.19) lim
n→∞
‖Tn

e f ‖1/n
p =sup{|z| : z∈{−n(n+α+β+1) : n∈N0, F(α,β) f (n) 6=0}}

in the extended positive real numbers. Moreover,

σTe( f ) = {−n(n + α + β + 1) : n ∈ N0, F(α,β) f (n) 6= 0},

so that (3.19) is a local spectral radius formula for Te at f .

3.3. HERMITE OPERATOR. Let D = S(R), the Schwartz space of rapidly decreas-
ing functions on R, carrying its Fréchet topology generated by the seminorms
pk,n, for k, n ∈ N0, where, for g ∈ S(R), pk,n(g) = sup

t∈[0,∞)

tk|g(n)(t)|. Its dual D′

consists of the tempered distributions on R, and we write 〈Ξ, g〉 for the canonical
pairing between Ξ ∈ D′ and g ∈ D. We identify D with a subspace of D′, by
letting f ∈ D act on D via

〈 f , g〉 =
∫
R

f (t)g(t)dt (g ∈ D).
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Consider the Hermite operator

(3.20)
d2

dt2 − t2.

Obviously, D is invariant under T, and T : D → D is continuous. It is virtually
immediate that, for f , g ∈ D,

(3.21) 〈T f , g〉 = 〈 f , Tg〉.

We extend T from D ⊂ D′ to D′ by

(3.22) 〈TΞ, g〉 = 〈Ξ, Tg〉.

For n ∈ N0, and t ∈ R, let, as in p. 142 of [14], or (1.1.2) and (1.1.18) of [18],

hn(t) = (−1)n(2nn!
√

π)−1/2e(1/2)t2 dn

dtn e−t2
= (2nn!

√
π)−1/2Hn(t)e−(1/2)t2

,

where

Hn(t) = (−1)net2 dn

dtn e−t2
(t ∈ R)

is the Hermite polynomial of order n, cf. 22.11.7 of [1], 10.13.(7) of [7], or (1.1.1)
of [18]. Then, for n ∈ N0, hn is a real-valued element of D, and, by 22.6.20 of [1],
10.13.(13) of [7], or p. 142 of [14],

(3.23) Thn = −(2n + 1)hn.

Furthermore, {hn}∞
n=0 is an orthonormal basis of L2(R, dx); cf. 22.2.14 of [1],

(5.5.1) of [17] for orthonormality, and (5.7.2) of [17] for completeness.
Let S(N0) be the space of rapidly decreasing sequences on N0, in its usual

Fréchet topology, and define F : D → S(N0) by

F ( f )(n) = 〈 f , hn〉 =
∫
R

f (t)hn(t)dt ( f ∈ D, n ∈ N0).(3.24)

Then (3.21) and (3.23) imply that the image of an element ofD under F is, in fact,
an element of S(N0). Moreover, by Theorem V.13 of [14] and its proof, see also
p. 262 of [15], F is an isomorphism of topological vector spaces between D and
S(N0), and, for f ∈ D, the series

(3.25)
∞

∑
n=0
F ( f )(n)hn

converges to f in the topology of D.
We can extend F fromD toD′, obtaining an injective map F : D′ → ∏

n∈N0

C,

by defining
F (Ξ)(n) = 〈Ξ, hn〉 (Ξ ∈ D′, n ∈ N0).

As in (3.6), we find that

F (TΞ)(n) = −(2n + 1)hn.
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We can now apply the results in Section 2, similarly as in the previous ex-
amples. Let X = Lp(R, dt). We view D as a subspace of X, and we embed X into
D′ via the pairing

〈 f , g〉 =
∫
R

f (t)g(t)dt ( f ∈ X, g ∈ D).

We let T be the operator on X with domain Dc, consisting of those f ∈ X such
that the distribution T f , as defined in (3.22), is in X, and defined, for such f , by
Tc f = T f . Then Tc is a closed extension of T. Let Te be an operator on X, such
that

(3.26) T ⊂ Te ⊂ Tc.

As in Section 3.2, one verifies easily that the basic assumption and the as-
sumptions (A1) and (A3) are satisfied, whereas it needs proof that, for f ∈ D, the
series in (3.25) converges absolutely in X, and with sum f . To verify this, we note
that the sequence of norms {‖hn‖}∞

n=0 in X = Lp([0, ∞), dt) is slowly increasing,
by Lemma 1.5.2 of [18]. Since the coefficients F ( f )(n) in (3.25) form a rapidly
decreasing sequence whenever f ∈ D, this implies, as before, that, for such f ,
the series in (3.25) is absolutely convergent in Lp(R, dt), as required. As before,
it converges to f in X because it does so in D, and the inclusion of D into X is
continuous. Hence assumption (A2) is satisfied again, and we have the following
result.

THEOREM 3.5. Let 1 6 p 6 ∞. Let D = S(R). Let T be as in (3.20), and view
T as an operator on Lp(R, dt) with domain D. Let Te be an extension of T on Lp(R, dt)
as in (3.26). Then Te has the single-valued extension property.

Let f ∈ D, and let F f : N0 → C be the Hermite transform of f as in (3.24). Then

(3.27) lim
n→∞

‖Tn
e f ‖1/n

p = sup{|z| : z ∈ {−(2n + 1) : n ∈ N0, F f (n) 6= 0}}

in the extended positive real numbers. Moreover,

σTe( f ) = {−(2n + 1) : n ∈ N0, F f (n) 6= 0},
so that (3.27) is a local spectral radius formula for Te at f .

REMARK 3.6. Actually, the expansion with respect to the product of one-
variable Hermite functions provides a topological isomorphism between S(Rd)
and the rapidly decreasing sequences on Nn

0 for arbitrary d = 1, 2, . . ., according
to Theorem V.13 of [14]. Hence the results in the present example generalise easily
to arbitrary dimension.

3.4. LAGUERRE OPERATORS. Let S+ consist of the restrictions of the elements
of S(R) to [0, ∞), supplied with a Fréchet topology by means of the seminorms
pk,n, for k, n ∈ N0, where, for g ∈ S+, pk,n(g) = sup

t∈[0,∞)

tk|g(n)(t)|. For α > −1,

let Dα = tα/2S+ = {tα/2 f : f ∈ S+}, and transport the Fréchet topology from
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S+ to Dα via the canonical linear bijection with S+. As before, we let D′α be the
continuous dual of Dα, and 〈Ξ, g〉 denotes the canonical pairing between Ξ ∈ D′α
and f ∈ Dα. Since Dα consists of locally integrable functions, we can view Dα as
a subspace of D′α, by letting f ∈ Dα act on Dα via

〈 f , g〉 =
∞∫

0

f (t)g(t)dt (g ∈ Dα).

Consider the Laguerre-type operator

(3.28) Tα = t
d2

dt2 +
d
dt
− t

4
− α2

4t
+

α + 1
2

with domainDα. It is routine to check that Tα leavesDα invariant, that Tα : Dα →
Dα is continuous, and that, for f , g ∈ Dα,

〈Tα f , g〉 = 〈 f , Tαg〉.
We extend Tα from Dα ⊂ D′α to D′α by

(3.29) 〈TαΞ, g〉 = 〈Ξ, Tαg〉 (Ξ ∈ D′α, g ∈ Dα).

For n ∈ N0, let, as in (1.1.44) of [18],

Lα
n(t) =

( n!
Γ(n + α + 1)

)1/2
e−t/2tα/2Lα

n(t) (t > 0)

denote the normalised generalised Laguerre function, where Lα
n is the generalised

Laguerre polynomial of order n, as in 22.11.6 of [1] or (1.1.37) of [18]. Then, for
n ∈ N0, Lα

n is a real-valued element of Dα, and, by 10.12.(11) of [7],

TαLα
n = −nLα

n.

For each α > −1, {Lα
n}∞

n=0 is an orthonormal basis of L2([0, ∞), dt), see 22.2.12 of
[1] or (1.1.44) of [18] for orthonormality, and 5.7.1 of [17] for completeness.

Let S(N0) be the space of rapidly decreasing sequences on N0, topologised
in the usual way, and define Fα : Dα → S(N0) by

Fα( f )(n) = 〈 f ,Lα
n〉 =

∞∫
0

f (t)Lα
n(t)dt ( f ∈ Dα, n ∈ N0).(3.30)

By Theorem 2.5 of [6], Fα is an isomorphism of topological vector spaces between
Dα and S(N0), and, for f ∈ Dα, the series

(3.31)
∞

∑
n=0
Fα( f )(n)Lα

n

converges to f in the topology of Dα.
We extend F from Dα to D′α, obtaining an injective map F : D′α → ∏

n∈N0

C,

by defining
F (Ξ)(n) = 〈Ξ,Lα

n〉 (Ξ ∈ D′α, n ∈ N0),
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and then
F (TαΞ)(n) = −nFΞ(n) (Ξ ∈ D′, n ∈ N0).

In this example, we will, for α > −1 and 1 6 p 6 ∞, study extensions of the
operator Tα on Lp([0, ∞), dt) with original domain Dα, in the situation where ac-
tuallyDα ⊂ Lp([0, ∞), dt). Since α can be negative, this inclusion is not automatic.
Furthermore, assumption (A1) necessitates us to require that Lα

n ∈ Lq([0, ∞), dt)
(n ∈ N0), where q is the conjugate exponent of p. This yields another condition
on p and α. A routine verification shows that, for α > −1 and 1 6 p 6 ∞, the
requirement thatDα ⊂ Lp([0, ∞), dt) and that simultaneously Lα

n ∈ Lq([0, ∞), dt)
(n ∈ N0), is satisfied precisely when

(3.32)

{
1 6 p 6 ∞ if α > 0;

2
α+2 < p < − 2

α if − 1 < α < 0.

Assuming that (3.32) is satisfied, we let X = Lp(R, dt). We viewDα as a subspace
of X, and we embed X into D′α via the pairing

〈 f , g〉 =
∫
R

f (t)g(t)dt ( f ∈ X, g ∈ Dα).

We let Tα,c be the operator on X with domain Dα,c, consisting of those f ∈ X such
that the distribution Tα f , as defined in (3.29), is in X, and defined, for such f , by
Tα,c f = Tα f . Then Tα,c is a closed extension of Tα. Let Te be an operator on X,
such that

(3.33) Tα ⊂ Te ⊂ Tα,c .

As in the previous two examples, all assumptions are easily seen to be satisfied,
except for assumption (A2) again. To this end, we note that, for all α > −1 and
1 6 p < ∞ such that αp > −2, the sequence {‖Lα

n‖p}∞
n=0 is slowly increasing.

This follows from Lemma 1.5.4 of [18] for finite p 6= 4 and from Lemma 1.5.3 of
[18] for p = 4. For p = ∞ and α > 0, this is also true, as follows from Lemma 1.5.3
of [18]. In particular, {‖Lα

n‖p}∞
n=0 is slowly increasing whenever (3.32) are satis-

fied. As in the previous examples, combining this with the fact that the coeffi-
cients Fα( f )(n) in (3.31) form a rapidly decreasing sequence whenever f ∈ Dα

shows that, for such f , the series in (3.31) is absolutely convergent in X, and with
sum f , as required. Hence we have the following.

THEOREM 3.7. Let α > −1 and 1 6 p 6 ∞ satisfy (3.32). Let Dα = tα/2S+
as above. Let Tα be as in (3.28), and view Tα as an operator on Lp(R, dt) with domain
D. Let Te be an extension of Tα on Lp(R, dt) as in (3.33). Then Te has the single-valued
extension property.

Let f ∈ Dα, and let Fα f : N0 → C be the Laguerre transform of f as in (3.30).
Then

(3.34) lim
n→∞

‖Tn
e f ‖1/n

p = sup{|z| : z ∈ {−n : n ∈ N0, Fα f (n) 6= 0}}
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in the extended positive real numbers. Moreover,

σTe( f ) = {−n : n ∈ N0, Fα f (n) 6= 0},
so that (3.34) is a local spectral radius formula for Te at f .

3.5. A CLASS OF EXAMPLES ON BOUNDED DOMAINS. In [26] the following result
is stated: Let Ω be a bounded domain in Rd with a Lipschitzian boundary, and
let C∞(Ω) denote the space of all infinitely differentiable functions on the closure
of Ω, in its usual Fréchet topology. Let w be a weight function in L1(Ω, dt), such
that w(t) > 1, for t ∈ Ω. Let {pn}∞

n=0 be an orthonormal basis of L2(Ω, w(t)dt),
consisting of polynomials of a degree which is non-decreasing in n. Then the
operation of taking Fourier coefficients of f ∈ C∞(Ω) with respect to the or-
thonormal basis {pn}∞

n=0 establishes a topological isomorphism between C∞(Ω)
and the space S(N0) of rapidly decreasing sequences. (It is not unusual for spaces
of test functions to be topologically isomorphic to (sub)spaces of rapidly decreas-
ing sequences, as is attested by the material in, e.g., [20], [21], and [24]. However,
the precise statement that, according to [26], for a domain and weight of the type
under consideration, taking Fourier coefficients with respect to a polynomial or-
thonormal basis as indicated yields such an isomorphism, seems to be less widely
known than it deserves. Possibly this is related to the fact that the actual detailed
proof seems to be only available in French in the local publication [12], which is
not at the disposal of the current authors.)

It is obvious from our previous examples that such a topological isomor-
phism is the non-automatic key ingredient for an application of our results in
concrete situations. Hence the result from [26] implies a range of examples, as
follows: Suppose that {pn}∞

n=0 is an orthonormal basis as indicated. We can as-
sume that these polynomials are real-valued. Let D = C∞(Ω), with continuous
dual D′. Suppose that T is a symmetric operator on L2(Ω, w(t)dt) with invari-
ant domain C∞(Ω), such that T : D → D is continuous, commutes with point-
wise conjugation, and has the pn as eigenfunctions, with (real) eigenvalues ε(n)
(n ∈ N0). We embed D into D′ by letting f ∈ D act on D via

〈 f , g〉 =
∫
Ω

f (t)g(t)w(t)dt (g ∈ D).

Then the assumptions on T imply that, for f , g ∈ D,

〈T f , g〉 = 〈 f , Tg〉,
so that we can extend T to D′ by defining

(3.35) 〈TΞ, g〉 = 〈Ξ, T f 〉 (g ∈ D).
We define F : D → S(N0) (!) by

F f (n) = 〈 f , pn〉 =
∫
Ω

f (t)pn(t)w(t)dt ( f ∈ D, n ∈ N0),(3.36)
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which, since the pn are real-valued, is taking the sequence of Fourier coefficients,
and extend F to D′ by

(FΞ)(n) = 〈Ξ, pn〉 (Ξ ∈ D′, n ∈ N0).

Suppose 1 6 p 6 ∞. Let X = Lp(Ω, w(t)dt), and view T as an operator on X
with domain D. We embed X into D′ by defining

〈 f , g〉 =
∫
Ω

f (t)g(t)w(t)dt ( f ,∈ X, g ∈ D).

As before, we let Tc denote the operator on X with domainDc, consisting of those
f ∈ X such that the distribution T f , as defined in (3.35), is in X, and defined, for
such f , by Tc f = T f . Let T be an operator on X, such that

(3.37) T ⊂ Te ⊂ Tc.

It is then easily verified that, for p = 2, the basic assumption and the assumptions
(A1), (A2), and (A3) are satisfied. The absolute convergence of the series in (A2)
for f ∈ D is then automatic, since ‖pn‖2 = 1 (n ∈ N0). Hence, for p = 2, results
as in the previous examples hold for Te and f ∈ D. Actually, however, these
results hold for arbitrary 1 6 p 6 ∞. Indeed, it is not too difficult to see that the
fact that F : D → S(N0) is a topological isomorphism implies that the sequence{

max
t∈Ω
|pn(t)|

}∞

n=0
is necessarily slowly increasing. Hence the same holds for the

sequence of norms {‖pn‖}∞
n=0 in X = Lp(Ω, w(t)dt), and then, as in the previous

examples, one sees that assumption (A2) is satisfied as well. Therefore, we have
the following, when combining our results with the ones stated in [26].

THEOREM 3.8. Let Ω be a bounded domain in Rd with Lipschitzian boundary.
Let w(t) > 1 be a weight function on Ω. Let {pn}∞

n=0 be an orthonormal basis of
L2(Ω, w(t)dt), consisting of real-valued polynomials of a degree which is non-decreasing
in n. Let D = C∞(Ω), supplied with its usual Fréchet topology. Suppose that T : D →
D is continuous and commutes with pointwise conjugation, and that it is a symmetric
operator on L2(Ω, w(t)dt). Furthermore, assume that, for n ∈ N0, Tpn = ε(n)pn
(where the eigenvalues ε(n) are necessarily real).

Let 1 6 p 6 ∞, and view T as an operator on Lp(Ω, w(t)dt) with domain D. Let
Te be an extension of as in (3.37). Then Te has the single-valued extension property.

Let f ∈ D, and let F f : N0 → C be the transform of f as in (3.36). Then

(3.38) lim
n→∞

‖Tn
e f ‖1/n

p = sup{|z| : z ∈ {ε(n) : n ∈ N0, F f (n) 6= 0}cl }

in the extended positive real numbers. Moreover,

σTe( f ) = {ε(n) : n ∈ N0, F f (n) 6= 0}cl ,

so that (3.38) is a local spectral radius formula for Te at f .

REMARK 3.9. The preceding examples do not overlap with Theorem 3.8,
except the case −1/2 6 α, β 6 0 for Jacobi operators in Section 3.2.
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