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INTRODUCTION

Let 0 < r 6 ∞, I ⊆ [0, ∞) =: R+ and Lr(I) denote the Lebesgue space of all
measurable functions f on I such that ‖ f ‖r,I < ∞, where

‖ f ‖r,I :=


( ∫

I
| f (t)|rdt

)1/r
0 < r < ∞,

ess sup
t∈I

| f (t)| r = ∞.

If I = R+ we write Lr := Lr(R+), and ‖ f ‖r means ‖ f ‖r,R+ .

Take λ > 0, p > 1, q > 0 and put p′ := p/(p− 1). Assume v ∈ Lp′

loc(0, ∞),
w ∈ Lq

loc(0, ∞) are non-negative weight functions. In this article we study com-
pactness properties of an integral transformation T : Lp → Lq

(0.1) T f (x) :=
∫
R+

kT(x, y) f (y)dy, x ∈ R+,

when kT(x, y) = e−xyλ
v(y) and kT(x, y) = w(x)(xλ + yλ)−1v(y). In other words,

we take as T the Laplace integral operator

(0.2) L f (x) :=
∫
R+

e−xyλ
f (y)v(y)dy, x ∈ R+,
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with kL(x, y) := e−xyλ
v(y), and the Stieltjes type transformation

(0.3) S f (x) := w(x)
∫
R+

f (y)v(y)dy
xλ + yλ

, x ∈ R+,

with kS(x, y) := w(x)(xλ + yλ)−1v(y). These operators are related to each other
by (2.10).

With an appropriate choice of λ, v and w transformations L and S become

special cases of conventional convolution transformation F(x) =
∞∫
−∞

f (t)G(x −

t)dt, −∞ < x < ∞ ([27], Chapter 8, Sections 8.5, 8.6). The Stieltjes type operator
(0.3) has also connections with Hilbert’s double series theorem (see [21] for de-
tails). Some interesting properties and applications of the Laplace type transform
(0.2) to differential equations are indicated in Chapter 5 of [12].

In this work we find explicit necessary and sufficient conditions for Lp-Lq-
compactness of the operatorsL and S expressed in terms of kernels kL and kS. The
results may be useful for study of characteristic values of the transformations. All
cases of summation parameters p > 1 and q > 0 are considered. If 0 < p < 1
and T : Lp → Lq is compact then ‖T‖p→q ≡ 0 (see Theorem 2 of [18]). Note that
L2-L2 compactness of (0.2) and (0.3) was studied in [25], [26]. We generalize these
results for all positive p and q.

Our main method is well-known and consists in splitting an initial operator
into a sum of a compact operator and operators with small norms (see e.g. [7],
[13], [16]).

The article is organized as follows. Section 2 is devoted to the compactness
of the Laplace transformation (0.2). Criteria for the compactness of the Stieltjes
operator (0.3) appear in Section 3. Note that the case of negative λ in S ensues
from the results for positive λ by simple modification of weight functions v and w.

Throughout the article we use symbols =: and := for marking new quan-
tities. Products of the form 0 ·∞ are supposed to be equal to 0. An equivalence
A ≈ B means either A = c0B or c1 A 6 B 6 c2 A with ci, i = 0, 1, 2, depending on
λ, p, q only. The symbol Z denotes integers, χE stands for characteristic function
of a subset E ⊂ R+. We denote p′ := p/(p− 1) for p > 1 and r := pq/(p− q) if
q < p.

1. COMPACTNESS OF THE LAPLACE TRANSFORM

Denote:

Vc1(t) :=
t∫

c1

vp′ , AL,〈c1,c2〉(t) := (t−λ − c−λ
2 )1/q[Vc1(t)]

1/p′ ,
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AL,〈c1,c2〉 := sup
c1<t<c2

AL,〈c1,c2〉(t), AL := AL,R+ , vc1(t) := ess sup
c1<x<t

v(x),

BL,〈c1,c2〉 :=
( c2∫

c1

[t−λ − c−λ
2 ]r/q[Vc1(t)]

r/q′vp′(t)dt
)1/r

,

BL(t) := t−λr/q[V0(t)]r/q′vp′(t), BL := BL,R+ =
( ∫
R+

BL(t)dt
)1/r

,

Bq(t) := t−λ/qv(t), Bq(t) := t−λ/qv0(t), Bp :=
( ∫
R+

y−λp′vp′(y)dy
)1/p′

,

Bq′ ,〈c1,c2〉 :=
( c2∫

c1

[t−λ − c−λ
2 ]q/(1−q)t−λ−1vc1(t)

q/(1−q)dt
)(1−q)/q

,

Bq′ = Bq′ ,R+ =
( ∫
R+

Bq′(t)dt
)(1−q)/q

, where Bq′(t) := t−λ/(1−q)−1v0(t)q/(1−q),

D〈c1,c2〉 := c−λ/q
2 [Vc1(c2)]

1/p′ , Cq :=
( ∫
R+

t−λ
[ t∫

0

v(y)dy
]q−1

v(t)dt
)1/q

.

To implement our method for the study of the compactness of the operator
L we start from describing its boundedness properties.

Various conditions were found for the Laplace transformation (0.2) to be
bounded in Lebesgue spaces (see e.g. [3], [5]). Convenient for our purposes Lp-Lq

criterion for the operator L was obtained in Theorem 1 of [24] for 1 < p, q < ∞
and 0 < q 6 p < ∞ (see also Theorem 1 of [17]). Our first statement in the article
is its modification for the Laplace operator of the form f → L( f χ〈c1,c2〉), where
0 6 c1 < c2 6 ∞ and 〈·, ·〉 denotes any of intervals (·, ·), [·, ·], [·, ·) or (·, ·]. All the
rest cases of p, q are also included in the statement.

THEOREM 1.1. (i) Let 1 < p 6 q < ∞. The operator L is bounded from
Lp〈c1, c2〉 to Lq if and only if AL,〈c1,c2〉 + D〈c1,c2〉 < ∞. Moreover, ‖L‖Lp〈c1,c2〉→Lq ≈
AL,〈c1,c2〉 + D〈c1,c2〉.

(ii) If 1 < q < p < ∞ then L is Lp〈c1, c2〉-Lq-bounded if and only if BL,〈c1,c2〉 +

D〈c1,c2〉 < ∞, where ‖L‖Lp〈c1,c2〉→Lq ≈ BL,〈c1,c2〉 + D〈c1,c2〉.
(iii) Let 0 < q < 1 < p < ∞. The Laplace operator L is bounded from Lp〈c1, c2〉 to Lq

if BL,〈c1,c2〉 + D〈c1,c2〉 < ∞. If L : Lp〈c1, c2〉 → Lq is bounded then ‖Bq‖p′ ,〈c1,c2〉 < ∞.
We also have

‖Bq‖p′ ,〈c1,c2〉 � ‖L‖Lp〈c1,c2〉→Lq � BL,〈c1,c2〉 + D〈c1,c2〉.

(iv) Let 0 < q < 1 = p. If L is L1-Lq-bounded then ess sup
t∈〈c1,c2〉

Bq(t) < ∞. The operator
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L is bounded from L1 to Lq if Bq′ ,〈c1,c2〉 < ∞ and D〈c1,c2〉 < ∞. Besides, ess sup
t∈〈c1,c2〉

Bq(t)�

‖L‖L1〈c1,c2〉→Lq � Bq′ ,〈c1,c2〉 + D〈c1,c2〉.
(v) Let p = ∞. If 1 6 q < ∞ then L is L∞-Lq-bounded if and only if Cq < ∞

and ‖L‖L∞→Lq ≈ Cq. For q < 1 ‖Bq‖1 � ‖L‖L∞→Lq � Cq, that is L is bounded if
Cq < ∞, and ‖Bq‖1 < ∞ if L is bounded.

(vi) Let q = ∞. If 1 < p 6 ∞ then L is bounded from Lp to L∞ if and only if
‖v‖p′ < ∞, where ‖L‖Lp→L∞ = ‖v‖p′ . If p = 1 then ‖L‖L1→L∞ = ‖v‖∞.

REMARK 1.2. Notice that D〈c1,c2〉 = 0 if 〈c1, c2〉 = R+.

Now we are ready to state and prove compactness criteria for L.

THEOREM 1.3. (i) If 1 < p 6 q < ∞ then the operator L : Lp → Lq is compact
if and only if AL < ∞ and

(1.1) (i) lim
t→0

AL(t) = 0, (ii) lim
t→∞

AL(t) = 0.

(ii) Let 1 6 q < p < ∞. If q > 1 then L : Lp → Lq is compact if and only if
BL < ∞. When q = 1 then L is compact if and only if Bp < ∞.

(iii) Let 0 < q < 1 < p < ∞. The operator L : Lp → Lq is compact if BL < ∞. If L
is compact from Lp to Lq then ‖Bq‖p′ < ∞.

(iv) Let 0 < q < 1 = p. L is compact from L1 to Lq if Bq′ < ∞. If L is L1-Lq-compact
then ess sup

t∈R+

Bq(t) < ∞.

(v) Let 1 = p 6 q < ∞. The operator L is L1-Lq-compact if and only if

ess sup
t∈R+

Bq(t) < ∞ and lim
t→0

Bq(t) = lim
t→∞

Bq(t) = 0.

(vi) If 1 6 q < p = ∞ then L is compact from L∞ to Lq if and only if Cq < ∞.
(vii) Let 0 < q < 1 and p = ∞. The operator L is L∞-Lq-compact if Cq < ∞. If L is

compact from L∞ to Lq then ‖Bq‖1 < ∞.
(viii) If 1 < p 6 ∞ then L is Lp-L∞-compact if and only if ‖v‖p′ < ∞.

Proof. (i) Sufficiency. Suppose AL < ∞ and lim
t→0

AL(t) = lim
t→∞

AL(t) = 0.

Put 0 < a < b < ∞ and denote L0 f := L( f χ(a,b)), L1 f := L( f χ[0,a]), L2 f :=
L( f χ[b,∞)). Obviously,

(1.2) L f (x) =
2

∑
i=0
Li f (x).

Since AL < ∞ then L is bounded from Lp to Lq by Theorem 1.1(i). This yields
Lp-Lq-boundedness of the operator L0 f , which is regular.

According to Lemma 4 of [13] the operator L0 : Lp → Lq is compact if

ML0 := ‖‖χ(a,b)(·)kL(x, ·)v(·)‖p′‖q < ∞.
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Since 0 < a < b < ∞ and v ∈ Lp′

loc(0, ∞) we have

(1.3) Mq
L0

6
1

aλq
[Va(b)]q/p′ < ∞.

Therefore, L0 is compact from Lp to Lq for any 0 < a < b < ∞.
Now consider the operators Li, i = 1, 2. By Theorem 1.1(i) we have:

‖L1‖Lp→Lq � sup
06t6a

t−λ/q[V0(t)]1/p′ ,(1.4)

‖L2‖Lp→Lq � sup
b6t<∞

t−λ/q[Vb(t)]1/p′ .(1.5)

The conditions (1.1) yield

lim
a→0

sup
06t6a

t−λ/q[V0(t)]1/p′ = 0, lim
b→∞

sup
b6t<∞

t−λ/q[Vb(t)]1/p′ = 0.

Together with (1.4) and (1.5) this gives:

(1.6) lim
a→0
‖L1‖Lp→Lq = 0, lim

b→∞
‖L2‖Lp→Lq = 0.

Therefore, (1.2) implies

(1.7) ‖L − L0‖Lp→Lq 6 ‖L1‖Lp→Lq + ‖L2‖Lp→Lq ,

and now the operator L : Lp → Lq is compact as a limit of compact operators,
when a→ 0 and b→ ∞.

Necessity. Suppose nowL is compact from Lp to Lq. ThenL is Lp-Lq-bounded
and AL < ∞ by Theorem 1.1(i).

To prove (1.1) we assume {zk}k∈Z ⊂ R+ is an arbitrary sequence. To estab-
lish the claim (i) in (1.1) suppose lim

k→∞
zk = 0 and put

fk(t) = χ[0,zk ]
(t)[v(t)]p

′−1[V0(zk)]
−1/p.

Since ‖ fk‖p = 1 then

∣∣∣ ∫
R+

fk(y)g(y)dy
∣∣∣ 6 ( zk∫

0

|g(y)|p′dy
)1/p′

→ 0, k→ ∞,

for any g ∈ Lp′ . Therefore, the sequence { fk}k∈Z converges weakly to 0 in Lp.
Compactness of L : Lp → Lq yields strong convergence of {L fk}k∈Z in Lq, that is
lim
k→∞
‖L fk‖q = 0. Besides, we have

∞∫
0

( ∞∫
0

e−xyλ
fk(y)v(y)dy

)q
dx >

∞∫
0

e−qxzλ
k dx[V0(zk)]

q/p′ =
Aq
L(zk)

q
.

Hence, lim
k→∞

AL(zk) = 0, and now (1.1)(i) is proved.
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For the proof of (1.1)(ii) we suppose lim
k→∞

zk = ∞ and put

gk(t) = χ
[0,z−λ

k ]
(t)zλ/q′

k .

Since ‖gk‖q′ = 1 we have

∣∣∣ ∞∫
0

f (x)gk(x)dx
∣∣∣ 6 ( z−λ

k∫
0

| f (x)|qdx
)1/q

→ 0, k→ ∞,

for any f ∈ Lq, which means weak convergence of {gk}k∈Z in Lq′ . Compactness
of L : Lp → Lq, 1 < p, q < ∞, implies Lq′ -Lp′ -compactness of the dual operator

L∗g(y) := v(y)
∞∫
0

e−xyλ
g(x)dx. Therefore, {L∗gk}k∈Z strongly converges in Lp′ :

(1.8) lim
k→∞
‖L∗gk‖p′ = 0.

We obtain
∞∫

0

vp′(y)
( ∞∫

0

e−xyλ
gk(x)dx

)p′
dy

> V0(zk)
( z−λ

k∫
0

e−xzλ
k dx

)p′
zλp′/q′

k > e−p′V0(zk)
( z−λ

k∫
0

dx
)p′

zλp′/q′

k

= e−p′z−λp′/q
k V0(zk) = e−p′Ap′

L (zk).

Together with (1.8) this implies lim
k→∞

AL(zk) = 0, and now the condition (1.1)(ii)

is fulfilled by the arbitrariness of {zk}k∈Z.
Necessity in (ii), (iii) and (iv) follows by Theorem 1.1 from the hypothesis of

compactness and, therefore, boundedness of L.
(ii) Sufficiency of the condition BL < ∞ (if 1 < q < p < ∞) and Bp < ∞ (if q =

1) for the compactness of L is provided by Lemma 4 of [13] and Theorem 1.1(ii).
Namely, if 1 < q < p < ∞ then Lemma 4 of [13] yields Lp-Lq-compactness of L0
(see (1.3)), while norms L1 and L2 are estimated by Theorem 1.1(ii) as follows:

(1.9)

‖L1‖Lp→Lq �
( ∫
R+

χ[0,a](t)BL(t)dt
)1/r

,

‖L2‖Lp→Lq �
( ∫
R+

χ[b,∞)(t)BL(t)dt
)1/r

.

Thus, BL < ∞ and the estimate (1.7) implies compactness of L as a → 0, b → ∞.
If q = 1 then L is compact by Lemma 4 of [13].

Sufficiency in (iii) and (iv) can be established as follows. Let BL < ∞ if
0 < q < 1 < p < ∞ and Bq′ < ∞ if 0 < q < 1 = p. By Theorem 1.1(iii) we obtain
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the estimate (1.9) for the case 0 < q < 1 < p < ∞. By the part (iv) of the same
theorem we have for 0 < q < 1 = p :

‖L2‖Lp→Lq �
( ∫
R+

χ[b,∞)(t)Bq′(t)dt
)1/r

.

Thus, BL < ∞ (or Bq′ < ∞) yields ‖L2‖Lp→Lq → 0 as b→ ∞.
Now consider the operator Lb f := L0 f + L1 f = L( f χ[0,b]). The hypoth-

esis BL < ∞ (or Bq′ < ∞) suffices for the boundedness of L (see Theorem
1.1). Therefore, Lb is bounded as well. To prove the compactness of Lb we
shall use an extension of Theorem 5.8 of [11] for the case when an operator K
is acting to Lq on the whole R+. Similar to Theorem 5.8 of [11] we consider
first a set Mh := { f ∈ Lp(a, b) : | f | 6 h}, where h is an arbitrary positive
number. Under this condition and in view of mes[0, b] < ∞ the operator Lb
is bounded from L∞[0, b] to Lq. Compactness of Lb : Mh → Lq can be proved
similar to Theorem 5.2 of [11]. It remains to note that the rest transformation
Lb : {Lp[0, b] \Mh} → Lq has a norm tending to 0 as h → +∞ (see Theorem 5.8
of [11] for details). Thus, Lb : Lp[0, b] → Lq, 0 < q < 1 6 p < ∞, is compact as a
limit of compact operators, when h→ +∞.

Summing up we can claim that (0.2) is compact from Lp to Lq, 0 < q < 1 6
p < ∞, on the strength of ‖L2‖Lp→Lq → 0, when b → ∞, compactness of Lb and
in view of ‖L − Lb‖Lp→Lq = ‖L2‖Lp→Lq .

(v) Sufficiency. Suppose ess sup
t∈R+

Bq(t) < ∞ and

(1.10) (i) lim
t→0

Bq(t) = 0, (ii) lim
t→∞

Bq(t) = 0.

For 0 < a < b < ∞ we put La f (x) := e−xaλ
b∫
a

f (y)v(y)dy, x ∈ R+, and note that

La is the operator of rank 1 with ‖La‖L1→Lq = q−1/qa−λ/qva(b) < ∞. Besides,
La is a majorant for the operator L0, which is L1-Lq-bounded with the norm esti-
mated as follows:

‖L0‖L1→Lq = ‖L‖L1(a,b)→Lq = q−1/q ess sup
a<t<b

Bq(t) =: q−1/q M < ∞.

Suppose { fn}n∈Z is an arbitrary bounded sequence in L1(a, b) and assume { fnk}
is its Cauchy subsequence, that is for any ε0 > 0 there exists N(ε0) such that
‖ fnk − fmk‖1,(a,b) < ε0, when nk, mk > N(ε0). Put

Enk ,mk (ε) := {x ∈ R+ : |L0 fnk (x)−L0 fmk (x)| > ε}.

We have for any ε > 0 :

∫
Enk ,mk (ε)

dx 6 ε−1
∫
R+

∣∣∣ b∫
a

e−xyλ
[ fnk (y)− fmk (y)]v(y)dy

∣∣∣dx
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6 ε−1
b∫

a

y−λ| fnk (y)− fmk (y)|v(y)dy 6 ε−1Ma−λ/q′‖ fnk − fmk‖1,(a,b).

If ε0 = εδaλ/q′M−1 then µLq(Enk ,mk (ε)) < δ as nk, mk > N(ε, δ) for any ε > 0,
δ > 0. Therefore, L0 is compact in measure. Thus, L0 is L1-Lq-compact as a
transformation majorated by the compact operator La (see Chapter 2, Section 5.6
of [11] for details). Further, by Chapter XI, Section 1.5, Theorem 4 of [10]

‖L1‖L1→Lq = q−1/q ess sup
t∈[0,a]

Bq(t) 6 q−1/q sup
t∈[0,a]

Bq(t),

‖L2‖L1→Lq 6 q−1/q ess sup
t∈[b,∞)

t−λ/qvb(t) 6 q−1/q sup
t∈[b,∞)

Bq(t).

Since (1.10) are fulfilled we can state that L1 and L2 are operators with small
norms, when a → 0, b → ∞. Together with compactness of L0 this implies the
compactness of L from L1 to Lq for all 1 6 q < ∞.

Necessity. Suppose L is L1-Lq-compact. Then the claim ess sup
t∈R+

Bq(t) < ∞

follows from Theorem 3.2 of [23] and Chapter XI, Section 1.5, Theorem 4 of [10]
(see also Remark 1.2). As for necessity of (1.10)(i), note that

L f = L( f χ[0,x−1/λ ]) + L( f χ[x−1/λ ,∞)) := Lx f + Lx f ,

where Lx and Lx are compact. Besides, (1.10)(i) is equivalent to

(1.11) lim
k→−∞

2−λk/qv0(2k) = 0.

Now suppose the contrary. Then, similar to p. 84 of [7], given γ ∈ (0, 1) there
is a sequence k j → −∞, some ε > 0 and functions fkj

> 0, ‖ fkj
‖L1 6 1, such

that
2

kj∫
0

fm(y)v(y)dy > γ v0(2
kj) and 2−kjλ/qv0(2

kj) > ε. By continuity of the in-

tegral, there are βkj
∈ (0, 2kj) such that

2
kj∫

βkj

fkj
(y)v(y)dy > γ2 v0(2

kj). Set Fkj
=

fkj
χ
(βkj

,2
kj )

. Then we have for ki and k j such that 2ki+1 < βkj
:

‖LxFki
−LxFkj

‖q
q =

∫
R+

∣∣∣ x−1/λ∫
0

e−xyλ
[Fki

(y)− Fkj
(y)]v(y)dy

∣∣∣qdx

= λ
∫
R+

s−λ−1
∣∣∣ s∫

0

e−(y/s)λ
[Fki

(y)− Fkj
(y)]v(y)dy

∣∣∣qds

=: ‖L̃xFki
− L̃xFkj

‖q
q > ‖χ(2ki ,2ki+1)

(L̃xFki
− L̃xFkj

)‖q
q
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= ‖χ
(2ki ,2ki+1)

L̃xFki
‖q

q = λ

2ki+1∫
2ki

s−λ−1
( 2ki∫

βki

e−(y/s)λ
fki
(y)v(y)dy

)q
ds

> e−1λ

2ki+1∫
2ki

s−λ−1ds
( 2ki∫

βki

fki
(y)v(y)dy

)q

> γ2q 2λ − 1
2λe

2−λki [v0(2ki )]q > γ2q 2λ − 1
2λe

εq > 0,

and, therefore, Lx is not compact.
Necessity of (1.10)(ii) can be established by the similar way obtaining a con-

tradiction with the compactness of Lx. Another way to prove (1.10)(ii) for q > 1
is analogous to the proof of necessity (1.1)(ii) in the part (i) of this theorem.

Proof of (vi)–(viii) rests on Theorem 5.2 of [11] and Theorem 2.21 of [1].

REMARK 1.4. L cannot be compact from L1 to L∞ for any v.

2. COMPACTNESS OF THE STIELTJES TRANSFORM

Criteria for S to be bounded in Lebesgue spaces were found in [2], [9], [21].
But their particular form is not suitable for our purposes. We will use other
boundedness conditions, which directly follow from properties of Hardy oper-
ator

H f (x) := x−λw(x)
x∫

0

f (y)v(y)dy

and the relation

(2.1)
1
2
[H f (x) + H∗ f (x)] 6 S f (x) 6 H f (x) + H∗ f (x), f > 0,

with dual to H transformation H∗ f (x) := w(x)
∞∫
x

f (y)y−λv(y)dy (see Theorem 2.1

and [6], [14], [15], [22], [23] for details). Add some notations:

Vt(∞) :=
∞∫

t

vp′(y)dy
yλp′ , Wc1(t) :=

t∫
c1

wq, Wt(c2) :=
c2∫

t

wq(x)dx
xλq .

THEOREM 2.1. (i) If 1 < p 6 q < ∞ then the operator S is bounded from Lp to
Lq if and only if AH + AH∗ < ∞, where ‖S‖Lp→Lq ≈ AH + AH∗ and

AH := sup
t∈R+

AH(t) := sup
t∈R+

[V0(t)]1/p′ [Wt(∞)]1/q,(2.2)

AH∗ := sup
t∈R+

AH∗(t) := sup
t∈R+

[Vt(∞)]1/p′ [W0(t)]1/q.(2.3)
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(ii) If 0 < q < 1 < p < ∞ or 1 < q < p < ∞ then S : Lp → Lq is bounded if and
only if BH + BH∗ < ∞, where ‖S‖Lp→Lq ≈ BH + BH∗ and

BH :=
( ∫
R+

[V0(t)]r/p′ [Wt(∞)]r/pt−λqwq(t)dt
)1/r

,

BH∗ :=
( ∫
R+

[Vt(∞)]r/p′ [W0(t)]r/pwq(t)dt
)1/r

.

(iii) Let 0 < q 6 1 = p. If 0 < q < 1 then S is L1-Lq-bounded if and only if
B1,H + B1,H∗ < ∞, where ‖S‖L1→Lq ≈ B1,H + B1,H∗ and

B1,H :=
( ∫
R+

v0(t)q/(1−q)[Wt(∞)]q/(1−q)t−λqwq(t)dt
)(1−q)/q

,

B1,H∗ :=
( ∫
R+

[t−λvt(∞)]q/(1−q)[W0(t)]q/(1−q)wq(t)dt
)(1−q)/q

.

If q = 1 then

‖S‖L1→L1 ≈ sup
t∈R+

v0(t)
∞∫

t

x−λw(x)dx + sup
t∈R+

vt(∞)t−λ

t∫
0

w(x)dx.

Now we put

Λ :=
( ∫
R+

( ∫
R+

w(x)dx
xλ + yλ

)p′
vp′(y)dy

)1/p′
,

SH := sup
t∈R+

v0(t)[Wt(∞)]1/q, SH∗ := sup
t∈R+

vt(∞)t−λ[W0(t)]1/q,

SH,a(t) := v0(t)[Wt(a)]1/q, SH∗ ,a(t) := vt(a)t−λ[W0(t)]1/q,

SH,b(t) := vb(t)[Wt(∞)]1/q, SH∗ ,b(t) := vt(∞)t−λ[Wb(t)]1/q.

The following theorem is devoted to the compactness criteria for the Stieltjes
transformation S : Lp → Lq.

THEOREM 2.2. (i) If 1 < p 6 q < ∞ then S : Lp → Lq is compact if and only if
AH + AH∗ < ∞ and

(2.4) (i) lim
t→0

[AH(t) + AH∗(t)] = 0, (ii) lim
t→∞

[AH(t) + AH∗(t)] = 0.

(ii) Let 0 < q < p < ∞ and p > 1. If q 6= 1 then S is compact if and only if
BH + BH∗ < ∞. If q = 1 then S is Lp-L1-compact if and only if Λ < ∞.

(iii) If 0 < q < 1 = p then S is Lp-Lq-compact if and only if B1,H + B1,H∗ < ∞.
(iv) If p = 1 6 q < ∞ then the operator S : Lp → Lq is compact if and only if SH +

SH∗ < ∞ and lim
a→0

sup
0<t<a

[SH,a(t) + SH∗ ,a(t)] = lim
b→∞

sup
b<t<∞

[SH,b(t) + SH∗ ,b(t)] = 0.
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Proof. (i) Let 1 < p 6 q < ∞ and suppose AH + AH∗ < ∞ (see (2.2) and
(2.3)). Besides, assume that the conditions (2.4) are fulfilled. It is known (see [7],
[20]) that these conditions guaranty Lp-Lq-compactness, 1 < p 6 q < ∞, of the
operator H + H∗, which is majorating the transformation S (see the relation (2.1)).
From here the compactness of S : Lp → Lq ensues by Theorem 5.10 of [11].

The condition AH + AH∗ < ∞ and the equalities (2.4) are also necessary for
Lp-Lq-compactness of S, when 1 < p 6 q < ∞, by standard arguments for the
Hardy operators H and H∗.

(ii), (iii) Let 0 < q < p < ∞ and p > 1. If q 6= 1 we suppose BH + BH∗ < ∞
for p > 1 and B1,H + B1,H∗ < ∞ for the case p = 1. Compactness of S in the case
p > 1 is guaranteed by BH + BH∗ < ∞ (see [4]). If p = 1 and B1,H + B1,H∗ < ∞
the compactness of S can be stated similarly to sufficiency of the conditions (iv)
in Theorem 1.3.

If q = 1 then S is compact by Lemma 4 of [13] provided Λ < ∞.
Necessity of BH + BH∗ < ∞ in (ii) and B1,H + B1,H∗ < ∞ in (iii) ensues from

the compactness and, therefore, boundedness of S.
(iv) It remains to consider p = 1 6 q < ∞. Suppose SH + SH∗ < ∞,

(i) lim
a→0

sup
0<t<a

[SH,a(t) + SH∗ ,a(t)]=0, (ii) lim
b→∞

sup
b<t<∞

[SH,b(t) + SH∗ ,b(t)]=0,(2.5)

and prove sufficiency of these assumptions for the L1-Lq-compactness of S. In
view of (2.5) given ε > 0 there exist 0 < r < R < ∞ such that

sup
0<t<r

SH,r <
ε

7
, sup

0<t<r
SH∗ ,r <

ε

7
,(2.6)

sup
R<t<∞

SH,R <
ε

7
, sup

R<t<∞
SH∗ ,R <

ε

7
.(2.7)

Now we divide S into a sum S f = Sr,R f +
2
∑

i=1
[Sr,i f + SR,i f ] of compact opera-

tors Sr,R f := χ(r,R)S( f χ(r,R)), Sr,1 f := χ[0,R)S( f χ([0,r]), SR,1 f := χ[R,∞)S( f χ[0,R)),
Sr,2 f := χ[0,r]S( f χ(r,∞)) and SR,2 f := χ(r,∞)S( f χ[R,∞)). To confirm the compact-
ness of these operators we shall use a combination of Theorem 2.21 of [1] and
Corollary 5.1 of [8]. That is we need to show that for a given ε > 0 there exist
δ > 0 and points 0 < s < t < ∞ such that for almost all y ∈ R+ and for every
h > 0 with h < δ

(i) Jq
s (y) :=

s∫
0

|kS(x, y)|qdx < εq, (ii) Jq
t (y) :=

∞∫
t

|kS(x, y)|qdx < εq,(2.8)

where kS(x, y) := w(x)kS(x, y)v(y), and

(2.9) Jq
h(y) :=

∫
R+

|kS(x + h, y)− kS(x, y)|qdx < εq.
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We start from S := Sr,1 + Sr,R + SR,2. Suppose h < δ(ε) and write

Jh,S (y) = v(y)
( ∫
R+

wq(x)
[ 1

xλ + yλ
− 1

(x + h)λ + yλ

]q
dx
)1/q

.

For simplicity consider the case λ = 1 and denote

Iq
(c1,c2)

(y, h) :=
r∫

0

wq(x)dx
(x + y)q(x + y + h)q .

We have

Jh,S (y) = hχ[0,r)(y)v(y)I(0,r)(y, h) + hχ[0,r)(y)v(y)I(r,R)(y, h)

+ hχ(r,R)(y)v(y)I(r,R)(y, h) + hχ[R,∞)(y)v(y)I(r,R)(y, h)

+ hχ[R,∞)(y)v(y)I(R,∞)(y, h) =:
5

∑
i=1

Jh,i(y).

The conditions (2.6) and (2.7) imply Jh,1(y) 6 2ε/7, and Jh,5(y) 6 2ε/7. To esti-
mate Jh,2(y) note that

Jh,2(y) 6 hr−1v0(r)[Wr(∞)]1/q 6 hr−1SH .

From here, with δ = εr/7SH we obtain Jh,2 6 ε/7. Analogously, Jh,4 6 ε/7 if δ =

εr/7SH∗ . For Jh,3 note that vr(R)[Wr(R)]1/q < M < ∞ provided w ∈ Lq
loc(0, ∞)

and v ∈ L∞
loc(0, ∞). Therefore, Jh,3(y) 6 hMr−2 and Jh,3(y) 6 ε/7 if δ = εr2/7M.

Summing up, we obtain Jh,S (y) < ε for almost all y ∈ R+, that is the con-
dition (2.9) is satisfied. Fulfillment of the claims (2.8) ensues from (2.6) and (2.7)
with s = r and t = R. Thus, the sum Sr,1 + Sr,R + SR,2 is compact.

Compactness of the operator Sr,2 can be demonstrated as follows. The con-
dition (2.8)(ii) is automatically fulfilled with t = r. To demonstrate (2.8)(i) note
that ‖Sr,2‖L1→Lq ≈ vr(∞)r−λ[W0(r)]1/q 6 SH∗ < ∞. Hence, given ε > 0 there
exists 0 < s 6 r such that Js,Sr,2(y) < ε. The condition (2.9) may be shown analo-
gously with δ = εrλ/SH∗ . Similar arguments work for the operator SR,1.

Necessity of the conditions [SH + SH∗ ] < ∞ and (2.5) follow from Lemma 1,
Theorem 1 of [7] and the relation (2.1).

REMARK 2.3. In some cases the compactness of S can be established through
the Laplace operator (0.2). Indeed, by the factorization

(2.10) S = L∗wLv

with Lv ≡ L and L∗w f (x) := w(y)
∫
R+

e−xyλ
f (x)dx we are able to state compact-

ness of S : Lp → Lq if the conditions of Theorem 1.3 are fulfilled for either
Lv : Lp → Lθ or Lw : Lq′ → Lθ′ of the form Lw f (x) :=

∫
R+

e−xyλ
f (y)w(y)dy.

Here the parameter θ′ is such that θ′ = θ/(θ − 1) for any θ > 1. In particular,
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if w ≡ v and p = q′ 6 q = p′ then S : Lp → Lp′ is compact if and only if
sup
t∈R+

A(t) := sup
t∈R+

t−λ/2[V0(t)]1/p′ < ∞ and lim
t→0

A(t) = lim
t→∞

A(t) = 0.

REMARK 2.4. Since S is two-weighted then its compactness criteria for p =
∞ and/or q = ∞ can be derived from Theorem 2.2, excluding the case p = 1, q =
∞, when S : L1 → L∞ is never compact.
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