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ABSTRACT. In this paper we investigate the normalizer NOn (A) of a C∗-sub-
algebra A ⊂ Fn where Fn is the canonical UHF-subalgebra of type n∞ in the
Cuntz algebraOn. Under the assumption that the relative commutant A′ ∩Fn
is finite-dimensional, we show several facts for normalizers of A. In particular
it is shown that the automorphism group {Adu|A : u ∈ NFn (A)} has a finite
index in {AdU|A : U ∈ NOn (A)}.
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INTRODUCTION

The purpose of this paper is to investigate the normalizer of C∗-subalgebras
in the Cuntz algebra On [1]. Let Fn be the canonical UHF-subalgebra of On. In
the paper [4], it is shown that the normalizer group NOn(Fn) is a subset of Fn.
(In [4], more general results are shown.) More generally, if A is a C∗-subalgebra
of Fn with A′ ∩ On = C, then the normilizer NOn(A) is a subset of Fn. In this
paper we investigate the normalizer NOn(A) where A is a C∗-subalgebra of Fn
with a finite-dimensional relative commutant inFn. In this setting the normalizer
NOn(A) is not a subset of Fn in general. However we can show that the inner
automorphism group induced by the elements inNFn(A) has a finite index in the
inner automorphism group induced by the elements inNOn(A). In order to show
this fact, we show that the relative commutant A′ ∩On is also finite-dimensional.
As a corollary of our investigation, it is shown that the irreducibility A′ ∩Fn = C
implies that A′ ∩ On = C. Hence in this case the normalizer group NOn(A) is a
subset of Fn.

We would like to explain the motivation of this paper. There is a one-to-one
correspondence between all unitaries U (On) and all endomorphisms End(On)
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(all unital ∗-homomorphisms from On to On) such that

U (On) 3 u 7→ λu ∈ End(On)

where λu is defined by λu(Si) = uSi. The endomorphism λu is called localized if
the corresponding unitary is a matrix in the UHF-algebra Fn [2], [5]. In the pa-
per [9] Szymański showed that the localized endomorphism λu is an inner auto-
morphism if and only if u can be written in some special form. As a consequence,
if the localized endomorphism λu is an inner automorphism, then there exists a
unitary U ∈ Fn such that λu = AdU. Keeping this in mind, we would like to
consider the following problem. Let λu and λv be two localized endomorphisms.
If they satisfy AdU ◦ λu = λv, what can we say about U? Can we determine
such a unitary U? Unfortunately in this paper we cannot say anything about this
problem. But we remark that a localized endomorphism has finite index [5], [8].
Therefore the C∗-algebras λu(Fn)′ ∩Fn and λu(On)′ ∩On are finite-dimensional.
So we expect that our investigation would be helpful on this problem in the fu-
ture.

1. MAIN RESULTS

The Cuntz algebra On is the C∗-algebra generated by isometries S1, . . . , Sn

satisfying
n
∑

i=1
SiSi

∗ = 1. The gauge action γz (z ∈ T) onOn is defined by γz(Si) =

zSi. Let Fn be the fixed point algebra of the gauge action. This algebra is isomor-
phic to the UHF-algebra of type n∞. So Fn has the unique tracial state τ. We have
a conditional expectation E : On → Fn defined by

E(x) =
∫
T

γz(x)dz.

The canonical shift ϕ is defined by ϕ(x) =
n
∑

i=1
SixS∗i . It is easy to see that Six =

ϕ(x)Si and xSi
∗ = Si

∗ϕ(x). For each x ∈ On, we have the Fourier expansion

x =
∞

∑
k=1

S∗1
kx−k + x0 +

∞

∑
k=1

xkSk
1

where xk = E(xS∗1
k), x−k = E(Sk

1x) and x0 = E(x). (The right-hand side con-
verges in the Hilbert space generated by the GNS-representation with respect to
τ ◦ E.) For example, if x = S1S2S∗5S∗8

2S∗3 , then S2
1x ∈ Fn and x = S∗1

2(S2
1x) =

S∗1
2E(S2

1x).
For the inclusion of C∗-algebras A ⊂ B with a common unit, the normalizer

group is defined by

NB(A) = {u ∈ B : uAu∗ = A, uu∗ = u∗u = 1}.
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For a unitary operator u, we define the inner automorphism by Adu(x) = uxu∗.
We denote by Adu|A the restriction of Adu to A.

The following two theorems are the main results of this paper.

THEOREM 1.1. Let A be a C∗-subalgebra ofFn. If the relative commutant A′ ∩Fn
is finite-dimensional, then the algebra A′ ∩On is also finite-dimensional.

THEOREM 1.2. Let A be as above. We consider two subgroups of the automor-
phism group Aut(A) as follows.

G = {AdU|A : U ∈ NOn(A)}, H = {Adu|A : u ∈ NFn(A)}.

Then H is a subgroup of G with finite index.

We need some preparations to show these theorems.

LEMMA 1.3. For X ∈ A′ ∩On, we set xk = E(XS∗1
k) and x−k = E(Sk

1X). Then
for any a ∈ A we have axk = xk ϕk(a), x−ka = ϕk(a)x−k and xkx∗k , x∗−kx−k ∈ A′ ∩Fn

Proof. For any a ∈ A, we see that

axk = aE(XS∗1
k) = E(aXS∗1

k) = E(XaS∗1
k)

= E(XS∗1
k ϕk(a)) = E(XS∗1

k)ϕk(a) = xk ϕk(a)

and therefore

xkx∗k a = xk(a∗xk)
∗ = xk(xk ϕk(a)∗)∗ = xk ϕk(a)x∗k = axkx∗k .

In the same way we also have x−ka = ϕk(a)x−k and x∗−kx−ka = ax∗−kx−k.

LEMMA 1.4. There is a positive integer N satisfying the following properties. For
any integer k > N and any element X ∈ A′ ∩ On, we have xk = E(XS∗1

k) = 0 and
x−k = E(Sk

1X) = 0.

Proof. We compute

x∗k xk = E(XS∗1
k)∗E(XS∗1

k) 6 E(Sk
1X∗XS∗1

k) 6 ‖X‖2E(Sk
1S∗1

k) = ‖X‖2Sk
1S∗1

k.

Let R = Fn
′′ be the hyperfinite II1-factor. We take the polar decomposition xk =

vk|xk| in R. Then the above computation shows that v∗k vk 6 Sk
1S∗1

k. On the other
hand, since xkx∗k is an element of the finite-dimensional C∗-algebra A′ ∩ Fn, we
have vkv∗k ∈ A′ ∩ Fn. Since the C∗-algebra A′ ∩ Fn is finite-dimensional, there is
a positive number c satisfying τ(p) > c for any non-zero projection p ∈ A′ ∩ Fn.
We can take a positive integer N satisfying τ(Sk

1S∗1
k) = 1/nk < c for any k > N.

Then we see that τ(vkv∗k ) = τ(v∗k vk) 6 τ(Sk
1S∗1

k) < c and hence vkv∗k = 0. So
we conclude that xk = 0 for k > N. In the same way we also have x−k = 0 for
k > N.
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LEMMA 1.5. Let N be the positive integer in the previous lemma. For any X ∈
A′ ∩On, we have

X =
N

∑
k=1

S∗1
kx−k + x0 +

N

∑
k=1

xkSk
1

where xk = E(XS∗1
k), x−k = E(Sk

1X) and x0 = E(X).

Proof. We have the Fourier expansion

X =
∞

∑
k=1

S∗1
kx−k + x0 +

∞

∑
k=1

xkSk
1.

Thus by the previous lemma, we are done.

LEMMA 1.6. We define the isomorphism πk on A by

πk(x) =
(

x 0
0 ϕk(x)

)
, x ∈ A.

Then we have (
0 xk
x∗k 0

)
,
(

0 x∗−k
x−k 0

)
∈ πk(A)′ ∩M2(Fn)

where xk = E(XS∗1
k), x−k = E(Sk

1X) for X ∈ A′ ∩On.

Proof. This is an immediate consequence of the relations axk = xk ϕk(a) and
x−ka = ϕk(a)x−k for a ∈ On.

LEMMA 1.7. The C∗-algebra πk(A)′ ∩M2(Fn) is finite-dimensional.

Proof. We set

B = πk(A)′ ∩M2(Fn), e =
(

1 0
0 0

)
∈ B, f =

(
0 0
0 1

)
= 1− e.

Then we see that eBe ' A′ ∩ Fn and f B f ' ϕk(A)′ ∩ Fn ' Mnk (C) ⊗ (A′ ∩
Fn). So both algebras eBe and f B f are finite-dimensional and hence B is finite-
dimensional. Indeed the von Neumann algebras eB′′e and f B′′ f are finite-dimen-
sional. So the center of B′′ is finite-dimensional. Therefore we may assume that
B′′ is a factor. Then the finite-dimensionality of eB′′e and f B′′ f ensures that B′′ is
finite-dimensional. Therefore B is finite-dimensional.

Proof of Theorem 1.1. Consider the vector space

Vk = {xk = E(XS∗1
k) : X ∈ A′ ∩On}.

Since the map

Vk 3 x 7→
(

0 x
x∗ 0

)
∈ πk(A)′ ∩M2(Fn)
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is injective and R-linear, the vector space Vk is finite-dimensional. In the same
way the vector space

V−k = {xk = E(Sk
1X) : X ∈ A′ ∩On}

is also finite-dimensional. On the other hand, the element x0 = E(X) belongs to
the finite-dimensional C∗-algebra A′ ∩Fn. Combining these with Lemma 1.5, we
see that A′ ∩On is finite-dimensional.

PROPOSITION 1.8. There exists an orthogonal family of minimal projections
e1, . . . , el ∈ A′ ∩On satisfying the following:

(i)
l

∑
i=1

ei = 1 and e1, . . . , el ∈ A′ ∩ Fn.

(ii) There are integers k1, . . . , kl such that Aduz(x) = γz(x) for x ∈ A′ ∩On where
uz = zk1 e1 + · · ·+ zkl el .

Proof. Since A′ ∩On is finite-dimensional and γ-invariant, there exists an or-
thogonal family of minimal projections e1, . . . , el ∈ A′ ∩On and integers k1, . . . , kl
such that Aduz(x) = γz(x) where uz = zk1 e1 + · · ·+ zkl el and x ∈ A′ ∩On. Then
ei ∈ (A′ ∩On)γ = A′ ∩ Fn.

COROLLARY 1.9. If A is an irreducible C∗-subalgebras of Fn, then we have A′ ∩
On = C.

Proof. By the previous proposition, we know that there are minimal projec-
tions in A′ ∩On such that they belong to A′ ∩ Fn. Thus we are done.

In the rest of this paper we frequently use the projections e1, . . . , el ∈ A′ ∩Fn
and the unitary uz = zk1 e1 + · · ·+ zkl el in the above proposition.

REMARK 1.10. The Bratteli diagram of the inclusion A′ ∩Fn ⊂ A′ ∩On has
a special form. These two algebras have a common family of minimal projections.
So for each vertex corresponding to a direct summand of A′ ∩ Fn, there is only
one edge which starts at this vertex. For example, if A′ ∩Fn = C, then A′ ∩On =
C. If A′ ∩ Fn = C⊕C, then A′ ∩On is isomorphic to either C⊕C or M2(C).

LEMMA 1.11. Let U ∈ On be a unitary satisfying UAU∗ ⊂ Fn. Then we have:
(i) U∗γz(U) ∈ A′ ∩On.

(ii) There exists a unitary w ∈ A′ ∩On and integers m1, . . . , ml such that γz(Uwei)
= zmi Uwei

Proof. For any a ∈ A, since UaU∗ ∈ Fn, we see that

γz(U)aγz(U)∗ = γz(UaU∗) = UaU∗.
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Thus we have U∗γz(U)∈A′∩On. It is easy to see that the family {U∗γz(U)uz}z∈T
is a unitary group. Indeed since U∗γz(U) ∈ A′ ∩On, we see that

U∗γz1(U)uz1U∗γz2(U)uz2 = U∗γz1(U)Aduz1(U
∗γz2(U))uz1z2

= U∗γz1(U)γz1(U
∗)γz1z2(U)uz1z2 = U∗γz1z2(U)uz1z2 .

Since {U∗γz(U)uz}z∈T is a unitary group in the finite-dimensional C∗-algebra
A′ ∩ On, we can take a unitary w ∈ A′ ∩ On and integers n1, . . . , nl such that
w∗U∗γz(U)uzw = zn1 e1 + · · ·+ znl el . Then we see that

γz(Uwei) = γz(U)uzwu∗z ei = {Uw(zn1 e1 + · · ·+ znl el)w∗u∗z}uzwu∗z ei

= Uw(zn1 e1 + · · ·+ znl el)u∗z ei = zni−ki Uwei.

REMARK 1.12. By the previous lemma, we know that the Fourier expan-
sion of U can be written down as a finite sum. Indeed if mi > 0, then Uwei =
(UweiS∗1

mi )Smi
1 and UweiS∗1

mi ∈ Fn. On the other hand if mi < 0, then Uwej =

S∗1
−mi (S−mi

1 Uwej) and S−mi
1 Uwej ∈ Fn. Therefore the Fourier expansion of Uw

is a finite sum. Combining this with Lemma 1.5, we can show that the Fourier
expansion of U is a finite sum.

PROPOSITION 1.13. For any normalizer U ∈ NOn(A), there exist unitaries v ∈
A′ ∩ Fn and w ∈ A′ ∩On satisfying

vUw ∈ NOn(e1Fne1 ⊕ · · · ⊕ elFnel).

Proof. By the previous lemma we have γz(Uwei) = zmi Uwei. Then we get
γz(Uweiw∗U∗) = Uweiw∗U∗ and hence Uweiw∗U∗ ∈ Fn. Since UA′ ∩ OnU∗ =
A′ ∩ On, we have Uweiw∗U∗ ∈ A′ ∩ Fn. Thus {Uweiw∗U∗}i is a family of min-
imal projections in the finite-dimensional C∗-algebra A′ ∩ Fn. So we can find a
unitary v∈A′∩Fn satisfying vUweiw∗U∗v∗= ej. Since γz(vUwei)= vγz(Uwei)=
zmi vUwei for any x ∈Fn, we see that γz◦AdvUw(eixei) =AdvUw(eixei). There-
fore (vUw)eiFnei(vUw)∗ ⊂ ejFnej. On the other hand, since γz(w∗U∗v∗ej) =

γz(vUwei)
∗ = (zmi Uwei)

∗ = z−mi w∗U∗v∗ej, we also have (vUw)∗ejFnej(vUw) ⊂
eiFnei. Therefore we have

AdvUw(e1Fne1 ⊕ · · · ⊕ elFnel) ⊂ e1Fne1 ⊕ · · · ⊕ elFnel ,

Adw∗U∗v∗(e1Fne1 ⊕ · · · ⊕ elFnel) ⊂ e1Fne1 ⊕ · · · ⊕ elFnel ,

and hence
vUw ∈ NOn(e1Fne1 ⊕ · · · ⊕ ekFnek).

REMARK 1.14. The normalizer NOn(Fn) is a subset of Fn. However the
structure of NOn(e1Fne1 ⊕ · · · ⊕ elFnel) is not simple in general. See Exam-
ples 1.17 and 1.18.

LEMMA 1.15. Let e ∈ Fn be a projection. If a partial isometry u ∈ On satisfies
u∗u = uu∗ = e and ueFneu∗ = eFne, then we have u ∈ Fn.
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Proof. Since u∗γz(u) ∈ (eFne)′ ∩ eOne = e(F ′n ∩ On)e = Ce, we have
γz(u) = zmu for some integer m. We will show m = 0. Suppose that m > 0.
Set v = uS∗1

m. Then we have γz(v) = v and hence v ∈ Fn. Then we com-
pute v∗v = Sm

1 eS∗1
m = ϕm(e)Sm

1 S∗1
m and vv∗ = uu∗ = e. So we see that τ(e) =

τ(vv∗) = τ(v∗v) = τ(ϕm(e)Sm
1 S∗1

m) = τ(e)× τ(Sm
1 S∗1

m) = (1/nm)τ(e) < τ(e).
This is a contradiction. On the other hand, if m < 0, we have γz(u∗) = z−mu∗. So
we get a contradiction in the same way.

LEMMA 1.16. Let B be the abelian C∗-algebra generated by e1, . . . , el . Then we
have

NOn(A) ∩NOn(B) ⊂ NOn(e1Fne1 ⊕ · · · ⊕ ekFnek).

Proof. The proof is essentially the same as that of Lemma 1.11 and Proposi-
tion 1.13. For any U ∈ NOn(A)∩NOn(B), since U ∈ NOn(B), we have U∗γz(U) ∈
B′ and hence U∗γz(U)uz ∈ B′. Therefore we can take w = 1 in the proof of
Lemma 1.11. Then since U ∈ NOn(B), we have Uweiw∗U∗ = UeiU∗ = ej and
hence we can take v = 1 in the proof of Proposition 1.13. Thus by Proposi-
tion 1.13, we have U ∈ NOn(e1Fne1 ⊕ · · · ⊕ ekFnek).

Proof of Theorem 1.2. We can choose a finite family of unitaries U1, . . . , UN ∈
NOn(A) ∩ NOn(B) ⊂ NOn(e1Fne1 ⊕ · · · ⊕ ekFnek) satisfying the following. For
any V ∈ NOn(A) ∩NOn(B), there exists Ui such that AdV = AdUi on B.

For any U ∈ NOn(A), by Proposition 1.13 there exist unitaries v ∈ A′ ∩ Fn
and w ∈ A′ ∩ On satisfying vUw ∈ NOn(e1Fne1 ⊕ · · · ⊕ ekFnek). Then since
vUw ∈ NOn(A) ∩ NOn(B), we can take Ui satisfying AdU∗i vUw = id on B.
Combining this with the fact that Ui ∈ NOn(e1Fne1 ⊕ · · · ⊕ ekFnek) we see that
U∗i vUwej ∈ NejOnej(ejFnej) ⊂ Fn and hence U∗i vUw ∈ NFn(A). Here we used
Lemma 1.15. Therefore we see that AdU|A = AdvUw|A ∈ (AdUi|A)H. This
implies that the index [G : H] is finite.

EXAMPLE 1.17. Let e be a projection in Fn. Consider the C∗-algebra A =
eFne⊕ (1− e)Fn(1− e). Here we remark that A′ ∩ Fn = Ce⊕C(1− e). We will
show that NOn(A) ⊂ Fn and hence G = H. This can be shown by K-theoretic
argument as follows.

For any U ∈ NOn(A), if UeU∗ = e, it follows from Lemma 1.15 that U ∈ Fn.
So we consider the case UeU∗ = 1 − e. Since U∗γz(U)e ∈ (eFne)′ ∩ eOne =
e(F ′n ∩On)e = Ce, we have γz(U)e = zmUe for some integer m. We will show
m = 0. Suppose that m > 0. Set v = UeS∗1

m. Then we have γz(v) = v and
hence v ∈ Fn. Then we compute v∗v = Sm

1 eS∗1
m = ϕm(e)Sm

1 S∗1
m and vv∗ =

UeU∗ = 1− e. So we see that 1− τ(e) = τ(vv∗) = τ(v∗v) = τ(ϕm(e)Sm
1 S∗1

m) =
τ(e)× τ(Sm

1 S∗1
m) = (1/nm)τ(e). Since Fn is the UHF-algebra of type n∞, we can

write τ(e) = q/np. So we get 1− q/np = (1/nm)(q/np) and hence

nm+p = q(1 + nm).
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This is impossible. Indeed, consider the prime factorization n = pk1
1 × · · · × pkn

n .
Then we have

(pk1
1 × · · · × pkn

n )m+p = q(1 + (pk1
1 × · · · × pkn

n )m).

Therefore we must have

1 + (pk1
1 × · · · × pkn

n )m = pl1
1 × · · · × pln

n .

However this cannot occur because the left hand side has the remainder 1 when
dividing by p1.

EXAMPLE 1.18. We can write

O2 ⊃ F2 = M2(C)⊗M2(C)⊗ · · · .

Consider two projections

e =
(

1 0
0 0

)
⊗ 1⊗ 1⊗ · · · and f =

(
0 0
0 1

)
⊗
(

1 0
0 0

)
⊗ 1⊗ · · · .

Since ϕ(e)S1S1
∗ ∈ M2(C)⊗M2(C) and τ(ϕ(e)S1S1

∗) = 1/4, there exists a partial
isometry v ∈ M2(C)⊗M2(C) such that v∗v = ϕ(e)S1S1

∗ and vv∗ = f . We set

U = vS1 + (vS1)
∗ + (1− e− f ).

Then it is easy to see that

U ∈ NOn(eFne⊕ fFn f ⊕ (1− e− f )Fn(1− e− f )).

We let A = eFne⊕ fFn f ⊕ (1− e− f )Fn(1− e− f ). Since τ(UeU∗) = τ( f ) =
1/4 6= 1/2 = τ(e), we have

AdU|A 6∈ {Adu|A : u ∈ NFn(A)}.

Therefore we see that G 6= H.

REMARK 1.19. If A is of the form A = e1Fne1 ⊕ · · · ⊕ elFnel , then we have
A′ ∩ Fn = A′ ∩On = Ce1 ⊕ · · · ⊕Cel . On the other hand, in Remark 1.10 we see
that the Bratteli diagram of the inclusion A′∩Fn ⊂ A′∩On has a special form. So
we might expect that A′∩Fn =A′∩On. However this is wrong in general. Indeed
there exists a C∗-subalgebra A⊂Fn with finite index such that A′∩Fn 6= A′∩On.
We can take A=λu(Fn) where λu is a localized endomorphism. See [4], [5].
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