ON NORMALIZERS OF C*-SUBALGEBRAS IN THE CUNTZ ALGEBRA \mathcal{O}_{n}

TOMOHIRO HAYASHI

Communicated by Kenneth R. Davidson

Abstract

In this paper we investigate the normalizer $\mathcal{N}_{\mathcal{O}_{n}}(A)$ of a C^{*}-subalgebra $A \subset \mathcal{F}_{n}$ where \mathcal{F}_{n} is the canonical UHF-subalgebra of type n^{∞} in the Cuntz algebra \mathcal{O}_{n}. Under the assumption that the relative commutant $A^{\prime} \cap \mathcal{F}_{n}$ is finite-dimensional, we show several facts for normalizers of A. In particular it is shown that the automorphism group $\left\{\left.\operatorname{Ad} u\right|_{A}: u \in \mathcal{N}_{\mathcal{F}_{n}}(A)\right\}$ has a finite index in $\left\{\left.\operatorname{Ad} U\right|_{A}: U \in \mathcal{N}_{\mathcal{O}_{n}}(A)\right\}$.

Keywords: C^{*}-algebra, Cuntz algebra, normalizers.
MSC (2010): 46L05.

INTRODUCTION

The purpose of this paper is to investigate the normalizer of C^{*}-subalgebras in the Cuntz algebra \mathcal{O}_{n} [1]. Let \mathcal{F}_{n} be the canonical UHF-subalgebra of \mathcal{O}_{n}. In the paper [4], it is shown that the normalizer group $\mathcal{N}_{\mathcal{O}_{n}}\left(\mathcal{F}_{n}\right)$ is a subset of \mathcal{F}_{n}. (In [4], more general results are shown.) More generally, if A is a C^{*}-subalgebra of \mathcal{F}_{n} with $A^{\prime} \cap \mathcal{O}_{n}=\mathbb{C}$, then the normilizer $\mathcal{N}_{\mathcal{O}_{n}}(A)$ is a subset of \mathcal{F}_{n}. In this paper we investigate the normalizer $\mathcal{N}_{\mathcal{O}_{n}}(A)$ where A is a C^{*}-subalgebra of \mathcal{F}_{n} with a finite-dimensional relative commutant in \mathcal{F}_{n}. In this setting the normalizer $\mathcal{N}_{\mathcal{O}_{n}}(A)$ is not a subset of \mathcal{F}_{n} in general. However we can show that the inner automorphism group induced by the elements in $\mathcal{N}_{\mathcal{F}_{n}}(A)$ has a finite index in the inner automorphism group induced by the elements in $\mathcal{N}_{\mathcal{O}_{n}}(A)$. In order to show this fact, we show that the relative commutant $A^{\prime} \cap \mathcal{O}_{n}$ is also finite-dimensional. As a corollary of our investigation, it is shown that the irreducibility $A^{\prime} \cap \mathcal{F}_{n}=\mathbb{C}$ implies that $A^{\prime} \cap \mathcal{O}_{n}=\mathbb{C}$. Hence in this case the normalizer group $\mathcal{N}_{\mathcal{O}_{n}}(A)$ is a subset of \mathcal{F}_{n}.

We would like to explain the motivation of this paper. There is a one-to-one correspondence between all unitaries $\mathcal{U}\left(\mathcal{O}_{n}\right)$ and all endomorphisms $\operatorname{End}\left(\mathcal{O}_{n}\right)$
(all unital $*$-homomorphisms from \mathcal{O}_{n} to \mathcal{O}_{n}) such that

$$
\mathcal{U}\left(\mathcal{O}_{n}\right) \ni u \mapsto \lambda_{u} \in \operatorname{End}\left(\mathcal{O}_{n}\right)
$$

where λ_{u} is defined by $\lambda_{u}\left(S_{i}\right)=u S_{i}$. The endomorphism λ_{u} is called localized if the corresponding unitary is a matrix in the UHF-algebra \mathcal{F}_{n} [2], [5]. In the paper [9] Szymański showed that the localized endomorphism λ_{u} is an inner automorphism if and only if u can be written in some special form. As a consequence, if the localized endomorphism λ_{u} is an inner automorphism, then there exists a unitary $U \in \mathcal{F}_{n}$ such that $\lambda_{u}=\operatorname{Ad} U$. Keeping this in mind, we would like to consider the following problem. Let λ_{u} and λ_{v} be two localized endomorphisms. If they satisfy $\operatorname{Ad} U \circ \lambda_{u}=\lambda_{v}$, what can we say about U ? Can we determine such a unitary U ? Unfortunately in this paper we cannot say anything about this problem. But we remark that a localized endomorphism has finite index [5], [8]. Therefore the C^{*}-algebras $\lambda_{u}\left(\mathcal{F}_{n}\right)^{\prime} \cap \mathcal{F}_{n}$ and $\lambda_{u}\left(\mathcal{O}_{n}\right)^{\prime} \cap \mathcal{O}_{n}$ are finite-dimensional. So we expect that our investigation would be helpful on this problem in the future.

1. MAIN RESULTS

The Cuntz algebra \mathcal{O}_{n} is the C^{*}-algebra generated by isometries S_{1}, \ldots, S_{n} satisfying $\sum_{i=1}^{n} S_{i} S_{i}{ }^{*}=1$. The gauge action $\gamma_{z}(z \in \mathbb{T})$ on \mathcal{O}_{n} is defined by $\gamma_{z}\left(S_{i}\right)=$ $z S_{i}$. Let \mathcal{F}_{n} be the fixed point algebra of the gauge action. This algebra is isomorphic to the UHF-algebra of type n^{∞}. So \mathcal{F}_{n} has the unique tracial state τ. We have a conditional expectation $E: \mathcal{O}_{n} \rightarrow \mathcal{F}_{n}$ defined by

$$
E(x)=\int_{\mathbb{T}} \gamma_{z}(x) \mathrm{d} z
$$

The canonical shift φ is defined by $\varphi(x)=\sum_{i=1}^{n} S_{i} x S_{i}^{*}$. It is easy to see that $S_{i} x=$ $\varphi(x) S_{i}$ and $x S_{i}{ }^{*}=S_{i}{ }^{*} \varphi(x)$. For each $x \in \mathcal{O}_{n}$, we have the Fourier expansion

$$
x=\sum_{k=1}^{\infty} S_{1}^{* k} x_{-k}+x_{0}+\sum_{k=1}^{\infty} x_{k} S_{1}^{k}
$$

where $x_{k}=E\left(x S_{1}^{* k}\right), x_{-k}=E\left(S_{1}^{k} x\right)$ and $x_{0}=E(x)$. (The right-hand side converges in the Hilbert space generated by the GNS-representation with respect to $\tau \circ E$.) For example, if $x=S_{1} S_{2} S_{5}^{*} S_{8}^{* 2} S_{3}^{*}$, then $S_{1}^{2} x \in \mathcal{F}_{n}$ and $x=S_{1}^{* 2}\left(S_{1}^{2} x\right)=$ $S_{1}^{* 2} E\left(S_{1}^{2} x\right)$.

For the inclusion of C^{*}-algebras $A \subset B$ with a common unit, the normalizer group is defined by

$$
\mathcal{N}_{B}(A)=\left\{u \in B: u A u^{*}=A, u u^{*}=u^{*} u=1\right\} .
$$

For a unitary operator u, we define the inner automorphism by $\operatorname{Ad} u(x)=u x u^{*}$. We denote by $\left.\operatorname{Ad} u\right|_{A}$ the restriction of $\operatorname{Ad} u$ to A.

The following two theorems are the main results of this paper.
THEOREM 1.1. Let A be a C^{*}-subalgebra of \mathcal{F}_{n}. If the relative commutant $A^{\prime} \cap \mathcal{F}_{n}$ is finite-dimensional, then the algebra $A^{\prime} \cap \mathcal{O}_{n}$ is also finite-dimensional.

THEOREM 1.2. Let A be as above. We consider two subgroups of the automorphism group $\operatorname{Aut}(A)$ as follows.

$$
G=\left\{\left.\operatorname{Ad} U\right|_{A}: U \in \mathcal{N}_{\mathcal{O}_{n}}(A)\right\}, \quad H=\left\{\left.\operatorname{Ad} u\right|_{A}: u \in \mathcal{N}_{\mathcal{F}_{n}}(A)\right\}
$$

Then H is a subgroup of G with finite index.
We need some preparations to show these theorems.
Lemma 1.3. For $X \in A^{\prime} \cap \mathcal{O}_{n}$, we set $x_{k}=E\left(X S_{1}^{* k}\right)$ and $x_{-k}=E\left(S_{1}^{k} X\right)$. Then for any $a \in A$ we have $a x_{k}=x_{k} \varphi^{k}(a), x_{-k} a=\varphi^{k}(a) x_{-k}$ and $x_{k} x_{k}^{*}, x_{-k}^{*} x_{-k} \in A^{\prime} \cap \mathcal{F}_{n}$

Proof. For any $a \in A$, we see that

$$
\begin{aligned}
a x_{k} & =a E\left(X S_{1}^{* k}\right)=E\left(a X S_{1}^{* k}\right)=E\left(X a S_{1}^{* k}\right) \\
& =E\left(X S_{1}^{* k} \varphi^{k}(a)\right)=E\left(X S_{1}^{* k}\right) \varphi^{k}(a)=x_{k} \varphi^{k}(a)
\end{aligned}
$$

and therefore

$$
x_{k} x_{k}^{*} a=x_{k}\left(a^{*} x_{k}\right)^{*}=x_{k}\left(x_{k} \varphi^{k}(a)^{*}\right)^{*}=x_{k} \varphi^{k}(a) x_{k}^{*}=a x_{k} x_{k}^{*} .
$$

In the same way we also have $x_{-k} a=\varphi^{k}(a) x_{-k}$ and $x_{-k}^{*} x_{-k} a=a x_{-k}^{*} x_{-k}$.
LEMMA 1.4. There is a positive integer N satisfying the following properties. For any integer $k \geqslant N$ and any element $X \in A^{\prime} \cap \mathcal{O}_{n}$, we have $x_{k}=E\left(X S_{1}^{* k}\right)=0$ and $x_{-k}=E\left(S_{1}^{k} X\right)=0$.

Proof. We compute

$$
x_{k}^{*} x_{k}=E\left(X S_{1}^{* k}\right)^{*} E\left(X S_{1}^{* k}\right) \leqslant E\left(S_{1}^{k} X^{*} X S_{1}^{* k}\right) \leqslant\|X\|^{2} E\left(S_{1}^{k} S_{1}^{* k}\right)=\|X\|^{2} S_{1}^{k} S_{1}^{* k}
$$

Let $R=\mathcal{F}_{n}{ }^{\prime \prime}$ be the hyperfinite I_{1}-factor. We take the polar decomposition $x_{k}=$ $v_{k}\left|x_{k}\right|$ in R. Then the above computation shows that $v_{k}^{*} v_{k} \leqslant S_{1}^{k} S_{1}^{* k}$. On the other hand, since $x_{k} x_{k}^{*}$ is an element of the finite-dimensional C^{*}-algebra $A^{\prime} \cap \mathcal{F}_{n}$, we have $v_{k} v_{k}^{*} \in A^{\prime} \cap \mathcal{F}_{n}$. Since the C^{*}-algebra $A^{\prime} \cap \mathcal{F}_{n}$ is finite-dimensional, there is a positive number c satisfying $\tau(p) \geqslant c$ for any non-zero projection $p \in A^{\prime} \cap \mathcal{F}_{n}$. We can take a positive integer N satisfying $\tau\left(S_{1}^{k} S_{1}^{* k}\right)=1 / n^{k}<c$ for any $k \geqslant N$. Then we see that $\tau\left(v_{k} v_{k}^{*}\right)=\tau\left(v_{k}^{*} v_{k}\right) \leqslant \tau\left(S_{1}^{k} S_{1}^{* k}\right)<c$ and hence $v_{k} v_{k}^{*}=0$. So we conclude that $x_{k}=0$ for $k \geqslant N$. In the same way we also have $x_{-k}=0$ for $k \geqslant N$.

Lemma 1.5. Let N be the positive integer in the previous lemma. For any $X \in$ $A^{\prime} \cap \mathcal{O}_{n}$, we have

$$
X=\sum_{k=1}^{N} S_{1}^{* k} x_{-k}+x_{0}+\sum_{k=1}^{N} x_{k} S_{1}^{k}
$$

where $x_{k}=E\left(X S_{1}^{* k}\right), x_{-k}=E\left(S_{1}^{k} X\right)$ and $x_{0}=E(X)$.
Proof. We have the Fourier expansion

$$
X=\sum_{k=1}^{\infty} S_{1}^{* k} x_{-k}+x_{0}+\sum_{k=1}^{\infty} x_{k} S_{1}^{k}
$$

Thus by the previous lemma, we are done.
Lemma 1.6. We define the isomorphism π_{k} on A by

$$
\pi_{k}(x)=\left(\begin{array}{cc}
x & 0 \\
0 & \varphi^{k}(x)
\end{array}\right), \quad x \in A
$$

Then we have

$$
\left(\begin{array}{cc}
0 & x_{k} \\
x_{k}^{*} & 0
\end{array}\right),\left(\begin{array}{cc}
0 & x_{-k}^{*} \\
x_{-k} & 0
\end{array}\right) \in \pi_{k}(A)^{\prime} \cap M_{2}\left(\mathcal{F}_{n}\right)
$$

where $x_{k}=E\left(X S_{1}^{* k}\right), x_{-k}=E\left(S_{1}^{k} X\right)$ for $X \in A^{\prime} \cap \mathcal{O}_{n}$.
Proof. This is an immediate consequence of the relations $a x_{k}=x_{k} \varphi^{k}(a)$ and $x_{-k} a=\varphi^{k}(a) x_{-k}$ for $a \in \mathcal{O}_{n}$.

Lemma 1.7. The C^{*}-algebra $\pi_{k}(A)^{\prime} \cap M_{2}\left(\mathcal{F}_{n}\right)$ is finite-dimensional.
Proof. We set

$$
B=\pi_{k}(A)^{\prime} \cap M_{2}\left(\mathcal{F}_{n}\right), \quad e=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \in B, \quad f=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=1-e
$$

Then we see that $e B e \simeq A^{\prime} \cap \mathcal{F}_{n}$ and $f B f \simeq \varphi^{k}(A)^{\prime} \cap \mathcal{F}_{n} \simeq M_{n^{k}}(\mathbb{C}) \otimes\left(A^{\prime} \cap\right.$ \mathcal{F}_{n}). So both algebras $e B e$ and $f B f$ are finite-dimensional and hence B is finitedimensional. Indeed the von Neumann algebras $e B^{\prime \prime} e$ and $f B^{\prime \prime} f$ are finite-dimensional. So the center of $B^{\prime \prime}$ is finite-dimensional. Therefore we may assume that $B^{\prime \prime}$ is a factor. Then the finite-dimensionality of $e B^{\prime \prime} e$ and $f B^{\prime \prime} f$ ensures that $B^{\prime \prime}$ is finite-dimensional. Therefore B is finite-dimensional.

Proof of Theorem 1.1. Consider the vector space

$$
V_{k}=\left\{x_{k}=E\left(X S_{1}^{* k}\right): X \in A^{\prime} \cap \mathcal{O}_{n}\right\}
$$

Since the map

$$
V_{k} \ni x \mapsto\left(\begin{array}{cc}
0 & x \\
x^{*} & 0
\end{array}\right) \in \pi_{k}(A)^{\prime} \cap M_{2}\left(\mathcal{F}_{n}\right)
$$

is injective and \mathbb{R}-linear, the vector space V_{k} is finite-dimensional. In the same way the vector space

$$
V_{-k}=\left\{x_{k}=E\left(S_{1}^{k} X\right): X \in A^{\prime} \cap \mathcal{O}_{n}\right\}
$$

is also finite-dimensional. On the other hand, the element $x_{0}=E(X)$ belongs to the finite-dimensional C^{*}-algebra $A^{\prime} \cap \mathcal{F}_{n}$. Combining these with Lemma 1.5, we see that $A^{\prime} \cap \mathcal{O}_{n}$ is finite-dimensional.

Proposition 1.8. There exists an orthogonal family of minimal projections $e_{1}, \ldots, e_{l} \in A^{\prime} \cap \mathcal{O}_{n}$ satisfying the following:
(i) $\sum_{i=1}^{l} e_{i}=1$ and $e_{1}, \ldots, e_{l} \in A^{\prime} \cap \mathcal{F}_{n}$.
(ii) There are integers k_{1}, \ldots, k_{l} such that $\operatorname{Ad} u_{z}(x)=\gamma_{z}(x)$ for $x \in A^{\prime} \cap \mathcal{O}_{n}$ where $u_{z}=z^{k_{1}} e_{1}+\cdots+z^{k_{l}} e_{l}$.

Proof. Since $A^{\prime} \cap \mathcal{O}_{n}$ is finite-dimensional and γ-invariant, there exists an orthogonal family of minimal projections $e_{1}, \ldots, e_{l} \in A^{\prime} \cap \mathcal{O}_{n}$ and integers k_{1}, \ldots, k_{l} such that $\operatorname{Ad} u_{z}(x)=\gamma_{z}(x)$ where $u_{z}=z^{k_{1}} e_{1}+\cdots+z^{k_{l}} e_{l}$ and $x \in A^{\prime} \cap \mathcal{O}_{n}$. Then $e_{i} \in\left(A^{\prime} \cap \mathcal{O}_{n}\right)^{\gamma}=A^{\prime} \cap \mathcal{F}_{n}$.

COROLLARY 1.9. If A is an irreducible C^{*}-subalgebras of \mathcal{F}_{n}, then we have $A^{\prime} \cap$ $\mathcal{O}_{n}=\mathbb{C}$.

Proof. By the previous proposition, we know that there are minimal projections in $A^{\prime} \cap \mathcal{O}_{n}$ such that they belong to $A^{\prime} \cap \mathcal{F}_{n}$. Thus we are done.

In the rest of this paper we frequently use the projections $e_{1}, \ldots, e_{l} \in A^{\prime} \cap \mathcal{F}_{n}$ and the unitary $u_{z}=z^{k_{1}} e_{1}+\cdots+z^{k_{l}} e_{l}$ in the above proposition.

REMARK 1.10. The Bratteli diagram of the inclusion $A^{\prime} \cap \mathcal{F}_{n} \subset A^{\prime} \cap \mathcal{O}_{n}$ has a special form. These two algebras have a common family of minimal projections. So for each vertex corresponding to a direct summand of $A^{\prime} \cap \mathcal{F}_{n}$, there is only one edge which starts at this vertex. For example, if $A^{\prime} \cap \mathcal{F}_{n}=\mathbb{C}$, then $A^{\prime} \cap \mathcal{O}_{n}=$ \mathbb{C}. If $A^{\prime} \cap \mathcal{F}_{n}=\mathbb{C} \oplus \mathbb{C}$, then $A^{\prime} \cap \mathcal{O}_{n}$ is isomorphic to either $\mathbb{C} \oplus \mathbb{C}$ or $M_{2}(\mathbb{C})$.

Lemma 1.11. Let $U \in \mathcal{O}_{n}$ be a unitary satisfying $U A U^{*} \subset \mathcal{F}_{n}$. Then we have:
(i) $U^{*} \gamma_{z}(U) \in A^{\prime} \cap \mathcal{O}_{n}$.
(ii) There exists a unitary $w \in A^{\prime} \cap \mathcal{O}_{n}$ and integers m_{1}, \ldots, m_{l} such that $\gamma_{z}\left(\right.$ Uwe $\left._{i}\right)$ $=z^{m_{i}} U w e_{i}$

Proof. For any $a \in A$, since $U a U^{*} \in \mathcal{F}_{n}$, we see that

$$
\gamma_{z}(U) a \gamma_{z}(U)^{*}=\gamma_{z}\left(U a U^{*}\right)=U a U^{*}
$$

Thus we have $U^{*} \gamma_{z}(U) \in A^{\prime} \cap \mathcal{O}_{n}$. It is easy to see that the family $\left\{U^{*} \gamma_{z}(U) u_{z}\right\}_{z \in \mathbb{T}}$ is a unitary group. Indeed since $U^{*} \gamma_{z}(U) \in A^{\prime} \cap \mathcal{O}_{n}$, we see that

$$
\begin{aligned}
U^{*} \gamma_{z_{1}}(U) u_{z_{1}} U^{*} \gamma_{z_{2}}(U) u_{z_{2}} & =U^{*} \gamma_{z_{1}}(U) \operatorname{Ad} u_{z_{1}}\left(U^{*} \gamma_{z_{2}}(U)\right) u_{z_{1} z_{2}} \\
& =U^{*} \gamma_{z_{1}}(U) \gamma_{z_{1}}\left(U^{*}\right) \gamma_{z_{1} z_{2}}(U) u_{z_{1} z_{2}}=U^{*} \gamma_{z_{1} z_{2}}(U) u_{z_{1} z_{2}}
\end{aligned}
$$

Since $\left\{U^{*} \gamma_{z}(U) u_{z}\right\}_{z \in \mathbb{T}}$ is a unitary group in the finite-dimensional C^{*}-algebra $A^{\prime} \cap \mathcal{O}_{n}$, we can take a unitary $w \in A^{\prime} \cap \mathcal{O}_{n}$ and integers n_{1}, \ldots, n_{l} such that $w^{*} U^{*} \gamma_{z}(U) u_{z} w=z^{n_{1}} e_{1}+\cdots+z^{n_{l}} e_{l}$. Then we see that

$$
\begin{aligned}
\gamma_{z}\left(U w e_{i}\right) & =\gamma_{z}(U) u_{z} w u_{z}^{*} e_{i}=\left\{U w\left(z^{n_{1}} e_{1}+\cdots+z^{n_{l}} e_{l}\right) w^{*} u_{z}^{*}\right\} u_{z} w u_{z}^{*} e_{i} \\
& =U w\left(z^{n_{1}} e_{1}+\cdots+z^{n_{l}} e_{l}\right) u_{z}^{*} e_{i}=z^{n_{i}-k_{i}} U w e_{i} .
\end{aligned}
$$

REMARK 1.12. By the previous lemma, we know that the Fourier expansion of U can be written down as a finite sum. Indeed if $m_{i}>0$, then $U w e_{i}=$ $\left(U w e_{i} S_{1}^{* m_{i}}\right) S_{1}^{m_{i}}$ and $U w e_{i} S_{1}^{* m_{i}} \in \mathcal{F}_{n}$. On the other hand if $m_{i}<0$, then $U w e_{j}=$ $S_{1}^{*-m_{i}}\left(S_{1}^{-m_{i}} U w e_{j}\right)$ and $S_{1}^{-m_{i}} U w e_{j} \in \mathcal{F}_{n}$. Therefore the Fourier expansion of $U w$ is a finite sum. Combining this with Lemma 1.5, we can show that the Fourier expansion of U is a finite sum.

Proposition 1.13. For any normalizer $U \in \mathcal{N}_{\mathcal{O}_{n}}(A)$, there exist unitaries $v \in$ $A^{\prime} \cap \mathcal{F}_{n}$ and $w \in A^{\prime} \cap \mathcal{O}_{n}$ satisfying

$$
v U w \in \mathcal{N}_{\mathcal{O}_{n}}\left(e_{1} \mathcal{F}_{n} e_{1} \oplus \cdots \oplus e_{l} \mathcal{F}_{n} e_{l}\right)
$$

Proof. By the previous lemma we have $\gamma_{z}\left(U w e_{i}\right)=z^{m_{i}} U w e_{i}$. Then we get $\gamma_{z}\left(U w e_{i} w^{*} U^{*}\right)=U w e_{i} w^{*} U^{*}$ and hence $U w e_{i} w^{*} U^{*} \in \mathcal{F}_{n}$. Since $U A^{\prime} \cap \mathcal{O}_{n} U^{*}=$ $A^{\prime} \cap \mathcal{O}_{n}$, we have $U w e_{i} w^{*} U^{*} \in A^{\prime} \cap \mathcal{F}_{n}$. Thus $\left\{U w e_{i} w^{*} U^{*}\right\}_{i}$ is a family of minimal projections in the finite-dimensional C^{*}-algebra $A^{\prime} \cap \mathcal{F}_{n}$. So we can find a unitary $v \in A^{\prime} \cap \mathcal{F}_{n}$ satisfying $v U w e_{i} w^{*} U^{*} v^{*}=e_{j}$. Since $\gamma_{z}\left(v U w e_{i}\right)=v \gamma_{z}\left(U w e_{i}\right)=$ $z^{m_{i}} v U w e_{i}$ for any $x \in \mathcal{F}_{n}$, we see that $\gamma_{z} \circ \operatorname{Ad} v U w\left(e_{i} x e_{i}\right)=\operatorname{Ad} v U w\left(e_{i} x e_{i}\right)$. Therefore $(v U w) e_{i} \mathcal{F}_{n} e_{i}(v U w)^{*} \subset e_{j} \mathcal{F}_{n} e_{j}$. On the other hand, since $\gamma_{z}\left(w^{*} U^{*} v^{*} e_{j}\right)=$ $\gamma_{z}\left(v U w e_{i}\right)^{*}=\left(z^{m_{i}} U w e_{i}\right)^{*}=z^{-m_{i}} w^{*} U^{*} v^{*} e_{j}$, we also have $(v U w)^{*} e_{j} \mathcal{F}_{n} e_{j}(v U w) \subset$ $e_{i} \mathcal{F}_{n} e_{i}$. Therefore we have

$$
\begin{aligned}
& \operatorname{Adv} U w\left(e_{1} \mathcal{F}_{n} e_{1} \oplus \cdots \oplus e_{l} \mathcal{F}_{n} e_{l}\right) \subset e_{1} \mathcal{F}_{n} e_{1} \oplus \cdots \oplus e_{l} \mathcal{F}_{n} e_{l} \\
& \operatorname{Ad} w^{*} U^{*} v^{*}\left(e_{1} \mathcal{F}_{n} e_{1} \oplus \cdots \oplus e_{l} \mathcal{F}_{n} e_{l}\right) \subset e_{1} \mathcal{F}_{n} e_{1} \oplus \cdots \oplus e_{l} \mathcal{F}_{n} e_{l}
\end{aligned}
$$

and hence

$$
v U w \in \mathcal{N}_{\mathcal{O}_{n}}\left(e_{1} \mathcal{F}_{n} e_{1} \oplus \cdots \oplus e_{k} \mathcal{F}_{n} e_{k}\right)
$$

REMARK 1.14. The normalizer $\mathcal{N}_{\mathcal{O}_{n}}\left(\mathcal{F}_{n}\right)$ is a subset of \mathcal{F}_{n}. However the structure of $\mathcal{N}_{\mathcal{O}_{n}}\left(e_{1} \mathcal{F}_{n} e_{1} \oplus \cdots \oplus e_{l} \mathcal{F}_{n} e_{l}\right)$ is not simple in general. See Examples 1.17 and 1.18.

Lemma 1.15. Let $e \in \mathcal{F}_{n}$ be a projection. If a partial isometry $u \in \mathcal{O}_{n}$ satisfies $u^{*} u=u u^{*}=e$ and $u e \mathcal{F}_{n} e u^{*}=e \mathcal{F}_{n} e$, then we have $u \in \mathcal{F}_{n}$.

Proof. Since $u^{*} \gamma_{z}(u) \in\left(e \mathcal{F}_{n} e\right)^{\prime} \cap e \mathcal{O}_{n} e=e\left(\mathcal{F}_{n}^{\prime} \cap \mathcal{O}_{n}\right) e=\mathbb{C} e$, we have $\gamma_{z}(u)=z^{m} u$ for some integer m. We will show $m=0$. Suppose that $m>0$. Set $v=u S_{1}^{* m}$. Then we have $\gamma_{z}(v)=v$ and hence $v \in \mathcal{F}_{n}$. Then we compute $v^{*} v=S_{1}^{m} e S_{1}^{* m}=\varphi^{m}(e) S_{1}^{m} S_{1}^{* m}$ and $v v^{*}=u u^{*}=e$. So we see that $\tau(e)=$ $\tau\left(v v^{*}\right)=\tau\left(v^{*} v\right)=\tau\left(\varphi^{m}(e) S_{1}^{m} S_{1}^{* m}\right)=\tau(e) \times \tau\left(S_{1}^{m} S_{1}^{* m}\right)=\left(1 / n^{m}\right) \tau(e)<\tau(e)$. This is a contradiction. On the other hand, if $m<0$, we have $\gamma_{z}\left(u^{*}\right)=z^{-m} u^{*}$. So we get a contradiction in the same way.

LEMMA 1.16. Let B be the abelian C^{*}-algebra generated by e_{1}, \ldots, e_{l}. Then we have

$$
\mathcal{N}_{\mathcal{O}_{n}}(A) \cap \mathcal{N}_{\mathcal{O}_{n}}(B) \subset \mathcal{N}_{\mathcal{O}_{n}}\left(e_{1} \mathcal{F}_{n} e_{1} \oplus \cdots \oplus e_{k} \mathcal{F}_{n} e_{k}\right)
$$

Proof. The proof is essentially the same as that of Lemma 1.11 and Proposition 1.13. For any $U \in \mathcal{N}_{\mathcal{O}_{n}}(A) \cap \mathcal{N}_{\mathcal{O}_{n}}(B)$, since $U \in \mathcal{N}_{\mathcal{O}_{n}}(B)$, we have $U^{*} \gamma_{z}(U) \in$ B^{\prime} and hence $U^{*} \gamma_{z}(U) u_{z} \in B^{\prime}$. Therefore we can take $w=1$ in the proof of Lemma 1.11. Then since $U \in \mathcal{N}_{\mathcal{O}_{n}}(B)$, we have $U w e_{i} w^{*} U^{*}=U e_{i} U^{*}=e_{j}$ and hence we can take $v=1$ in the proof of Proposition 1.13. Thus by Proposition 1.13, we have $U \in \mathcal{N}_{\mathcal{O}_{n}}\left(e_{1} \mathcal{F}_{n} e_{1} \oplus \cdots \oplus e_{k} \mathcal{F}_{n} e_{k}\right)$.

Proof of Theorem 1.2. We can choose a finite family of unitaries $U_{1}, \ldots, U_{N} \in$ $\mathcal{N}_{\mathcal{O}_{n}}(A) \cap \mathcal{N}_{\mathcal{O}_{n}}(B) \subset \mathcal{N}_{\mathcal{O}_{n}}\left(e_{1} \mathcal{F}_{n} e_{1} \oplus \cdots \oplus e_{k} \mathcal{F}_{n} e_{k}\right)$ satisfying the following. For any $V \in \mathcal{N}_{\mathcal{O}_{n}}(A) \cap \mathcal{N}_{\mathcal{O}_{n}}(B)$, there exists U_{i} such that $\operatorname{Ad} V=\operatorname{Ad} U_{i}$ on B.

For any $U \in \mathcal{N}_{\mathcal{O}_{n}}(A)$, by Proposition 1.13 there exist unitaries $v \in A^{\prime} \cap \mathcal{F}_{n}$ and $w \in A^{\prime} \cap \mathcal{O}_{n}$ satisfying $v U w \in \mathcal{N}_{\mathcal{O}_{n}}\left(e_{1} \mathcal{F}_{n} e_{1} \oplus \cdots \oplus e_{k} \mathcal{F}_{n} e_{k}\right)$. Then since $v U w \in \mathcal{N}_{\mathcal{O}_{n}}(A) \cap \mathcal{N}_{\mathcal{O}_{n}}(B)$, we can take U_{i} satisfying $A d U_{i}^{*} v U w=$ id on B. Combining this with the fact that $U_{i} \in \mathcal{N}_{\mathcal{O}_{n}}\left(e_{1} \mathcal{F}_{n} e_{1} \oplus \cdots \oplus e_{k} \mathcal{F}_{n} e_{k}\right)$ we see that $U_{i}^{*} v U w e_{j} \in \mathcal{N}_{e_{j} \mathcal{O}_{n} e_{j}}\left(e_{j} \mathcal{F}_{n} e_{j}\right) \subset \mathcal{F}_{n}$ and hence $U_{i}^{*} v U w \in \mathcal{N}_{\mathcal{F}_{n}}(A)$. Here we used Lemma 1.15. Therefore we see that $\left.\operatorname{AdU}\right|_{A}=\left.\operatorname{Adv} U w\right|_{A} \in\left(\left.\operatorname{Ad} U_{i}\right|_{A}\right) H$. This implies that the index $[G: H$] is finite.

EXAMPLE 1.17. Let e be a projection in \mathcal{F}_{n}. Consider the C^{*}-algebra $A=$ $e \mathcal{F}_{n} e \oplus(1-e) \mathcal{F}_{n}(1-e)$. Here we remark that $A^{\prime} \cap \mathcal{F}_{n}=\mathbb{C} e \oplus \mathbb{C}(1-e)$. We will show that $\mathcal{N}_{\mathcal{O}_{n}}(A) \subset \mathcal{F}_{n}$ and hence $G=H$. This can be shown by K-theoretic argument as follows.

For any $U \in \mathcal{N}_{\mathcal{O}_{n}}(A)$, if $U e U^{*}=e$, it follows from Lemma 1.15 that $U \in \mathcal{F}_{n}$. So we consider the case $U e U^{*}=1-e$. Since $U^{*} \gamma_{z}(U) e \in\left(e \mathcal{F}_{n} e\right)^{\prime} \cap e O_{n} e=$ $e\left(\mathcal{F}_{n}^{\prime} \cap O_{n}\right) e=\mathbb{C} e$, we have $\gamma_{z}(U) e=z^{m} U e$ for some integer m. We will show $m=0$. Suppose that $m>0$. Set $v=U e S_{1}^{* m}$. Then we have $\gamma_{z}(v)=v$ and hence $v \in \mathcal{F}_{n}$. Then we compute $v^{*} v=S_{1}^{m} e S_{1}^{* m}=\varphi^{m}(e) S_{1}^{m} S_{1}^{* m}$ and $v v^{*}=$ $U e U^{*}=1-e$. So we see that $1-\tau(e)=\tau\left(v v^{*}\right)=\tau\left(v^{*} v\right)=\tau\left(\varphi^{m}(e) S_{1}^{m} S_{1}^{* m}\right)=$ $\tau(e) \times \tau\left(S_{1}^{m} S_{1}^{* m}\right)=\left(1 / n^{m}\right) \tau(e)$. Since \mathcal{F}_{n} is the UHF-algebra of type n^{∞}, we can write $\tau(e)=q / n^{p}$. So we get $1-q / n^{p}=\left(1 / n^{m}\right)\left(q / n^{p}\right)$ and hence

$$
n^{m+p}=q\left(1+n^{m}\right)
$$

This is impossible. Indeed, consider the prime factorization $n=p_{1}^{k_{1}} \times \cdots \times p_{n}^{k_{n}}$. Then we have

$$
\left(p_{1}^{k_{1}} \times \cdots \times p_{n}^{k_{n}}\right)^{m+p}=q\left(1+\left(p_{1}^{k_{1}} \times \cdots \times p_{n}^{k_{n}}\right)^{m}\right) .
$$

Therefore we must have

$$
1+\left(p_{1}^{k_{1}} \times \cdots \times p_{n}^{k_{n}}\right)^{m}=p_{1}^{l_{1}} \times \cdots \times p_{n}^{l_{n}}
$$

However this cannot occur because the left hand side has the remainder 1 when dividing by p_{1}.

EXAMPLE 1.18. We can write

$$
\mathcal{O}_{2} \supset \mathcal{F}_{2}=M_{2}(\mathbb{C}) \otimes M_{2}(\mathbb{C}) \otimes \cdots
$$

Consider two projections

$$
e=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \otimes 1 \otimes 1 \otimes \cdots \quad \text { and } \quad f=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \otimes 1 \otimes \cdots
$$

Since $\varphi(e) S_{1} S_{1}{ }^{*} \in M_{2}(\mathbb{C}) \otimes M_{2}(\mathbb{C})$ and $\tau\left(\varphi(e) S_{1} S_{1}{ }^{*}\right)=1 / 4$, there exists a partial isometry $v \in M_{2}(\mathbb{C}) \otimes M_{2}(\mathbb{C})$ such that $v^{*} v=\varphi(e) S_{1} S_{1}{ }^{*}$ and $v v^{*}=f$. We set

$$
U=v S_{1}+\left(v S_{1}\right)^{*}+(1-e-f)
$$

Then it is easy to see that

$$
U \in \mathcal{N}_{\mathcal{O}_{n}}\left(e \mathcal{F}_{n} e \oplus f \mathcal{F}_{n} f \oplus(1-e-f) \mathcal{F}_{n}(1-e-f)\right)
$$

We let $A=e \mathcal{F}_{n} e \oplus f \mathcal{F}_{n} f \oplus(1-e-f) \mathcal{F}_{n}(1-e-f)$. Since $\tau\left(\right.$ UeU $\left.^{*}\right)=\tau(f)=$ $1 / 4 \neq 1 / 2=\tau(e)$, we have

$$
\left.\operatorname{Ad} U\right|_{A} \notin\left\{\left.\operatorname{Ad} u\right|_{A}: u \in \mathcal{N}_{\mathcal{F}_{n}}(A)\right\}
$$

Therefore we see that $G \neq H$.
REMARK 1.19. If A is of the form $A=e_{1} \mathcal{F}_{n} e_{1} \oplus \cdots \oplus e_{l} \mathcal{F}_{n} e_{l}$, then we have $A^{\prime} \cap \mathcal{F}_{n}=A^{\prime} \cap \mathcal{O}_{n}=\mathbb{C} e_{1} \oplus \cdots \oplus \mathbb{C} e_{l}$. On the other hand, in Remark 1.10 we see that the Bratteli diagram of the inclusion $A^{\prime} \cap \mathcal{F}_{n} \subset A^{\prime} \cap \mathcal{O}_{n}$ has a special form. So we might expect that $A^{\prime} \cap \mathcal{F}_{n}=A^{\prime} \cap \mathcal{O}_{n}$. However this is wrong in general. Indeed there exists a C^{*}-subalgebra $A \subset \mathcal{F}_{n}$ with finite index such that $A^{\prime} \cap \mathcal{F}_{n} \neq A^{\prime} \cap \mathcal{O}_{n}$. We can take $A=\lambda_{u}\left(\mathcal{F}_{n}\right)$ where λ_{u} is a localized endomorphism. See [4], [5].

Acknowledgements. The author wishes to express his hearty gratitude to Professor Wojciech Szymański for valuable comments and discussion on this paper. The author is also grateful to Professor Roberto Conti for valuable comments. The author would like to thank Professor Takeshi Katsura for useful advice and comments. The author would like to show his sincere thanks to the referee for careful reading of the manuscript.

REFERENCES

[1] J. Cuntz, Simple C ${ }^{*}$-algebras generated by isometries, Comm. Math. Phys. 57(1977), 173-185.
[2] R. Conti, F. Fidaleo, Braided endomorphisms of Cuntz algebras, Math. Scand. 87(2000), 93-114,
[3] R. Conti, J.H. Hong, W. Szymański, Endomorphisms of graph algebras, J. Funct. Anal. 263(2012), 2529-2554
[4] R. Conti, J.H. Hong, W. Szymanski, Endomorphisms of the Cuntz algebras, in Noncommutative Harmonic Analysis with Applications to Probability III, pp. 81-97, Banach Center Publ., Vol. 96, Polish Acad. Sci. Inst. Math., Warsaw 2012.
[5] R. Conti, C. PinZari, Remarks on the index of endomorphisms of Cuntz algebras, J. Funct. Anal. 142(1996), 369-405.
[6] R. Conti, M. RøRDAm, W. SzymańSki, Endomorphisms of \mathcal{O}_{n} which preserve the canonical UHF-subalgebra, J. Funct. Anal. 259(2010), 602-617.
[7] R. CONTI, W. SZYMAŃSKI, Automorphisms of the Cuntz algebras, arXiv:1108.0860.
[8] R. LONGO, A duality for Hopf algebras and for subfactors. I, Comm. Math. Phys. 159(1994), 133-150.
[9] W. SzymańSKi, On localized automorphisms of the Cuntz algebras which preserve the diagonal subalgebra, in New Development of Operator Algebras, RIMS Kokyuroku, vol. 1587, publishing house, town 2008, pp. 109-115.

TOMOHIRO HAYASHI, Nagoya Institute of Technology, Gokiso-cho, Showa-Ku, Nagoya, Aichi, 466-8555, Japan

E-mail address: hayashi.tomohiro@nitech.ac.jp

