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ABSTRACT. We show that the following K0-monoid properties of C∗-algebras
in the class Ω are inherited by simple unital C∗-algebras in the class TAΩ:

(i) almost unperforated,
(ii) n-comparison,

(iii) cancellation property,
(iv) Riesz decomposition property.
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INTRODUCTION

The Elliott conjecture asserts that all nuclear, separable C∗-algebras are clas-
sified up to isomorphism by an invariant, called the Elliott invariant. A first ver-
sion of the Elliott conjecture might be said to have begun with the K-theoretical
classification of AF-algebras in [2]. Since then, many classes of C∗-algebras have
been found to be classified by the Elliott invariant. Among them, one important
class is the class of simple unital AH-algebras. A very important axiomatic ver-
sion of the classification of AH-algebras without dimension growth was given
by H. Lin. Instead of assuming inductive limit structure, he started with a cer-
tain abstract approximation property, and showed that C∗-algebras with this ab-
stract approximation property and certain additional properties are AH-algebras
without dimension growth. More precisely Lin introduced the class of tracially
approximate interval algebras.

Following the notion of Lin on the tracial approximation by interval alge-
bras, G.A. Elliott and Z. Niu in [6] considered tracial approximation by more
general C∗-algebras. Let Ω be a class of unital C∗-algebras. Then the class of
C∗-algebras which can be tracially approximated by C∗-algebra in Ω, denoted by
TAΩ, is defined as follows. A simple unital C∗-algebra A is said to belong to the
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class TAΩ, if for any ε > 0, any finite subset F ⊆ A, and any nonzero element
a > 0, there exist a nonzero projection p ∈ A and a C∗-subalgebra B of A with
1B = p and B ∈ Ω, such that:

(i) ‖xp− px‖ < ε for all x ∈ F,
(ii) pxp ∈ε B for all x ∈ F,

(iii) 1− p is Murray–von Neumann equivalent to a projection in aAa.
The question of the behavior of C∗-algebra properties under passage from

a class Ω to the class TAΩ is interesting and sometimes important. In fact the
property of having tracial states, the property of being of stable rank one, and the
property that the strict order on projections is determined by traces were used in
the proof of the classification theorem in [6] and [13] by G.A. Elliott and Z. Niu.

In this paper, we show that the following K0-monoid properties of C∗-alge-
bras in the class Ω are inherited by simple unital C∗-algebras in the class TAΩ:

(i) almost unperforated,
(ii) n-comparison,

(iii) cancellation property,
(iv) Riesz decomposition property.

1. PREMIMINARIES

Let a and b be two positive elements in a C∗-algebra A. We write [a] 6 [b]
(cf. Definition 3.5.2 in [11]), if there exists a partial isometry v ∈ A∗∗ such that,
for every c ∈ Her(a), v∗c, cv ∈ A, vv∗ = Pa, where Pa is the range projection of a
in A∗∗, and v∗cv ∈ Her(b). We write [a] = [b] if v∗Her(a)v = Her(b). Let n be a
positive integer. We write n[a] 6 [b], if there are n mutually orthogonal positive
elements b1, b2, . . . , bn ∈ Her(b) such that [a] 6 [bi], i = 1, 2, . . . , n.

Let 0 < σ1 < σ2 6 1 be two positive numbers. Define

f σ2
σ1 (t) =


1 if t > σ2 ,
t−σ1

σ2−σ1
if σ1 6 t 6 σ2 ,

0 if 0 < t 6 σ1 .

Let Ω be a class of unital C∗-algebras. Then the class of C∗-algebras which
can be tracially approximated by C∗-algebras in Ω is denoted by TAΩ.

DEFINITION 1.1 ([6]). A simple unital C∗-algebra A is said to belong to the
class TAΩ if for any ε > 0, any finite subset F ⊆ A, and any nonzero element
a > 0, there exist a nonzero projection p ∈ A and a C∗-subalgebra B of A with
1B = p and B ∈ Ω, such that:

(i) ‖xp− px‖ < ε for all x ∈ F,
(ii) pxp ∈ε B for all x ∈ F,

(iii) [1− p] 6 [a].
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DEFINITION 1.2 ([8]). Let Ω be a class of unital C∗-algebras. A unital C∗-
algebra A is said to have property (III) if for any positive numbers 0 < σ3 <
σ4 < σ1 < σ2 < 1, any ε > 0, any finite subset F ⊆ A, any nonzero positive
element a, and any integer n > 0, there exist a nonzero projection p ∈ A, and a
C∗-subalgebra B of A with B ∈ Ω and 1B = p, such that:

(i) ‖xp− px‖ < ε for all x ∈ F,
(ii) pxp ∈ε B for all x ∈ F, ‖pap‖ > ‖a‖ − ε,

(iii) n[ f σ2
σ1 ((1− p)a(1− p))] 6 [ f σ4

σ3 (pap)].

LEMMA 1.3 ([6]). If the class Ω is closed under tensoring with matrix algebras, or
closed under taking unital hereditary C∗-subalgebras, then TAΩ is closed under passing
to matrix algebras or unital hereditary C∗-subalgebras.

THEOREM 1.4 ([8]). Let Ω be a class of unital C∗-algebras such that Ω is closed
under taking unital hereditary C∗-subalgebras and closed taking finite direct sums. Let
A be a simple unital C∗-algebra. Then the following are equivalent:

(i) A ∈ TAΩ,
(ii) A has property (III).

We say a C∗-algebra A has the SP-property, if every nonzero hereditary C∗-
subalgebra of A contains a nonzero projection.

Call projections p, q ∈ M∞(A) equivalent, denoted p ∼ q, when there is a
partial isometry v ∈ M∞(A) such that p = v∗v, q = vv∗. The equivalent classes
are denoted by [·] and the set of all these is

V(A) := {[p] : p = p∗ = p2 ∈ M∞(A)}.

Addition in V(A) is defined by

[p] + [q] := [diag(p, q)].

V(A) becomes an abelian monoid, we call V(A) the K0-monoid of A.
All abelian monoids have a natural pre-order, the algebraic ordering, de-

fined as follows: if x, y ∈ M, we write x 6 y if there is a z in M such that x+ z = y.
In the case of V(A), the algebraic ordering is given by Murray–von Neumann
subequivalence, that is, [p] 6 [q] if and only if there is a projection p′ 6 q such
that p ∼ p′. We also write, as is customary, p � q to mean that p is subequivalent
to q.

If x, y ∈ M, we will write x 6∗ y if there is a nonzero element z in M, such
that x + z = y.

Let us recall that an element u in a monoid M is an order unit provided
u 6= 0 and, for any x in M, there is n ∈ N such that x 6 nu.

We say that a monoid M is conical if x + y = 0 only when x = y = 0. Note
that, for any C∗-algebra A, the monoid V(A) is conical.

We say that a monoid M has the cancellation property when it satisfies the
statement that for any a, b, c ∈ M, a + c = b + c implies that a = b.
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We remind the reader that a monoid M is almost unperforated if when-
ever (k + 1)x 6 ky for k ∈ N, it follows that x 6 y. More generally, M has n-
comparison if where x, y0, y1, y2, . . . , yn are elements in M such that x <s yj for all
j = 0, 1, . . . , n, then x 6 y0 + y1 + · · ·+ yn. Here x <s y means that (k + 1)x 6 ky
for some nature number k. It follows immediately from the definitions that M is
almost unperforated if and only if M has 0-comparison.

We say that a monoid M satisfies the Riesz decomposition property if when-
ever a 6 b1 + b2 in M, there exist a1, a2 ∈ M such that a = b1 + b2 and ai 6 bi for
i = 1, 2.

2. MAIN SECTION

THEOREM 2.1. Let Ω be a class of unital stably finite C∗-algebras such that for
any B ∈ Ω the K0-monoid V(B) is almost unperforated. Then the K0-monoid V(A) is
almost unperforated for any simple unital C∗-algebra A ∈ TAΩ.

Proof. We need to show that x 6 y in V(A) whenever (k + 1)x 6 ky for
some integer k > 0. By Lemma 1.3 we may assume that x = [p], y = [q] for some
projections p, q ∈ proj(A). For F = {p, q}, any ε > 0, since A ∈ TAΩ, there exist
a projection r ∈ A and a C∗-subalgebra B ⊆ A with B ∈ Ω, 1B = r such that:

(i) ‖xr− rx‖ < ε for all x ∈ F,
(ii) rxr ∈ εB for all x ∈ F.

By (i) and (ii) there exist projections p1, q1 ∈ B and p2, q2 ∈ (1− r)A(1− r)
such that

‖p− p1 − p2‖ < ε, ‖q− q1 − q2‖ < ε.
Therefore we have

[p] = [p1] + [p2], [q] = [q1] + [q2].

We also have
(k + 1)[p1] 6 k[q1], (k + 1)[p2] 6 k[q2].

Since B ∈ Ω and V(B) is almost unperforated, we have [p1] 6 [q1].
If [p1] = [q1], then we have (k + 1)[p1] 6 k[q1] = k[p1] 6∗ (k + 1)[p1]. So

k+1⊕
n=1

p1 is equivalent to a proper subprojection of itself, and this contradicts to the

stable finiteness of A (A has stably finite, because C∗-algebras in Ω are stably
finite).

Therefore we have [p1] 6∗ [q1]. Since [p1] 6∗ [q1], there exists a nonzero
projection s such that [p1] + [s] = [q1]. For G = {p2, q2, s}, any ε > 0, since
A ∈ TAΩ, there exist a projection m ∈ A and a C∗-subalgebra C ⊆ A with
C ∈ Ω, 1C = m such that:

(i’) ‖xm−mx‖ < ε for all x ∈ G,
(ii’) mxm ∈ εC for all x ∈ G,



K0-MONOID PROPERTIES PRESERVED BY TRACIAL APPROXIMATION 539

(iii’) [1−m] 6 [s].
By (i’) and (ii’) there exist projections p3, q3 ∈ C and p4, q4 ∈ (1−m)A(1−

m) such that
‖p2 − p3 − p4‖ < ε, ‖q2 − q3 − q4‖ < ε.

Therefore we have

[p2] = [p3] + [p4], [q2] = [q3] + [q4].

We also have
(k + 1)[p3] 6 k[q3], (k + 1)[p4] 6 k[q4].

Since C ∈ Ω and V(C) is almost unperforated, we have [p3] 6 [q3]. By (iii’)
[p4] 6 [1−m] 6 [s], therefore

[p] = [p1] + [p2] = [p1] + [p3] + [p4] 6 [p1] + [q3] + [p4]

6 [p1] + [q3] + [s] 6 [q1] + [q3] 6 [q].(2.1)

THEOREM 2.2. Let Ω be a class of unital stably finite C∗-algebras such that for
any B ∈ Ω the K0-monoid V(B) has n-comparison. Then the K0-monoid V(A) has
n-comparison for any simple unital C∗-algebra A ∈ TAΩ.

Proof. We need to show that x 6 y0 + y1 + · · ·+ yn in V(A) whenever (ki +
1)x 6 kiyi for some integer ki > 0 and for all 0 6 i 6 n. Note that ki can be
chosen to be the same for all yi, that is, set k = (k0 + 1)(k1 + 1) · · · (kn + 1)− 1,
then (k + 1)x 6 kyi for all 0 6 i 6 n. By Lemma 1.3, we may assume that
x = [p], yi = [qi] for some projections p, qi ∈ proj(A) and for all 0 6 i 6 n. For
F = {p, q0, q1, . . . , qn}, any ε > 0, since A ∈ TAΩ, there exist a projection r ∈ A
and a C∗-subalgebra B ⊆ A with B ∈ Ω, 1B = r such that:

(i) ‖xr− rx‖ < ε for all x ∈ F,
(ii) rxr ∈ εB for all x ∈ F.

By (i) and (ii) there exist projections p1, q01, q11, . . . , qn1∈B and p2, q02, q12, . . . ,
qn2 ∈ (1− r)A(1− r) such that:

‖p− p1 − p2‖ < ε, ‖qi − qi1 − qi2‖ < ε,

for all 0 6 i 6 n. Therefore we have

[p] = [p1] + [p2], [qi] = [qi1] + [qi2].

We also have
(k + 1)[p1] 6 k[qi1], (k + 1)[p2] 6 k[qi2].

Since B ∈ Ω and V(B) has n-comparison, we have [p1] 6 [q01] + [q11] + · · · +
[qn1].

If [p1] = [q01] + [q11] + · · · + [qn1], then we have (k + 1)[p1] 6∗ k([q01] +

[q11] + · · ·+ [qn1]) 6∗ (k + 1)([q01] + [q11] + · · ·+ [qn1]) = (k + 1)[p1]. So
k+1⊕
n=1

p1

is equivalent to a proper subprojection of itself, and this contradicts to the stable
finiteness of A (A has stably finite, because C∗-algebras in Ω are stably finite).
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Therefore we have [p1] 6∗ [q01] + [q11] + · · ·+ [qn1]. Since [p1] 6∗ [q01] +
[q11] + · · ·+ [qn1], there exists a nonzero projection s such that [p1] + [s] = [q01] +
[q11] + · · · + [qn1]. For G = {p2, q02, q12, · · · qn2, s}, any ε > 0, since A ∈ TAΩ,
there exist a projection m ∈ A and a C∗-subalgebra C ⊆ A with C ∈ Ω, 1C = m
such that:

(i’) ‖xm−mx‖ < ε for all x ∈ G,
(ii’) mxm ∈ εC for all x ∈ G,

(iii’) [1−m] 6 [s].

By (i’) and (ii’) there exist projections p3, q03, q13, . . . , qn3 ∈ C and p4, q04, q14,
. . ., qn4 ∈ (1−m)A(1−m) such that

‖p2 − p3 − p4‖ < ε, ‖qi2 − qi3 − qi4‖ < ε.

Therefore we have

[p2] = [p3] + [p4], [qi2] = [qi3] + [qi4].

We also have

(k + 1)[p3] 6 k[qi3], (k + 1)[p4] 6 k[qi4].

Since C ∈ Ω and V(C) has n-comparison, we have [p3] 6 [q03] + [q13] + · · · +
[qn3].

By (iii’) we have [p4] 6 [1−m] 6 [s], therefore:

[p] = [p1] + [p2] = [p1] + [p3] + [p4] 6 [p1] + [q03] + [q13] + · · ·+ [qn3] + [p4]

6 [p1] + [q03] + [q13] + · · ·+ [qn3] + [s]

6 [q01] + [q11] + · · ·+ [qn1] + [q03] + [q13] + · · ·+ [qn3](2.2)

6 [q0] + [q1] + · · ·+ [qn].

THEOREM 2.3. Let Ω be a class of unital C∗-algebras such that for any B ∈ Ω
the K0-monoid V(B) has the Riesz decomposition property. Then the K0-monoid V(A)
has the Riesz decomposition property for any simple unital C∗-algebra A ∈ TAΩ.

Proof. We need to show that if a 6 b1 + b2 in V(A), then there exist a1, a2 ∈
V(A) such that a = a1 + a2 and a1 6 b1, a2 6 b2 in V(A). One may assume
that a 6∗ b1 + b2. Otherwise, one has the decomposition right away and there is
nothing need to proof. By Lemma 1.3, without loss of generality we may assume
that a = [p], b1 = [q1], b2 = [q2], where p, q1, q2 ∈ proj(A). For any ε > 0, any
F = {p, q1, q2}, since A ∈ TAΩ, there are projection r ∈ A and C∗-subalgebra B
of A with 1B = r, B ∈ Ω, such that:

(i) ‖xr− rx‖ < ε for all x ∈ F,
(ii) rxr ∈ εB for all x ∈ F.
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By functional calculus, there are projections p′, q′1, q′2 ∈ B and projections
p′′, q′′1 , q′′2 ∈ (1− r)A(1− r) such that:

[p] = [p′] + [p′′], [q1] = [q′1] + [q′′1 ], [q2] = [q′2] + [q′′2 ],

[p′] 6∗ [q′1] + [q′2], [p′′] 6 [q′′1 ] + [q′′2 ].

Since B ∈ Ω and V(B) the Riesz decomposition property, there exist projection
p′1, p′2 ∈ B such that [p′] = [p′1] + [p′2] and [p′1] 6 [q′1], [p

′
2] 6 [q′2].

Since [p] = [p′1] + [p′2] 6
∗ [q′1] + [q′2], and [p′1] 6 [q′1], [p

′
2] 6 [q′2], therefore

we have [p′1] 6
∗ [q′1] or [p′2] 6

∗ [q′2]. Without loss of generality we may assume
that [p′1] 6

∗ [q′1], there exists a nonzero projection m ∈ A such that [p′1] + [m] =
[q′1]. For G = {p′′, q′′1 , q′′2 }, and any ε > 0, there exist a C∗-subalgebra C of A and
projection t ∈ A with 1C = t and C ∈ Ω such that:

(i’) ‖xt− tx‖ < ε for all x ∈ G,
(ii’) txt ∈ εC for all x ∈ G,

(iii’) [1− t] 6 [m].
By functional calculus, there are projections p′′′, q′′′1 , q′′′2 ∈ C and p′′′′, q′′′′1 ,

q′′′′2 ∈ (1− t)A(1− t) such that:

[p′′] = [p′′′] + [p′′′′], [q′′1 ] = [q′′′1 ] + [q′′′′1 ], [q2] = [q′′′2 ] + [q′′′′2 ],

[p′′′] 6 [q′′′1 ] + [q′′′2 ], [p′′′′] 6 [q′′′′1 ] + [q′′′′2 ].

Since C ∈ Ω and V(C) has the Riesz decomposition property, there exist projec-
tions p′′′1 , p′′′2 ∈ C such that

[p′′′] = [p′′′1 ] + [p′′′2 ], [p′′′1 ] 6 [q′′′1 ], [p′′′2 ] 6 [q′′′2 ].

Therefore we have

[p] = [p′] + [p′′] = [p′] + [p′′′] + [p′′′′] = [p′1] + [p′2] + [p′′′1 ] + [p′′′2 ] + [p′′′′]

= ([p′1] + [p′′′1 ] + [p′′′′]) + ([p′2] + [p′′′2 ]).

Since [p′′′] 6 [1− t] 6 [m], we have

[p′1] + [p′′′1 ] + [p′′′′] 6 [p′1] + [q′′′1 ] + [m] 6 [q′1] + [q′′′1 ] 6 [q1]

and [p′2] + [p′′′2 ] 6 [q2]. Set [p1] = [p′1] + [p′′′1 ] + [p′′′′], [p2] = [p′2] + [p′′′2 ], we have
[p] = [p1] + [p2] and [p1] 6 [q1], [p2] 6 [q2].

THEOREM 2.4. Let Ω be a class of unital C∗-algebras such that for any B ∈ Ω
the K0-monoid V(B) has the cancellation property. Then the K0-monoid V(A) has the
cancellation property for any simple unital C∗-algebra A ∈ TAΩ.

Proof. We need to show that a + c = b + c implies that a = b where a, b, c ∈
V(A).

We may assume that a = [p], b = [q], c = [e] where p, q, e ∈ Mj(A) for suf-
ficiently large integer j and p, q, e are projections. By Lemma 1.3, we may assume
that p, q, e ∈ A.
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For any 1/2 > ε > 0, F = {p, q, e}, since A ∈ TAΩ, by Theorem 1.4, there
exist a projection r ∈ A and a C∗-subalgebra B ⊆ A with B ∈ Ω, 1B = r such that:

(i) ‖xr− rx‖ < ε for all x ∈ F,
(ii) rxr ∈ εB for all x ∈ F.

By functional calculus, there exist projections p1, q1, e1 ∈ B and projections
p2, q2, e2 ∈ (1− r)A(1− r) such that:

‖p− p1 − p2‖ < ε, ‖q− q1 − q2‖ < ε, ‖e− e1 − e2‖ < ε.

Therefore we have

[p] = [p1] + [p2], [e] = [e1] + [e2], [q] = [q1] + [q2],

[p1] + [e1] = [q1] + [e1], [p2] + [e2] = [q2] + [e2].

Since V(B) has the cancellation property, therefore [p1] = [q1] in V(B). For
any 1/2 > ε > 0, F1 = {p2, q2, e2}, there exist a projection s ∈ C and a C∗-
subalgebra C ⊆ A with 1C = s and C ∈ Ω such that:

(i’) ‖xr− rx‖ < ε for all x ∈ F,
(ii’) rxr ∈ εC for all x ∈ F,

(iii’) 2[1− s] 6 [p1].
By functional calculus, there exist projections p21, q21, e21 ∈ C and projec-

tions p22, q22, e22 ∈ (1− s)A(1− s) such that

‖p2 − p21 − p22‖ < ε, ‖q2 − q21 − q22‖ < ε, ‖e2 − e21 − e22‖ < ε,

then

[p2] = [p21] + [p22], [q2] = [q21] + [q22], [e2] = [e21] + [e22], and

[p21] + [e21] = [q21] + [e21], [p22] + [e22] = [q22] + [e22].

Since V(C) has the cancellation property, therefore [p21] = [q21] in V(C).
Since 2[e22] 6 2[1− s] 6 [p1], there is a nonzero partial isometry v ∈ A such that
v∗v = e22, vv∗ 6 p1, therefore:

[p] = [p1 − vv∗] + [p21] + [p22] + [vv∗] = [p1 − vv∗] + [p21] + [p22] + [e22]

= [p1 − vv∗] + [p21] + [q22] + [e22] = [p1 − vv∗] + [p21] + [q22] + vv∗(2.3)

= [p1] + [p21] + [q22] = [q].
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