GROUPOID NORMALISERS OF TENSOR PRODUCTS: INFINITE VON NEUMANN ALGEBRAS

JUNSHENG FANG, ROGER R. SMITH, and STUART WHITE

Communicated by Kenneth R. Davidson

AbStract. The groupoid normalisers of a unital inclusion $B \subseteq M$ of von Neumann algebras consist of the set $\mathcal{\mathcal { S }} \mathcal{N}_{M}(B)$ of partial isometries $v \in M$ with $v B v^{*} \subseteq B$ and $v^{*} B v \subseteq B$. Given two unital inclusions $B_{i} \subseteq M_{i}$ of von Neumann algebras, we examine groupoid normalisers for the tensor product inclusion $B_{1} \bar{\otimes} B_{2} \subseteq M_{1} \bar{\otimes} M_{2}$ establishing the formula

$$
\mathcal{G} \mathcal{N}_{M_{1} \bar{\otimes} M_{2}}\left(B_{1} \bar{\otimes} B_{2}\right)^{\prime \prime}=\mathcal{G} \mathcal{N}_{M_{1}}\left(B_{1}\right)^{\prime \prime} \bar{\otimes} \mathcal{G} \mathcal{N}_{M_{2}}\left(B_{2}\right)^{\prime \prime}
$$

when one inclusion has a discrete relative commutant $B_{1}^{\prime} \cap M_{1}$ equal to the centre of B_{1} (no assumption is made on the second inclusion). This result also holds when one inclusion is a generator masa in a free group factor. We also examine when a unitary $u \in M_{1} \bar{\otimes} M_{2}$ normalising a tensor product $B_{1} \bar{\otimes} B_{2}$ of irreducible subfactors factorises as $w\left(v_{1} \otimes v_{2}\right)$ (for some unitary $w \in B_{1} \bar{\otimes} B_{2}$ and normalisers $\left.v_{i} \in \mathcal{N}_{M_{i}}\left(B_{i}\right)\right)$. We obtain a positive result when one of the M_{i} is finite or both of the B_{i} are infinite. For the remaining case, we characterise the II_{1} factors B_{1} for which such factorisations always occur (for all M_{1}, B_{2} and M_{2}) as those with a trivial fundamental group.

Keywords: Normaliser, groupoid normaliser, tensor product, factor, von Neumann algebra.

MSC (2010): 46L10, 46L35.

1. INTRODUCTION

This paper is concerned with the behaviour of structural properties of inclusions of von Neumann algebras obtained from tensor products. This important construction has a rich history, and we mention two particularly significant results. Given two inclusions $B_{i} \subseteq M_{i}(i=1,2)$ of von Neumann algebras, Tomita's commutation theorem (see [17]) determines the relative commutant of $B_{1} \bar{\otimes} B_{2}$ in $M_{1} \bar{\otimes} M_{2}$ showing that

$$
\begin{equation*}
\left(B_{1} \bar{\otimes} B_{2}\right)^{\prime} \cap\left(M_{1} \bar{\otimes} M_{2}\right)=\left(B_{1}^{\prime} \cap M_{1}\right) \bar{\otimes}\left(B_{2}^{\prime} \cap M_{2}\right) . \tag{1.1}
\end{equation*}
$$

In a different direction, Ge and Kadison [8] showed that when M_{1} and M_{2} are factors, any von Neumann algebra lying between $M_{1} \bar{\otimes} 1$ and $M_{1} \bar{\otimes} M_{2}$ must have the form $M_{1} \bar{\otimes} B_{2}$ for a von Neumann algebra $B_{2} \subseteq M_{2}$. Equation 1.1) can be interpreted as saying that the two operations of taking tensor products and passing to relative commutants commute. In [7], Wiggins and the authors examined commutation questions of this form for the operations of taking tensor products and passing to the algebra generated by the groupoid normalisers in the context of inclusions of finite von Neumann algebras. This paper examines these questions for general inclusions of von Neumann algebras.

The normalisers of an inclusion $B \subseteq M$ of von Neumann algebras consist of those unitaries $u \in M$ with $u B u^{*}=B$. These elements form a group denoted $\mathcal{N}_{M}(B)$ and the von Neumann algebra $\mathcal{N}_{M}(B)^{\prime \prime}$ they generate is the normalising algebra of B in M. Normalisers were first studied by Dixmier [2] who used them to distinguish various types of maximal abelian subalgebras (masas). He defined a masa $B \subseteq M$ to be singular, regular, or semiregular respectively if the normalising algebra is B, M, or a proper subfactor. For two inclusions $B_{i} \subseteq M_{i}$ of masas in finite von Neumann algebras, Chifan [1] showed that the normalising algebra of the tensor product is related to the tensor product of the individual normalising algebras by

$$
\begin{equation*}
\mathcal{N}_{M_{1} \bar{\otimes} M_{2}}\left(B_{1} \bar{\otimes} B_{2}\right)^{\prime \prime}=\mathcal{N}_{M_{1}}\left(B_{1}\right)^{\prime \prime} \bar{\otimes} \mathcal{N}_{M_{2}}\left(B_{2}\right)^{\prime \prime} \tag{1.2}
\end{equation*}
$$

a formula that was established earlier in [14] for singular masas. The commutation identity (1.2) also holds when each B_{i} is an irreducible subfactor of a II_{1} factor, [15], and in this situation any normaliser u is of the form $w\left(v_{1} \otimes v_{2}\right)$ for normalisers $v_{i} \in \mathcal{N}_{M_{i}}\left(B_{i}\right)$ and some unitary $w \in B_{1} \bar{\otimes} B_{2}$.

In general 1.2 fails. Consider the inclusion of $B=\mathbb{C} \oplus \mathbb{M}_{2}$ as a subalgebra of the 3×3 matrices $\mathbb{M}_{3}=M$. Dimension considerations show that every normaliser of B lies in B. Since $B \otimes B \cong \mathbb{C} \oplus \mathbb{M}_{2} \oplus \mathbb{M}_{2} \oplus \mathbb{M}_{4}$, we can find a unitary in $\mathbb{M}_{3} \otimes \mathbb{M}_{3}$ which interchanges the two copies of \mathbb{M}_{2}. This produces a non-trivial normaliser of the tensor product inclusion $B \otimes B \subseteq M \otimes M$. The obstruction here is the presence of partial isometries $v \in M \backslash B$ with $v B v^{*} \subseteq B$ and $v^{*} B v \subseteq B$. Such partial isometries form a groupoid denoted $\mathcal{G} \mathcal{N}_{M}(B)$ and are referred to as the groupoid normalisers of B in M. For masas in finite von Neumann algebras and irreducible inclusions of subfactors of II_{1} factors the groupoid normalisers and normalisers generate the same von Neumann algebra and so this obstruction does not occur, but in general $\mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime}$ can be larger than $\mathcal{N}_{M}(B)^{\prime \prime}$. There are two related problems regarding the form of the groupoid normalising algebra of a tensor product of inclusions.

Question 1.1. Consider two unital inclusions $B_{i} \subseteq M_{i}$ of von Neumann algebras:
(i) Under what conditions on both inclusions do we have

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{M_{1} \bar{\otimes} M_{2}}\left(B_{1} \bar{\otimes} B_{2}\right)^{\prime \prime}=\mathcal{G} \mathcal{N}_{M_{1}}\left(B_{1}\right)^{\prime \prime} \bar{\otimes} \mathcal{G} \mathcal{N}_{M_{2}}\left(B_{2}\right)^{\prime \prime} ? \tag{1.3}
\end{equation*}
$$

(ii) Under what conditions on $B_{1} \subseteq M_{1}$ is (1.3) valid for all choices of $B_{2} \subseteq M_{2}$?

The main result of [7] established (1.3] when M_{1} and M_{2} are finite and the relative commutants $B_{i}^{\prime} \cap M_{i}$ lie in B_{i} for $i=1$, 2 . In general some assumption on the relative commutant is necessary for (1.3) to hold (see Example 1.1 of [7] for a 3×3 matrix example demonstrating this). In the case when one of M_{1} or M_{2} is infinite, additional hypotheses will be needed to ensure that 1.3 holds. Indeed, the following easy example shows that it is not possible to extend Chifan's result [1] for masas to the infinite setting.

Example 1.2. Let $H=L^{2}[0,1]$ and let $A=L^{\infty}[0,1]$ acting on H by left multiplication. This is the unique (up to unitary conjugacy) diffuse masa in $\mathbb{B}(H)$ and direct computations show that $\mathcal{N}_{\mathbb{B}(H)}(A)^{\prime \prime}=\mathcal{G} \mathcal{N}_{\mathbb{B}(H)}(A)^{\prime \prime}=\mathbb{B}(H)$. Now let $H_{1}=H \oplus \mathbb{C}$ and let $A_{1}=A \oplus \mathbb{C}$. This is a masa in $\mathbb{B}\left(H_{1}\right)$ and

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{\mathbb{B}\left(H_{1}\right)}\left(A_{1}\right)^{\prime \prime}=\mathcal{N}_{\mathbb{B}\left(H_{1}\right)}\left(A_{1}\right)^{\prime \prime}=\mathbb{B}(H) \oplus \mathbb{B}(\mathbb{C}) \varsubsetneqq \mathbb{B}\left(H_{1}\right) . \tag{1.4}
\end{equation*}
$$

Now consider $A \bar{\otimes} A_{1}$ acting on $H \otimes H_{1}$. Since this is a diffuse masa, it is unitarily conjugate to the original inclusion $A \subseteq \mathbb{B}(H)$. In particular

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{\mathbb{B}(H) \bar{\otimes} \mathbb{B}\left(H_{1}\right)}\left(A \bar{\otimes} A_{1}\right)^{\prime \prime}=\mathcal{N}_{\mathbb{B}(H) ब \mathbb{B}\left(H_{1}\right)}\left(A \bar{\otimes} A_{1}\right)^{\prime \prime}=\mathbb{B}(H) \bar{\otimes} \mathbb{B}\left(H_{1}\right) \tag{1.5}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{\mathbb{B}(H) \otimes \mathbb{B}\left(H_{1}\right)}\left(A \bar{\otimes} A_{1}\right)^{\prime \prime} \supsetneqq \mathcal{G} \mathcal{N}_{\mathbb{B}(H)}(A)^{\prime \prime} \bar{\otimes} \mathcal{G} \mathcal{N}_{\mathbb{B}\left(H_{1}\right)}\left(A_{1}\right)^{\prime \prime} \tag{1.6}
\end{equation*}
$$

In this paper we obtain positive answers to Question 1.1 (i) in several different contexts, and also to Question 1.1(ii) in the following two situations:
(i) When one inclusion has an atomic relative commutant $B_{1}^{\prime} \cap M_{1}$ which is equal to the centre of B_{1} (Theorem 4.6.
(ii) When one inclusion is the generator masa in a free group factor (Theorem 4.8.

Unlike [7], both cases above make no assumption on the other inclusion. The methods employed there make extensive use of basic construction techniques and so are specialised to inclusions of finite von Neumann algebras. Here we develop new techniques which reach outside the finite setting and so the paper can be read independently of [7]. The second case described above is obtained by a direct combinatorial calculation examining the group elements supporting a groupoid normaliser. This is a self-contained argument found in Lemma 4.7 and Theorem 4.8 below. In particular, this gives the first example of a masa-factor inclusion $B_{1} \subseteq M_{1}$ with diffuse relative commutant $B_{1}^{\prime} \cap M_{1}$ so that 1.3 holds for all inclusions $B_{2} \subseteq M_{2}$.

We study groupoid normalisers by examining the fixed point algebra of certain groups of automorphisms. These techniques have their origins in [5], [6] and are based on the simple observation that any normaliser $u \in \mathcal{N}_{M}(B)$ gives rise to an automorphism $\operatorname{Ad}(u)$ of the commutant of B (in some faithful representation) which fixes M^{\prime} pointwise. In Section 3 we examine all automorphisms of
B^{\prime} which fix M^{\prime} pointwise and show that the subalgebra of B^{\prime} fixed by these automorphisms is precisely the commutant of the groupoid normalisers $\mathcal{G N}_{M}(B)$ (Theorem 3.3). This enables us to characterise those inclusions $B \subseteq M$ for which $\mathcal{N}_{M}(B)^{\prime \prime}=\mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime}$. In Section 4, we use the description of $\mathcal{G} \mathcal{N}_{M}(B)$ in terms of these automorphisms to establish instances of (1.3). A key idea is to tensor by copies of $\mathbb{B}(H)$ to ensure that all our von Neumann algebras are properly infinite as, in the countably decomposable situation, this forces $\mathcal{N}_{M}(B)^{\prime \prime}=\mathcal{G N}_{M}(B)^{\prime \prime}$ (Lemma 2.4.

In Section 5 we examine two inclusions of irreducible subfactors $B_{i} \subseteq M_{i}$. In [15] it was shown that when both M_{1} and M_{2} are finite, then a normaliser of $B_{1} \bar{\otimes} B_{2}$ in $M_{1} \bar{\otimes} M_{2}$ must factorise as $w\left(v_{1} \otimes v_{2}\right)$ for $w \in B$ and $v_{i} \in \mathcal{N}_{M_{i}}\left(B_{i}\right)$. Like [7], this relies on basic construction techniques. In Section5 we study such normalisers u by means of the induced automorphism $\operatorname{Ad}(u)$ of the commutant $B_{1}^{\prime} \bar{\otimes} B_{2}^{\prime}$. We show that such an automorphism necessarily splits as a tensor product $\theta_{1} \otimes \theta_{2}$ of automorphisms of B_{i}^{\prime} which fix M_{i}^{\prime}. From this we recover Theorem 4.2 of [15] and extend it to cover the following situations:
(i) only one of M_{1} or M_{2} is finite;
(ii) both B_{1} and B_{2} are infinite;
(iii) B_{1} is finite with trivial fundamental group and M_{1} is infinite.

We provide examples that show that this result can fail whenever the algebra B_{1} of (iii) has a nontrivial fundamental group. This enables us to characterise II_{1} factors with trivial fundamental group in terms of normalising unitaries of tensor product inclusions.

Many results in the paper rely on Lemma 2.3 which requires a hypothesis of countable decomposability, and so attention is generally restricted to this class of algebras. The exceptions are the results from Lemma 4.7 through to Theorem 5.8 . Finally, all inclusions $B \subseteq M$ of von Neumann algebras in the paper are assumed to share the same unit unless explicitly stated otherwise.

2. PRELIMINARIES

In this section we establish some preliminary results, the most important of which is Lemma 2.6 which describes a useful connection between groupoid normalisers and the fixed point algebras of certain automorphism groups. We begin with the following observation, which is a version of Lemma 2.11 of [6].

Proposition 2.1. Let $B \subseteq M$ be an inclusion of von Neumann algebras and let $x \in M$ satisfy $x B x^{*} \subseteq B$ and $x^{*} B x \subseteq B$. Let $p, q \in B$ be central projections and let $p x q=v|p x q|$ be the polar decomposition of $p x q$. Then $|p x q| \in B$ and $v \in \mathcal{G N}_{M}(B)$.

For a masa A in a II_{1} factor M, a theorem of Dye [4] (see also Lemma 6.2.3 of [13]) states that every $v \in \mathcal{G \mathcal { N }}_{M}(A)$ is of the form $u e$ for some projection $e \in A$ and a unitary normaliser $u \in \mathcal{N}_{M}(A)$. This cannot hold in the infinite setting: the
unilateral shift is a groupoid normaliser of the diagonal masa in $\mathbb{B}\left(\ell^{2}(\mathbb{N})\right)$ which cannot be extended to a unitary normaliser. However the unilateral shift does lie in the algebra generated by the normalisers. The lemma below expands this observation to a general setting. We adopt the notation $\mathrm{Z}(N)$ for the centre of any von Neumann algebra N.

Lemma 2.2. Let $B \subseteq M$ be an inclusion of von Neumann algebras and let $v \in$ $\mathcal{G} \mathcal{N}_{M}(B)$ satisfy $v v^{*}, v^{*} v \in Z(B)$. Then $v \in \mathcal{N}_{M}(B)^{\prime \prime}$.

Proof. Note that the hypotheses ensure that both v and v^{*} lie in $\mathcal{G N}_{M}(Z(B))$. Indeed, given $z \in Z(B)$ and $b \in B$, we have

$$
\begin{equation*}
v z v^{*} b=v z v^{*} b v v^{*}=v v^{*} b v z v^{*}=b v z v^{*}, \tag{2.1}
\end{equation*}
$$

so that $v Z(B) v^{*} \subseteq Z(B)$. Similarly $v^{*} Z(B) v^{*} \subseteq Z(B)$.
Let p be the maximal projection in $Z(B)$ with $p \leqslant v^{*} v$ and $v p \in \mathcal{N}_{M}(B)^{\prime \prime}$. Suppose that $p \neq v^{*} v$ and write $p_{0}=v^{*} v-p \in Z(B)$ and $q_{0}=v p_{0} v^{*} \in Z(B)$. If $p_{0}=q_{0}$, then $u=v p_{0}+\left(1-p_{0}\right)$ is a unitary normaliser of B and $v p_{0}=$ $u p_{0} \in \mathcal{N}_{M}(B)^{\prime \prime}$, contradicting maximality of p. Hence $p_{0} \neq q_{0}$. Now suppose that $p_{1}=p_{0}\left(1-q_{0}\right) \neq 0$, and write $q_{1}=v p_{1} v^{*} \in Z(B)$ so $q_{1} p_{0}=0$. Define a unitary by $u=v p_{1}+\left(v p_{1}\right)^{*}+\left(1-p_{1}-q_{1}\right)$. For $b \in B$, we have

$$
\begin{equation*}
u b u^{*}=u\left(p_{1} b+q_{1} b+\left(1-p_{1}-q_{1}\right) b\right) u^{*}=v p_{1} b v^{*}+v^{*} q_{1} b v+\left(1-p_{1}-q_{1}\right) b \in B \tag{2.2}
\end{equation*}
$$

so that u is a unitary normaliser of B with $v p_{1}=u p_{1}$. Thus $v\left(p+p_{1}\right) \in \mathcal{N}_{M}(B)^{\prime \prime}$, contradicting maximality of p. Finally, if $q_{1}=\left(1-p_{0}\right) q_{0} \neq 0$, then by interchanging the roles of v and v^{*}, there is some $u \in \mathcal{N}_{M}(B)$ with $u^{*} q_{1}=v^{*} q_{1}$ so that $q_{1} v=v\left(v^{*}\left(1-p_{0}\right) q_{0} v\right) \in \mathcal{N}_{M}(B)^{\prime \prime}$. As $v^{*}\left(1-p_{0}\right) q_{0} v \in Z(B)$, we can adjoin $v^{*}\left(1-p_{0}\right) q_{0} v \leqslant p_{0}$ to p, contradicting the maximality of p.

For inclusions of properly infinite von Neumann algebras, standard techniques allow us to adjust groupoid normalisers to have central initial and final projections so the previous lemma applies. We record the details in slightly greater generality for use in Section 4

LEMMA 2.3. Let M be a von Neumann algebra and let $B_{1}, B_{2} \subseteq M$ be properly infinite, countably decomposable von Neumann subalgebras of M. Any partial isometry $v \in M$ with $v B_{1} v^{*} \subseteq B_{2}$ and $v^{*} B_{2} v \subseteq B_{1}$ factorises as $v=b_{2} w b_{1}$, where b_{1}, b_{2}, w are partial isometries with $w B_{1} w^{*} \subseteq B_{2}, w^{*} B_{2} w \subseteq B_{1}, w^{*} w \in Z\left(B_{1}\right)$, ww* $\in Z\left(B_{2}\right)$, $b_{1} \in B_{1}$ and $b_{2} \in B_{2}$.

Proof. Let $e=v^{*} v \in B_{1}$ and let p be the central support of e in B_{1}. As B_{1} is properly infinite, standard arguments enable us to find a sequence $\left(e_{n}\right)_{n=1}^{\infty}$ (necessarily countable from the hypothesis of countable decomposability) of pairwise orthogonal, equivalent projections in B_{1}, and which sum to p and with $e_{1}=e$. Similarly, let $v v^{*}=f \in B_{2}$, let q be the central support of f in B_{2}, and find a sequence $\left(f_{n}\right)_{n=1}^{\infty}$ of pairwise orthogonal, equivalent projections in B_{2} which sum to q with $f_{1}=f$. For each n, find partial isometries $b_{1, n} \in B_{1}$ with $b_{1, n}^{*} b_{1, n}=e$ and
$b_{1, n} b_{1, n}^{*}=e_{n}$ and partial isometries $b_{2, n} \in B_{2}$ with $b_{2, n}^{*} b_{2, n}=f$ and $b_{2, n} b_{2, n}^{*}=f_{n}$. Then define a partial isometry

$$
\begin{equation*}
w=\sum_{n=1}^{\infty} b_{2, n} v b_{1, n}^{*} \in M \tag{2.3}
\end{equation*}
$$

noting that the series converges in the strong operator topology. By construction $w w^{*}=q \in Z\left(B_{2}\right), w^{*} w=p \in Z\left(B_{1}\right), w B_{1} w^{*} \subseteq B_{2}, w^{*} B_{2} w \subseteq B_{1}$ and $v=$ $b_{2,1}^{*} w b_{1,1}$.

Lemma 2.4. Let $B \subseteq M$ be an inclusion of von Neumann algebras. Suppose that B is properly infinite and countably decomposable. Then $\mathcal{G N}_{M}(B)^{\prime \prime}=\mathcal{N}_{M}(B)^{\prime \prime}$.

Proof. Using Lemma 2.3, any groupoid normaliser v of B can be factorised in the form $b_{2} w b_{1}$ so that w is a groupoid normaliser of B with $w w^{*}, w^{*} w \in Z(B)$ and $b_{1}, b_{2} \in B$. By Lemma 2.2, w lies in $\mathcal{N}_{M}(B)^{\prime \prime}$ and hence so too does v.

Now we turn to the connections between normalisers, groupoid normalisers and certain automorphisms of the commutant inclusion.

DEFINITION 2.5. Given an inclusion $B \subseteq M$ of von Neumann algebras, we define the B-bimodular automorphisms of M, denoted $\operatorname{Aut}_{B}(M)$, to be those $\theta \in \operatorname{Aut}(M)$ satisfying $\theta(b)=b$ for all $b \in B$. Given a subgroup G of the automorphism group of M, let M^{G} denote the fixed point algebra $\{x \in M: \theta(x)=$ $x, \theta \in G\}$. This is a von Neumann subalgebra of M. In particular we can apply this to $\operatorname{Aut}_{B}(M)$ to obtain $M^{\operatorname{Aut}_{B}(M)}$ which is a von Neumann subalgebra of M containing B.

A number of the von Neumann algebras and groups that will appear below have complicated notations, so we will sometimes adopt the expression $\operatorname{Fix}(M, G)$ for M^{G}.

On occasion we shall need to assume that certain von Neumann algebras are represented in standard form. In full generality, the standard form of a von Neumann algebra was set out by Haagerup, [9]. The key fact we will need is that every automorphism of a von Neumann algebra in standard form is spatially implemented.

Lemma 2.6. Let $B \subseteq M \subseteq \mathbb{B}(H)$ be an inclusion of von Neumann algebras. Then

$$
\begin{equation*}
\left(B^{\prime}\right)^{\operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)} \subseteq \mathcal{N}_{M}(B)^{\prime} \tag{2.4}
\end{equation*}
$$

and equality holds if B (or equivalently B^{\prime}) is in standard form on H.
Proof. Let $x \in\left(B^{\prime}\right)^{\operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)}$. Given $u \in \mathcal{N}_{M}(B)$, we have $u B u^{*}=B$ so $u B^{\prime} u^{*}=B^{\prime}$. Thus $\left.\operatorname{Ad}(u)\right|_{B^{\prime}}$ defines an automorphism of B^{\prime} which is M^{\prime}-bimodular as $u \in M$. Hence $\operatorname{Ad}(u)(x)=x$ and so $x \in \mathcal{N}_{M}(B)^{\prime}$.

Now suppose that B^{\prime} lies in standard form on H and take $x \in \mathcal{N}_{M}(B)^{\prime} \subseteq B^{\prime}$. Given $\theta \in \operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)$, there is a unitary $u \in \mathbb{B}(H)$ such that $\theta=\left.\operatorname{Ad}(u)\right|_{B^{\prime}}$ as B^{\prime}
is in standard form on H. Since $\theta\left(m^{\prime}\right)=m^{\prime}$ for $m^{\prime} \in M^{\prime}$, the double commutant theorem gives $u \in M$. Now $u B^{\prime} u^{*}=B^{\prime}$, so we can take commutants to see that $u B u^{*}=B$, placing $u \in \mathcal{N}_{M}(B)$. It follows that $\theta(x)=u x u^{*}=x$, since $x \in N_{M}(B)^{\prime}$, and so $x \in\left(B^{\prime}\right)^{\text {Aut }_{M^{\prime}}\left(B^{\prime}\right)}$, as required.

3. GROUPOID NORMALISERS AND FIXED POINT ALGEBRAS

Our objective in this section is to characterise the groupoid normalising algebra $\mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime}$ of an inclusion of von Neumann algebras as the commutant of the fixed point algebra $\left(B^{\prime}\right)^{\operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)}$. The first step is to show that the inclusions of an atomic masa inside $\mathbb{B}(K)$, and the inclusion $\mathbb{B}(K) \subseteq \mathbb{B}(K)$ give positive answers to Question 1.1 (ii). We proceed by direct computations with the matrix units as in Section 2.2 of [6].

Lemma 3.1. Let K be a Hilbert space and let A be the atomic masa in $\mathbb{B}(K)$. Given any inclusion $B \subseteq M$ of von Neumann algebras, we have

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{M \bar{\otimes} \mathbb{B}(K)}(B \bar{\otimes} A)^{\prime \prime}=\mathcal{G} \mathcal{N}_{M \bar{\otimes} \mathbb{B}(K)}(B \bar{\otimes} \mathbb{B}(K))^{\prime \prime}=\mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime} \bar{\otimes} \mathbb{B}(K) \tag{3.1}
\end{equation*}
$$

Proof. We consider a more general situation which will imply containment of each of the first two algebras from 3.1) into the third simultaneously. Thus take a partial isometry $v \in M \bar{\otimes} \mathbb{B}(K)$ with

$$
\begin{equation*}
v(B \bar{\otimes} A) v^{*} \subseteq B \bar{\otimes} \mathbb{B}(K) \text { and } v^{*}(B \bar{\otimes} A) v \subseteq B \bar{\otimes} \mathbb{B}(K) \tag{3.2}
\end{equation*}
$$

and note that groupoid normalisers from the first two algebras in (3.1) will satisfy 3.2. Use the minimal projections in A to identify operators in $M \bar{\otimes} \mathbb{B}(K)$ with matrices over M, and write $v=\left(v_{i, j}\right)_{i, j \in I}$. For each $j \in I$ and $x \in B$, let $y \in B \bar{\otimes} A$ be the operator with x in the (j, j)-position and 0 elsewhere. By considering the (i, i)-th component of $v y v^{*}$, we see that $v_{i, j} x v_{i, j}^{*} \in B$. Similarly $v_{i, j}^{*} B v_{i, j} \subseteq B$ for all i, j. Let $w_{i, j} h_{i, j}$ be the polar decomposition of $v_{i, j}$, so $w_{i, j} \in \mathcal{G N}_{M}(B)$ and $h_{i, j} \in B$ by Proposition 2.1. Thus each $v_{i, j}$ lies in $\mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime}$ so that $v \in \mathcal{G N}_{M}(B)^{\prime \prime} \bar{\otimes} \mathbb{B}(K)$. This shows that the first and second algebras in 3.1) are contained in $\mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime} \bar{\otimes} \mathbb{B}(K)$. Since the reverse inclusions are immediate, the result follows.

Lemma 3.2. Let $B \subseteq M$ be an inclusion of von Neumann algebras such that B is countably decomposable, and let K be an infinite dimensional separable Hilbert space. Then

$$
\begin{equation*}
\mathcal{N}_{M \bar{\otimes} \mathbb{B}(K)}(B \bar{\otimes} \mathbb{B}(K))^{\prime \prime}=\mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime} \bar{\otimes} \mathbb{B}(K) \tag{3.3}
\end{equation*}
$$

Proof. Since $B \bar{\otimes} \mathbb{B}(K)$ is properly infinite and countably decomposable, Lemma 2.4 gives

$$
\begin{equation*}
\mathcal{N}_{M \bar{\otimes} \mathbb{B}(K)}(B \bar{\otimes} \mathbb{B}(K))^{\prime \prime}=\mathcal{G} \mathcal{N}_{M \bar{\otimes} \mathbb{B}(K)}(B \bar{\otimes} \mathbb{B}(K))^{\prime \prime} \tag{3.4}
\end{equation*}
$$

The result then follows from the second equality of Lemma 3.1 .
We can now characterise those inclusions for which $\mathcal{N}_{M}(B)^{\prime \prime}=\mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime}$ in terms of the fixed points of the automorphism group $\operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)$.

THEOREM 3.3. Let $B \subseteq M \subseteq \mathbb{B}(H)$ be an inclusion of von Neumann algebras such that B is countably decomposable, and let K be an infinite dimensional separable Hilbert space. The following statements are equivalent:
(i) $\mathcal{N}_{M}(B)^{\prime \prime}=\mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime}$;
(ii) $\mathcal{N}_{M \bar{\otimes} \mathbb{B}(K)}\left(B \overline{\otimes \mathbb{B}(K))^{\prime \prime}=\mathcal{N}_{M}(B)^{\prime \prime} \bar{\otimes} \mathbb{B}(K) \text {; } ; \text {; }{ }^{(i i))} \mathcal{N}_{M}(B)}\right.$
(iii) $\mathcal{N}_{M}(B)^{\prime}=\left(B^{\prime}\right)^{\operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)}$.

Proof. The equivalence between statements (i) and (ii) follows from Lemma 3.2 and is implicit in Theorem 2.4 of [6].
(iii) \Rightarrow (ii) Applying Lemma 2.6 to $B \bar{\otimes} \mathbb{B}(K) \subseteq M \bar{\otimes} \mathbb{B}(K)$ gives

$$
\begin{equation*}
\operatorname{Fix}\left(B^{\prime} \otimes \mathbb{C} 1, \operatorname{Aut}_{M^{\prime} \otimes \mathbb{C} 1}\left(B^{\prime} \otimes \mathbb{C} 1\right)\right) \subseteq \mathcal{N}_{M \bar{\otimes} \mathbb{B}(K)}(B \overline{\otimes \mathbb{B}}(K))^{\prime} \tag{3.5}
\end{equation*}
$$

We have an isomorphism between $\operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)$ and $\operatorname{Aut}_{M^{\prime} \otimes \mathbb{C} 1}\left(B^{\prime} \otimes \mathbb{C} 1\right)$ given by $\theta \mapsto \theta \otimes \mathrm{id}$ which demonstrates that

$$
\begin{equation*}
\operatorname{Fix}\left(B^{\prime} \otimes \mathbb{C} 1, \operatorname{Aut}_{M^{\prime} \otimes \mathbb{C} 1}\left(B^{\prime} \otimes \mathbb{C} 1\right)\right)=\left(B^{\prime}\right)^{\operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)} \otimes \mathbb{C} 1 \tag{3.6}
\end{equation*}
$$

Applying the hypothesis of (iii) gives

$$
\begin{equation*}
\mathcal{N}_{M}(B)^{\prime} \otimes \mathbb{C} 1 \subseteq \mathcal{N}_{M \bar{\otimes} \mathbb{B}(K)}(B \bar{\otimes} \mathbb{B}(K))^{\prime} \tag{3.7}
\end{equation*}
$$

and the inclusion

$$
\begin{equation*}
\mathcal{N}_{M \bar{\otimes} \mathbb{B}(K)}(B \bar{\otimes} \mathbb{B}(K))^{\prime \prime} \subseteq \mathcal{N}_{M}(B)^{\prime \prime} \bar{\otimes} \mathbb{B}(K)^{\prime \prime} \tag{3.8}
\end{equation*}
$$

follows by taking commutants in (3.7). Since the reverse inclusion is immediate, condition (ii) holds.
(ii) \Rightarrow (iii) Let π be a standard representation of B^{\prime} on some Hilbert space H_{1}. By the general theory of representations of von Neumann algebras ([3], p. 61), we can assume that π is obtained by an amplification of the representation on H followed by a compression. Therefore, we can find another Hilbert space K and a projection in $e \in B \bar{\otimes} \mathbb{B}(K)=\left(B^{\prime} \otimes 1_{K}\right)^{\prime}$ such that $\pi(x)=e\left(x \otimes 1_{K}\right) e$ acting on $e(H \otimes K)$. Writing $B_{1}=\pi\left(B^{\prime}\right)^{\prime}$ and $M_{1}=\pi\left(M^{\prime}\right)^{\prime}$ with the commutants taken on $H_{1}=e(H \otimes K)$, we have $B_{1}=e(B \bar{\otimes} \mathbb{B}(K)) e$ and $M_{1}=e(M \bar{\otimes} \mathbb{B}(K)) e$. Since π is a faithful representation of B^{\prime}, we have $\pi\left(\left(B^{\prime}\right)^{\operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)}\right)=\left(B_{1}^{\prime}\right)^{\operatorname{Aut}_{M_{1}^{\prime}}\left(B_{1}^{\prime}\right)}$. Furthermore, since $\pi\left(B^{\prime}\right)$ is in standard form, so too is $B_{1}=\pi\left(B^{\prime}\right)^{\prime}$. Thus Lemma 2.6 gives

$$
\begin{equation*}
\pi\left(\left(B^{\prime}\right)^{\operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)}\right)=\left(B_{1}^{\prime}\right)^{\operatorname{Aut}_{M_{1}^{\prime}}\left(B_{1}^{\prime}\right)}=\mathcal{N}_{M_{1}}\left(B_{1}\right)^{\prime} \tag{3.9}
\end{equation*}
$$

Every normaliser v of $e(B \bar{\otimes} \mathbb{B}(K)) e$ in $e(M \bar{\otimes} \mathbb{B}(K)) e$ is a groupoid normaliser of $B \bar{\otimes} \mathbb{B}(K)$ in $M \bar{\otimes} \mathbb{B}(K)$ and so lies in $\mathcal{N}_{M \bar{\otimes} \mathbb{B}(K)}(B \bar{\otimes} \mathbb{B}(K))^{\prime \prime}$ by Lemma 2.4 This gives the inclusion
(3.10) $\quad \mathcal{N}_{M_{1}}\left(B_{1}\right)^{\prime \prime}=\mathcal{N}_{e(B \bar{\otimes} \mathbb{B}(K)) e}(e(M \bar{\otimes} \mathbb{B}(K)) e)^{\prime \prime} \subseteq e\left(\mathcal{N}_{M \bar{\otimes} \mathbb{B}(K)}(B \bar{\otimes} \mathbb{B}(K))^{\prime \prime}\right) e$.

Now

$$
\begin{equation*}
\pi\left(\mathcal{N}_{M}(B)^{\prime}\right)^{\prime}=\left[\left(\mathcal{N}_{M}(B)^{\prime} \bar{\otimes} \mathbb{C} 1_{K}\right) e\right]^{\prime}=e\left(\mathcal{N}_{M}(B)^{\prime \prime} \bar{\otimes} \mathbb{B}(K)\right) e, \tag{3.11}
\end{equation*}
$$

so that

$$
\pi\left(\mathcal{N}_{M}(B)^{\prime}\right)^{\prime}=e\left(\mathcal{N}_{M}(B)^{\prime \prime} \bar{\otimes} \mathbb{B}(K)\right) e=e\left(\mathcal{N}_{M \bar{\otimes} \mathbb{B}(K)}(B \bar{\otimes} \mathbb{B}(K))^{\prime \prime}\right) e
$$

$$
\begin{equation*}
\supseteq \mathcal{N}_{e(B \bar{\otimes} \mathbb{B}(K)) e}(e(M \bar{\otimes} \mathbb{B}(K)) e)^{\prime \prime}=\mathcal{N}_{M_{1}}\left(B_{1}\right)^{\prime \prime}=\pi\left(\left(B^{\prime}\right)^{\mathrm{Aut}_{M^{\prime}}\left(B^{\prime}\right)}\right)^{\prime} \tag{3.12}
\end{equation*}
$$

by (3.11), condition (ii), 3.10) and (3.9). Taking commutants gives

$$
\begin{equation*}
\pi\left(\mathcal{N}_{M}(B)^{\prime}\right) \subseteq \pi\left(\left(B^{\prime}\right)^{\operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)}\right) \tag{3.13}
\end{equation*}
$$

and so

$$
\begin{equation*}
\mathcal{N}_{M}(B)^{\prime} \subseteq\left(B^{\prime}\right)^{\operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)} \tag{3.14}
\end{equation*}
$$

since π is a faithful representation of B^{\prime}. The reverse inclusion $\left(B^{\prime}\right)^{\operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)} \subseteq$ $\mathcal{N}_{M}(B)^{\prime}$ is Lemma 2.6 so condition (iii) holds.

Finally in this section we can express the groupoid normalising algebra $\mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime}$ in terms of the automorphism group $\operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)$. We will use this result repeatedly in the next section to obtain further instances of 1.3 .

THEOREM 3.4. Let $B \subseteq M \subseteq \mathbb{B}(H)$ be an inclusion of von Neumann algebras where B is countably decomposable. Then

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{M}(B)^{\prime}=\left(B^{\prime}\right)^{\mathrm{Aut}_{M^{\prime}}\left(B^{\prime}\right)} \tag{3.15}
\end{equation*}
$$

Proof. Let K be an infinite dimensional separable Hilbert space and define $B_{1}=B \bar{\otimes} \mathbb{B}(K)$ and $M_{1}=M \bar{\otimes} \mathbb{B}(K)$. Then

$$
\begin{equation*}
\mathcal{N}_{M_{1}}\left(B_{1}\right)^{\prime \prime}=\mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime} \bar{\otimes} \mathbb{B}(K) \tag{3.16}
\end{equation*}
$$

by Lemma 3.2. Since B_{1} is properly infinite, Lemma 2.4 gives $\mathcal{G} \mathcal{N}_{M_{1}}\left(B_{1}\right)^{\prime \prime}=$ $\mathcal{N}_{M_{1}}\left(B_{1}\right)^{\prime \prime}$ so the inclusion $B_{1} \subseteq M_{1}$ satisfies condition (i) of Theorem 3.3 By (3.16) and condition (iii) of this theorem,

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{M}(B)^{\prime} \otimes \mathbb{C} 1_{K}=\mathcal{N}_{M_{1}}\left(B_{1}\right)^{\prime}=\left(B_{1}^{\prime}\right)^{\text {Aut }_{M_{1}^{\prime}}\left(B_{1}^{\prime}\right)} \tag{3.17}
\end{equation*}
$$

Finally note that $\theta \mapsto \theta \otimes \operatorname{id}_{\mathbb{B}(K)}$ gives an isomorphism between $\operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)$ and $\operatorname{Aut}_{M_{1}^{\prime}}\left(B_{1}^{\prime}\right)$ so that

$$
\begin{equation*}
\left(B_{1}^{\prime}\right)^{\operatorname{Aut}_{M_{1}^{\prime}}\left(B_{1}^{\prime}\right)}=\left(B^{\prime}\right)^{\operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)} \bar{\otimes} \mathbb{C} 1_{K} \tag{3.18}
\end{equation*}
$$

Thus $\mathcal{G} \mathcal{N}_{M}(B)^{\prime}=\left(B^{\prime}\right)^{\operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)}$.

4. GROUPOID NORMALISERS AND TENSOR PRODUCTS

In this section, we establish our positive answers to Question 1.1. We begin with separably acting inclusions of the form $B \bar{\otimes} A \subseteq M \bar{\otimes} A$, where A is abelian. When B is singular in M, Lemma 4.1 of [6] showed that $B \bar{\otimes} A$ is singular in $M \bar{\otimes} A$ by a direct integral argument based on [16]. The proof given in Lemma 6.6 of [6] shows that any normaliser u of $B \bar{\otimes} A$ in $M \bar{\otimes} A$ is a direct integral of normalisers of B in M over the spectrum of A. The analogous result also holds for groupoid normalisers, giving the following lemma. We omit the proof, which is a routine modification of Lemma 6.6 of [16] and Lemma 4.1 of [6].

LEmmA 4.1. Let $B \subseteq M$ be an inclusion of separably acting von Neumann algebras. If A is a separable abelian von Neumann algebra, then

$$
\begin{equation*}
\mathcal{N}_{M \bar{\otimes} A}(B \bar{\otimes} A)^{\prime \prime}=\mathcal{N}_{M}(B)^{\prime \prime} \bar{\otimes} A, \quad \mathcal{G} \mathcal{N}_{M \bar{\otimes} A}(B \bar{\otimes} A)^{\prime \prime}=\mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime} \bar{\otimes} A \tag{4.1}
\end{equation*}
$$

The next lemma follows the same pattern as the deduction of Theorem 4.3 of [6] from Theorem 3.1 and Lemma 4.1 of [6].

Lemma 4.2. Let $B \subseteq M$ be a unital inclusion of separably acting von Neumann algebras and let L be a separably acting von Neumann algebra. Then

$$
\begin{equation*}
\mathcal{G N}_{M \bar{\otimes} L}(B \bar{\otimes} L)^{\prime \prime}=\mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime} \bar{\otimes} L \tag{4.2}
\end{equation*}
$$

Proof. Fix a faithful representation of M on a separable Hilbert space H_{1} and use this to define the commutants $B^{\prime} \supseteq M^{\prime}$. Write $A=Z(L)$ and take a standard representation of A on a separable Hilbert space K so that A is a masa in $\mathbb{B}(K)$. Work on the Hilbert space $H_{1} \otimes K$ so that $(B \bar{\otimes} A)^{\prime}=B^{\prime} \bar{\otimes} A$. Given $\theta \in$ Aut $_{M^{\prime} \otimes A}\left(B^{\prime} \bar{\otimes} A\right)$, Theorem 3.4 gives $\theta(x)=x$ for all $x \in \mathcal{G N}_{M \bar{\otimes} A}(B \bar{\otimes} A)^{\prime}=$ $\mathcal{G} \mathcal{N}_{M}(B)^{\prime} \bar{\otimes} A$, where the last identity is obtained by taking commutants in Lemma 4.1

Now suppose that L is faithfully represented on a separable Hilbert space H_{2} and work on $H_{1} \otimes H_{2}$. Given an automorphism $\theta \in \operatorname{Aut}_{M^{\prime}} \bar{\otimes} L^{\prime}\left(B^{\prime} \otimes L^{\prime}\right)$, we have

$$
\begin{align*}
\theta(x)\left(1_{B^{\prime}} \otimes \ell^{\prime}\right) & =\theta(x) \theta\left(1_{B^{\prime}} \otimes \ell^{\prime}\right)=\theta\left(x\left(1_{B^{\prime}} \otimes \ell^{\prime}\right)\right)=\theta\left(\left(1_{B^{\prime}} \otimes \ell^{\prime}\right) x\right) \\
& =\theta\left(1_{B^{\prime}} \otimes \ell^{\prime}\right) \theta(x)=\left(1_{B^{\prime}} \otimes \ell^{\prime}\right) \theta(x), \quad \ell^{\prime} \in L^{\prime}, \quad x \in B^{\prime} \bar{\otimes} A, \tag{4.3}
\end{align*}
$$

since $\theta\left(1_{B^{\prime}} \otimes \ell^{\prime}\right)=1_{B^{\prime}} \otimes \ell^{\prime}$ and $1_{B^{\prime}} \otimes \ell^{\prime}$ commutes with $B^{\prime} \bar{\otimes} A \subseteq B^{\prime} \bar{\otimes} L^{\prime}$. Thus

$$
\begin{equation*}
\theta(x) \in\left(\mathbb{C} 1_{B^{\prime}} \otimes L^{\prime}\right)^{\prime} \cap\left(B^{\prime} \bar{\otimes} L^{\prime}\right)=B^{\prime} \bar{\otimes} Z(L)=B^{\prime} \bar{\otimes} A \tag{4.4}
\end{equation*}
$$

and so every $\theta \in \operatorname{Aut}_{M^{\prime}} \bar{\otimes} L^{\prime}\left(B^{\prime} \bar{\otimes} L^{\prime}\right)$ restricts to an element of $\mathrm{Aut}_{M^{\prime}} \bar{\otimes}_{A}\left(B^{\prime} \bar{\otimes} A\right)$. It then follows from the first paragraph of the proof that $\theta(x)=x$ for all $x \in$ $\mathcal{G} \mathcal{N}_{M}(B)^{\prime} \bar{\otimes} A$. Since θ was arbitrary, it follows that

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{M}(B)^{\prime} \bar{\otimes} A \subseteq \operatorname{Fix}\left(B^{\prime} \bar{\otimes} L^{\prime}, \operatorname{Aut}_{M^{\prime}} \bar{\otimes} L^{\prime}\left(B^{\prime} \bar{\otimes} L^{\prime}\right)\right)=\mathcal{G} \mathcal{N}_{M \bar{\otimes} L}(B \bar{\otimes} L)^{\prime} \tag{4.5}
\end{equation*}
$$

where the second equality is Theorem 3.4. Take commutants to obtain

$$
\begin{equation*}
\mathcal{G N}_{M}(B)^{\prime \prime} \bar{\otimes} A^{\prime} \supseteq \mathcal{G N}_{M \bar{\otimes} L}(B \bar{\otimes} L)^{\prime \prime} \tag{4.6}
\end{equation*}
$$

on $H_{1} \otimes H_{2}$. Then

$$
\begin{equation*}
\mathcal{G N}_{M \bar{\otimes} L}(B \bar{\otimes} L)^{\prime \prime} \subseteq\left(\mathcal{G N}_{M}(B)^{\prime \prime} \bar{\otimes} A^{\prime}\right) \cap(M \bar{\otimes} L)=\mathcal{G N}_{M}(B)^{\prime \prime} \bar{\otimes} L \tag{4.7}
\end{equation*}
$$

Since the reverse inclusion is immediate, the result follows.
We now start work on our main result. Given two unital inclusions $B_{i} \subseteq M_{i}$ of von Neumann algebras, we will show that

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{M_{1} \bar{\otimes} M_{2}}\left(B_{1} \bar{\otimes} B_{2}\right)^{\prime \prime}=\mathcal{G} \mathcal{N}_{M_{1}}\left(B_{1}\right)^{\prime \prime} \bar{\otimes} \mathcal{N}_{M_{2}}\left(B_{2}\right)^{\prime \prime} \tag{4.8}
\end{equation*}
$$

when $B_{1}^{\prime} \cap M_{1}$ is atomic and lies in the centre of B_{1}. The inclusion from right to left is immediate. We establish the inclusion from left to right by demonstrating that $\mathcal{G} \mathcal{N}_{M_{1} \bar{\otimes} M_{2}}\left(B_{1} \bar{\otimes} B_{2}\right)^{\prime \prime}$ is contained in $M_{1} \bar{\otimes} \mathcal{G} \mathcal{N}_{M_{2}}\left(B_{2}\right)^{\prime \prime}$ and in $\mathcal{G} \mathcal{N}_{M_{1}}\left(B_{1}\right)^{\prime \prime} \bar{\otimes} M_{2}$ separately. The next lemma, which is based on Theorem 4.4 of [6], handles the first, and easier, of these two inclusions.

Lemma 4.3. For $i=1,2$, let $B_{i} \subseteq M_{i}$ be unital inclusions of separably acting von Neumann algebras and suppose that $B_{1}^{\prime} \cap M_{1}=Z\left(B_{1}\right)$ is atomic. Then

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{M_{1} \bar{\otimes} M_{2}}\left(B_{1} \bar{\otimes} B_{2}\right)^{\prime \prime} \subseteq M_{1} \bar{\otimes} \mathcal{G} \mathcal{N}_{M_{2}}\left(B_{2}\right)^{\prime \prime} \tag{4.9}
\end{equation*}
$$

Proof. Represent M_{1} and M_{2} faithfully on Hilbert spaces H_{1} and H_{2} respectively and consider an automorphism $\theta \in \operatorname{Aut}_{M_{1}^{\prime} \bar{\otimes} M_{2}^{\prime}}\left(B_{1}^{\prime} \bar{\otimes} B_{2}^{\prime}\right)$. Write $A=$ $Z\left(B_{1}\right)$. For $y_{1} \in A=Z\left(B_{1}^{\prime}\right)$ and $y_{2} \in B_{2}^{\prime}$, we have

$$
\begin{align*}
\theta\left(y_{1} \otimes y_{2}\right)(x \otimes 1) & =\theta\left(y_{1} x \otimes y_{2}\right)=\theta\left(x y_{1} \otimes y_{2}\right) \\
& =(x \otimes 1) \theta\left(y_{1} \otimes y_{2}\right), \quad x \in M_{1}^{\prime} . \tag{4.10}
\end{align*}
$$

Thus

$$
\begin{equation*}
\theta\left(y_{1} \otimes y_{2}\right) \in\left(M_{1}^{\prime} \otimes \mathbb{C} 1\right)^{\prime} \cap\left(B_{1}^{\prime} \bar{\otimes} B_{2}^{\prime}\right)=\left(B_{1}^{\prime} \cap M_{1}\right) \bar{\otimes} B_{2}^{\prime}=A \bar{\otimes} B_{2}^{\prime} \tag{4.11}
\end{equation*}
$$

and so it follows that θ restricts to an element of $\operatorname{Aut}_{\mathbb{C} 1 \otimes M_{2}^{\prime}}\left(A \bar{\otimes} B_{2}^{\prime}\right)$. Let A be represented as the diagonal operators on some Hilbert space K, so that working on $K \otimes H_{2}$ we have $\left(A \bar{\otimes} B_{2}\right)^{\prime}=A \bar{\otimes} B_{2}^{\prime}$. Lemma 3.1 gives $\mathcal{G} \mathcal{N}_{\mathbb{B}(K) \bar{\otimes} M_{2}}\left(A \bar{\otimes} B_{2}\right)^{\prime \prime}=$ $\mathbb{B}(K) \bar{\otimes} \mathcal{G N}_{M_{2}}\left(B_{2}\right)^{\prime \prime}$ so that

$$
\begin{equation*}
\operatorname{Fix}\left(A \bar{\otimes} B_{2}^{\prime}, \operatorname{Aut}_{\mathbb{C} 1 \otimes M_{2}^{\prime}}\left(A \bar{\otimes} B_{2}^{\prime}\right)\right)=\mathbb{C} 1 \otimes \mathcal{G N}_{M_{2}}\left(B_{2}\right)^{\prime} \tag{4.12}
\end{equation*}
$$

by Theorem 3.4. Thus $\theta(1 \otimes z)=1 \otimes z$ for all $z \in \mathcal{G N}_{M_{2}}\left(B_{2}\right)^{\prime}$. Theorem 3.4 also gives

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{M_{1} \bar{\otimes} M_{2}}\left(B_{1} \bar{\otimes} B_{2}\right)^{\prime}=\operatorname{Fix}\left(B_{1}^{\prime} \bar{\otimes} B_{2}^{\prime}, \operatorname{Aut}_{M_{1}^{\prime}} \bar{\otimes} M_{2}^{\prime}\left(B_{1}^{\prime} \bar{\otimes} B_{2}^{\prime}\right)\right) \tag{4.13}
\end{equation*}
$$

so that

$$
\begin{equation*}
\mathbb{C} 1 \otimes \mathcal{G N}_{M_{2}}\left(B_{2}\right)^{\prime} \subseteq \mathcal{G} \mathcal{N}_{M_{1} \bar{\otimes} M_{2}}\left(B_{1} \bar{\otimes} B_{2}\right)^{\prime} \tag{4.14}
\end{equation*}
$$

The inclusions

$$
\begin{align*}
\mathcal{G} \mathcal{N}_{M_{1} \bar{\otimes} M_{2}}\left(B_{1} \bar{\otimes} B_{2}\right)^{\prime \prime} & \subseteq\left(\mathbb{B}\left(H_{1}\right) \bar{\otimes} \mathcal{G N}_{M_{2}}\left(B_{2}\right)^{\prime \prime}\right) \cap\left(M_{1} \bar{\otimes} M_{2}\right) \\
& =M_{1} \bar{\otimes} \mathcal{G N}_{M_{2}}\left(B_{2}\right)^{\prime \prime} \tag{4.15}
\end{align*}
$$

follow by taking commutants.
Now we turn to the second inclusion required for 4.8. Recall that a von Neumann algebra in standard form has the property that its automorphisms are all spatially implemented.

LEMMA 4.4. Let $B \subseteq M$ be a unital inclusion of separably acting von Neumann algebras with $B^{\prime} \cap M \subseteq B$ and suppose that p and q are minimal central projections in B. Let L be another separable von Neumann algebra acting in standard form on the Hilbert space K. Suppose that $v \in \mathcal{G} \mathcal{N}_{M \bar{\otimes} \mathbb{B}(K)}(B \bar{\otimes} L)$ satisfies $v^{*} v, v v^{*} \in Z(B \bar{\otimes} L)$ with $v^{*} v \leqslant p \otimes 1$ and $v v^{*} \leqslant q \otimes 1$. Then $v \in \mathcal{G N}_{M}(B)^{\prime \prime} \bar{\otimes} \mathbb{B}(K)$.

Proof. We represent M on a Hilbert space H. Since p and q are minimal central projections in $Z(B)$, there are central projections $p_{1}, q_{1} \in L$ with $v^{*} v=$ $p \otimes p_{1}$ and $v v^{*}=q \otimes q_{1}$. Thus $x \mapsto v x v^{*}$ gives an isomorphism from $(B p) \bar{\otimes}\left(L p_{1}\right)$ onto $(B q) \bar{\otimes}\left(L q_{1}\right)$. As a consequence, we obtain a surjective isomorphism θ : $\left(B^{\prime} p\right) \bar{\otimes}\left(L^{\prime} p_{1}\right) \rightarrow\left(B^{\prime} q\right) \bar{\otimes}\left(L^{\prime} q_{1}\right)$ by $\theta(y)=v y v^{*}$. Note that v commutes with $M^{\prime} \otimes \mathbb{C} 1$ so

$$
\begin{equation*}
\theta\left(M^{\prime} \otimes p_{1}\right)=v\left(M^{\prime} \otimes p_{1}\right) v^{*}=v\left(M^{\prime} \otimes 1\right) v^{*}=\left(M^{\prime} \otimes 1\right) v v^{*}=M^{\prime} q \otimes q_{1} \tag{4.16}
\end{equation*}
$$

We claim that $\theta\left(p \otimes L^{\prime} p_{1}\right)=q \otimes L^{\prime} q_{1}$. Indeed, for $m^{\prime} \in M^{\prime}$ and $\ell^{\prime} \in L^{\prime}$,

$$
\begin{equation*}
\left(m^{\prime} p \otimes p_{1}\right)\left(p \otimes \ell^{\prime} p_{1}\right)=\left(p \otimes \ell^{\prime} p_{1}\right)\left(m^{\prime} p \otimes p_{1}\right) \tag{4.17}
\end{equation*}
$$

so that applying θ and using 4.16, we obtain

$$
\begin{equation*}
\theta\left(p \otimes \ell^{\prime} p_{1}\right) \in\left(M^{\prime} q \otimes q_{1}\right)^{\prime} \cap\left(B^{\prime} q \otimes L^{\prime} q_{1}\right)=\left(B^{\prime} \cap M\right) q \otimes L^{\prime} q_{1}=q \otimes L^{\prime} q_{1} \tag{4.18}
\end{equation*}
$$

from the minimality of $q \in Z(B)$. Interchanging the roles of v and v^{*} shows that $\theta^{-1}\left(q \otimes L^{\prime} q_{1}\right)=p \otimes L^{\prime} p_{1}$, establishing the claim.

Since both $L^{\prime} p_{1}$ and $L^{\prime} q_{1}$ act in standard form on $p_{1}(K)$ and $q_{1}(K)$ respectively, there is a partial isometry $w \in \mathbb{B}(K)$ with $w^{*} w=p_{1}$ and $w w^{*}=q_{1}$ so that

$$
\begin{equation*}
v\left(p \otimes \ell^{\prime} p_{1}\right) v^{*}=\theta\left(p \otimes \ell^{\prime} p_{1}\right)=(1 \otimes w)\left(q \otimes \ell^{\prime} p_{1}\right)(1 \otimes w)^{*}, \quad \ell^{\prime} \in L^{\prime} \tag{4.19}
\end{equation*}
$$

Define $v_{1}=(1 \otimes w)^{*} v$ so that

$$
\begin{align*}
& v_{1} v_{1}^{*}=(1 \otimes w)^{*} v v^{*}(1 \otimes w)=(1 \otimes w)^{*}\left(q \otimes q_{1}\right)(1 \otimes w)=q \otimes p_{1} \text { and } \tag{4.20}\\
& v_{1}^{*} v_{1}=v^{*}(1 \otimes w)(1 \otimes w)^{*} v=v^{*}\left(1 \otimes q_{1}\right) v=p \otimes p_{1} \tag{4.21}
\end{align*}
$$

As $(1 \otimes w)\left(1 \otimes w^{*}\right)=1 \otimes q_{1} \geqslant v_{1} v_{1}^{*}$, we have $v=(1 \otimes w) v_{1}$. Certainly $v_{1} \in$ $M \otimes p_{1} \mathbb{B}(K) p_{1}$, and direct computations give

$$
\begin{align*}
v_{1}\left(1 \otimes \ell^{\prime}\right) & =v_{1} v_{1}^{*} v_{1}\left(1 \otimes \ell^{\prime}\right) v_{1}^{*} v_{1}=v_{1}\left(p \otimes l^{\prime} p_{1}\right) v_{1}^{*} v_{1} \\
& =(1 \otimes w)^{*} \theta\left(p \otimes \ell^{\prime} p_{1}\right)\left(1 \otimes w^{*}\right) v_{1} \\
& =\left(q \otimes w^{*} w \ell^{\prime} w^{*} w\right) v_{1}=\left(1 \otimes \ell^{\prime}\right) v_{1}, \quad \ell^{\prime} \in L^{\prime} \tag{4.22}
\end{align*}
$$

Thus

$$
\begin{equation*}
v_{1} \in\left(\mathbb{C} 1 \otimes L^{\prime}\right)^{\prime} \cap\left(M \bar{\otimes} p_{1} \mathbb{B}(K) p_{1}\right)=M \bar{\otimes} L p_{1} \subseteq M \bar{\otimes} L \tag{4.23}
\end{equation*}
$$

Since $x \mapsto v_{1} x v_{1}^{*}$ is an isomorphism from $B^{\prime} p \bar{\otimes} L^{\prime} p_{1}=(B \bar{\otimes} L)^{\prime} \cap \mathbb{B}\left(p H \otimes p_{1} K\right)$ onto $B^{\prime} q \bar{\otimes} L^{\prime} p_{1}=(B \bar{\otimes} L)^{\prime} \cap \mathbb{B}\left(q H \otimes p_{1} K\right)$ we can take commutants to see that

$$
\begin{equation*}
v_{1}(B \bar{\otimes} L) v_{1}^{*} \subseteq B \bar{\otimes} L \tag{4.24}
\end{equation*}
$$

and similarly that $v_{1}^{*}(B \bar{\otimes} L) v_{1}^{*} \subseteq B \bar{\otimes} L$. Consequently $v_{1} \in \mathcal{G} \mathcal{N}_{M \bar{\otimes} L}(B \bar{\otimes} L)$ and so $v_{1} \in \mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime} \bar{\otimes} L$ by Lemma 4.2 It follows that

$$
\begin{equation*}
v=(1 \otimes w) v_{1} \in \mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime} \bar{\otimes} \mathbb{B}(K) \tag{4.25}
\end{equation*}
$$

as required.
LEMMA 4.5. Let $B \subseteq M$ be an inclusion of separably acting von Neumann algebras so that $B^{\prime} \cap M=Z(B)$ is atomic. Let L be another von Neumann algebra, acting in standard form on a separable Hilbert space K. Then

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{M \bar{\otimes}(K)}(B \bar{\otimes} L)^{\prime \prime} \subseteq \mathcal{G N}_{M}(B)^{\prime \prime} \bar{\otimes} \mathbb{B}(K) \tag{4.26}
\end{equation*}
$$

Proof. We first show that it suffices to prove the lemma under the additional assumption that B is properly infinite. If B is not properly infinite, consider the inclusion

$$
\begin{equation*}
B_{0}=\mathbb{B}\left(\ell^{2}(\mathbb{N})\right) \bar{\otimes} B \subseteq \mathbb{B}\left(\ell^{2}(\mathbb{N})\right) \bar{\otimes} M=M_{0} \tag{4.27}
\end{equation*}
$$

which also satisfies the hypotheses of the lemma and B_{0} is properly infinite. Lemma 3.1 gives

$$
\begin{align*}
& \mathcal{G} \mathcal{N}_{M_{0}}\left(B_{0}\right)^{\prime \prime}=\mathbb{B}\left(\ell^{2}(\mathbb{N})\right) \bar{\otimes} \mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime} \text { and } \tag{4.28}\\
& \mathcal{G} \mathcal{N}_{M_{0} \bar{\otimes} \mathbb{B}(K)}\left(B_{0} \bar{\otimes} L\right)^{\prime \prime}=\mathbb{B}\left(\ell^{2}(\mathbb{N})\right) \bar{\otimes} \mathcal{S N}_{M \otimes \mathbb{B}(K)}(B \bar{\otimes} L)^{\prime \prime} \tag{4.29}
\end{align*}
$$

Thus, assuming that the lemma holds for the inclusion $B_{0} \subseteq M_{0}$, we obtain

$$
\begin{align*}
\mathbb{B}\left(\ell^{2}(\mathbb{N})\right) \bar{\otimes} \mathcal{G} \mathcal{N}_{M \bar{\otimes} \mathbb{B}(K)}(B \bar{\otimes} L)^{\prime \prime} & =\mathcal{G} \mathcal{N}_{M_{0} \bar{\otimes} \mathbb{B}(K)}\left(B_{0} \bar{\otimes} L\right)^{\prime \prime} \\
& \subseteq \mathcal{G} \mathcal{N}_{M_{0}}\left(B_{0}\right)^{\prime \prime} \bar{\otimes} \mathbb{B}(K) \\
& =\mathbb{B}\left(\ell^{2}(\mathbb{N})\right) \bar{\otimes} \mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime} \bar{\otimes} \mathbb{B}(K) \tag{4.30}
\end{align*}
$$

and so 4.26 holds for the original inclusion $B \subseteq M$.
Now assume that B is properly infinite. Fix $v \in \mathcal{G} \mathcal{N}_{M \bar{\otimes} \mathbb{B}(K)}(B \bar{\otimes} L)$ and minimal projections $p, q \in Z(B)$. We will show that

$$
\begin{equation*}
(p \otimes 1) v(q \otimes 1) \in \mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime} \otimes \mathbb{B}(K) \tag{4.31}
\end{equation*}
$$

from which the result follows immediately. Let

$$
\begin{equation*}
(p \otimes 1) v(q \otimes 1)=w|(p \otimes 1) v(1 \otimes 1) q| \tag{4.32}
\end{equation*}
$$

be the polar decomposition of $(p \otimes 1) v(q \otimes 1)$, so that $|(p \otimes 1) v(q \otimes 1)| \in B \bar{\otimes} L$ and $w \in \mathcal{G} \mathcal{N}_{M \bar{\otimes} \mathbb{B}(K)}(B \bar{\otimes} L)$ by Proposition 2.1. We must show that

$$
\begin{equation*}
w \in \mathcal{G N}_{M}(B)^{\prime \prime} \bar{\otimes} \mathbb{B}(K) \tag{4.33}
\end{equation*}
$$

Write $A_{p}=(p \otimes 1)(B \bar{\otimes} L)(p \otimes 1)$ and $A_{q}=(q \otimes 1)(B \bar{\otimes} L)(q \otimes 1)$ so that $w A_{q} w^{*} \subseteq A_{p}$ and $w^{*} A_{p} w \subseteq A_{q}$. Note that both A_{p} and A_{q} are central cutdowns of $B \bar{\otimes} L$ and so properly infinite. By Lemma 2.3. we can factorise $w=a_{q} u a_{p}$, where a_{p} and a_{q} are partial isometries in A_{p} and A_{q} respectively and u is a partial isometry with $u A_{q} u^{*} \subseteq A_{p}, u^{*} A_{p} u \subseteq A_{q}$ and $u^{*} u \in Z\left(A_{q}\right)$, $u u^{*} \in Z\left(A_{p}\right)$. Lemma 4.4 then shows that u, and hence w, lies in $\mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime} \bar{\otimes} \mathbb{B}(K)$, exactly as required.

We can now establish $(\sqrt{4.8})$, giving a general class of inclusions with a positive answer to Question 1.1(ii).

THEOREM 4.6. Let $B_{1} \subseteq M_{1}$ be an inclusion of separably acting von Neumann algebras where $B_{1}^{\prime} \cap M_{1}=Z\left(B_{1}\right)$ is atomic and let $B_{2} \subseteq M_{2}$ be another unital inclusion of separably acting von Neumann algebras. Then

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{M_{1} \bar{\otimes} M_{2}}\left(B_{1} \bar{\otimes} B_{2}\right)^{\prime \prime}=\mathcal{G} \mathcal{N}_{M_{1}}\left(B_{1}\right)^{\prime \prime} \bar{\otimes} \mathcal{G} \mathcal{N}_{M_{2}}\left(B_{2}\right)^{\prime \prime} \tag{4.34}
\end{equation*}
$$

Proof. Take faithful representations of M_{1} and M_{2} on Hilbert spaces H_{1} and H_{2} respectively. Fix $\theta \in \operatorname{Aut}_{M_{1}^{\prime}} \bar{\otimes} M_{2}^{\prime}\left(B_{1}^{\prime} \bar{\otimes} B_{2}^{\prime}\right)$. We will show that $\theta(x \otimes 1)=x \otimes 1$ for all $x \in \mathcal{G N}_{M_{1}}\left(B_{1}\right)^{\prime}$.

Define $L=B_{2}^{\prime} \cap M_{2}$. For $m_{2}^{\prime} \in M_{2}^{\prime}, b_{1}^{\prime} \in B_{1}^{\prime}$ and $\ell \in L=B_{2}^{\prime} \cap M_{2}$ we have

$$
\begin{equation*}
\theta\left(b_{1}^{\prime} \otimes \ell\right)\left(1 \otimes m_{2}^{\prime}\right)=\theta\left(b_{1}^{\prime} \otimes \ell m_{2}\right)=\theta\left(b_{1}^{\prime} \otimes m_{2} \ell\right)=\left(1 \otimes m_{2}^{\prime}\right) \theta\left(b_{1}^{\prime} \otimes \ell\right) \tag{4.35}
\end{equation*}
$$

so that $\theta\left(b_{1}^{\prime} \otimes \ell\right) \in\left(\mathbb{C} 1 \otimes M_{2}^{\prime}\right)^{\prime} \cap\left(B_{1}^{\prime} \bar{\otimes} B_{2}^{\prime}\right)=B_{1}^{\prime} \bar{\otimes} L$. In particular θ restricts to an element of $\operatorname{Aut}_{M_{1}^{\prime} \otimes \mathbb{C} 1}\left(B_{1}^{\prime} \bar{\otimes} L\right)$. Now take a standard representation of L on K and work on $H_{1} \otimes K$. Applying Theorem 3.4 to the inclusion $B_{1} \bar{\otimes} L^{\prime} \subseteq M_{1} \bar{\otimes} \mathbb{B}(K)$, we have

$$
\begin{equation*}
\operatorname{Fix}\left(B_{1}^{\prime} \bar{\otimes} L, \operatorname{Aut}_{M_{1}^{\prime} \otimes \mathbb{C} 1}\left(B_{1}^{\prime} \bar{\otimes} L\right)\right)=\mathcal{G} \mathcal{N}_{M_{1} \bar{\otimes} \mathbb{B}(K)}\left(B \bar{\otimes} L^{\prime}\right)^{\prime} \tag{4.36}
\end{equation*}
$$

In particular $\theta(z)=z$ for all $z \in \mathcal{G} \mathcal{N}_{M_{1} \bar{\otimes} \mathbb{B}(K)}\left(B \bar{\otimes} L^{\prime}\right)^{\prime}$. Lemma 4.5 gives

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{M_{1} \bar{\otimes} \mathbb{B}(K)}\left(B_{1} \bar{\otimes} L^{\prime}\right)^{\prime \prime} \subseteq \mathcal{G N}_{M_{1}}\left(B_{1}\right)^{\prime \prime} \bar{\otimes} \mathbb{B}(K) \tag{4.37}
\end{equation*}
$$

and the inclusion

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{M_{1}}\left(B_{1}\right)^{\prime} \otimes \mathbb{C} 1 \subseteq \mathcal{G} \mathcal{N}_{M_{1} \bar{\otimes} \mathbb{B}(K)}\left(B_{1} \bar{\otimes} L^{\prime}\right)^{\prime} \tag{4.38}
\end{equation*}
$$

follows by taking commutants in 4.37). Thus $\theta(x \otimes 1)=x \otimes 1$ for all $x \in$ $\mathcal{G} \mathcal{N}_{M_{1}}\left(B_{1}\right)^{\prime}$.

Applying Theorem 3.4 to the original inclusion $B_{1} \bar{\otimes} B_{2} \subseteq M_{1} \bar{\otimes} M_{2}$ gives

$$
\begin{equation*}
\mathrm{GN}_{M_{1} \bar{\otimes} M_{2}}\left(B_{1} \bar{\otimes} B_{2}\right)^{\prime}=\operatorname{Fix}\left(B_{1}^{\prime} \bar{\otimes} B_{2}^{\prime}, \operatorname{Aut}_{M_{1}^{\prime} \bar{\otimes} M_{2}^{\prime}}\left(B_{1}^{\prime} \bar{\otimes} B_{2}^{\prime}\right)\right) \tag{4.39}
\end{equation*}
$$

and so

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{M_{1}}\left(B_{1}\right)^{\prime} \otimes \mathbb{C} 1 \subseteq \mathcal{G} \mathcal{N}_{M_{1} \bar{\otimes} M_{2}}\left(B_{1} \bar{\otimes} B_{2}\right)^{\prime} \tag{4.40}
\end{equation*}
$$

Taking commutants gives

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{M_{1} \bar{\otimes} M_{2}}\left(B_{1} \bar{\otimes} B_{2}\right)^{\prime \prime} \subseteq \mathcal{G} \mathcal{N}_{M_{1}}\left(B_{1}\right)^{\prime \prime} \bar{\otimes} \mathbb{B}\left(H_{2}\right) \tag{4.41}
\end{equation*}
$$

As Lemma 4.3 states that

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{M_{1} \bar{\otimes} M_{2}}\left(B_{1} \bar{\otimes} B_{2}\right)^{\prime \prime} \subseteq M_{1} \bar{\otimes} \mathcal{G} \mathcal{N}_{M_{2}}\left(B_{2}\right)^{\prime \prime} \tag{4.42}
\end{equation*}
$$

we obtain

$$
\begin{align*}
\mathcal{G} \mathcal{N}_{M_{1} \bar{\otimes} M_{2}}\left(B_{1} \bar{\otimes} B_{2}\right)^{\prime \prime} & \subseteq\left(\mathcal{G} \mathcal{N}_{M_{1}}\left(B_{1}\right)^{\prime \prime} \bar{\otimes} \mathbb{B}\left(H_{2}\right)\right) \cap\left(M_{1} \bar{\otimes} \mathcal{G N}_{M_{2}}\left(B_{2}\right)^{\prime \prime}\right) \\
& =\mathcal{G} \mathcal{N}_{M_{1}}\left(B_{1}\right)^{\prime \prime} \overline{\mathcal{G}} \mathcal{N}_{M_{2}}\left(B_{2}\right)^{\prime \prime} \tag{4.43}
\end{align*}
$$

As the reverse inclusion is immediate, the result follows.
We end this section by giving an example of a diffuse masa-factor inclusion $A \subseteq M$ for which

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{M \bar{\otimes} N}(A \bar{\otimes} B)^{\prime \prime}=\mathcal{G} \mathcal{N}_{M}(A)^{\prime \prime} \bar{\otimes} \mathcal{G} \mathcal{N}_{N}(B)^{\prime \prime} \tag{4.44}
\end{equation*}
$$

for all inclusions $B \subseteq N$. Fix $k \in \mathbb{N}$ with $k \geqslant 2$ and let \mathbb{F}_{k} be the free group on the k generators $a, b_{1}, \ldots, b_{k-1}$ (the argument given below will also be valid for $k=\infty)$. Let $M=L\left(\mathbb{F}_{k}\right)$ be the group von Neumann algebra generated by \mathbb{F}_{k}. We identify elements of the group with the corresponding elements in M and let A be the von Neumann subalgebra of M generated by a. This is a masa in M, known as a generator masa so has $A^{\prime} \cap M=A$. The subgroup generated by a satisfies Dixmier's criterion for singularity of the masa A [2] (see also p. 22 of [13]) and so $\mathcal{G} \mathcal{N}_{M}(A)^{\prime \prime}=A$. The inclusion $A \subseteq M$ fits into the framework of [7] so (4.44) holds whenever $B \subseteq N$ is an inclusion of finite von Neumann algebras with $B^{\prime} \cap N \subseteq B$. Our objective is to establish 4.44 without making any assumption on the inclusion $B \subseteq N$.

We denote the standard orthonormal basis for $\ell^{2}\left(\mathbb{F}_{k}\right)$ by $\left\{\delta_{g}: g \in \mathbb{F}_{k}\right\}$. When we view an operator $x \in L\left(\mathbb{F}_{k}\right)$ as a vector in the underlying Hilbert space, then it has a square summable Fourier series $\sum_{g \in \mathbb{F}_{k}} \alpha_{g} \delta_{g}$. The support of x is then $\left\{g \in \mathbb{F}_{k}: \alpha_{g} \neq 0\right\}$. When viewing x as an operator, we write $x=\sum_{g \in \mathbb{F}_{k}} \alpha_{g} g$.

Lemma 4.7. With the notation above, let H be a Hilbert space and $x \in M \bar{\otimes} \mathbb{B}(H)$ satisfy $x(A \otimes \mathbb{C} 1) x^{*} \subseteq A \bar{\otimes} \mathbb{B}(H)$. Then $x \in A \bar{\otimes} \mathbb{B}(H)$.

Proof. With respect to some choice of matrix units for $\mathbb{B}(H)$, we may write $x=\left(x_{i j}\right)_{i, j \in \Lambda}$ with $x_{i j} \in L\left(\mathbb{F}_{k}\right)$. The hypothesis implies that $\sum_{j} x_{i j} a^{t} x_{j i}^{*} \in A$ for all $t \in \mathbb{Z}$ and all $i \in \Lambda$, from which we wish to conclude that each $x_{i j}$ lies in A.

Thus it suffices to consider operators $y_{i} \in L\left(\mathbb{F}_{k}\right)$ so that $\sum_{j} y_{j} a^{t} y_{j}^{*} \in A$ for all $t \in \mathbb{Z}$, and deduce that $y_{j} \in A$ for all j. Taking $t=0$ and applying the trace shows that $\sum_{j}\left\|y_{j}\right\|_{2}^{2}<\infty$, so by scaling we may assume that this sum is 1 . We will argue by contradiction, so suppose that there is some j_{0} such that $y_{j_{0}} \notin A$. Then the support of $y_{j_{0}}$ contains a word g which is not a power of a. Then g may be written in reduced form as $a^{n} w_{0} a^{m}$ where $m, n \in \mathbb{Z}$ and w_{0} is a non-trivial reduced word whose first and last letters lie in $\left\{b_{1}^{ \pm 1}, \ldots, b_{k-1}^{ \pm 1}\right\}$. We will examine the coefficient of $g a^{t} g^{-1}$ in $S(t):=\sum_{j} y_{j} a^{t} y_{j}^{*}$ and show that it is nonzero for sufficiently large values of t. This will give the desired contradiction.

Let $c=\left\langle y_{j_{0}} \delta_{e}, \delta_{g}\right\rangle \neq 0$ be the coefficient of g in $y_{j_{0}}$. For any fixed group element $h \in \mathbb{F}_{k}$ and any $t \in \mathbb{Z}$, the coefficient of h in $y_{j} a^{t} y_{j}^{*}$ is

$$
\begin{equation*}
\left\langle y_{j} a^{t} y_{j}^{*} \delta_{e}, \delta_{h}\right\rangle=\left\langle a^{t} y_{j}^{*} \delta_{e}, J h^{-1} J y_{j}^{*} \delta_{e}\right\rangle \tag{4.45}
\end{equation*}
$$

where $J h^{-1} J$ is the unitary operator of right-convolution by h. This is bounded in absolute value by $\left\|y_{j}\right\|_{2}^{2}$ using the Cauchy-Schwarz inequality. Consequently, the contribution of $\sum_{j \in \Lambda_{0}} y_{j} a^{t} y_{j}^{*}$ to the coefficient of $g a^{t} g^{-1}$ in $S(t)$ is bounded above by $\sum_{j \in \Lambda_{0}}\left\|y_{j}\right\|_{2}^{2}$, for any subset Λ_{0} of the index set Λ. Choose a finite set $\Lambda_{0} \subseteq \Lambda$ so that $\sum_{j \in \Lambda \backslash \Lambda_{0}}\left\|y_{j}\right\|_{2}^{2}<|c|^{2} / 4$. For $t \in \mathbb{Z}$, write $S_{\Lambda_{0}}(t)=\sum_{j \in \Lambda_{0}} y_{j} a^{t} y_{j}^{*}$.

For each $j \in \Lambda_{0}$, we may write y_{j} as an orthogonal sum $z_{j}+z_{j}^{\prime}$ where each z_{j} is a finite linear combination of group elements, g appears in $z_{j_{0}}$, and $\sum_{j \in \Lambda_{0}}\left\|z_{j}^{\prime}\right\|_{2}<$ $|c|^{2} / 4$. Then $g a^{t} g^{-1}$ can appear in $S_{\Lambda_{0}}(t)$ from the four terms $\sum_{j \in \Lambda_{0}} z_{j} a^{t} z_{j}^{*}, \sum_{j \in \Lambda_{0}} z_{j} a^{t} z_{j}^{\prime *}$, $\sum_{j \in \Lambda_{0}} z_{j}^{\prime} a^{t} z_{j}^{*}$ and $\sum_{j \in \Lambda_{0}} z_{j}^{\prime} a^{t} z_{j}^{\prime *}$. Since $\left\|z_{j}^{\prime}\right\|_{2} \leqslant\left\|y_{j}\right\|_{2} \leqslant 1$ and $\left\|z_{j}\right\|_{2} \leqslant\left\|y_{j}\right\|_{2} \leqslant 1$, we may argue as above to see that the total contribution (in absolute value) of the latter three terms to the coefficient of $g a^{t} g^{-1}$ is at most $3|c|^{2} / 4$. For example, the contribution of the term $\sum_{j \in \Lambda_{0}} z_{j} a^{t} z_{j}^{\prime *}$ is bounded above in absolute value by

$$
\begin{equation*}
\sum_{j \in \Lambda_{0}}\left\|z_{j}\right\|_{2}\left\|z_{j}^{\prime *}\right\|_{2} \leqslant \sum_{j \in \Lambda_{0}}\left\|z_{j}^{\prime *}\right\|_{2}<\frac{|c|^{2}}{4} \tag{4.46}
\end{equation*}
$$

We now examine the contribution from $\sum_{j \in \Lambda_{0}} z_{j} a^{t} z_{j}^{*}$, recalling that each z_{j} is supported on finitely many group elements. Thus there is an integer $K>0$ which bounds the number of $a^{ \pm 1}$'s in any word in the support of z_{j} for any $j \in \Lambda_{0}$. There are two forms for such words. The first is a^{p} where $|p| \leqslant K$ while the second is $a^{p} v a^{q}$, where $p, q \in \mathbb{Z}$ and the first and last letters of v lie in $\left\{b_{1}^{ \pm 1}, \ldots, b_{k-1}^{ \pm 1}\right\}$. Moreover, we will have that $|p|,|q| \leqslant K$, and that v can contain at most $K a^{ \pm 1}$'s.

We now restrict attention to $t \geqslant 5 \mathrm{~K}$. In order to avoid a proliferation of cases, we write the typical term in the expansion of $\sum_{j \in \Lambda_{0}} z_{j} a^{t} z_{j}^{*}$ as $a^{p} v a^{q} a^{t} a^{-s} w^{-1} a^{-r}$, where $|p|,|q|,|s|,|r| \leqslant K$, each of v and w is either e or begins and ends with letters from $\left\{b_{1}^{ \pm 1}, \ldots, b_{k-1}^{ \pm 1}\right\}$ and contains at most $K a^{ \pm 1}$'s. We wish to know when this equals $a^{n} w_{0} a^{m} a^{t} a^{-m} w_{0}^{-1} a^{-n}=a^{n} w_{0} a^{t} w_{0}^{-1} a^{-n}$. This is impossible when both v and w are e, so we first consider the degenerate case when $v=e$ and the first and last letters of w lie in $\left\{b_{1}^{ \pm 1}, \ldots, b_{k-1}^{ \pm 1}\right\}$. Then the equation

$$
\begin{equation*}
a^{p+q+t-s} w^{-1} a^{-r}=a^{n} w_{0} a^{t} w_{0}^{-1} a^{-n} \tag{4.47}
\end{equation*}
$$

is false since w_{0} starts with a letter from $\left\{b_{1}^{ \pm 1}, \ldots, b_{k-1}^{ \pm 1}\right\}$ while $p+q+t-s-$ $n \geqslant K$. A similar argument disposes of the possibility that $w=e$. Thus we need only consider the case when both v and w begin and end with letters from $\left\{b_{1}^{ \pm 1}, \ldots, b_{k-1}^{ \pm 1}\right\}$, giving $p=r=n$. This question then reduces to examining the equation

$$
\begin{equation*}
v a^{t+q-s} w^{-1}=w_{0} a^{t} w_{0}^{-1} \tag{4.48}
\end{equation*}
$$

The last letter in v either lies in w_{0} or in w_{0}^{-1}. In the second case v must contain at least $w_{0} a^{t}$, contradicting the bound of K on the number of a^{\prime} s in v since $t \geqslant 5 K$. Thus the first case must hold, and we can write $w_{0}=v w_{1}$ where no cancelations can occur between v and w_{1}. Then (4.48) becomes

$$
\begin{equation*}
a^{t+q-s} w^{-1}=w_{1} a^{t} w_{0}^{-1} \tag{4.49}
\end{equation*}
$$

Since the last letter of w_{0} lies in $\left\{b_{1}^{ \pm 1}, \ldots, b_{k-1}^{ \pm 1}\right\}$, there is no cancelation between a^{t} and w_{0}^{-1}. Thus there are two possibilities: $w_{1}=e$ or w_{1} ends with a letter from $\left\{b_{1}^{ \pm 1}, \ldots, b_{k-1}^{ \pm 1}\right\}$. If the second one holds then no cancelations occur on the right hand side of 4.49 , so w_{1} begins with a^{t+q-s}, showing that w_{0} contains this power. But $t+q-s \geqslant 3 K$ and a contradiction ensues. Thus $w_{1}=e$ and $w_{0}=v$. Returning to 4.48 , we conclude that $q=s$ and $w_{0}=w$. It follows that the contributions to the coefficient of $g a^{t} g^{-1}$ in $\sum_{j \in \Lambda_{0}} z_{j} a^{t} z_{j}^{*}$ only arise from products $d a^{t} d^{-1}$ where d has the form $a^{n} w_{0} a^{q}$. Thus this coefficient is a sum of positive terms including $|c|^{2}$ (which arises from the coefficient $c a^{n} w_{0} a^{m}$ term in $z_{j_{0}}$). In conclusion, for t sufficiently large, the coefficient of $g a^{t} g^{-1}$ in $\sum_{j \in \Lambda} y_{j} a^{t} y_{j}^{*}$ has absolute value strictly greater than $|c|^{2}-|c|^{2} / 4-3|c|^{2} / 4$, and is thus nonzero. Consequently these elements cannot lie in A, and this contradiction completes the proof.

THEOREM 4.8. Let $k \geqslant 2$ and let A be a generator masa in $M=L \mathbb{F}_{k}$. Given any unital inclusion $B \subseteq N$ of von Neumann algebras, we have

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{M \bar{\otimes} N}(A \bar{\otimes} B)^{\prime \prime}=A \bar{\otimes} \mathcal{G N}_{N}(B)^{\prime \prime} \tag{4.50}
\end{equation*}
$$

Proof. Take a faithful representation of N on some Hilbert space H. Let v be a groupoid normaliser of $A \bar{\otimes} B$ in $M \bar{\otimes} N$. Then $v(A \otimes \mathbb{C} 1) v^{*} \subseteq A \bar{\otimes} B \subseteq$
$A \bar{\otimes} \mathbb{B}(H)$, so by Lemma 4.7, v lies in $A \bar{\otimes} \mathbb{B}(H)$. By applying slice maps, it follows that $v \in A \bar{\otimes} N$. Thus

$$
\begin{equation*}
\mathcal{G N}_{M \bar{\otimes} N}(A \bar{\otimes} B)^{\prime \prime}=\mathcal{G} \mathcal{N}_{A \bar{\otimes} N}(A \bar{\otimes} B)^{\prime \prime} \tag{4.51}
\end{equation*}
$$

as the inclusion from right to left is immediate. Lemma 4.1 then gives

$$
\begin{equation*}
\mathcal{G} \mathcal{N}_{M \bar{\otimes} N}(A \bar{\otimes} B)^{\prime \prime}=A \bar{\otimes} \mathcal{G N}_{N}(B)^{\prime \prime} \tag{4.52}
\end{equation*}
$$

and so the result follows.

5. IRREDUCIBLE SUBFACTORS

Recall that an inclusion $B \subseteq M$ of factors is irreducible if $B^{\prime} \cap M=\mathbb{C} 1$. In this section we consider two irreducible inclusions $B_{i} \subseteq M_{i}(i=1,2)$ of factors and the resulting tensor product inclusion $B=B_{1} \bar{\otimes} B_{2} \subseteq M_{1} \bar{\otimes} M_{2}=M$. Our objective is to examine normalisers of this latter inclusion and to address the question of whether they always factorise in the form $v\left(w_{1} \otimes w_{2}\right)$ for some normalisers $w_{i} \in \mathcal{N}_{M_{i}}\left(B_{i}\right)$ and some unitary $v \in B$. In [15] a positive answer was obtained when both M_{1} and M_{2} are type I_{1} using basic construction methods (the special case of finite index inclusions follows from the earlier paper [11]). Here we examine the M^{\prime}-bimodular automorphism groups used in Sections 3 and 4 to answer this question beyond the finite setting. To this end, we regard each M_{i} as faithfully represented on a Hilbert space H_{i} so that M is represented on $H=$ $H_{1} \otimes H_{2}$. Tomita's commutation theorem ensures that the commutants M^{\prime} and B^{\prime} are obtained as the tensor products $M_{1}^{\prime} \bar{\otimes} M_{2}^{\prime}$ and $B_{1}^{\prime} \bar{\otimes} B_{2}^{\prime}$ respectively. Given any unitary normaliser $u \in \mathcal{N}_{M}(B)$, we obtain an automorphism $\theta=\operatorname{Ad}(u) \in$ Aut $_{M^{\prime}}\left(B^{\prime}\right)$. In the setting of irreducible subfactors, these automorphisms must factorise, as we now show.

Lemma 5.1. With the notation above, let $\theta \in \operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)$. Then there exist automorphisms $\theta_{i} \in \operatorname{Aut}_{M_{i}^{\prime}}\left(B_{i}^{\prime}\right), i=1,2$, such that $\theta=\theta_{1} \otimes \theta_{2}$.

Proof. For $y_{1} \in B_{1}^{\prime}$ and $x_{2} \in M_{2}^{\prime}$, we have

$$
\begin{align*}
\left(1 \otimes x_{2}\right) \theta\left(y_{1} \otimes 1\right) & =\theta\left(\left(1 \otimes x_{2}\right)\left(y_{1} \otimes 1\right)\right)=\theta\left(\left(y_{1} \otimes 1\right)\left(1 \otimes x_{2}\right)\right) \\
& =\theta\left(y_{1} \otimes 1\right)\left(1 \otimes x_{2}\right) \tag{5.1}
\end{align*}
$$

so that

$$
\begin{equation*}
\theta\left(y_{1} \otimes 1\right) \in\left(B_{1}^{\prime} \bar{\otimes} B_{2}^{\prime}\right) \cap\left(\mathbb{C} 1 \bar{\otimes} M_{2}^{\prime}\right)^{\prime}=B_{1}^{\prime} \bar{\otimes}\left(B_{2}^{\prime} \cap M_{2}\right)=B_{1}^{\prime} \otimes \mathbb{C} 1 \tag{5.2}
\end{equation*}
$$

Similarly, θ^{-1} also maps $B_{1}^{\prime} \otimes \mathbb{C} 1$ into itself, so if we identify B_{1}^{\prime} with $B_{1}^{\prime} \otimes \mathbb{C} 1$, then θ restricts to give an automorphism of B_{1}^{\prime}. By interchanging the roles of B_{1} and B_{2}, we see that θ also restricts to an automorphism θ_{2} of B_{2}^{\prime}, allowing us to conclude that $\theta=\theta_{1} \otimes \theta_{2}$. Given $x_{1} \in M_{1}^{\prime}$ and $x_{2} \in M_{2}^{\prime}$, we have

$$
\begin{equation*}
x_{1} \otimes x_{2}=\theta\left(x_{1} \otimes x_{2}\right)=\theta_{1}\left(x_{1}\right) \otimes \theta_{2}\left(x_{2}\right) \tag{5.3}
\end{equation*}
$$

so that each θ_{i} is M_{i}^{\prime}-bimodular for $i=1,2$.
The next lemma enables us to recover groupoid normalisers from elements commuting with bimodular automorphisms.

LEMMA 5.2. Let $B \subseteq M$ be an irreducible inclusion of subfactors, faithfully represented on some Hilbert space H and let ψ be an element of $\operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)$. Let $a \in \mathbb{B}(H)$ have polar decomposition $a=v|a|$ and also satisfy

$$
\begin{equation*}
\psi(y) a=a y, \quad y \in B^{\prime} \tag{5.4}
\end{equation*}
$$

Then $a a^{*}, a^{*} a \in B$ and v is a groupoid normaliser of B in M satisfying

$$
\begin{equation*}
\psi(y) v=v y, \quad y \in B^{\prime} \tag{5.5}
\end{equation*}
$$

Proof. Applying (5.4) and its adjoint gives

$$
\begin{equation*}
a^{*} a y=a^{*} \psi(y) a=y a^{*} a, \quad y \in B^{\prime} \tag{5.6}
\end{equation*}
$$

so that $a^{*} a \in B$. Similarly

$$
\begin{equation*}
a a^{*} \psi(y)=\psi(y) a a^{*}, \quad y \in B^{\prime} \tag{5.7}
\end{equation*}
$$

so that $a a^{*} \in B$. Now,

$$
\begin{equation*}
\psi(y) v|a|=v|a| y=v y|a|, \quad y \in B^{\prime} \tag{5.8}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\psi(y) v=v y v^{*} v=v v^{*} v y=v y, \quad y \in B^{\prime} \tag{5.9}
\end{equation*}
$$

since $v^{*} v$ is the range projection of $|a|$ (and so lies in B). By hypothesis $\psi(x)=x$ for $x \in M^{\prime}$, so the double commutant theorem ensures that $v \in M$. For $b \in B$ and $y \in B^{\prime}$, we have

$$
\begin{equation*}
v b v^{*} \psi(y)=v b y v^{*}=v y b v^{*}=\psi(y) v b v^{*} \tag{5.10}
\end{equation*}
$$

so that $v b v^{*} \in B$. Similarly

$$
\begin{equation*}
v^{*} b v y=v^{*} b \psi(y) v=v^{*} \psi(y) b v=y v^{*} b v \tag{5.11}
\end{equation*}
$$

so $v^{*} b v \in B$ and we have proved that $v \in \mathcal{G} \mathcal{N}_{M}(B)$.
We briefly recall from [18] some facts about slice maps on tensor products that will be used subsequently. If P and Q are two von Neumann algebras then the algebraic tensor product $P_{*} \otimes Q_{*}$ is a norm dense subspace of the predual of $P \bar{\otimes} Q$. Thus any fixed $\phi \in Q_{*}$ defines a left slice map $L_{\phi}: P \bar{\otimes} Q \rightarrow P$ by

$$
\begin{equation*}
L_{\phi}(x)(\psi)=(\psi \otimes \phi)(x), \quad x \in P \bar{\otimes} Q, \psi \in P_{*} \tag{5.12}
\end{equation*}
$$

This definition shows that each L_{ϕ} is a normal map and, when restricted to elementary tensors, it has the form

$$
\begin{equation*}
L_{\phi}(p \otimes q)=\phi(q) p, \quad p \in P, q \in Q \tag{5.13}
\end{equation*}
$$

It is immediate from (5.13) that each L_{ϕ} is a P-bimodule map. Moreover, if N is a von Neumann subalgebra of P and $x \in P \bar{\otimes} Q$ is such that $L_{\phi}(x) \in N$ for all
$\phi \in Q_{*}$, then $x \in N \bar{\otimes} Q$. In the next lemma we note that the automorphism θ splits as $\theta=\theta_{1} \otimes \theta_{2}$, by Lemma 5.1.

LEMMA 5.3. For $i=1,2$, let $B_{i} \subseteq M_{i}$ be irreducible inclusions of factors. Write $M=M_{1} \bar{\otimes} M_{2}$ and $B=B_{1} \bar{\otimes} B_{2}$ and let $u \in \mathcal{N}_{M}(B)$. Write $\theta=\theta_{1} \otimes \theta_{2}$ for the induced element $\operatorname{Ad}(u)$ of $\operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)$. Then there exist $v_{i} \in \mathcal{G} \mathcal{N}_{M_{i}}\left(B_{i}\right), i=1,2$, such that each v_{i} is either an isometry or a co-isometry and

$$
\begin{equation*}
\theta_{i}\left(y_{i}\right) v_{i}=v_{i} y_{i}, \quad y \in B_{i}^{\prime}, \quad i=1,2 \tag{5.14}
\end{equation*}
$$

Proof. By symmetry, we only need examine the case $i=1$. Consider the set

$$
\begin{equation*}
S_{1}=\left\{v \in \mathcal{G N}_{M_{1}}\left(B_{1}\right): \theta_{1}(y) v=v y, y \in B_{1}^{\prime}\right\} \tag{5.15}
\end{equation*}
$$

which we equip with the partial ordering $v \leqslant w$ iff $w v^{*} v=v$ (equivalent to the requirement that the partial isometry w be an extension of v). It is clear that any chain in S_{1} has a least upper bound so, by Zorn's lemma, there is some maximal element $v \in S_{1}$. Let $e=1-v^{*} v$ and $f=1-v v^{*}$. Suppose that v is neither an isometry nor a co-isometry, so that both e and f are non-zero.

Since $u(e \otimes 1) \neq 0$, there is a normal state ϕ on $\mathbb{B}\left(H_{2}\right)$ inducing a slice map $\mathrm{id} \otimes \phi: \mathbb{B}\left(H_{1}\right) \bar{\otimes} \mathbb{B}\left(H_{2}\right) \rightarrow \mathbb{B}\left(H_{1}\right)$ with $(\mathrm{id} \otimes \phi)(u(e \otimes 1)) \neq 0$. If we define $a \in \mathbb{B}\left(H_{1}\right)$ by $a=(\mathrm{id} \otimes \phi)(u(e \otimes 1))$, then the module property of the slice map shows that

$$
\begin{equation*}
a=(\mathrm{id} \otimes \phi)(u(e \otimes 1))=((\mathrm{id} \otimes \phi)(u)) e \tag{5.16}
\end{equation*}
$$

Now

$$
\begin{equation*}
\left(\theta_{1}(y) \otimes 1\right) u=\theta(y \otimes 1) u=u(y \otimes 1), \quad y \in B_{1}^{\prime} \tag{5.17}
\end{equation*}
$$

so applying id $\otimes \phi$ gives

$$
\begin{equation*}
\theta_{1}(y)(\mathrm{id} \otimes \phi)(u)=(\mathrm{id} \otimes \phi)(u) y, \quad y \in B_{1}^{\prime} \tag{5.18}
\end{equation*}
$$

Then multiplication on the right by $e \in B_{1}$ leads to

$$
\begin{equation*}
\theta_{1}(y) a=a y, \quad y \in B_{1}^{\prime} \tag{5.19}
\end{equation*}
$$

Letting $a=v_{1}|a|$ be the polar decomposition of a, we obtain $v_{1} \in S_{1}$ from Lemma 5.2 Define $f_{1}=v_{1} v_{1}^{*}$, and note that some non-zero subprojection of f_{1} is equivalent to a subprojection of f since B_{1} is a factor. Let $w \in B_{1}$ be a nonzero partial isometry with $w^{*} w \leqslant f_{1}$ and $w w^{*} \leqslant f$, and consider the partial isometry $w v_{1}$. This is a groupoid normaliser of B_{1} with

$$
\begin{equation*}
\theta_{1}(y) w v_{1}=w v_{1} y, \quad y \in B_{1}^{\prime} \tag{5.20}
\end{equation*}
$$

since both v_{1} and w have these properties. Accordingly, $v+w v_{1}$ lies in S_{1} and is strictly greater than v, contradicting maximality. Hence v must be either an isometry or a co-isometry.

In the following corollary we recapture the normaliser results for tensor products of irreducible inclusions of II_{1} factors from [15].

COROLLARY 5.4. For $i=1,2$, let $B_{i} \subseteq M_{i}$ be irreducible inclusions of II_{1} factors. Then any unitary normaliser of $B_{1} \bar{\otimes} B_{2}$ in $M_{1} \bar{\otimes} M_{2}$ is of the form $w\left(v_{1} \otimes v_{2}\right)$ for some unitary $w \in B_{1} \bar{\otimes} B_{2}$ and normalisers $v_{i} \in \mathcal{N}_{M_{i}}\left(B_{i}\right)$.

Proof. Given a normaliser u of $B_{1} \bar{\otimes} B_{2}$ in $M_{1} \bar{\otimes} M_{2}$, let $\theta=\operatorname{Ad}(u) \in$ Aut $_{M_{1}^{\prime}} \bar{\otimes} M_{2}^{\prime}\left(B_{1}^{\prime} \bar{\otimes} B_{2}^{\prime}\right)$ (formed with respect to some faithful actions of M_{1} and M_{2} on Hilbert spaces H_{1} and H_{2}). By Lemma5.1. we have a factorisation $\theta=\theta_{1} \otimes \theta_{2}$ for some $\theta_{i} \in \operatorname{Aut}_{M_{i}^{\prime}}\left(B_{i}^{\prime}\right)$. Lemma 5.3 gives groupoid normalisers $v_{i} \in \mathcal{G N}_{M_{i}}\left(B_{i}\right)$ satisfying

$$
\begin{equation*}
\theta_{i}\left(y_{i}\right) v_{i}=y_{i} v_{i}, \quad y_{i} \in B_{i}^{\prime} \tag{5.21}
\end{equation*}
$$

and such that v_{1} and v_{2} are either isometries or co-isometries. Since both M_{1} and M_{2} are finite, v_{1} and v_{2} are unitary normalisers. Define $w=u\left(v_{1}^{*} \otimes v_{2}^{*}\right)$. Since

$$
\begin{align*}
\theta\left(y_{1} \otimes y_{2}\right) w & =u\left(y_{1} v_{1}^{*} \otimes y_{2} v_{2}^{*}\right)=u\left(v_{1}^{*} \theta_{1}\left(y_{1}\right) \otimes v_{2}^{*} \theta_{2}\left(y_{2}\right)\right) \\
& =w \theta\left(y_{1} \otimes y_{2}\right), \quad y_{i} \in B_{i}^{\prime} \tag{5.22}
\end{align*}
$$

the double commutant theorem ensures that $w \in B_{1} \bar{\otimes} B_{2}$ and $u=w\left(v_{1} \otimes v_{2}\right)$, as required.

We now return to the situation where we do not assume that M_{1} and M_{2} are finite.

LEMMA 5.5. Let $B \subseteq M$ be an irreducible inclusion of infinite factors and suppose that $\psi \in \operatorname{Aut}_{M^{\prime}}\left(B^{\prime}\right)$ is given and $v \in \mathcal{G} \mathcal{N}_{M}(B)$ is an isometry or co-isometry with

$$
\begin{equation*}
\psi(y) v=v y, \quad y \in B^{\prime} \tag{5.23}
\end{equation*}
$$

Then there exists a normaliser $v_{1} \in \mathcal{N}_{M}(B)$ with

$$
\begin{equation*}
\psi(y) v_{1}=v_{1} y, \quad y \in B^{\prime} \tag{5.24}
\end{equation*}
$$

Proof. We may assume that $v^{*} v=1$ and $v v^{*}=f<1$. The map $x \mapsto v x v^{*}$ implements a surjective $*$-isomorphism between B and $f B f$. Hence $f B f$ is an infinite factor so f is infinite in B. Then there exists a partial isometry $w \in B$ with $w^{*} w=f$ and $w w^{*}=1$. Define $v_{1}=w v$. This is certainly a unitary normaliser of B and 5.24 follows from multiplying 5.23) on the left by w (which commutes with $\psi(y))$.

THEOREM 5.6. For $i=1,2$, let $B_{i} \subseteq M_{i}$ be irreducible inclusions of factors. Suppose that either one of M_{1} or M_{2} is finite or that both B_{1} and B_{2} are infinite. Then any unitary normaliser u of $B_{1} \bar{\otimes} B_{2}$ in $M_{1} \bar{\otimes} M_{2}$ is of the form $w\left(v_{1} \otimes v_{2}\right)$ for some unitary $w \in B_{1} \bar{\otimes} B_{2}$ and normalisers $v_{i} \in \mathcal{N}_{M_{i}}\left(B_{i}\right)$.

Proof. As in the proof of Corollary 5.4. write $\operatorname{Ad}(u)=\theta_{1} \otimes \theta_{2}$ for some $\theta_{i} \in \operatorname{Aut}_{M_{i}^{\prime}}\left(B_{i}^{\prime}\right)$, and find isometries or co-isometries $v_{i} \in \mathcal{G N}_{M_{i}}\left(B_{i}\right)$ with

$$
\begin{equation*}
\theta_{i}\left(y_{i}\right) v_{i}=y_{i} v_{i}, \quad y_{i} \in B_{i}^{\prime} \tag{5.25}
\end{equation*}
$$

If both B_{1} and B_{2} are infinite, then Lemma 5.5 enables us to replace the v_{i} by unitary normalisers satisfying the same condition. Just as in Corollary 5.4 $w=$ $u\left(v_{1}^{*} \otimes v_{2}^{*}\right)$ is a unitary in $B_{1} \bar{\otimes} B_{2}$ and in this case u has the desired form. Now consider the case where M_{1} is finite. Then v_{1} is automatically a unitary normaliser. If B_{2} is infinite, then we can use Lemma 5.5 to replace v_{2} by a normaliser, and the result follows. If B_{2} is finite, then the element w, defined by $w=u\left(v_{1}^{*} \otimes v_{2}^{*}\right)$, lies in $B_{1} \bar{\otimes} B_{2}$ and is either an isometry or co-isometry (since u is a unitary). In this case, the tensor product $B_{1} \bar{\otimes} B_{2}$ is finite, so w, and hence v_{2}, is a unitary as required.

To consider the last remaining case when both inclusions $B_{i} \subseteq M_{i}$ consist of an irreducible inclusion of a II_{1} factor inside an infinite factor, we use Murray and von Neumann's fundamental group from [10]. Let B be a I_{1} factor with trace τ. Recall that the fundamental group, $\mathcal{F}(B)$, of B is the subgroup of \mathbb{R}^{+}of those quotients $\tau(p) / \tau(q)$, where p and q are projections in B such that $p B p$ and $q B q$ are isomorphic. Many subgroups of \mathbb{R}^{+}can occur, in particular all countable subgroups of \mathbb{R}^{+}[12]. In our situation, it is enough for one subfactor B_{i} to have trivial fundamental group; this enables us to convert the isometries or co-isometries appearing in the proof of Theorem 5.6 into unitary normalisers.

LEMMA 5.7. For $i=1,2$, let $B_{i} \subseteq M_{i}$ be irreducible inclusions offactors. Suppose that B_{1} is finite and has trivial fundamental group. Then any unitary normaliser of $B_{1} \bar{\otimes} B_{2}$ in $M_{1} \bar{\otimes} M_{2}$ is of the form $w\left(v_{1} \otimes v_{2}\right)$ for some unitary $w \in B_{1} \bar{\otimes} B_{2}$ and normalisers $v_{i} \in \mathcal{N}_{M_{i}}\left(B_{i}\right)$.

Proof. As in the proof of Corollary 5.4. write $\operatorname{Ad}(u)=\theta_{1} \otimes \theta_{2}$ for some $\theta_{i} \in \operatorname{Aut}_{M_{i}^{\prime}}\left(B_{i}^{\prime}\right)$, and find isometries or co-isometries $v_{i} \in \mathcal{G} \mathcal{N}_{M_{i}}\left(B_{i}\right)$ with

$$
\begin{equation*}
\theta_{i}\left(y_{i}\right) v_{i}=y_{i} v_{i}, \quad y_{i} \in B_{i}^{\prime} \tag{5.26}
\end{equation*}
$$

If v_{1} is an isometry, then $x \mapsto v_{1} x v_{1}^{*}$ implements an isomorphism of B onto $\left(v_{1} v_{1}^{*}\right) B\left(v_{1} v_{1}^{*}\right)$. As $\mathcal{F}\left(B_{1}\right)=\{1\}$, we have $v_{1} v_{1}^{*}=1$ so v_{1} is a unitary. If v_{1} is a co-isometry, we can consider $x \mapsto v_{1}^{*} x v_{1}$ to see that v_{1} is again a unitary. The rest of the argument now follows exactly the proof of Theorem 5.6. considering the cases where B_{2} is infinite and B_{2} is finite separately.

In Theorem 5.9 we will establish a converse to Lemma5.7. First fix a finite factor B and then consider arbitrary irreducible inclusions $B \subseteq M$. We will show that if the conclusion of Lemma 5.7 holds for the tensor product with every other separable irreducible inclusion $B_{2} \subseteq M_{2}$, then B has trivial fundamental group.

Recall that if B is a I_{1} factor with trace τ_{B}, then $\langle x, y\rangle=\tau_{B}\left(y^{*} x\right)$ defines an inner product on B, inducing a norm $\|x\|_{2}=\tau_{B}\left(x^{*} x\right)^{1 / 2}$ for $x \in B$. The completion is denoted $L^{2}(B)$, we write ξ for the image of 1 in this Hilbert space, and $\{x \xi: x \in B\}$ is a dense subspace. The representation of B by $b(x \xi)=(b x) \xi$ for $b, x \in B$, extends by continuity to a representation of B on $L^{2}(B)$ and puts B into standard form on this Hilbert space.

Now suppose that B is a II_{1} factor with non-trivial fundamental group. Fix a projection $e \in B$ with $e \neq 0,1$ such that $B \cong e B e$ and choose an isomorphism θ from B onto $e B e$. The trace on $e B e$ is given by $\tau_{e B e}(x)=\tau_{B}(x) / \tau_{B}(e)$ and since this trace is unique, we must have

$$
\begin{equation*}
\tau(x)=\tau_{e B e}(\theta(x)), \quad x \in B \tag{5.27}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left\|\tau_{B}(e)^{-1 / 2} \theta(x)\right\|_{2}^{2}=\frac{\tau_{B}\left(\theta\left(x^{*} x\right)\right)}{\tau_{B}(e)}=\tau_{e B e}\left(\theta\left(x^{*} x\right)\right)=\tau_{B}\left(x^{*} x\right)=\|x\|_{2}^{2}, \quad x \in B \tag{5.28}
\end{equation*}
$$

Therefore, we can define an isometry v on $L^{2}(B)$, by extending

$$
\begin{equation*}
v(x \tilde{\xi})=\frac{1}{\tau(e)^{1 / 2}} \theta(x) \xi, \quad x \in B \tag{5.29}
\end{equation*}
$$

by continuity. This operator implements θ, in that $\theta(x)=v x v^{*}$ for all $x \in B$ and as θ is a surjective isomorphism, $e b e \mapsto v^{*} b v$ must be the inverse of θ. Since $v v^{*}=e$, this shows that $v^{*} B v=B$ so v is a groupoid normaliser of B in $\mathbb{B}\left(L^{2}(B)\right)$. Now let $H=L^{2}(B) \otimes \ell^{2}(\mathbb{Z})$. Let v_{1} be the bilateral shift operator on $\ell^{2}(\mathbb{Z})$ satisfying $v_{1} e_{n}=e_{n+1}$ for $n \in \mathbb{Z}$ and define $u=v \otimes v_{1} \in \mathbb{B}(H)$. Let M be the von Neumann subalgebra of $\mathbb{B}(H)$ generated by $B \otimes 1$ and u. This algebra resembles a crossed product; indeed it would be $B \rtimes_{\alpha} \mathbb{Z}$ for the action induced by $\operatorname{Ad}(u)$ if u were a unitary.

THEOREM 5.8. In the situation described above, $B \otimes \mathbb{C} 1 \subseteq M$ is a singular inclusion of factors with $\mathcal{G} \mathcal{N}_{M}(B \otimes 1)^{\prime \prime}=M$.

Proof. By construction v is a groupoid normaliser of B with $v\left(B^{\prime}\right) v^{*}=B^{\prime} e$. Since B^{\prime} is isomorphic to $B^{\prime} e$ via $b^{\prime} \mapsto b^{\prime} e$, we can define an automorphism ϕ of B^{\prime} so that $\phi\left(b^{\prime}\right) e=v b^{\prime} v^{*}$. Given some $b^{\prime} \in B^{\prime}$, define a bounded operator $y=\left(y_{i, j}\right)_{i, j}$ on H with respect to the matrix units for $\ell^{2}(\mathbb{Z})$ by setting $y_{i, i}=\phi^{i}\left(b^{\prime}\right)$ for all i and setting the off-diagonal elements to be zero. Certainly y commutes with $(B \otimes \mathbb{C} 1)$. Now, for $n \in \mathbb{Z}$ and $\eta \in L^{2}(B)$,

$$
\begin{align*}
y u\left(\eta \otimes e_{n}\right) & =y\left(v \eta \otimes e_{n+1}\right)=\phi^{n+1}\left(b^{\prime}\right) e v \eta \otimes e_{n+1} \\
& =v \phi^{n}\left(b^{\prime}\right) v^{*} v \eta \otimes e_{n+1}=v \phi^{n}\left(b^{\prime}\right) \eta \otimes e_{n+1}=u y\left(\eta \otimes e_{n}\right) \tag{5.30}
\end{align*}
$$

so y commutes with u. The elements y that we are considering form a self-adjoint set, and so they also commute with u^{*}. Thus these elements commute with the generators of M and so lie in M^{\prime}.

Now take $x \in M$, let $x=\left(x_{i, j}\right)$ with respect to the matrix units of $\ell^{2}(\mathbb{Z})$. Since $1 \otimes v_{1}$ commutes with $B \otimes \mathbb{C} 1$ and $u=v \otimes v_{1}, 1 \otimes v_{1}$ lies in M^{\prime}. Thus $x=\left(1 \otimes v_{1}\right)^{*} x\left(1 \otimes v_{1}\right)$. This shows that x has constant diagonal entries, i.e. $x_{i, i}=x_{0,0}$ for all i. Given $b^{\prime} \in B^{\prime}$, define $y \in M^{\prime}$ as above. Comparing the (0,0)-th entries of $x y=y x$, we see that $x_{0,0} b^{\prime}=b^{\prime} x_{0,0}$ so that $x_{0,0}=b_{0}$ for some $b_{0} \in B$. For $n \geqslant 0$, consider $x\left(v^{*} \otimes v_{1}^{*}\right)^{n}$ which lies in M. Thus this operator has constant entries, say $b_{-n} \in B$, down the diagonal and so $x_{i+n, i}=b_{-n} v^{n}$ for all i. Similarly
we can find bounded operators $b_{n} \in B$ for $n>0$ such that $x_{i-n, i}=\left(v^{*}\right)^{n} b_{n}$. Then the general form of an operator $x \in M$ is

$$
\begin{equation*}
x=\sum_{n=0}^{\infty}\left(b_{-n} v^{n} \otimes v_{1}^{n}\right)+\sum_{n=1}^{\infty}\left(\left(v^{*}\right)^{n} b_{n} \otimes\left(v_{1}^{*}\right)^{n}\right) \tag{5.31}
\end{equation*}
$$

with convergence in the weak operator topology. For $n \geqslant 1$, define $e_{n}=\theta\left(e_{n}\right)=$ $v^{n}\left(v^{*}\right)^{n}$. Since $b_{-n} v^{n}=b_{-n} e_{n} v^{n}$, we may assume that $b_{-n}=b_{-n} e_{n}$ in 5.31) for $n>0$. Similarly, we can assume that $b_{n}=e_{n} b_{n}$ for $n>0$.

Now suppose that x is a normaliser of $B \otimes \mathbb{C} 1$ in M and write x in the form (5.31). Define $\psi: B \rightarrow B$ by $\psi(b) \otimes 1=x^{*}(b \otimes 1) x$ so that $(b \otimes 1) x=x(\psi(b) \otimes 1)$ for $b \in B$. Substituting this into (5.31) gives

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(b b_{-n} v^{n}-b_{-n} v^{n} \psi(b)\right) \otimes v_{1}^{n}+\sum_{n=1}^{\infty}\left(\left(b\left(v^{*}\right)^{n} b_{n}-\left(v^{*}\right)^{n} b_{n} \psi(b)\right) \otimes\left(v_{1}^{*}\right)^{n}\right)=0 \tag{5.32}
\end{equation*}
$$

for each $b \in B$. Comparing matrix elements in 5.32 leads to

$$
\begin{align*}
b b_{-n} v^{n} & =b_{-n} v^{n} \psi(b), \quad n \geqslant 0, b \in B, \text { and } \tag{5.33}\\
b\left(v^{*}\right)^{n} b_{n} & =\left(v^{*}\right)^{n} b_{n} \psi(b), \quad n>1, b \in B . \tag{5.34}
\end{align*}
$$

After multiplying (5.33) on the right by $\left(v^{*}\right)^{n}$, we see that

$$
\begin{equation*}
b b_{-n}=b_{-n} \theta^{n}(\psi(b)), \quad n \geqslant 0, b \in B . \tag{5.35}
\end{equation*}
$$

When $b=b^{*}$, we can apply this twice to obtain

$$
\begin{equation*}
b b_{-n} b_{-n}^{*}=b_{-n} \theta(\psi(b)) b_{-n}^{*}=b_{-n} b_{-n}^{*} b, \quad n \geqslant 0, b=b^{*} \in B \tag{5.36}
\end{equation*}
$$

so that $b_{-n} b_{-n}^{*} \in B^{\prime} \cap B=\mathbb{C} 1$. Thus b_{-n} is a scalar multiple of a unitary in B. Then the relations $b_{-n}=b_{-n} e_{n}$ and $e_{n} \neq 1$ for $n>0$ imply that $b_{-n}=0$ for $n>0$. Replacing x by x^{*} shows that $b_{n}=0$ for $n<0$ and so $x=b_{0} \otimes 1 \in B \otimes \mathbb{C} 1$. Thus $B \otimes \mathbb{C} 1$ is singular in M, so $(B \otimes \mathbb{C} 1)^{\prime} \cap M \subseteq(B \otimes \mathbb{C} 1)^{\prime} \cap B \otimes \mathbb{C} 1=\mathbb{C} 1$. In particular, M has trivial centre and so we have an inclusion of factors. Finally, M is generated by $B \otimes \mathbb{C} 1$ and the groupoid normaliser $u=v \otimes v_{1}$ so that $M=$ $\mathcal{G} \mathcal{N}_{M}(B \otimes \mathbb{C} 1)^{\prime \prime}$.

Our final result characterises the property of having trivial fundamental group in terms of normalisers of tensor products.

COROLLARy 5.9. Let B be a II_{1} factor with a separable predual. The following statements are equivalent:
(i) The fundamental group of B is trivial.
(ii) Whenever $B \subseteq M$ is an inclusion of factors, $\mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime}=\mathcal{N}_{M}(B)^{\prime \prime}$.
(iii) Whenever $B \subseteq M$ is an irreducible inclusion of factors and $B_{2} \subseteq M_{2}$ is another irreducible inclusion of factors, then every unitary normaliser $u \in \mathcal{N}_{M \bar{\otimes} M_{2}}\left(B \bar{\otimes} B_{2}\right)$ factorises as $u=w\left(u_{1} \otimes u_{2}\right)$, where $w \in B \bar{\otimes} B_{2}, u_{1} \in \mathcal{N}_{M}(B)$ and $u_{2} \in \mathcal{N}_{M_{2}}\left(B_{2}\right)$.

Proof. Lemma 5.7 shows that (i) \Rightarrow (iii) and the previous theorem establishes (ii) \Rightarrow (i), so it remains to show (iii) \Rightarrow (ii). Take $B_{2}=M_{2}=\mathbb{B}\left(\ell^{2}(\mathbb{N})\right)$ so that condition (iii) implies that

$$
\begin{equation*}
\mathcal{N}_{M \bar{\otimes} \mathbb{B}\left(\ell^{2}(\mathbb{N})\right)}\left(B \bar{\otimes} \mathbb{B}\left(\ell^{2}(\mathbb{N})\right)\right)=\mathcal{N}_{M}(B)^{\prime \prime} \bar{\otimes} \mathbb{B}\left(\ell^{2}(\mathbb{N})\right) \tag{5.37}
\end{equation*}
$$

Thus $\mathcal{G} \mathcal{N}_{M}(B)^{\prime \prime}=\mathcal{N}_{M}(B)^{\prime \prime}$ by Theorem 3.3 .

Acknowledgements. The work in this paper originated in the Workshop in Analysis and Probability, held at Texas A \& M University in 2008. It is a pleasure to record our thanks to the organisers of the workshop and to the NSF for providing financial support to the workshop. Junsheng Fang is partially supported by the Fundamental Research Funds for the Central Universities of China.

REFERENCES

[1] I. Chifan, On the normalizing algebra of a masa in a II_{1} factor, arXiv:math./0606225, 2006.
[2] J. DIXMIER, Sous-anneaux abéliens maximaux dans les facteurs de type fini, Ann. of Math. (2) 59(1954), 279-286.
[3] J. Dixmier, Von Neumann Algebras, North-Holland Math. Library, vol. 27, NorthHolland Publ. Co., Amsterdam 1981.
[4] H.A. Dye, On groups of measure preserving transformations. II, Amer. J. Math., 85(1963), 551-576.
[5] J. FANG, On maximal injective subalgebras of tensor products of von Neumann algebras, J. Funct. Anal. 244(2007), 277-288.
[6] J. FANG, On completely singular von Neumann subalgebras, Proc. Edinburgh Math. Soc. 52(2009), 607-618.
[7] J. Fang, R.R. Smith, S.A. White, A.D. Wiggins, Groupoid normalizers and tensor products, J. Funct. Anal. 258(2010), 20-49.
[8] L. Ge, R.V. Kadison, On tensor products for von Neumann algebras, Invent. Math. 123(1996), 453-466.
[9] U. HaAGERUP, The standard form of von Neumann algebras, Math. Scand. 37(1975), 271-283.
[10] F.J. Murray, J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44(1943), 716-808.
[11] M. Pimsner, S. Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4) 19(1986), 57-106.
[12] S. Popa, Strong rigidity of II_{1} factors arising from malleable actions of w-rigid groups. I, Invent. Math. 165(2006), 369-408.
[13] A.M. Sinclair, R.R. Smith Finite von Neumann Algebras and Masas, London Math. Soc. Lecture Note Ser., vol. 351, Cambridge Univ. Press, Cambridge 2008.
[14] A.M. Sinclair, R.R. Smith, S.A. White, A. Wiggins, Strong singularity of singular masas in II_{1} factors, Illinois J. Math. 51(2007), 1077-1083.
[15] R.R. Smith, S.A. White, A. Wiggins, Normalisers of irreducible subfactors, J. Math. Anal. Appl. 352(2009), 684-695.
[16] Ş. STRĂTILĂ, L. ZSIDÓ, The commutation theorem for tensor products over von Neumann algebras, J. Funct. Anal. 165(1999), 293-346.
[17] M. TAKESAKI, Tomita's Theory of Modular Hilbert Algebras and its Applications, Lecture Notes in Math., vol. 128, Springer-Verlag, Berlin-New York 1970.
[18] J. TOMIYAMA, Tensor products and projections of norm one in von Neumann algebras, unpublished lecture notes, Copenhagen 1970.

JUNSHENG FANG, School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
E-mail address: junshengfang@gmail.com

ROGER R. SMITH, Department of Mathematics, Texas A \& M University, College Station, Texas 77843, U.S.A.

E-mail address: rsmith@math.tamu.edu
STUART WHITE, School of Mathematics and Statistics, University of Glasgow, University Gardens, Glasgow Q12 8QW, U.K.

E-mail address: stuart.white@glasgow.ac.uk

