
J. OPERATOR THEORY
69:2(2013), 545–570

doi: 10.7900/jot.2011mar05.1928

© Copyright by THETA, 2013

GROUPOID NORMALISERS OF TENSOR PRODUCTS:
INFINITE VON NEUMANN ALGEBRAS

JUNSHENG FANG, ROGER R. SMITH, and STUART WHITE

Communicated by Kenneth R. Davidson

ABSTRACT. The groupoid normalisers of a unital inclusion B ⊆ M of von
Neumann algebras consist of the set GNM(B) of partial isometries v ∈ M with
vBv∗ ⊆ B and v∗Bv ⊆ B. Given two unital inclusions Bi ⊆ Mi of von Neu-
mann algebras, we examine groupoid normalisers for the tensor product in-
clusion B1 ⊗ B2 ⊆ M1 ⊗ M2 establishing the formula

GNM1 ⊗M2
(B1 ⊗ B2)

′′ = GNM1 (B1)
′′ ⊗ GNM2 (B2)

′′

when one inclusion has a discrete relative commutant B′1 ∩ M1 equal to the
centre of B1 (no assumption is made on the second inclusion). This result also
holds when one inclusion is a generator masa in a free group factor. We also
examine when a unitary u ∈ M1 ⊗M2 normalising a tensor product B1 ⊗ B2 of
irreducible subfactors factorises as w(v1 ⊗ v2) (for some unitary w ∈ B1 ⊗ B2
and normalisers vi ∈ NMi (Bi)). We obtain a positive result when one of the Mi
is finite or both of the Bi are infinite. For the remaining case, we characterise
the II1 factors B1 for which such factorisations always occur (for all M1, B2 and
M2) as those with a trivial fundamental group.

KEYWORDS: Normaliser, groupoid normaliser, tensor product, factor, von Neumann
algebra.
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1. INTRODUCTION

This paper is concerned with the behaviour of structural properties of inclu-
sions of von Neumann algebras obtained from tensor products. This important
construction has a rich history, and we mention two particularly significant re-
sults. Given two inclusions Bi ⊆ Mi (i = 1, 2) of von Neumann algebras, Tomita’s
commutation theorem (see [17]) determines the relative commutant of B1 ⊗ B2 in
M1 ⊗ M2 showing that

(1.1) (B1 ⊗ B2)
′ ∩ (M1 ⊗ M2) = (B′1 ∩M1) ⊗ (B′2 ∩M2).
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In a different direction, Ge and Kadison [8] showed that when M1 and M2 are
factors, any von Neumann algebra lying between M1 ⊗ 1 and M1 ⊗ M2 must
have the form M1 ⊗ B2 for a von Neumann algebra B2 ⊆ M2. Equation (1.1)
can be interpreted as saying that the two operations of taking tensor products
and passing to relative commutants commute. In [7], Wiggins and the authors
examined commutation questions of this form for the operations of taking tensor
products and passing to the algebra generated by the groupoid normalisers in the
context of inclusions of finite von Neumann algebras. This paper examines these
questions for general inclusions of von Neumann algebras.

The normalisers of an inclusion B ⊆ M of von Neumann algebras consist
of those unitaries u ∈ M with uBu∗ = B. These elements form a group denoted
NM(B) and the von Neumann algebra NM(B)′′ they generate is the normalising
algebra of B in M. Normalisers were first studied by Dixmier [2] who used them to
distinguish various types of maximal abelian subalgebras (masas). He defined a
masa B ⊆ M to be singular, regular, or semiregular respectively if the normalising
algebra is B, M, or a proper subfactor. For two inclusions Bi ⊆ Mi of masas in
finite von Neumann algebras, Chifan [1] showed that the normalising algebra of
the tensor product is related to the tensor product of the individual normalising
algebras by

(1.2) NM1 ⊗M2
(B1 ⊗ B2)

′′ = NM1(B1)
′′ ⊗ NM2(B2)

′′,

a formula that was established earlier in [14] for singular masas. The commu-
tation identity (1.2) also holds when each Bi is an irreducible subfactor of a II1
factor, [15], and in this situation any normaliser u is of the form w(v1 ⊗ v2) for
normalisers vi ∈ NMi (Bi) and some unitary w ∈ B1 ⊗ B2.

In general (1.2) fails. Consider the inclusion of B = C⊕M2 as a subalgebra
of the 3× 3 matrices M3 = M. Dimension considerations show that every nor-
maliser of B lies in B. Since B⊗ B ∼= C⊕M2 ⊕M2 ⊕M4, we can find a unitary in
M3 ⊗M3 which interchanges the two copies of M2. This produces a non-trivial
normaliser of the tensor product inclusion B⊗ B ⊆ M⊗M. The obstruction here
is the presence of partial isometries v ∈ M \ B with vBv∗ ⊆ B and v∗Bv ⊆ B.
Such partial isometries form a groupoid denoted GNM(B) and are referred to as
the groupoid normalisers of B in M. For masas in finite von Neumann algebras
and irreducible inclusions of subfactors of II1 factors the groupoid normalisers
and normalisers generate the same von Neumann algebra and so this obstruction
does not occur, but in general GNM(B)′′ can be larger than NM(B)′′. There are
two related problems regarding the form of the groupoid normalising algebra of
a tensor product of inclusions.

QUESTION 1.1. Consider two unital inclusions Bi ⊆ Mi of von Neumann
algebras:

(i) Under what conditions on both inclusions do we have

(1.3) GNM1 ⊗M2
(B1 ⊗ B2)

′′ = GNM1(B1)
′′ ⊗ GNM2(B2)

′′?
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(ii) Under what conditions on B1 ⊆ M1 is (1.3) valid for all choices of B2 ⊆ M2?

The main result of [7] established (1.3) when M1 and M2 are finite and the
relative commutants B′i ∩Mi lie in Bi for i = 1, 2. In general some assumption on
the relative commutant is necessary for (1.3) to hold (see Example 1.1 of [7] for a
3× 3 matrix example demonstrating this). In the case when one of M1 or M2 is
infinite, additional hypotheses will be needed to ensure that (1.3) holds. Indeed,
the following easy example shows that it is not possible to extend Chifan’s result
[1] for masas to the infinite setting.

EXAMPLE 1.2. Let H = L2[0, 1] and let A = L∞[0, 1] acting on H by left
multiplication. This is the unique (up to unitary conjugacy) diffuse masa in B(H)
and direct computations show that NB(H)(A)′′ = GNB(H)(A)′′ = B(H). Now let
H1 = H ⊕C and let A1 = A⊕C. This is a masa in B(H1) and

(1.4) GNB(H1)
(A1)

′′ = NB(H1)
(A1)

′′ = B(H)⊕B(C) $ B(H1).

Now consider A⊗ A1 acting on H⊗H1. Since this is a diffuse masa, it is unitarily
conjugate to the original inclusion A ⊆ B(H). In particular

(1.5) GNB(H)⊗B(H1)
(A ⊗ A1)

′′ = NB(H)⊗B(H1)
(A ⊗ A1)

′′ = B(H) ⊗ B(H1).

Thus

(1.6) GNB(H)⊗B(H1)
(A ⊗ A1)

′′ % GNB(H)(A)′′ ⊗ GNB(H1)
(A1)

′′.

In this paper we obtain positive answers to Question 1.1(i) in several differ-
ent contexts, and also to Question 1.1(ii) in the following two situations:

(i) When one inclusion has an atomic relative commutant B′1 ∩ M1 which is
equal to the centre of B1 (Theorem 4.6).

(ii) When one inclusion is the generator masa in a free group factor (Theo-
rem 4.8).

Unlike [7], both cases above make no assumption on the other inclusion.
The methods employed there make extensive use of basic construction techniques
and so are specialised to inclusions of finite von Neumann algebras. Here we
develop new techniques which reach outside the finite setting and so the paper
can be read independently of [7]. The second case described above is obtained
by a direct combinatorial calculation examining the group elements supporting a
groupoid normaliser. This is a self-contained argument found in Lemma 4.7 and
Theorem 4.8 below. In particular, this gives the first example of a masa–factor
inclusion B1 ⊆ M1 with diffuse relative commutant B′1 ∩ M1 so that (1.3) holds
for all inclusions B2 ⊆ M2.

We study groupoid normalisers by examining the fixed point algebra of cer-
tain groups of automorphisms. These techniques have their origins in [5], [6] and
are based on the simple observation that any normaliser u ∈ NM(B) gives rise
to an automorphism Ad(u) of the commutant of B (in some faithful representa-
tion) which fixes M′ pointwise. In Section 3 we examine all automorphisms of
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B′ which fix M′ pointwise and show that the subalgebra of B′ fixed by these au-
tomorphisms is precisely the commutant of the groupoid normalisers GNM(B)
(Theorem 3.3). This enables us to characterise those inclusions B ⊆ M for which
NM(B)′′ = GNM(B)′′. In Section 4, we use the description of GNM(B) in terms
of these automorphisms to establish instances of (1.3). A key idea is to tensor by
copies of B(H) to ensure that all our von Neumann algebras are properly infi-
nite as, in the countably decomposable situation, this forces NM(B)′′ = GNM(B)′′

(Lemma 2.4).
In Section 5 we examine two inclusions of irreducible subfactors Bi ⊆ Mi.

In [15] it was shown that when both M1 and M2 are finite, then a normaliser of
B1 ⊗ B2 in M1 ⊗ M2 must factorise as w(v1 ⊗ v2) for w ∈ B and vi ∈ NMi (Bi).
Like [7], this relies on basic construction techniques. In Section 5 we study such
normalisers u by means of the induced automorphism Ad(u) of the commutant
B′1 ⊗ B′2. We show that such an automorphism necessarily splits as a tensor prod-
uct θ1 ⊗ θ2 of automorphisms of B′i which fix M′i . From this we recover Theo-
rem 4.2 of [15] and extend it to cover the following situations:

(i) only one of M1 or M2 is finite;
(ii) both B1 and B2 are infinite;

(iii) B1 is finite with trivial fundamental group and M1 is infinite.
We provide examples that show that this result can fail whenever the alge-

bra B1 of (iii) has a nontrivial fundamental group. This enables us to characterise
II1 factors with trivial fundamental group in terms of normalising unitaries of
tensor product inclusions.

Many results in the paper rely on Lemma 2.3 which requires a hypothesis of
countable decomposability, and so attention is generally restricted to this class of
algebras. The exceptions are the results from Lemma 4.7 through to Theorem 5.8.
Finally, all inclusions B ⊆ M of von Neumann algebras in the paper are assumed
to share the same unit unless explicitly stated otherwise.

2. PRELIMINARIES

In this section we establish some preliminary results, the most important
of which is Lemma 2.6 which describes a useful connection between groupoid
normalisers and the fixed point algebras of certain automorphism groups. We
begin with the following observation, which is a version of Lemma 2.11 of [6].

PROPOSITION 2.1. Let B ⊆ M be an inclusion of von Neumann algebras and let
x ∈ M satisfy xBx∗ ⊆ B and x∗Bx ⊆ B. Let p, q ∈ B be central projections and let
pxq = v|pxq| be the polar decomposition of pxq. Then |pxq| ∈ B and v ∈ GNM(B).

For a masa A in a II1 factor M, a theorem of Dye [4] (see also Lemma 6.2.3
of [13]) states that every v ∈ GNM(A) is of the form ue for some projection e ∈ A
and a unitary normaliser u ∈ NM(A). This cannot hold in the infinite setting: the
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unilateral shift is a groupoid normaliser of the diagonal masa in B(`2(N)) which
cannot be extended to a unitary normaliser. However the unilateral shift does
lie in the algebra generated by the normalisers. The lemma below expands this
observation to a general setting. We adopt the notation Z(N) for the centre of any
von Neumann algebra N.

LEMMA 2.2. Let B ⊆ M be an inclusion of von Neumann algebras and let v ∈
GNM(B) satisfy vv∗, v∗v ∈ Z(B). Then v ∈ NM(B)′′.

Proof. Note that the hypotheses ensure that both v and v∗ lie in GNM(Z(B)).
Indeed, given z ∈ Z(B) and b ∈ B, we have

(2.1) vzv∗b = vzv∗bvv∗ = vv∗bvzv∗ = bvzv∗,

so that vZ(B)v∗ ⊆ Z(B). Similarly v∗Z(B)v∗ ⊆ Z(B).
Let p be the maximal projection in Z(B) with p 6 v∗v and vp ∈ NM(B)′′.

Suppose that p 6= v∗v and write p0 = v∗v− p ∈ Z(B) and q0 = vp0v∗ ∈ Z(B).
If p0 = q0, then u = vp0 + (1 − p0) is a unitary normaliser of B and vp0 =
up0 ∈ NM(B)′′, contradicting maximality of p. Hence p0 6= q0. Now suppose
that p1 = p0(1− q0) 6= 0, and write q1 = vp1v∗ ∈ Z(B) so q1 p0 = 0. Define a
unitary by u = vp1 + (vp1)

∗ + (1− p1 − q1). For b ∈ B, we have

(2.2) ubu∗=u(p1b+q1b+(1−p1−q1)b)u∗=vp1bv∗+v∗q1bv+(1−p1−q1)b∈B

so that u is a unitary normaliser of B with vp1 = up1. Thus v(p + p1) ∈ NM(B)′′,
contradicting maximality of p. Finally, if q1 = (1 − p0)q0 6= 0, then by inter-
changing the roles of v and v∗, there is some u ∈ NM(B) with u∗q1 = v∗q1 so
that q1v = v(v∗(1− p0)q0v) ∈ NM(B)′′. As v∗(1− p0)q0v ∈ Z(B), we can adjoin
v∗(1− p0)q0v 6 p0 to p, contradicting the maximality of p.

For inclusions of properly infinite von Neumann algebras, standard tech-
niques allow us to adjust groupoid normalisers to have central initial and fi-
nal projections so the previous lemma applies. We record the details in slightly
greater generality for use in Section 4.

LEMMA 2.3. Let M be a von Neumann algebra and let B1, B2 ⊆ M be properly
infinite, countably decomposable von Neumann subalgebras of M. Any partial isometry
v ∈ M with vB1v∗ ⊆ B2 and v∗B2v ⊆ B1 factorises as v = b2wb1, where b1, b2, w
are partial isometries with wB1w∗ ⊆ B2, w∗B2w ⊆ B1, w∗w ∈ Z(B1), ww∗ ∈ Z(B2),
b1 ∈ B1 and b2 ∈ B2.

Proof. Let e = v∗v ∈ B1 and let p be the central support of e in B1. As B1 is
properly infinite, standard arguments enable us to find a sequence (en)∞

n=1 (neces-
sarily countable from the hypothesis of countable decomposability) of pairwise
orthogonal, equivalent projections in B1, and which sum to p and with e1 = e.
Similarly, let vv∗ = f ∈ B2, let q be the central support of f in B2, and find a
sequence ( fn)∞

n=1 of pairwise orthogonal, equivalent projections in B2 which sum
to q with f1 = f . For each n, find partial isometries b1,n ∈ B1 with b∗1,nb1,n = e and
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b1,nb∗1,n = en and partial isometries b2,n ∈ B2 with b∗2,nb2,n = f and b2,nb∗2,n = fn.
Then define a partial isometry

(2.3) w =
∞

∑
n=1

b2,nvb∗1,n ∈ M,

noting that the series converges in the strong operator topology. By construction
ww∗ = q ∈ Z(B2), w∗w = p ∈ Z(B1), wB1w∗ ⊆ B2, w∗B2w ⊆ B1 and v =
b∗2,1wb1,1.

LEMMA 2.4. Let B ⊆ M be an inclusion of von Neumann algebras. Suppose that
B is properly infinite and countably decomposable. Then GNM(B)′′ = NM(B)′′.

Proof. Using Lemma 2.3, any groupoid normaliser v of B can be factorised
in the form b2wb1 so that w is a groupoid normaliser of B with ww∗, w∗w ∈ Z(B)
and b1, b2 ∈ B. By Lemma 2.2, w lies in NM(B)′′ and hence so too does v.

Now we turn to the connections between normalisers, groupoid normalis-
ers and certain automorphisms of the commutant inclusion.

DEFINITION 2.5. Given an inclusion B ⊆ M of von Neumann algebras,
we define the B-bimodular automorphisms of M, denoted AutB(M), to be those
θ ∈ Aut(M) satisfying θ(b) = b for all b ∈ B. Given a subgroup G of the auto-
morphism group of M, let MG denote the fixed point algebra {x ∈ M : θ(x) =
x, θ ∈ G}. This is a von Neumann subalgebra of M. In particular we can apply
this to AutB(M) to obtain MAutB(M) which is a von Neumann subalgebra of M
containing B.

A number of the von Neumann algebras and groups that will appear below
have complicated notations, so we will sometimes adopt the expression Fix (M, G)
for MG.

On occasion we shall need to assume that certain von Neumann algebras
are represented in standard form. In full generality, the standard form of a von
Neumann algebra was set out by Haagerup, [9]. The key fact we will need is that
every automorphism of a von Neumann algebra in standard form is spatially
implemented.

LEMMA 2.6. Let B ⊆ M ⊆ B(H) be an inclusion of von Neumann algebras.
Then

(2.4) (B′)AutM′ (B′) ⊆ NM(B)′,

and equality holds if B (or equivalently B′) is in standard form on H.

Proof. Let x ∈ (B′)AutM′ (B′). Given u ∈ NM(B), we have uBu∗ = B so
uB′u∗ = B′. Thus Ad(u)|B′ defines an automorphism of B′which is M′-bimodular
as u ∈ M. Hence Ad(u)(x) = x and so x ∈ NM(B)′.

Now suppose that B′ lies in standard form on H and take x ∈ NM(B)′ ⊆ B′.
Given θ ∈ AutM′(B′), there is a unitary u ∈ B(H) such that θ = Ad(u)|B′ as B′
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is in standard form on H. Since θ(m′) = m′ for m′ ∈ M′, the double commutant
theorem gives u ∈ M. Now uB′u∗ = B′, so we can take commutants to see
that uBu∗ = B, placing u ∈ NM(B). It follows that θ(x) = uxu∗ = x, since
x ∈ NM(B)′, and so x ∈ (B′)AutM′ (B′), as required.

3. GROUPOID NORMALISERS AND FIXED POINT ALGEBRAS

Our objective in this section is to characterise the groupoid normalising al-
gebra GNM(B)′′ of an inclusion of von Neumann algebras as the commutant of
the fixed point algebra (B′)AutM′ (B′). The first step is to show that the inclusions
of an atomic masa inside B(K), and the inclusion B(K) ⊆ B(K) give positive
answers to Question 1.1(ii). We proceed by direct computations with the matrix
units as in Section 2.2 of [6].

LEMMA 3.1. Let K be a Hilbert space and let A be the atomic masa in B(K). Given
any inclusion B ⊆ M of von Neumann algebras, we have

(3.1) GNM⊗B(K)(B ⊗ A)′′ = GNM⊗B(K)(B ⊗ B(K))′′ = GNM(B)′′ ⊗ B(K).

Proof. We consider a more general situation which will imply containment
of each of the first two algebras from (3.1) into the third simultaneously. Thus
take a partial isometry v ∈ M ⊗ B(K) with

(3.2) v(B ⊗ A)v∗ ⊆ B ⊗ B(K) and v∗(B ⊗ A)v ⊆ B ⊗ B(K),

and note that groupoid normalisers from the first two algebras in (3.1) will sat-
isfy (3.2). Use the minimal projections in A to identify operators in M ⊗ B(K)
with matrices over M, and write v = (vi,j)i,j∈I . For each j ∈ I and x ∈ B,
let y ∈ B ⊗ A be the operator with x in the (j, j)-position and 0 elsewhere.
By considering the (i, i)-th component of vyv∗, we see that vi,jxv∗i,j ∈ B. Sim-
ilarly v∗i,jBvi,j ⊆ B for all i, j. Let wi,jhi,j be the polar decomposition of vi,j, so
wi,j ∈ GNM(B) and hi,j ∈ B by Proposition 2.1. Thus each vi,j lies in GNM(B)′′ so
that v ∈ GNM(B)′′ ⊗ B(K). This shows that the first and second algebras in (3.1)
are contained in GNM(B)′′ ⊗ B(K). Since the reverse inclusions are immediate,
the result follows.

LEMMA 3.2. Let B ⊆ M be an inclusion of von Neumann algebras such that B
is countably decomposable, and let K be an infinite dimensional separable Hilbert space.
Then

(3.3) NM⊗B(K)(B ⊗ B(K))′′ = GNM(B)′′ ⊗ B(K).

Proof. Since B ⊗ B(K) is properly infinite and countably decomposable,
Lemma 2.4 gives

(3.4) NM⊗B(K)(B ⊗ B(K))′′ = GNM⊗B(K)(B ⊗ B(K))′′.
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The result then follows from the second equality of Lemma 3.1.

We can now characterise those inclusions for which NM(B)′′ = GNM(B)′′ in
terms of the fixed points of the automorphism group AutM′(B′).

THEOREM 3.3. Let B ⊆ M ⊆ B(H) be an inclusion of von Neumann algebras
such that B is countably decomposable, and let K be an infinite dimensional separable
Hilbert space. The following statements are equivalent:

(i) NM(B)′′ = GNM(B)′′;
(ii) NM⊗B(K)(B ⊗ B(K))′′ = NM(B)′′ ⊗ B(K);

(iii) NM(B)′ = (B′)AutM′ (B′).

Proof. The equivalence between statements (i) and (ii) follows from Lem-
ma 3.2 and is implicit in Theorem 2.4 of [6].

(iii)⇒ (ii) Applying Lemma 2.6 to B ⊗ B(K) ⊆ M ⊗ B(K) gives

(3.5) Fix (B′ ⊗C1, AutM′⊗C1(B′ ⊗C1)) ⊆ NM⊗B(K)(B ⊗ B(K))′.

We have an isomorphism between AutM′(B′) and AutM′⊗C1(B′ ⊗ C1) given by
θ 7→ θ ⊗ id which demonstrates that

(3.6) Fix (B′ ⊗C1, AutM′⊗C1(B′ ⊗C1)) = (B′)AutM′ (B′) ⊗ C1.

Applying the hypothesis of (iii) gives

(3.7) NM(B)′ ⊗C1 ⊆ NM⊗B(K)(B ⊗ B(K))′,

and the inclusion

(3.8) NM⊗B(K)(B ⊗ B(K))′′ ⊆ NM(B)′′ ⊗ B(K)′′

follows by taking commutants in (3.7). Since the reverse inclusion is immediate,
condition (ii) holds.

(ii) ⇒ (iii) Let π be a standard representation of B′ on some Hilbert space
H1. By the general theory of representations of von Neumann algebras ([3], p. 61),
we can assume that π is obtained by an amplification of the representation on H
followed by a compression. Therefore, we can find another Hilbert space K and
a projection in e ∈ B ⊗ B(K) = (B′ ⊗ 1K)

′ such that π(x) = e(x⊗ 1K)e acting on
e(H ⊗ K). Writing B1 = π(B′)′ and M1 = π(M′)′ with the commutants taken on
H1 = e(H ⊗ K), we have B1 = e(B ⊗ B(K))e and M1 = e(M ⊗ B(K))e. Since π

is a faithful representation of B′, we have π((B′)AutM′ (B′)) = (B′1)
AutM′1

(B′1). Fur-
thermore, since π(B′) is in standard form, so too is B1 = π(B′)′. Thus Lemma 2.6
gives

(3.9) π((B′)AutM′ (B′)) = (B′1)
AutM′1

(B′1) = NM1(B1)
′.
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Every normaliser v of e(B ⊗ B(K))e in e(M ⊗ B(K))e is a groupoid nor-
maliser of B ⊗ B(K) in M ⊗ B(K) and so lies in NM⊗B(K)(B ⊗ B(K))′′ by Lem-
ma 2.4. This gives the inclusion

(3.10) NM1(B1)
′′ = Ne(B⊗B(K))e(e(M ⊗ B(K))e)′′ ⊆ e(NM⊗B(K)(B ⊗ B(K))′′)e.

Now

(3.11) π(NM(B)′)′ = [(NM(B)′ ⊗ C1K)e]′ = e(NM(B)′′ ⊗ B(K))e,

so that

π(NM(B)′)′ = e(NM(B)′′ ⊗ B(K))e = e(NM⊗B(K)(B ⊗ B(K))′′)e

⊇ Ne(B⊗B(K))e(e(M ⊗ B(K))e)′′ = NM1(B1)
′′ = π((B′)AutM′ (B′))′,(3.12)

by (3.11), condition (ii), (3.10) and (3.9). Taking commutants gives

(3.13) π(NM(B)′) ⊆ π((B′)AutM′ (B′)),

and so

(3.14) NM(B)′ ⊆ (B′)AutM′ (B′)

since π is a faithful representation of B′. The reverse inclusion (B′)AutM′ (B′) ⊆
NM(B)′ is Lemma 2.6 so condition (iii) holds.

Finally in this section we can express the groupoid normalising algebra
GNM(B)′′ in terms of the automorphism group AutM′(B′). We will use this re-
sult repeatedly in the next section to obtain further instances of (1.3).

THEOREM 3.4. Let B ⊆ M ⊆ B(H) be an inclusion of von Neumann algebras
where B is countably decomposable. Then

(3.15) GNM(B)′ = (B′)AutM′ (B′).

Proof. Let K be an infinite dimensional separable Hilbert space and define
B1 = B ⊗ B(K) and M1 = M ⊗ B(K). Then

(3.16) NM1(B1)
′′ = GNM(B)′′ ⊗ B(K),

by Lemma 3.2. Since B1 is properly infinite, Lemma 2.4 gives GNM1(B1)
′′ =

NM1(B1)
′′ so the inclusion B1 ⊆ M1 satisfies condition (i) of Theorem 3.3. By

(3.16) and condition (iii) of this theorem,

(3.17) GNM(B)′ ⊗C1K = NM1(B1)
′ = (B′1)

AutM′1
(B′1).

Finally note that θ 7→ θ ⊗ idB(K) gives an isomorphism between AutM′(B′) and
AutM′1

(B′1) so that

(3.18) (B′1)
AutM′1

(B′1) = (B′)AutM′ (B′) ⊗ C1K.

Thus GNM(B)′ = (B′)AutM′ (B′).
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4. GROUPOID NORMALISERS AND TENSOR PRODUCTS

In this section, we establish our positive answers to Question 1.1. We begin
with separably acting inclusions of the form B ⊗ A ⊆ M ⊗ A, where A is abelian.
When B is singular in M, Lemma 4.1 of [6] showed that B ⊗ A is singular in
M⊗ A by a direct integral argument based on [16]. The proof given in Lemma 6.6
of [6] shows that any normaliser u of B ⊗ A in M ⊗ A is a direct integral of
normalisers of B in M over the spectrum of A. The analogous result also holds
for groupoid normalisers, giving the following lemma. We omit the proof, which
is a routine modification of Lemma 6.6 of [16] and Lemma 4.1 of [6].

LEMMA 4.1. Let B ⊆ M be an inclusion of separably acting von Neumann alge-
bras. If A is a separable abelian von Neumann algebra, then

(4.1) NM⊗ A(B ⊗ A)′′ = NM(B)′′ ⊗ A, GNM⊗ A(B ⊗ A)′′ = GNM(B)′′ ⊗ A.

The next lemma follows the same pattern as the deduction of Theorem 4.3
of [6] from Theorem 3.1 and Lemma 4.1 of [6].

LEMMA 4.2. Let B ⊆ M be a unital inclusion of separably acting von Neumann
algebras and let L be a separably acting von Neumann algebra. Then

(4.2) GNM⊗ L(B ⊗ L)′′ = GNM(B)′′ ⊗ L.

Proof. Fix a faithful representation of M on a separable Hilbert space H1
and use this to define the commutants B′ ⊇ M′. Write A = Z(L) and take a
standard representation of A on a separable Hilbert space K so that A is a masa
in B(K). Work on the Hilbert space H1 ⊗ K so that (B ⊗ A)′ = B′ ⊗ A. Given θ ∈
AutM′ ⊗ A(B′ ⊗ A), Theorem 3.4 gives θ(x) = x for all x ∈ GNM⊗ A(B ⊗ A)′ =
GNM(B)′ ⊗ A, where the last identity is obtained by taking commutants in Lem-
ma 4.1.

Now suppose that L is faithfully represented on a separable Hilbert space
H2 and work on H1 ⊗ H2. Given an automorphism θ ∈ AutM′ ⊗ L′(B′ ⊗ L′), we
have

θ(x)(1B′ ⊗ `′) = θ(x)θ(1B′ ⊗ `′) = θ(x(1B′ ⊗ `′)) = θ((1B′ ⊗ `′)x)

= θ(1B′ ⊗ `′)θ(x) = (1B′ ⊗ `′)θ(x), `′ ∈ L′, x ∈ B′⊗ A,(4.3)

since θ(1B′ ⊗ `′) = 1B′ ⊗ `′ and 1B′ ⊗ `′ commutes with B′ ⊗ A ⊆ B′ ⊗ L′. Thus

(4.4) θ(x) ∈ (C1B′ ⊗ L′)′ ∩ (B′ ⊗ L′) = B′ ⊗ Z(L) = B′ ⊗ A,

and so every θ ∈ AutM′ ⊗ L′(B′ ⊗ L′) restricts to an element of AutM′ ⊗ A(B′ ⊗ A).
It then follows from the first paragraph of the proof that θ(x) = x for all x ∈
GNM(B)′ ⊗ A. Since θ was arbitrary, it follows that

(4.5) GNM(B)′ ⊗ A ⊆ Fix (B′ ⊗ L′, AutM′ ⊗ L′(B′ ⊗ L′)) = GNM⊗ L(B ⊗ L)′,
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where the second equality is Theorem 3.4. Take commutants to obtain

(4.6) GNM(B)′′ ⊗ A′ ⊇ GNM⊗ L(B ⊗ L)′′

on H1 ⊗ H2. Then

(4.7) GNM⊗L(B ⊗ L)′′ ⊆ (GNM(B)′′ ⊗ A′) ∩ (M ⊗ L) = GNM(B)′′ ⊗ L.

Since the reverse inclusion is immediate, the result follows.

We now start work on our main result. Given two unital inclusions Bi ⊆ Mi
of von Neumann algebras, we will show that

(4.8) GNM1 ⊗M2
(B1 ⊗ B2)

′′ = GNM1(B1)
′′ ⊗ GNM2(B2)

′′,

when B′1∩M1 is atomic and lies in the centre of B1. The inclusion from right to left
is immediate. We establish the inclusion from left to right by demonstrating that
GNM1 ⊗M2

(B1 ⊗ B2)
′′ is contained in M1 ⊗ GNM2(B2)

′′ and in GNM1(B1)
′′ ⊗ M2

separately. The next lemma, which is based on Theorem 4.4 of [6], handles the
first, and easier, of these two inclusions.

LEMMA 4.3. For i = 1, 2, let Bi ⊆ Mi be unital inclusions of separably acting
von Neumann algebras and suppose that B′1 ∩M1 = Z(B1) is atomic. Then

(4.9) GNM1 ⊗M2
(B1 ⊗ B2)

′′ ⊆ M1 ⊗ GNM2(B2)
′′.

Proof. Represent M1 and M2 faithfully on Hilbert spaces H1 and H2 respec-
tively and consider an automorphism θ ∈ AutM′1 ⊗M′2

(B′1 ⊗ B′2). Write A =

Z(B1). For y1 ∈ A = Z(B′1) and y2 ∈ B′2, we have

θ(y1 ⊗ y2)(x⊗ 1) = θ(y1x⊗ y2) = θ(xy1 ⊗ y2)

= (x⊗ 1)θ(y1 ⊗ y2), x ∈ M′1.(4.10)

Thus

(4.11) θ(y1 ⊗ y2) ∈ (M′1 ⊗C1)′ ∩ (B′1 ⊗ B′2) = (B′1 ∩M1) ⊗ B′2 = A ⊗ B′2,

and so it follows that θ restricts to an element of AutC1⊗M′2
(A⊗ B′2). Let A be rep-

resented as the diagonal operators on some Hilbert space K, so that working on
K⊗ H2 we have (A ⊗ B2)

′ = A ⊗ B′2. Lemma 3.1 gives GNB(K)⊗M2
(A ⊗ B2)

′′ =

B(K) ⊗ GNM2(B2)
′′ so that

(4.12) Fix (A ⊗ B′2, AutC1⊗M′2
(A ⊗ B′2)) = C1⊗ GNM2(B2)

′,

by Theorem 3.4. Thus θ(1⊗ z) = 1⊗ z for all z ∈ GNM2(B2)
′. Theorem 3.4 also

gives

(4.13) GNM1 ⊗M2
(B1 ⊗ B2)

′ = Fix (B′1 ⊗ B′2, AutM′1 ⊗M′2
(B′1 ⊗ B′2))

so that

(4.14) C1⊗ GNM2(B2)
′ ⊆ GNM1 ⊗M2

(B1 ⊗ B2)
′.
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The inclusions

GNM1 ⊗M2
(B1 ⊗ B2)

′′ ⊆ (B(H1) ⊗ GNM2(B2)
′′) ∩ (M1 ⊗ M2)

= M1 ⊗ GNM2(B2)
′′(4.15)

follow by taking commutants.

Now we turn to the second inclusion required for (4.8). Recall that a von
Neumann algebra in standard form has the property that its automorphisms are
all spatially implemented.

LEMMA 4.4. Let B ⊆ M be a unital inclusion of separably acting von Neumann
algebras with B′ ∩M ⊆ B and suppose that p and q are minimal central projections in B.
Let L be another separable von Neumann algebra acting in standard form on the Hilbert
space K. Suppose that v ∈ GNM⊗B(K)(B ⊗ L) satisfies v∗v, vv∗ ∈ Z(B ⊗ L) with
v∗v 6 p⊗ 1 and vv∗ 6 q⊗ 1. Then v ∈ GNM(B)′′ ⊗ B(K).

Proof. We represent M on a Hilbert space H. Since p and q are minimal
central projections in Z(B), there are central projections p1, q1 ∈ L with v∗v =
p⊗ p1 and vv∗ = q⊗ q1. Thus x 7→ vxv∗ gives an isomorphism from (Bp)⊗ (Lp1)
onto (Bq) ⊗ (Lq1). As a consequence, we obtain a surjective isomorphism θ :
(B′p) ⊗ (L′p1) → (B′q) ⊗ (L′q1) by θ(y) = vyv∗. Note that v commutes with
M′ ⊗C1 so

(4.16) θ(M′ ⊗ p1) = v(M′ ⊗ p1)v∗ = v(M′ ⊗ 1)v∗ = (M′ ⊗ 1)vv∗ = M′q⊗ q1.

We claim that θ(p⊗ L′p1) = q⊗ L′q1. Indeed, for m′ ∈ M′ and `′ ∈ L′,

(4.17) (m′p⊗ p1)(p⊗ `′p1) = (p⊗ `′p1)(m′p⊗ p1),

so that applying θ and using (4.16), we obtain

(4.18) θ(p⊗ `′p1) ∈ (M′q⊗ q1)
′ ∩ (B′q⊗ L′q1) = (B′ ∩M)q⊗ L′q1 = q⊗ L′q1,

from the minimality of q ∈ Z(B). Interchanging the roles of v and v∗ shows that
θ−1(q⊗ L′q1) = p⊗ L′p1, establishing the claim.

Since both L′p1 and L′q1 act in standard form on p1(K) and q1(K) respec-
tively, there is a partial isometry w ∈ B(K) with w∗w = p1 and ww∗ = q1 so
that

(4.19) v(p⊗ `′p1)v∗ = θ(p⊗ `′p1) = (1⊗ w)(q⊗ `′p1)(1⊗ w)∗, `′ ∈ L′.

Define v1 = (1⊗ w)∗v so that

v1v∗1 = (1⊗ w)∗vv∗(1⊗ w) = (1⊗ w)∗(q⊗ q1)(1⊗ w) = q⊗ p1 and(4.20)

v∗1v1 = v∗(1⊗ w)(1⊗ w)∗v = v∗(1⊗ q1)v = p⊗ p1.(4.21)



GROUPOID NORMALISERS OF TENSOR PRODUCTS: INFINITE VON NEUMANN ALGEBRAS 557

As (1⊗ w)(1⊗ w∗) = 1⊗ q1 > v1v∗1 , we have v = (1⊗ w)v1. Certainly v1 ∈
M⊗ p1B(K)p1, and direct computations give

v1(1⊗ `′) =v1v∗1v1(1⊗ `′)v∗1v1 = v1(p⊗ l′p1)v∗1v1

=(1⊗ w)∗θ(p⊗ `′p1)(1⊗ w∗)v1

=(q⊗ w∗w`′w∗w)v1 = (1⊗ `′)v1, `′ ∈ L′.(4.22)

Thus

(4.23) v1 ∈ (C1⊗ L′)′ ∩ (M ⊗ p1B(K)p1) = M ⊗ Lp1 ⊆ M ⊗ L.

Since x 7→ v1xv∗1 is an isomorphism from B′p ⊗ L′p1 = (B ⊗ L)′ ∩ B(pH ⊗ p1K)
onto B′q ⊗ L′p1 = (B ⊗ L)′ ∩B(qH ⊗ p1K) we can take commutants to see that

(4.24) v1(B ⊗ L)v∗1 ⊆ B ⊗ L

and similarly that v∗1(B ⊗ L)v∗1 ⊆ B ⊗ L. Consequently v1 ∈ GNM⊗ L(B ⊗ L) and
so v1 ∈ GNM(B)′′ ⊗ L by Lemma 4.2. It follows that

(4.25) v = (1⊗ w)v1 ∈ GNM(B)′′ ⊗ B(K),
as required.

LEMMA 4.5. Let B ⊆ M be an inclusion of separably acting von Neumann alge-
bras so that B′ ∩M = Z(B) is atomic. Let L be another von Neumann algebra, acting
in standard form on a separable Hilbert space K. Then

(4.26) GNM⊗B(K)(B ⊗ L)′′ ⊆ GNM(B)′′ ⊗ B(K).

Proof. We first show that it suffices to prove the lemma under the additional
assumption that B is properly infinite. If B is not properly infinite, consider the
inclusion

(4.27) B0 = B(`2(N)) ⊗ B ⊆ B(`2(N)) ⊗ M = M0,

which also satisfies the hypotheses of the lemma and B0 is properly infinite.
Lemma 3.1 gives

GNM0(B0)
′′ = B(`2(N)) ⊗ GNM(B)′′ and(4.28)

GNM0 ⊗B(K)(B0 ⊗ L)′′ = B(`2(N)) ⊗ GNM⊗B(K)(B ⊗ L)′′.(4.29)

Thus, assuming that the lemma holds for the inclusion B0 ⊆ M0, we obtain

B(`2(N)) ⊗ GNM⊗B(K)(B ⊗ L)′′ =GNM0 ⊗B(K)(B0 ⊗ L)′′

⊆GNM0(B0)
′′ ⊗ B(K)

=B(`2(N)) ⊗ GNM(B)′′ ⊗ B(K),(4.30)

and so (4.26) holds for the original inclusion B ⊆ M.
Now assume that B is properly infinite. Fix v ∈ GNM⊗B(K)(B ⊗ L) and

minimal projections p, q ∈ Z(B). We will show that

(4.31) (p⊗ 1)v(q⊗ 1) ∈ GNM(B)′′ ⊗ B(K),
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from which the result follows immediately. Let

(4.32) (p⊗ 1)v(q⊗ 1) = w|(p⊗ 1)v(1⊗ 1)q|

be the polar decomposition of (p⊗ 1)v(q⊗ 1), so that |(p⊗ 1)v(q⊗ 1)| ∈ B ⊗ L
and w ∈ GNM⊗B(K)(B ⊗ L) by Proposition 2.1. We must show that

(4.33) w ∈ GNM(B)′′ ⊗ B(K).

Write Ap = (p ⊗ 1)(B ⊗ L)(p ⊗ 1) and Aq = (q ⊗ 1)(B ⊗ L)(q ⊗ 1) so that
wAqw∗ ⊆ Ap and w∗Apw ⊆ Aq. Note that both Ap and Aq are central cutdowns
of B ⊗ L and so properly infinite. By Lemma 2.3, we can factorise w = aquap,
where ap and aq are partial isometries in Ap and Aq respectively and u is a partial
isometry with uAqu∗ ⊆ Ap, u∗Apu ⊆ Aq and u∗u ∈ Z(Aq), uu∗ ∈ Z(Ap).
Lemma 4.4 then shows that u, and hence w, lies in GNM(B)′′ ⊗ B(K), exactly as
required.

We can now establish (4.8), giving a general class of inclusions with a posi-
tive answer to Question 1.1(ii).

THEOREM 4.6. Let B1 ⊆ M1 be an inclusion of separably acting von Neumann
algebras where B′1 ∩M1 = Z(B1) is atomic and let B2 ⊆ M2 be another unital inclusion
of separably acting von Neumann algebras. Then

(4.34) GNM1 ⊗M2
(B1 ⊗ B2)

′′ = GNM1(B1)
′′ ⊗ GNM2(B2)

′′.

Proof. Take faithful representations of M1 and M2 on Hilbert spaces H1 and
H2 respectively. Fix θ ∈ AutM′1 ⊗M′2

(B′1 ⊗ B′2). We will show that θ(x⊗ 1) = x⊗ 1
for all x ∈ GNM1(B1)

′.
Define L = B′2 ∩M2. For m′2 ∈ M′2, b′1 ∈ B′1 and ` ∈ L = B′2 ∩M2 we have

(4.35) θ(b′1 ⊗ `)(1⊗m′2) = θ(b′1 ⊗ `m2) = θ(b′1 ⊗m2`) = (1⊗m′2)θ(b
′
1 ⊗ `),

so that θ(b′1⊗ `) ∈ (C1⊗M′2)
′ ∩ (B′1 ⊗ B′2) = B′1 ⊗ L. In particular θ restricts to an

element of AutM′1⊗C1(B′1 ⊗ L). Now take a standard representation of L on K and
work on H1 ⊗ K. Applying Theorem 3.4 to the inclusion B1 ⊗ L′ ⊆ M1 ⊗ B(K),
we have

(4.36) Fix (B′1 ⊗ L, AutM′1⊗C1(B′1 ⊗ L)) = GNM1 ⊗B(K)(B ⊗ L′)′.

In particular θ(z) = z for all z ∈ GNM1 ⊗B(K)(B ⊗ L′)′. Lemma 4.5 gives

(4.37) GNM1 ⊗B(K)(B1 ⊗ L′)′′ ⊆ GNM1(B1)
′′ ⊗ B(K),

and the inclusion

(4.38) GNM1(B1)
′ ⊗C1 ⊆ GNM1 ⊗B(K)(B1 ⊗ L′)′

follows by taking commutants in (4.37). Thus θ(x ⊗ 1) = x ⊗ 1 for all x ∈
GNM1(B1)

′.
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Applying Theorem 3.4 to the original inclusion B1 ⊗ B2 ⊆ M1 ⊗ M2 gives

(4.39) GNM1 ⊗M2
(B1 ⊗ B2)

′ = Fix (B′1 ⊗ B′2, AutM′1 ⊗M′2
(B′1 ⊗ B′2))

and so

(4.40) GNM1(B1)
′ ⊗C1 ⊆ GNM1 ⊗M2

(B1 ⊗ B2)
′.

Taking commutants gives

(4.41) GNM1 ⊗M2
(B1 ⊗ B2)

′′ ⊆ GNM1(B1)
′′ ⊗ B(H2).

As Lemma 4.3 states that

(4.42) GNM1 ⊗M2
(B1 ⊗ B2)

′′ ⊆ M1 ⊗ GNM2(B2)
′′,

we obtain

GNM1 ⊗M2
(B1 ⊗ B2)

′′ ⊆ (GNM1(B1)
′′ ⊗ B(H2)) ∩ (M1 ⊗ GNM2(B2)

′′)

= GNM1(B1)
′′ ⊗ GNM2(B2)

′′.(4.43)

As the reverse inclusion is immediate, the result follows.

We end this section by giving an example of a diffuse masa-factor inclusion
A ⊆ M for which

(4.44) GNM⊗N(A ⊗ B)′′ = GNM(A)′′ ⊗ GNN(B)′′,

for all inclusions B ⊆ N. Fix k ∈ N with k > 2 and let Fk be the free group on
the k generators a, b1, . . . , bk−1 (the argument given below will also be valid for
k = ∞). Let M = L(Fk) be the group von Neumann algebra generated by Fk.
We identify elements of the group with the corresponding elements in M and let
A be the von Neumann subalgebra of M generated by a. This is a masa in M,
known as a generator masa so has A′ ∩ M = A. The subgroup generated by
a satisfies Dixmier’s criterion for singularity of the masa A [2] (see also p. 22 of
[13]) and so GNM(A)′′ = A. The inclusion A ⊆ M fits into the framework of [7] so
(4.44) holds whenever B ⊆ N is an inclusion of finite von Neumann algebras with
B′ ∩ N ⊆ B. Our objective is to establish (4.44) without making any assumption
on the inclusion B ⊆ N.

We denote the standard orthonormal basis for `2(Fk) by {δg : g ∈ Fk}.
When we view an operator x ∈ L(Fk) as a vector in the underlying Hilbert space,
then it has a square summable Fourier series ∑

g∈Fk

αgδg. The support of x is then

{g ∈ Fk : αg 6= 0}. When viewing x as an operator, we write x = ∑
g∈Fk

αgg.

LEMMA 4.7. With the notation above, let H be a Hilbert space and x ∈ M⊗B(H)
satisfy x(A⊗C1)x∗ ⊆ A ⊗ B(H). Then x ∈ A ⊗ B(H).

Proof. With respect to some choice of matrix units for B(H), we may write
x = (xij)i,j∈Λ with xij ∈ L(Fk). The hypothesis implies that ∑

j
xijatx∗ji ∈ A for

all t ∈ Z and all i ∈ Λ, from which we wish to conclude that each xij lies in A.
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Thus it suffices to consider operators yi ∈ L(Fk) so that ∑
j

yjaty∗j ∈ A for all t ∈ Z,

and deduce that yj ∈ A for all j. Taking t = 0 and applying the trace shows that
∑
j
‖yj‖2

2 < ∞, so by scaling we may assume that this sum is 1. We will argue

by contradiction, so suppose that there is some j0 such that yj0 /∈ A. Then the
support of yj0 contains a word g which is not a power of a. Then g may be written
in reduced form as anw0am where m, n ∈ Z and w0 is a non-trivial reduced word
whose first and last letters lie in {b±1

1 , . . . , b±1
k−1}. We will examine the coefficient

of gatg−1 in S(t) := ∑
j

yjaty∗j and show that it is nonzero for sufficiently large

values of t. This will give the desired contradiction.
Let c = 〈yj0 δe, δg〉 6= 0 be the coefficient of g in yj0 . For any fixed group

element h ∈ Fk and any t ∈ Z, the coefficient of h in yjaty∗j is

(4.45) 〈yjaty∗j δe, δh〉 = 〈aty∗j δe, Jh−1 Jy∗j δe〉,

where Jh−1 J is the unitary operator of right-convolution by h. This is bounded in
absolute value by ‖yj‖2

2 using the Cauchy–Schwarz inequality. Consequently, the
contribution of ∑

j∈Λ0

yjaty∗j to the coefficient of gatg−1 in S(t) is bounded above by

∑
j∈Λ0

‖yj‖2
2, for any subset Λ0 of the index set Λ. Choose a finite set Λ0 ⊆ Λ so that

∑
j∈Λ\Λ0

‖yj‖2
2 < |c|2/4. For t ∈ Z, write SΛ0(t) = ∑

j∈Λ0

yjaty∗j .

For each j ∈ Λ0, we may write yj as an orthogonal sum zj + z′j where each zj

is a finite linear combination of group elements, g appears in zj0 , and ∑
j∈Λ0

‖z′j‖2 <

|c|2/4. Then gatg−1 can appear in SΛ0(t) from the four terms ∑
j∈Λ0

zjatz∗j , ∑
j∈Λ0

zjatz′∗j ,

∑
j∈Λ0

z′ja
tz∗j and ∑

j∈Λ0

z′ja
tz′∗j . Since ‖z′j‖2 6 ‖yj‖2 6 1 and ‖zj‖2 6 ‖yj‖2 6 1, we

may argue as above to see that the total contribution (in absolute value) of the
latter three terms to the coefficient of gatg−1 is at most 3|c|2/4. For example, the
contribution of the term ∑

j∈Λ0

zjatz′∗j is bounded above in absolute value by

(4.46) ∑
j∈Λ0

‖zj‖2‖z′∗j ‖2 6 ∑
j∈Λ0

‖z′∗j ‖2 <
|c|2
4

.

We now examine the contribution from ∑
j∈Λ0

zjatz∗j , recalling that each zj is sup-

ported on finitely many group elements. Thus there is an integer K > 0 which
bounds the number of a±1’s in any word in the support of zj for any j ∈ Λ0.
There are two forms for such words. The first is ap where |p| 6 K while the sec-
ond is apvaq, where p, q ∈ Z and the first and last letters of v lie in {b±1

1 , . . . , b±1
k−1}.

Moreover, we will have that |p|, |q| 6 K, and that v can contain at most K a±1’s.
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We now restrict attention to t > 5K. In order to avoid a proliferation of cases, we
write the typical term in the expansion of ∑

j∈Λ0

zjatz∗j as apvaqata−sw−1a−r, where

|p|, |q|, |s|, |r| 6 K, each of v and w is either e or begins and ends with letters from
{b±1

1 , . . . , b±1
k−1} and contains at most K a±1’s. We wish to know when this equals

anw0amata−mw−1
0 a−n = anw0atw−1

0 a−n. This is impossible when both v and w are
e, so we first consider the degenerate case when v = e and the first and last letters
of w lie in {b±1

1 , . . . , b±1
k−1}. Then the equation

(4.47) ap+q+t−sw−1a−r = anw0atw−1
0 a−n

is false since w0 starts with a letter from {b±1
1 , . . . , b±1

k−1} while p + q + t − s −
n > K. A similar argument disposes of the possibility that w = e. Thus we
need only consider the case when both v and w begin and end with letters from
{b±1

1 , . . . , b±1
k−1}, giving p = r = n. This question then reduces to examining the

equation

(4.48) vat+q−sw−1 = w0atw−1
0 .

The last letter in v either lies in w0 or in w−1
0 . In the second case v must contain

at least w0at, contradicting the bound of K on the number of a’s in v since t > 5K.
Thus the first case must hold, and we can write w0 = vw1 where no cancelations
can occur between v and w1. Then (4.48) becomes

(4.49) at+q−sw−1 = w1atw−1
0 .

Since the last letter of w0 lies in {b±1
1 , . . . , b±1

k−1}, there is no cancelation between
at and w−1

0 . Thus there are two possibilities: w1 = e or w1 ends with a letter
from {b±1

1 , . . . , b±1
k−1}. If the second one holds then no cancelations occur on the

right hand side of (4.49), so w1 begins with at+q−s, showing that w0 contains this
power. But t + q− s > 3K and a contradiction ensues. Thus w1 = e and w0 = v.
Returning to (4.48), we conclude that q = s and w0 = w. It follows that the contri-
butions to the coefficient of gatg−1 in ∑

j∈Λ0

zjatz∗j only arise from products datd−1

where d has the form anw0aq. Thus this coefficient is a sum of positive terms in-
cluding |c|2 (which arises from the coefficient canw0am term in zj0 ). In conclusion,
for t sufficiently large, the coefficient of gatg−1 in ∑

j∈Λ
yjaty∗j has absolute value

strictly greater than |c|2 − |c|2/4− 3|c|2/4, and is thus nonzero. Consequently
these elements cannot lie in A, and this contradiction completes the proof.

THEOREM 4.8. Let k > 2 and let A be a generator masa in M = LFk. Given any
unital inclusion B ⊆ N of von Neumann algebras, we have

(4.50) GNM⊗N(A ⊗ B)′′ = A ⊗ GNN(B)′′.

Proof. Take a faithful representation of N on some Hilbert space H. Let v
be a groupoid normaliser of A ⊗ B in M ⊗ N. Then v(A ⊗ C1)v∗ ⊆ A ⊗ B ⊆
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A ⊗ B(H), so by Lemma 4.7, v lies in A ⊗ B(H). By applying slice maps, it
follows that v ∈ A ⊗ N. Thus

(4.51) GNM⊗N(A ⊗ B)′′ = GNA⊗N(A ⊗ B)′′,

as the inclusion from right to left is immediate. Lemma 4.1 then gives

(4.52) GNM⊗N(A ⊗ B)′′ = A ⊗ GNN(B)′′,

and so the result follows.

5. IRREDUCIBLE SUBFACTORS

Recall that an inclusion B ⊆ M of factors is irreducible if B′ ∩ M = C1. In
this section we consider two irreducible inclusions Bi ⊆ Mi (i = 1, 2) of factors
and the resulting tensor product inclusion B = B1 ⊗ B2 ⊆ M1 ⊗ M2 = M.
Our objective is to examine normalisers of this latter inclusion and to address
the question of whether they always factorise in the form v(w1 ⊗ w2) for some
normalisers wi ∈ NMi (Bi) and some unitary v ∈ B. In [15] a positive answer was
obtained when both M1 and M2 are type II1 using basic construction methods (the
special case of finite index inclusions follows from the earlier paper [11]). Here
we examine the M′-bimodular automorphism groups used in Sections 3 and 4 to
answer this question beyond the finite setting. To this end, we regard each Mi
as faithfully represented on a Hilbert space Hi so that M is represented on H =
H1 ⊗ H2. Tomita’s commutation theorem ensures that the commutants M′ and
B′ are obtained as the tensor products M′1 ⊗ M′2 and B′1 ⊗ B′2 respectively. Given
any unitary normaliser u ∈ NM(B), we obtain an automorphism θ = Ad(u) ∈
AutM′(B′). In the setting of irreducible subfactors, these automorphisms must
factorise, as we now show.

LEMMA 5.1. With the notation above, let θ ∈ AutM′(B′). Then there exist auto-
morphisms θi ∈ AutM′i

(B′i), i = 1, 2, such that θ = θ1 ⊗ θ2.

Proof. For y1 ∈ B′1 and x2 ∈ M′2, we have

(1⊗ x2)θ(y1 ⊗ 1) = θ((1⊗ x2)(y1 ⊗ 1)) = θ((y1 ⊗ 1)(1⊗ x2))

= θ(y1 ⊗ 1)(1⊗ x2)(5.1)

so that

(5.2) θ(y1 ⊗ 1) ∈ (B′1 ⊗ B′2) ∩ (C1 ⊗M′2)
′ = B′1 ⊗ (B′2 ∩M2) = B′1 ⊗C1.

Similarly, θ−1 also maps B′1 ⊗ C1 into itself, so if we identify B′1 with B′1 ⊗ C1,
then θ restricts to give an automorphism of B′1. By interchanging the roles of B1
and B2, we see that θ also restricts to an automorphism θ2 of B′2, allowing us to
conclude that θ = θ1 ⊗ θ2. Given x1 ∈ M′1 and x2 ∈ M′2, we have

(5.3) x1 ⊗ x2 = θ(x1 ⊗ x2) = θ1(x1)⊗ θ2(x2),
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so that each θi is M′i-bimodular for i = 1, 2.

The next lemma enables us to recover groupoid normalisers from elements
commuting with bimodular automorphisms.

LEMMA 5.2. Let B ⊆ M be an irreducible inclusion of subfactors, faithfully rep-
resented on some Hilbert space H and let ψ be an element of AutM′(B′). Let a ∈ B(H)
have polar decomposition a = v|a| and also satisfy

(5.4) ψ(y)a = ay, y ∈ B′.

Then aa∗, a∗a ∈ B and v is a groupoid normaliser of B in M satisfying

(5.5) ψ(y)v = vy, y ∈ B′.

Proof. Applying (5.4) and its adjoint gives

(5.6) a∗ay = a∗ψ(y)a = ya∗a, y ∈ B′,

so that a∗a ∈ B. Similarly

(5.7) aa∗ψ(y) = ψ(y)aa∗, y ∈ B′

so that aa∗ ∈ B. Now,

(5.8) ψ(y)v|a| = v|a|y = vy|a|, y ∈ B′,

which implies that

(5.9) ψ(y)v = vyv∗v = vv∗vy = vy, y ∈ B′

since v∗v is the range projection of |a| (and so lies in B). By hypothesis ψ(x) = x
for x ∈ M′, so the double commutant theorem ensures that v ∈ M. For b ∈ B and
y ∈ B′, we have

(5.10) vbv∗ψ(y) = vbyv∗ = vybv∗ = ψ(y)vbv∗,

so that vbv∗ ∈ B. Similarly

(5.11) v∗bvy = v∗bψ(y)v = v∗ψ(y)bv = yv∗bv,

so v∗bv ∈ B and we have proved that v ∈ GNM(B).

We briefly recall from [18] some facts about slice maps on tensor products
that will be used subsequently. If P and Q are two von Neumann algebras then
the algebraic tensor product P∗ ⊗ Q∗ is a norm dense subspace of the predual of
P⊗Q. Thus any fixed φ ∈ Q∗ defines a left slice map Lφ : P ⊗ Q→ P by

(5.12) Lφ(x)(ψ) = (ψ⊗ φ)(x), x ∈ P ⊗ Q, ψ ∈ P∗.

This definition shows that each Lφ is a normal map and, when restricted to ele-
mentary tensors, it has the form

(5.13) Lφ(p⊗ q) = φ(q)p, p ∈ P, q ∈ Q.

It is immediate from (5.13) that each Lφ is a P-bimodule map. Moreover, if N is
a von Neumann subalgebra of P and x ∈ P ⊗ Q is such that Lφ(x) ∈ N for all
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φ ∈ Q∗, then x ∈ N ⊗ Q. In the next lemma we note that the automorphism θ
splits as θ = θ1 ⊗ θ2, by Lemma 5.1.

LEMMA 5.3. For i = 1, 2, let Bi ⊆ Mi be irreducible inclusions of factors. Write
M = M1 ⊗ M2 and B = B1 ⊗ B2 and let u ∈ NM(B). Write θ = θ1 ⊗ θ2 for the
induced element Ad(u) of AutM′(B′). Then there exist vi ∈ GNMi (Bi), i = 1, 2, such
that each vi is either an isometry or a co-isometry and

(5.14) θi(yi)vi = viyi, y ∈ B′i , i = 1, 2.

Proof. By symmetry, we only need examine the case i = 1. Consider the set

(5.15) S1 = {v ∈ GNM1(B1) : θ1(y)v = vy, y ∈ B′1},

which we equip with the partial ordering v 6 w iff wv∗v = v (equivalent to the
requirement that the partial isometry w be an extension of v). It is clear that any
chain in S1 has a least upper bound so, by Zorn’s lemma, there is some maximal
element v ∈ S1. Let e = 1− v∗v and f = 1− vv∗. Suppose that v is neither an
isometry nor a co-isometry, so that both e and f are non-zero.

Since u(e⊗ 1) 6= 0, there is a normal state φ on B(H2) inducing a slice map
id ⊗ φ : B(H1) ⊗ B(H2) → B(H1) with (id ⊗ φ)(u(e ⊗ 1)) 6= 0. If we define
a ∈ B(H1) by a = (id⊗ φ)(u(e⊗ 1)), then the module property of the slice map
shows that

(5.16) a = (id⊗ φ)(u(e⊗ 1)) = ((id⊗ φ)(u))e.

Now

(5.17) (θ1(y)⊗ 1)u = θ(y⊗ 1)u = u(y⊗ 1), y ∈ B′1,

so applying id⊗ φ gives

(5.18) θ1(y)(id⊗ φ)(u) = (id⊗ φ)(u)y, y ∈ B′1.

Then multiplication on the right by e ∈ B1 leads to

(5.19) θ1(y)a = ay, y ∈ B′1.

Letting a = v1|a| be the polar decomposition of a, we obtain v1 ∈ S1 from Lem-
ma 5.2. Define f1 = v1v∗1 , and note that some non-zero subprojection of f1 is
equivalent to a subprojection of f since B1 is a factor. Let w ∈ B1 be a nonzero
partial isometry with w∗w 6 f1 and ww∗ 6 f , and consider the partial isometry
wv1. This is a groupoid normaliser of B1 with

(5.20) θ1(y)wv1 = wv1y, y ∈ B′1,

since both v1 and w have these properties. Accordingly, v + wv1 lies in S1 and
is strictly greater than v, contradicting maximality. Hence v must be either an
isometry or a co-isometry.

In the following corollary we recapture the normaliser results for tensor
products of irreducible inclusions of II1 factors from [15].
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COROLLARY 5.4. For i = 1, 2, let Bi ⊆ Mi be irreducible inclusions of II1 factors.
Then any unitary normaliser of B1 ⊗ B2 in M1 ⊗ M2 is of the form w(v1⊗ v2) for some
unitary w ∈ B1 ⊗ B2 and normalisers vi ∈ NMi (Bi).

Proof. Given a normaliser u of B1 ⊗ B2 in M1 ⊗ M2, let θ = Ad(u) ∈
AutM′1 ⊗M′2

(B′1 ⊗ B′2) (formed with respect to some faithful actions of M1 and M2

on Hilbert spaces H1 and H2). By Lemma 5.1, we have a factorisation θ = θ1 ⊗ θ2
for some θi ∈ AutM′i

(B′i). Lemma 5.3 gives groupoid normalisers vi ∈ GNMi (Bi)

satisfying

(5.21) θi(yi)vi = yivi, yi ∈ B′i ,

and such that v1 and v2 are either isometries or co-isometries. Since both M1 and
M2 are finite, v1 and v2 are unitary normalisers. Define w = u(v∗1 ⊗ v∗2). Since

θ(y1 ⊗ y2)w = u(y1v∗1 ⊗ y2v∗2) = u(v∗1θ1(y1)⊗ v∗2θ2(y2))

= wθ(y1 ⊗ y2), yi ∈ B′i ,(5.22)

the double commutant theorem ensures that w ∈ B1 ⊗ B2 and u = w(v1 ⊗ v2), as
required.

We now return to the situation where we do not assume that M1 and M2 are
finite.

LEMMA 5.5. Let B ⊆ M be an irreducible inclusion of infinite factors and suppose
that ψ ∈ AutM′(B′) is given and v ∈ GNM(B) is an isometry or co-isometry with

(5.23) ψ(y)v = vy, y ∈ B′.

Then there exists a normaliser v1 ∈ NM(B) with

(5.24) ψ(y)v1 = v1y, y ∈ B′.

Proof. We may assume that v∗v = 1 and vv∗ = f < 1. The map x 7→ vxv∗

implements a surjective ∗-isomorphism between B and f B f . Hence f B f is an
infinite factor so f is infinite in B. Then there exists a partial isometry w ∈ B with
w∗w = f and ww∗ = 1. Define v1 = wv. This is certainly a unitary normaliser
of B and (5.24) follows from multiplying (5.23) on the left by w (which commutes
with ψ(y)).

THEOREM 5.6. For i = 1, 2, let Bi ⊆ Mi be irreducible inclusions of factors.
Suppose that either one of M1 or M2 is finite or that both B1 and B2 are infinite. Then
any unitary normaliser u of B1 ⊗ B2 in M1 ⊗ M2 is of the form w(v1 ⊗ v2) for some
unitary w ∈ B1 ⊗ B2 and normalisers vi ∈ NMi (Bi).

Proof. As in the proof of Corollary 5.4, write Ad(u) = θ1 ⊗ θ2 for some
θi ∈ AutM′i

(B′i), and find isometries or co-isometries vi ∈ GNMi (Bi) with

(5.25) θi(yi)vi = yivi, yi ∈ B′i .
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If both B1 and B2 are infinite, then Lemma 5.5 enables us to replace the vi by
unitary normalisers satisfying the same condition. Just as in Corollary 5.4, w =
u(v∗1 ⊗ v∗2) is a unitary in B1 ⊗ B2 and in this case u has the desired form. Now
consider the case where M1 is finite. Then v1 is automatically a unitary nor-
maliser. If B2 is infinite, then we can use Lemma 5.5 to replace v2 by a nor-
maliser, and the result follows. If B2 is finite, then the element w, defined by
w = u(v∗1 ⊗ v∗2), lies in B1 ⊗ B2 and is either an isometry or co-isometry (since u
is a unitary). In this case, the tensor product B1 ⊗ B2 is finite, so w, and hence v2,
is a unitary as required.

To consider the last remaining case when both inclusions Bi ⊆ Mi consist
of an irreducible inclusion of a II1 factor inside an infinite factor, we use Murray
and von Neumann’s fundamental group from [10]. Let B be a II1 factor with trace
τ. Recall that the fundamental group, F(B), of B is the subgroup of R+ of those
quotients τ(p)/τ(q), where p and q are projections in B such that pBp and qBq
are isomorphic. Many subgroups of R+ can occur, in particular all countable sub-
groups of R+ [12]. In our situation, it is enough for one subfactor Bi to have trivial
fundamental group; this enables us to convert the isometries or co-isometries ap-
pearing in the proof of Theorem 5.6 into unitary normalisers.

LEMMA 5.7. For i = 1, 2, let Bi ⊆ Mi be irreducible inclusions of factors. Suppose
that B1 is finite and has trivial fundamental group. Then any unitary normaliser of
B1 ⊗ B2 in M1 ⊗ M2 is of the form w(v1 ⊗ v2) for some unitary w ∈ B1 ⊗ B2 and
normalisers vi ∈ NMi (Bi).

Proof. As in the proof of Corollary 5.4, write Ad(u) = θ1 ⊗ θ2 for some
θi ∈ AutM′i

(B′i), and find isometries or co-isometries vi ∈ GNMi (Bi) with

(5.26) θi(yi)vi = yivi, yi ∈ B′i .

If v1 is an isometry, then x 7→ v1xv∗1 implements an isomorphism of B onto
(v1v∗1)B(v1v∗1). As F(B1) = {1}, we have v1v∗1 = 1 so v1 is a unitary. If v1 is
a co-isometry, we can consider x 7→ v∗1 xv1 to see that v1 is again a unitary. The
rest of the argument now follows exactly the proof of Theorem 5.6, considering
the cases where B2 is infinite and B2 is finite separately.

In Theorem 5.9 we will establish a converse to Lemma 5.7. First fix a finite
factor B and then consider arbitrary irreducible inclusions B ⊆ M. We will show
that if the conclusion of Lemma 5.7 holds for the tensor product with every other
separable irreducible inclusion B2 ⊆ M2, then B has trivial fundamental group.

Recall that if B is a II1 factor with trace τB, then 〈x, y〉 = τB(y∗x) defines
an inner product on B, inducing a norm ‖x‖2 = τB(x∗x)1/2 for x ∈ B. The
completion is denoted L2(B), we write ξ for the image of 1 in this Hilbert space,
and {xξ : x ∈ B} is a dense subspace. The representation of B by b(xξ) = (bx)ξ
for b, x ∈ B, extends by continuity to a representation of B on L2(B) and puts B
into standard form on this Hilbert space.
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Now suppose that B is a II1 factor with non-trivial fundamental group. Fix
a projection e ∈ B with e 6= 0, 1 such that B ∼= eBe and choose an isomorphism
θ from B onto eBe. The trace on eBe is given by τeBe(x) = τB(x)/τB(e) and since
this trace is unique, we must have

(5.27) τ(x) = τeBe(θ(x)), x ∈ B.

Thus

(5.28) ‖τB(e)−1/2θ(x)‖2
2=

τB(θ(x∗x))
τB(e)

=τeBe(θ(x∗x))=τB(x∗x)=‖x‖2
2, x∈B.

Therefore, we can define an isometry v on L2(B), by extending

(5.29) v(xξ) =
1

τ(e)1/2 θ(x)ξ, x ∈ B,

by continuity. This operator implements θ, in that θ(x) = vxv∗ for all x ∈ B and as
θ is a surjective isomorphism, ebe 7→ v∗bv must be the inverse of θ. Since vv∗ = e,
this shows that v∗Bv = B so v is a groupoid normaliser of B in B(L2(B)). Now
let H = L2(B)⊗ `2(Z). Let v1 be the bilateral shift operator on `2(Z) satisfying
v1en = en+1 for n ∈ Z and define u = v⊗ v1 ∈ B(H). Let M be the von Neumann
subalgebra of B(H) generated by B⊗ 1 and u. This algebra resembles a crossed
product; indeed it would be B oα Z for the action induced by Ad(u) if u were a
unitary.

THEOREM 5.8. In the situation described above, B⊗C1 ⊆ M is a singular inclu-
sion of factors with GNM(B⊗ 1)′′ = M.

Proof. By construction v is a groupoid normaliser of B with v(B′)v∗ = B′e.
Since B′ is isomorphic to B′e via b′ 7→ b′e, we can define an automorphism φ of B′

so that φ(b′)e = vb′v∗. Given some b′ ∈ B′, define a bounded operator y = (yi,j)i,j

on H with respect to the matrix units for `2(Z) by setting yi,i = φi(b′) for all i and
setting the off-diagonal elements to be zero. Certainly y commutes with (B⊗C1).
Now, for n ∈ Z and η ∈ L2(B),

yu(η ⊗ en) = y(vη ⊗ en+1) = φn+1(b′)evη ⊗ en+1

= vφn(b′)v∗vη ⊗ en+1 = vφn(b′)η ⊗ en+1 = uy(η ⊗ en),(5.30)

so y commutes with u. The elements y that we are considering form a self-adjoint
set, and so they also commute with u∗. Thus these elements commute with the
generators of M and so lie in M′.

Now take x ∈ M, let x = (xi,j) with respect to the matrix units of `2(Z).
Since 1 ⊗ v1 commutes with B ⊗ C1 and u = v ⊗ v1, 1 ⊗ v1 lies in M′. Thus
x = (1 ⊗ v1)

∗x(1 ⊗ v1). This shows that x has constant diagonal entries, i.e.
xi,i = x0,0 for all i. Given b′ ∈ B′, define y ∈ M′ as above. Comparing the (0, 0)-th
entries of xy = yx, we see that x0,0b′ = b′x0,0 so that x0,0 = b0 for some b0 ∈ B.
For n > 0, consider x(v∗ ⊗ v∗1)

n which lies in M. Thus this operator has constant
entries, say b−n ∈ B, down the diagonal and so xi+n,i = b−nvn for all i. Similarly
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we can find bounded operators bn ∈ B for n > 0 such that xi−n,i = (v∗)nbn. Then
the general form of an operator x ∈ M is

(5.31) x =
∞

∑
n=0

(b−nvn ⊗ vn
1 ) +

∞

∑
n=1

((v∗)nbn ⊗ (v∗1)
n),

with convergence in the weak operator topology. For n > 1, define en = θ(en) =
vn(v∗)n. Since b−nvn = b−nenvn, we may assume that b−n = b−nen in (5.31) for
n > 0. Similarly, we can assume that bn = enbn for n > 0.

Now suppose that x is a normaliser of B⊗C1 in M and write x in the form
(5.31). Define ψ : B→ B by ψ(b)⊗ 1 = x∗(b⊗ 1)x so that (b⊗ 1)x = x(ψ(b)⊗ 1)
for b ∈ B. Substituting this into (5.31) gives

(5.32)
∞

∑
n=0

(bb−nvn − b−nvnψ(b))⊗vn
1+

∞

∑
n=1

((b(v∗)nbn − (v∗)nbnψ(b))⊗(v∗1)n)=0

for each b ∈ B. Comparing matrix elements in (5.32) leads to

bb−nvn = b−nvnψ(b), n > 0, b ∈ B, and(5.33)

b(v∗)nbn = (v∗)nbnψ(b), n > 1, b ∈ B.(5.34)

After multiplying (5.33) on the right by (v∗)n, we see that

(5.35) bb−n = b−nθn(ψ(b)), n > 0, b ∈ B.

When b = b∗, we can apply this twice to obtain

(5.36) bb−nb∗−n = b−nθ(ψ(b))b∗−n = b−nb∗−nb, n > 0, b = b∗ ∈ B,

so that b−nb∗−n ∈ B′ ∩ B = C1. Thus b−n is a scalar multiple of a unitary in B.
Then the relations b−n = b−nen and en 6= 1 for n > 0 imply that b−n = 0 for
n > 0. Replacing x by x∗ shows that bn = 0 for n < 0 and so x = b0⊗ 1 ∈ B⊗C1.
Thus B⊗C1 is singular in M, so (B⊗C1)′ ∩M ⊆ (B⊗C1)′ ∩ B⊗C1 = C1. In
particular, M has trivial centre and so we have an inclusion of factors. Finally,
M is generated by B⊗C1 and the groupoid normaliser u = v⊗ v1 so that M =
GNM(B⊗C1)′′.

Our final result characterises the property of having trivial fundamental
group in terms of normalisers of tensor products.

COROLLARY 5.9. Let B be a II1 factor with a separable predual. The following
statements are equivalent:

(i) The fundamental group of B is trivial.
(ii) Whenever B ⊆ M is an inclusion of factors, GNM(B)′′ = NM(B)′′.

(iii) Whenever B ⊆ M is an irreducible inclusion of factors and B2 ⊆ M2 is another
irreducible inclusion of factors, then every unitary normaliser u ∈ NM⊗M2

(B ⊗ B2)

factorises as u = w(u1 ⊗ u2), where w ∈ B ⊗ B2, u1 ∈ NM(B) and u2 ∈ NM2(B2).
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Proof. Lemma 5.7 shows that (i)⇒ (iii) and the previous theorem establishes
(ii) ⇒ (i), so it remains to show (iii) ⇒ (ii). Take B2 = M2 = B(`2(N)) so that
condition (iii) implies that

(5.37) NM⊗B(`2(N))(B ⊗ B(`2(N))) = NM(B)′′ ⊗ B(`2(N)).

Thus GNM(B)′′ = NM(B)′′ by Theorem 3.3.
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