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1. INTRODUCTION

This paper contributes to the problem of duality of locally compact groups.
For history and background of this question, we refer to monographs [11] and [27].

It is known that in the theories of Kac algebras and of locally compact quan-
tum groups, one has to require axiomatically the existence of invariant weights,
which are analogues of the Haar measure of a group. This need is due to the very
definition of the duality functor, which utilizes a distinguished regular represen-
tation of a Kac algebra or of a locally compact quantum group.

It would be desirable to have a category with a duality functor that does not
involve the Haar measure/weight. While this task is quite far from the solution
in the general case, in particular cases one can construct dualities which behave
very well.

The basic example is of course the category of Abelian locally compact
groups and the Pontryagin duality for them. Another simple case is that of fi-
nite groups and their function algebras with pointwise multiplication and with
convolution, regarded as finite-dimensional Hopf algebras.

In this paper we suggest a “continuous non-Abelian” example of a duality
functor, independent of the Haar measure. It acts on a category which includes all
Abelian and compact locally compact groups, and preserves the Pontryagin dual-
ity for the Abelian case. This approach is inspired by a recent work by S. Akbarov
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[2] who constructs a duality for complex Lie groups with algebraic component of
identity.

The objects of our category are pro-C∗-algebras (called also locally C∗-alge-
bras), that is, inverse, or projective, limits of C∗-algebras.

For any topological algebra A with involution, there is a universal pro-C∗-
algebra containing A; it is called the C∗-envelope A♦ of A (see Section 2).

We consider a subclass of pro-C∗-algebras which have a structure of a Hopf
algebra with involution with respect to a topological tensor product�. For rather
wide class of topological vector spaces, this product is the same as the injective
tensor product, see further details in Section 5. These Hopf algebras are called
�-Hopf ∗-algebras.

For a �-Hopf ∗-algebra A, the dual algebra is defined as follows. The space
A? of linear continuous functionals on A, taken with the topology of uniform
convergence on totally bounded subsets of A, has a natural algebra structure, so
we can define its C∗-envelope (A?)♦. This is by definition the dual algebra Â of
A. The second dual algebra is obtained by repeated application of this procedure:̂̂A = ((Â)?)♦, and A is said to be reflexive if ̂̂A = A.

The main result of this paper is proved in Section 6: there exists a category
of reflexive �-Hopf ∗-algebras, which contains the algebras C(G) for all Moore
groups G. On this category, ̂ is a duality functor.

We would like to discuss the group case in more detail. Recall that G is
called a Moore group if all its irreducible representations are finite-dimensional.
This class includes all Abelian and compact groups but not all discrete groups.

The diagram (1.1) below illustrates the duality construction in the case of a
Moore group.

We start with the algebra A = C(G) of all continuous functions on G, in the
compact-open topology (note that this is not a Banach algebra unless G is com-
pact). Then we pass to its conjugate space C(G)?, which is the space Mc(G) of all
compactly supported measures. The C∗-envelope Ĉ(G) of Mc(G) is by definition
the dual algebra of C(G). In its turn, the conjugate space Ĉ(G)? = K(G) may be
identified with a subalgebra in C(G).

In Sections 3 and 4 we study properties of K(G) and Ĉ(G), respectively.
In Theorem 6.4 we prove that the C∗-envelope of K(G) is again C(G), what

is illustrated by the following diagram:

(1.1) C(G) � ? // Mc(G)

C∗−env

��

K(G)

C∗−env

OO

Ĉ(G)
�?oo
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2. C∗-ENVELOPES

Our main objects are pro-C∗-algebras, or locally C∗-algebras, as they are also
called. The theory of these algebras was developed by J. Inoue [16], M. Fragoulo-
poulou [12], C. Phillips [21] and other authors.

DEFINITION 2.1. A C∗-seminorm on an algebra A with involution is such a
seminorm p that p(x∗x) = p(x)2 for all x ∈ A. We say also that p possesses the
C∗-property.

This definition says nothing about continuity of multiplication and invo-
lution, but due to a theorem of Z. Sebastyén [24] every C∗-seminorm p auto-
matically satisfies p(xy) 6 p(x)p(y) and p(x∗) = p(x) for any x, y ∈ A. This
means that multiplication and involution are automatically continuous (with re-
spect to p).

DEFINITION 2.2. A pro-C∗-algebra is a complete Hausdorff topological alge-
bra A with jointly continuous multiplication and involution such that its topology
is generated by a family of C∗-seminorms.

Every pro-C∗-algebra A is equal to the inverse, or projective, limit of (Ba-
nach) C∗-algebras Ap over all p, where Ap is obtained as the p-completion of the
quotient algebra A/ ker p ([21], Proposition 1.2).

Next we will give a definition of the C∗-envelope of a topological algebra,
which is the biggest pro-C∗-algebra containing a given one as a dense subalge-
bra. Other authors [16], [12] define C∗-envelopes only for topological ∗-algebras
with submultiplicative seminorms (Arens–Michael algebras). This is done to
have a correspondence between representations of such an algebra A and its C∗-
envelope. But we do not intend to study the representations of A, and therefore
it is not necessary to impose any additional conditions on it. We require that A is
unital, but the multiplication and involution, in principle, can be even discontin-
uous in the initial topology.

The following notations will be kept throughout the paper.

NOTATIONS 2.3. Let A be a unital algebra with involution, endowed with
some locally convex topology. Denote by P(A) the set of all continuous C∗-
seminorms on A. For every p ∈ P(A) the kernel ker p is a ∗-ideal in A, so
A/ ker p is a normed algebra with the quotient norm p of p. Its completion with
respect to p will be denoted by C∗p(A), or simply Ap when there can be no confu-
sion. This is a (Banach) C∗-algebra. The canonical mapping A → C∗p(A) will be
denoted by ip.

LEMMA 2.4. The algebras Ap with pointwise ordering on P(A) form an inverse
spectrum of C∗-algebras.
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Proof. First of all, P(A) is directed by the pointwise ordering 6: for p, q ∈
P(A) one may put r = max(p, q), then p 6 r, q 6 r and C∗-property holds for r.

If p, q ∈ P(A) and p 6 q, then the map π
q
p : iq(A) → ip(A), iq(x) 7→ ip(x),

is continuous on iq(A) and can be thus extended to Aq. Denote this extension
still π

q
p.
Let now p 6 q 6 r. Obviously on ir(A) the maps πr

p and π
q
p ◦ πr

q coincide
and map ir(x) to ip(x). As ir(A) is dense in Ar, these maps must also coincide on
the entire algebra Ar. Thus, {Ap : p ∈ P(A)} with the maps π

q
p form an inverse

system.

DEFINITION 2.5. The C∗-envelope A♦ of an algebra A is the inverse limit of
the algebras Ap over p ∈ P(A).

The C∗-envelope can be alternatively defined as the completion of A/E with
respect to all continuous C∗-seminorms, where E is the common kernel of p ∈
P(A).

Any algebra A is continuously, but not always injectively mapped into its
envelope A♦. It may happen that there are no other C∗-seminorms except zero;
then A♦ = {0}. Note that for the unit 1 of A, p(1)2 = p(1∗1) = p(1), so that p(1)
must be either 0 or 1. But if it is 0, then p is identically zero, so p(1) = 1 for every
nontrivial seminorm. Note also that if B ⊂ A is a dense ∗-subalgebra (with the
induced topology), then B♦ = A♦.

REMARK 2.6. The C∗-envelope has the following universal property. If ϕ :
A → B is a continuous ∗-homomorphism to a C∗-algebra B, then it may be
uniquely extended to a continuous ∗-homomorphism ϕ : A♦ → B. From this
it follows that if ϕ : A → B is a continuous ∗-homomorphism of topological
algebras, it may be extended to a continuous ∗-homomorphism ϕ : A♦ → B♦.

When working with groups, we will use two main pro-C∗-algebras. First of
them is C(G), the algebra of all continuous functions on G with the topology of
uniform convergence on compact sets. The second one is its dual algebra Ĉ(G),
defined below as the C∗-envelope of another group algebra. Before giving this
definition, we need to discuss the theory of so called stereotype spaces.

NOTATIONS 2.7. If X is a locally convex space, X? denotes the space of all
linear continuous functionals on X in the topology of uniform convergence on
totally bounded subsets of X. If X is isomorphic to (X?)?, X is called a stereotype
space.

We use the term “conjugate space” for the space of linear functionals to
distinguish this notion from the dual algebra introduced in this paper. So, we
always consider conjugate spaces in special topology — of uniform convergence
on totally bounded sets. It turns out that then almost all classical spaces become
reflexive: X ' (X?)?; in particular, every Banach or Fréchet space, or the space
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C(G) for a locally compact group G. Important results in this direction were
obtained already in 1950s by M. Smith [26] and 1970s by K. Brauner [5], but an
extensive theory including applications to topological algebra is quite recent and
due to S. Akbarov [1], [2].

Thus, we consider Mc(G) = C(G)?, the space of all compactly supported
measures, with the topology of uniform convergence on totally bounded subsets
of C(G). It may be noted that if X is known to be stereotype, then this topology
on X? coincides with that of uniform convergence on compact sets. This is true,
in particular, for C(G) and Mc(G). We will use the following properties of Mc(G)
([1], Theorem 10.11 and Example 10.7):

PROPOSITION 2.8. Let G be a locally compact group. Then:
(i) G is homeomorphically imbedded into Mc(G) via delta-functions, t 7→ δt;

(ii) the linear span of delta-functions is dense in Mc(G).

NOTATIONS 2.9. The C∗-envelope Mc(G)♦ of Mc(G) will be denoted by
Ĉ(G). The set P(Mc(G)) will be also denoted by P(G). For p ∈ P(G) we denote
C∗p(G) = C∗p(Mc(G)), and also C∗π(G) is p is the norm of a representation π.
Thus, Ĉ(G) = lim

←−
C∗p(G). Note that we do not deal with the reduced C∗-algebra

of G, and the notation C∗r (G), if used, means just the C∗-algebra associated to a
seminorm r ∈ P(G). If G is an Abelian or compact locally compact group, Ĝ
denotes its dual group or dual space respectively.

Every C∗-seminorm p ∈ P(G) defines a ∗-homomorphism of Mc(G) into
the C∗-algebra C∗p(G), which may be further mapped into the algebra B(H) of
bounded operators on a Hilbert space H. Let us denote this homomorphism
ψ : Mc(G)→ B(H). The unit δe of Mc(G) is mapped into a projection, but one can
assume that it is mapped into 1H , reducing H if necessary. This reduction will not
change p. Now, as δt ∗ δ∗t = δ∗t ∗ δt = δe, we have ψ(δt)ψ(δt)∗ = ψ(δt)∗ψ(δt) = 1H ,
i.e. all operators Ψt = ψ(δt) are unitary. Thus, p generates a unitary representa-
tion of G, and it is important to note that Ψ is norm continuous.

Conversely, every norm continuous representation of G generates (via delta-
functions) a non-degenerate norm continuous representation of Mc(G), and con-
sequently, a C∗-seminorm on Mc(G) (see 10.12 of [1]).

Two representations of G may not be equivalent even if they generate the
same seminorm, for example, π and π ⊕ π.

LEMMA 2.10. Let ϕ : G → H be a continuous homomorphism of locally compact
groups. Then there is a continuous ∗-homomorphism ϕ̂ : Ĉ(G) → Ĉ(H) such that
ϕ̂(δt) = δϕ(t).

Proof. Consider the canonical embedding i : H → Mc(H), i(t) = δt. Then
i ◦ ϕ is a continuous homomorphism of G into a stereotype algebra Mc(H), so it
is extended to Mc(G) by linearity and continuity ([1], Theorem 10.12). Clearly
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this morphism is involutive. By universality property (2.6), i ◦ ϕ is extended to a
continuous ∗-morphism of the envelopes ϕ̂ : Ĉ(G)→ Ĉ(H).

Now we will describe Ĉ(G) in the particular cases of Abelian and compact
groups.

THEOREM 2.11. Let G be an Abelian locally compact group, and let Ĝ be its dual
group. Then Ĉ(G) coincides with the algebra C(Ĝ), taken with the topology of uniform
convergence on compact sets.

Proof. Denote for brevity A = Mc(G). It is evident that for every compact
set K ⊂ Ĝ the seminorm

pK(µ) = max
t∈K
|µ̂(t)|,

where µ̂ is the Fourier transform of µ, has the C∗-property. We will show that
every other C∗-seminorm p equals pK for some compact K ⊂ Ĝ.

For every p, Ap is a unital C∗-algebra. As it is commutative, it is isomorphic
to the function algebra C(Ω) on a compact space Ω. Every point ω ∈ Ω defines a
continuous character of the algebra Ap; and since the map A→ Ap is continuous,
the restriction of ω onto A is also a continuous character of A.

All such characters are just evaluations at the points of the dual group Ĝ,
and this correspondence with Ĝ is a homeomorphism ([1], 10.12). Thus, we get
an imbedding ψ : Ω→ Ĝ, with

p(µ) = max
ω∈Ω
|µ(ω)| = max

t∈ψ(Ω)
|µ̂(t)|,

i.e. p = pψ(Ω). This proves the theorem.

To describe Ĉ(G) in the compact case, we need the following ([25], Corol-
lary 2):

LEMMA 2.12. Let T be a norm continuous unitary representation of a compact
group G. It may be decomposed into the direct sum of irreducible unitary representations
of G, where only a finite number of representations are non-equivalent.

THEOREM 2.13. For a compact group G, the algebra Ĉ(G) is equal to the direct
product of the matrix algebras C∗π(G) over all irreducible representations π.

Proof. By Lemma 2.12, for every π there is a finite set s(π) ⊂ Ĝ such that
π =

⊕
j∈s(π)

πj, and hence C∗π(G) = ∏
j∈s(π)

C∗πj
(G). Clearly, ‖π‖ = max

j∈s(π)
‖πj‖. Let

us show that if p = ‖π‖, q = ‖τ‖ and p 6 q, then s(π) ⊂ s(τ). This is sufficient
to prove in the case when π is irreducible, i.e. s(π) = {π}. Since p 6 q, we have
an epimorphism R : C∗τ(G) → C∗π(G). Here C∗π(G) and all C∗τj

(G), j ∈ s(τ), are
just full matrix algebras. The image of every ideal Ij = C∗τj

(G)× ∏
k 6=j
{0} is either

{0} or C∗π(G), since C∗π(G) is a simple algebra. If there are distinct j 6= k such that
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R(Ij) = R(Ik) = C∗π(G), then we can take a ∈ Ij, b ∈ Ik such that R(a) = R(b) = I;
then R(a + b) = 2I, but R(a + b) = R(a + b)R(a) = R((a + b)a) = R(a) = I. This
contradiction shows that such j that R(Ij) = C∗π(G) is unique. The restriction of
R to Ij is an isomorphism, since Ij is also a simple algebra. Thus, π is equivalent
to τj, and s(π) = {π} ⊂ s(τ), as claimed.

From the other side, for every finite set s ⊂ Ĝ there is a norm continuous
representation π =

⊕
j∈s

πj such that s(π) = s.

The preceding reasoning shows that p 7→ s(π), where π is any representa-
tion such that p = ‖π‖, is an order-preserving bijection of P(G) onto the set of
finite subsets of Ĝ, ordered by inclusion. Thus, Ĉ(G) = lim

←−
p∈P(G)

C∗p(G) is equal to

the inverse limit lim
←−
s⊂Ĝ

∏
π∈s

C∗π(G). Clearly the latter limit is just the direct product

of all C∗π(G), and we have finally Ĉ(G) = ∏
π∈Ĝ

C∗π(G).

3. THE SPACE OF COEFFICIENTS AND SIN-GROUPS

Now we will discuss the conjugate space K(G) = (Ĉ(G))? of Ĉ(G). Since
G is continuously imbedded into Mc(G), t 7→ δt, every functional f ∈ K(G)
restricts to a continuous function on G. Moreover, if two functionals are equal
on δ-functions, then by linearity and density they are equal also on Mc(G) and
further on the entire algebra Ĉ(G). We identify therefore f with the function
defined in this way, and represent K(G) as a subalgebra in C(G). As usual, we
endow K(G) with the topology of uniform convergence on totally bounded sets
in Ĉ(G).

Recall that an inverse limit X = lim
←−

Xα is called reduced if the canonical

projection of X is dense in every Xα. By definition the inverse limit A = lim
←−

Ap,

p ∈ P(A), is reduced. We will need the following simple result, close to a classical
one ([23], Theorem 4.4):

PROPOSITION 3.1. Let X = lim
←−

Xα be a reduced inverse limit of locally convex
spaces. Then, as a set, X? =

⋃
X?

α , and all inclusions X?
α ↪→ X? are continuous. If a set

B ⊂ X? is dense in every X?
α then it is dense in X?.

Proof. The equality X? =
⋃

X?
α is classical ([23], Theorem 4.4). The inclusion

X?
α ↪→ X? is dual to the canonical projection πα : X → Xα, and so it is continuous.

It follows that the topology of X? is not stronger than the inductive limit
topology. It is easy to see that the set B as in the statement is dense in X in the
inductive limit topology; as a consequence, it is dense in the topology of X? as
well.
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PROPOSITION 3.2. Let A = lim
←−

p∈P(A)

Ap be a pro-C∗-algebra. Then:

(i) A? =
⋃

A?
p;

(ii) if a set B ⊂ A? is dense in every A?
p then it is dense in A?;

(iii) A? is the linear span of the states of all Ap;
(iv) the linear span of pure states of Ap is dense in A?.

Proof. (i) and (ii) are just repetitions of Proposition 3.1. (iii) follows from the
classical fact that every continuous linear functional on a C∗-algebra is a finite
linear combination of states ([17], 4.3.7).

(iv) It is known that the linear span of pure states on Ap is Ap-weakly dense
in A?

p. The unit ball Bp of A?
p is compact in the topology of uniform convergence

on totally bounded sets in Ap ([1], Example 4.6), and this topology is stronger
than the weak topology in which Bp is compact too. It follows that these two
topologies on Bp coincide. Thus, the linear span of pure states is dense in every
Bp, and therefore in every A?

p. By Lemma 3.1 it is also dense in A?.

In application to the group case, we get the following:

PROPOSITION 3.3. K(G) has the following properties:
(i) K(G) is contained in the linear span of all positive-definite functions on G;

(ii) K(G) is equal to the space of the coefficients of all norm-continuous unitary rep-
resentations of G;

(iii) K(G) contains the constant 1;
(iv) all functions f ∈ K(G) are bounded;
(v) the linear span of the coefficients of irreducible norm continuous representations is

dense in K(G).

Proof. By Proposition 3.2(iii), K(G) is the linear span of states of all C∗p(G).
For every state f ∈ (C∗p(G))?, the corresponding function on G is positive defi-
nite. This implies (i) and (this is a known fact) (iv).

From the other side, f has the form

f (µ) = 〈π(µ)x, x〉, µ ∈ C∗p(G),

for some representation π of C∗p(G), and for some vector x. Then f is a coefficient
of the representation π ◦ ip of G (see Notations 2.3), if we identify G with its
image in Mc(G). Since ‖π ◦ ip‖ 6 p, this representation is norm continuous and
this proves (ii).

For (iii), note that constant 1 function is the coefficient of the trivial rep-
resentation, which is norm continuous. And finally, (v) follows from Proposi-
tion 3.2(iv), since coefficients of irreducible representations are pure states.

EXAMPLE 3.4 (Discrete groups). If G is discrete, algebras C∗p(G) correspond
to all representations of G, as they are all continuous. This means that K(G) is
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the space of the coefficients of all unitary representations of G, i.e., the Fourier–
Stieltjes algebra B(G). In particular, consider the regular representation on the
space L2(G): Us ϕ(t) = ϕ(s−1t). Take ϕ = I{e}, ψ = I{s} (indicator functions of
the points e and s), then the function

f (t) = 〈Ut ϕ, ψ〉 = 〈I{t}, I{s}〉 = I{s}(t)

belongs toK(G). Thus,K(G) contains all finitely supported functions on G. On a
non-discrete group, the regular representation is not norm continuous and K(G)
does not contain all its coefficients.

LEMMA 3.5. K(G) is closed under pointwise multiplication and complex conju-
gation.

Proof. Let us denoteKp(G)=(C∗p(G))?, then it follows thatK(G)=
⋃
p
Kp(G).

Take f , g ∈ K(G) and prove that f · g ∈ K(G). There exist C∗-seminorms p, q such
that f ∈ Kp(G), g ∈ Kq(G). Consider any C∗-tensor product C = C∗p(G)⊗C∗q (G)

of the algebras C∗p(G) and C∗q (G). The mapping U : G → C, t 7→ ip(δt)⊗ iq(δt)
(see Notations 2.3), is a unitary representation of G in the Hilbert space where C
acts non-degenerately. It generates a representation of Mc(G) and thus a contin-
uous C∗-seminorm r on Mc(G), so that C = C∗r (G).

By Proposition 3.2(iii), we can assume that f and g are states. Then there
exists ([17], 11.3) a product state τ on C such that τ(x ⊗ y) = f (x) · g(y) for all
x ∈ C∗p(G), y ∈ C∗q (G). For t ∈ G we have then τ(t) = τ(ir(δt)) = f (t) · g(t), so
f g ∈ K(G) and we have proved the first statement.

The second statement is proved exactly as in general theory (e.g. 27.26 of
[15]).

Our aim is the commutative duality diagram (1.1), and for this we need that
K(G)♦ = C(G). To have this equality, it is necessary (but not sufficient) thatK(G)
separates points of G. A convenient class of groups where this is true is the class
of SIN-groups.

These are groups with a basis of invariant neighborhoods of identity, i.e.
such neighbourhoods U that g Ug−1 = U for all g ∈ G. These groups were
introduced and studied in detail by Grosser and Moskowitz [14].

The class of SIN-groups includes all Abelian, compact and discrete groups.
There is an equivalent definition: a locally compact group is a SIN-group if and
only if its left and right uniform structures are equivalent. In particular, such
groups are always unimodular. For connected groups, this class coincides with
that of MAP-groups (maximally almost periodic, or groups on which finite-di-
mensional unitary representations separate points) and Z-groups (such that the
quotient group over the center is compact). Moreover, a connected SIN-group
is a direct product of Rn by a compact group. In general, there is a complete
structure theorem for SIN-groups [14]: a group G is a SIN-group if and only if it
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is an extension

(3.1) 1→ N = V × K → G → D → 1,

where D is discrete, V × K is a direct product, V ' Rn, K is compact, and both K,
V are normal in G. We will use these notations further.

In Section 6, we prove a duality theorem for Moore groups. These are
groups whose all irreducible continuous unitary representations are finite-dimen-
sional. Since the class of Moore groups is closed under passing to the quotients
([20], Vol. II, p. 1452), D in (3.1) is a Moore group too. It is known that every dis-
crete Moore group is a finite extension of an abelian group ([20], Theorem 12.4.26
and p. 1397).

The decomposition (3.1) allows to use the Mackey’s construction of induced
representations [19]. Mackey’s machinery requires the group to be separable, but
when inducing from an open subgroup, this is no longer needed. Let π be a uni-
tary representation of N in a Hilbert space H. There are then two realizations of
the induced representation T. The first one acts on the space L2(G, H) of square-
summable H-valued functions such that f (ξg) = π(ξ) f (g) for all ξ ∈ N, g ∈ G.
The action is given by Tg f (h) = f (hg).

In the second realization, T acts on L2(D, H). We fix any map s : D → G
such that Ns(x) = x, then T acts as

(3.2) (Tg f )(x) = π(sxgs−1
xg ) f (xg).

LEMMA 3.6. If a unitary representation π of N is norm continuous, then the
induced representation T of G is also norm continuous.

Proof. For proof, we use the realization (3.2) of T on L2(D, H). Take ε > 0.
By assumption there is a neighborhood of identity U in N, such that ‖π(g) −
1H‖ < ε when g ∈ U. Since N is open, U is at the same time a neighborhood
of identity in G. Since G is a SIN-group, there exists another neighborhood of
identity W such that gWg−1 ⊂W ⊂ U for all g ∈ G. Take now f ∈ L2(D, H):

‖Tg f − f ‖2 = ∑
x∈D
‖π(sxgs−1

xg )( f (xg))− f (x)‖2.

If g ∈W ⊂ N, then xg = x, so that

‖Tg f − f ‖2 = ∑
x∈D
‖π(sxgs−1

x )( f (x))− f (x)‖2 6 ∑
x∈D
‖π(sxgs−1

x )− 1H‖2‖ f (x)‖2.

Moreover, sxgs−1
x ∈ W, so that ‖π(sxgs−1

x )− 1H‖ < ε, and it follows that ‖Tg f −
f ‖ < ε‖ f ‖, what proves the lemma.

It is known that N is a Moore group ([20], Theorems 12.4.16 and 12.4.28).

LEMMA 3.7. Linear combinations of the functions of the type f (v)g(k), where
f ∈ K(V), g ∈ K(K), span a dense subspace in K(N).
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Proof. Let us show first that all functions of this type belong to K(N). By
Proposition 3.3(i), every function f ∈ K(V) is a coefficient of a norm continuous
representation ρ of V: f (v) = 〈ρ(v)ξ1, η1〉. We can define a norm continuous rep-
resentation π of N as π(vk) = ρ(v). Then F(t) = 〈π(t)ξ1, η1〉 will be a coefficient
of π such that F(vk) = f (v), so F ∈ K(N).

Similarly, all functions of the type G(vk) = g(k), g ∈ K(K), belong toK(N).
Now by Lemma 3.5, FG ∈ K(N) as well, and (FG)(vk) = f (v)g(k).

Next we need to prove that the linear span E of such products is dense in
K(N); due to Lemma 3.3(v), it is sufficient to show that E contains coefficients of
every irreducible representation π of N. Since N is a Moore group, π is finite-di-
mensional. Let π act on a space H, and let F(g) = 〈π(g)ξ, η〉 be a coefficient of
π. The restrictions ρ = π|V , σ = π|K are representations of V and K respectively.
Then F may be represented in the following form, for g = vk, v ∈ V, k ∈ K:

F(g) = F(vk) = 〈π(vk)ξ, η〉 = 〈ρ(v)σ(k)ξ, η〉 = 〈σ(k)ξ, ρ(v)∗η〉.

Choose an orthonormal basis {ei}n
i=1 in H, then

F(g) =
n

∑
i=1
〈σ(k)ξ, ei〉〈ei, ρ(v)∗η〉 =

n

∑
i=1

fi(v)gi(k),

where fi(v) = 〈ρ(v)ei, η〉 and gi(k) = 〈σ(k)ξ, ei〉 are coefficients of ρ and σ re-
spectively. Thus, F ∈ E, and this proves the lemma.

NOTATIONS 3.8. By IX , we denote the indicator function of a set X. By tf
we denote the function tf (x) = f (xt−1).

LEMMA 3.9. Consider K(N) as a subset of C(G), every function being extended
by zero to G \ N. Then ItN · K(G) = tK(N) ≡ {tf : f ∈ K(N)} for every t ∈ G.

Proof. This is enough to prove for t ∈ N, since for any t ∈ G we would have
tK(N) = t(IN · K(G)) = tIN · tK(G) = INt · K(G) = ItN · K(G).

So let us prove first that K(N) ⊂ K(G), this will imply that K(N) = IN ·
K(N) ⊂ IN · K(G). For every representation π of N, acting in a space H, take the
induced representation T of G (norm continuous if π was so) acting on L2(D, H),
see formula (3.2). Then for every function f ∈ K(N) of the type f (g) = 〈π(g)ξ, η〉
with some ξ, η ∈ H we have its zero-extension F(g) = 〈T(g)(ξ IN), η IN〉 which is
in K(G).

Converse is even simpler: if T is a representation of G, then its restriction
onto N is a representation of N, and so the restriction of every f ∈ K(G) to N is
a coefficient of a (norm-continuous) representation of N, which is in K(N). Since
IN · K(G) = { f |N : f ∈ K(G)}, we have proved the second inclusion and with it,
the lemma.

COROLLARY 3.10. On any SIN-group G,
(i) norm continuous unitary representations separate points;
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(ii) the algebra K(G) separates points.

Proof. Due to Proposition 3.3, these statements are equivalent. Since the
subgroup N is a Moore group, finite-dimensional unitary representations sepa-
rate its points. All of them are norm continuous. Now the statements follow
directly from Lemma 3.9.

4. STRUCTURE OF THE DUAL ALGEBRA

Though we will use further only the case of Moore groups, the results of
this section are naturally stated for all SIN-groups.

Theorems 2.11 and 2.13 give the description of the dual algebras for Abelian
and compact groups. Now we describe the algebra Ĉ(G) for a discrete group G.

THEOREM 4.1. A group G is discrete if and only if Ĉ(G) is a Banach algebra. In
this case, Ĉ(G) is equal to the classical group C∗-algebra C∗(G).

Proof. Let G be discrete. Then any representation of G is norm continuous,
thus all the C∗-seminorms are continuous on Mc(G). The supremum pmax of all
these seminorms is finite and equal to the classical C∗-norm of `1(G), restricted
to Mc(G) (which is in this case just the space of all finitely supported functions,
so it is contained in `1(G)). Clearly Mc(G) is dense in `1(G), so its completion
C∗pmax(G) with respect to pmax is equal to that of `1(G), and the latter is the clas-
sical group C∗-algebra C∗(G). From the other side, being a C∗-norm, pmax is
contained in P(G). Since pmax is then the maximal element in P(G), the inverse
limit Ĉ(G) = lim

←−
p∈P(G)

C∗p(G) equals to the corresponding Banach algebra C∗pmax(G)

([10], Corollary 2.5.12), so we come to the conclusion that Ĉ(G) = C∗(G).
Conversely, let Ĉ(G) be a Banach algebra. Then its C∗-norm p belongs to

P(Mc(G)) and Ĉ(G) = C∗p(G). We know that G is homeomorphically imbedded
into Mc(G) via delta-functions (Proposition 2.8), so it is continuously mapped to
Ĉ(G). Thus, to prove that G is discrete, it is sufficient to show that p (δt − δe) > 1
for any t 6= e. It is clear that

p (δt − δe) > |ϕ(δt)− ϕ(δe)| = |ϕ(δt)− 1|

for any state ϕ of any algebra C∗q (G), q ∈ P(G). If we consider this ϕ ∈ (C∗q (G))?

⊂ K(G) as a function on G, it will be positive definite, and conversely, every
positive-definite function ϕ ∈ K(G) such that ϕ(e) = 1 is a state of some algebra
C∗q (G). Since K(G) separates points of G and is contained in the linear span of
positive-definite functions (Proposition 3.3), for the given t 6= e we can always
find a positive-definite function ψ ∈ K(G) such that ψ(t) 6= ψ(e) = 1. We will
have automatically |ψ(t)| 6 1 ([9], 13.4.3). By Lemma 3.5, K(G) is closed under
pointwise multiplication and conjugation. If |ψ(t)| = 1, then for some n we have
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|ψ(t)n − 1| > 1; if |ψ(t)| < 1, then ψ(t)n → 0, n → ∞, so |ψ(t)n − 1| → 1. In
both cases sup

n
|ψ(t)n − 1| > 1. Since ψn is also a positive definite function and

ϕn(e) = 1, this implies the estimate p (δt − δe) > 1.

Next we turn to direct products of SIN-groups and show (Corollary 4.3) that
they correspond to tensor products of group algebras. As with C∗-algebras (see,
e.g., [17]), there is a range of possible tensor products on pro-C∗-algebras. We
use the generalization of the maximal C∗-tensor product, which was defined for
pro-C∗-algebras by N.C. Phillips [21]. If A = lim

←−
Ap, B = lim

←−
Bq, then

(4.1) A ⊗
max

B = lim
←−

Ap ⊗
max

Bq

over pairs (p, q) directed coordinatewise ([21], Proposition 3.2). This property,
used sometimes without reference, may be taken as definition of the maximal
tensor product ⊗

max
. As expected, ⊗

max
is associative and commutative; A ⊗

max
C '

A for any A.

THEOREM 4.2. Let C be an algebra which is a locally convex space, and let A, B be
its commuting subalgebras such that the subalgebra 〈AB〉 generated by A and B is dense
in C. If every pair of continuous commuting representations of A and B in the same space
may be extended to a continuous representation of C, then C♦ = A♦ ⊗

max
B♦.

Proof. Let A♦ = lim
←−

Ap, B♦ = lim
←−

Bq, then A♦ ⊗
max

B♦ = lim
←−

Ap ⊗
max

Bq.

By a known property of the maximal C∗-tensor product ([17], 11.3.4), for ev-
ery pair (p, q) there are commuting representations S, T of Ap and Bq such that
‖γ‖Ap ⊗

max
Bq = ‖(S ⊗ T)(γ)‖ for any γ ∈ Ap ⊗

max
Bq. We can consider T and S

as representations of A and B respectively. The closure Zpq of the linear span of
S(A)T(B) is isomorphic to Ap ⊗

max
Bq. By assumption there is a representation U

of C such that U|A = S, U|B = T. It is clear that the closure of U(C) is also Zpq.
Let rpq be the corresponding C∗-seminorm on C, then the C∗-algebra C∗rpq(C) is
isomorphic to Zpq. Thus, there exists an isomorphism ϕpq : Ap ⊗

max
Bq → C∗rpq(C),

which maps (see Notations 2.3) ip(a)⊗ iq(b) to irpq(ab).
If we consider another pair of seminorms p′ 6 p, q′ 6 q and define an

isomorphism ϕp′q′ in the same way, then the following diagram commutes:

Ap ⊗
max

Bq
ϕpq

//

��

C∗rpq(G)

��

Ap′ ⊗max
Bq′

ϕp′q′
// C∗rp′q′

(G)
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Thus, the maps ϕpq define a continuous map of inverse limits ϕ : A♦ ⊗
max

B♦ → C♦, provided that the set {rpq : p ∈ P(A), q ∈ P(B)} is cofinal in P(C)
([10], Section 2.5). Let us check the latter requirement.

For any r ∈ P(C) we have restrictions p = r|A ∈ P(A) and q = r|B ∈ P(B).
By definition, the norm of every γ ∈ Ap ⊗

max
Bq is equal to the supremum of

‖(S⊗ T)(γ)‖ over all commuting representations S, T of Ap and Bq respectively.
We can consider S = ir|A and T = ir|B as commuting representations of A and
B (since A and B commute in C). But S and T may be extended continuously
to Ap and Bq, since ‖S(a)‖ = r(a) = p(a) and ‖T(b)‖ = r(b) = q(b) for all
a ∈ A, b ∈ B. Thus, ‖(S⊗ T)(γ)‖ 6 ‖γ‖Ap ⊗

max
Bq for any γ ∈ Ap ⊗

max
Bq. Now take

γ = (ip ⊗ iq)(u) for some u ∈ 〈AB〉, then ‖(S⊗ T)(γ)‖ = r(u) and ‖γ‖Ap ⊗
max

Bq =

rpq(u), where rpq is defined as above. This, together with the density of 〈AB〉 in
C, yields r 6 rpq. This means that Pmax = {rpq} is a cofinal set in P(C).

So, we have a continuous map of inverse limits such that every coordinate
map ϕpq is a homeomorphism. It follows ([10], Proposition 2.5.10) that this map
is a homeomorphism of A♦ ⊗

max
B♦ onto C♦. Obviously this is also a ∗-algebra

homomorphism, so A♦ ⊗
max

B♦ is isomorphic to C♦.

COROLLARY 4.3. Ĉ(G× H) = Ĉ(G) ⊗
max

Ĉ(H) for any SIN-groups G and H.

Proof. We can apply Theorem 4.2 with A = Mc(G), B = Mc(H) and C =
Mc(G × H). Here 〈AB〉 is the linear span of all delta-functions, since δs,e · δe,t =
δs,t, and so it is dense in Mc(G × H). Next, every pair of commuting represen-
tations of G and H defines a representation of G × H (with the same type of
continuity); and bijection between representations of groups and their measure
algebras gives us the required extension property.

After several lemmas, we describe algebra Ĉ(G) in more detail. The main
tool is Theorem 4.8, which states that every norm continuous representation of
G is decomposed into a finite sum of representations such that each of them,
restricted onto K, is a multiple of a single irreducible representation π ∈ K̂. It fol-
lows, see Corollary 4.10, that Ĉ(G) is a direct product of Fréchet pro-C∗-algebras
C∗π(G) over all irreducible representations π ∈ K̂.

The first preparatory lemma is a particular case of Proposition 3.4 of [21]:

LEMMA 4.4. For any pro-C∗-algebra A and a locally compact space M, C(M) ⊗
max

A is isomorphic to the algebra C(M, A) of continuous functions from M to A, in the
topology of uniform convergence on compact sets.

LEMMA 4.5. Let G be a SIN-group. In notations (3.1), for t ∈ D denote Mt =
{µ ∈ Mc(G) : supp µ ⊂ tN}. Then a seminorm p on Mc(G) is continuous if and only
if its restriction to every Mt, t ∈ D, is continuous.
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Proof. Consider the open subgroup N in G. Since G is the disjoint union of
open cosets tN, t ∈ D, we have C(G) = ∏

t∈D
C(tN). Then the conjugate space

Mc(G) = (C(G))? is the usual direct sum of (C(tN))? = Mc(tN) ([1], 4.20). We
can identify Mc(tN) with Mt, so Mc(G) =

⊕
t∈D

Mt (every measure µ ∈ Mc(G) is

a finite sum of measures µt ∈ Mt). The base of neighbourhoods of zero in Mc(G)
is then the set of absolutely convex sets U such that U ∩Mt is a neighbourhood
of zero in Mt ([22], Proposition V.2.4).

To prove the non-obvious implication of the lemma, suppose that p is a
seminorm on Mc(G) such that its restriction to every Mt is continuous. Then
the set U = {µ ∈ Mc(G) : p(µ) 6 1} is absolutely convex, and by assumption
U ∩ Mt is an (open) neighbourhood of zero in Mt. It follows that U is open, so
that p is continuous.

By Lemma 2.10, the inclusion N → G generates an imbedding Ĉ(N) ↪→
Ĉ(G). Its image is the closure of the linear span of all δt, t ∈ N, or equivalently
the closure of the subspace of all µ ∈ Mc(G) such that supp µ ⊂ N.

LEMMA 4.6. Let G be a SIN-group with a decomposition (3.1). Then
(i) for any seminorm p0 ∈ P(N), there exists a seminorm p ∈ P(G) such that

p|Ĉ(N) = p0;
(ii) the supremum of all such seminorms pmax = sup{p ∈ P(G) : p|Ĉ(N) = p0} is

finite and contained in P(G);
(iii) if q ∈ P(G) and q|Ĉ(N) 6 p0, then q 6 pmax.

Proof. (i) Let p0 ∈ P(N). It is the norm of some representation of N, which
induces a representation T of G (Lemma 3.6); then the norm p of T is a C∗-
seminorm in P(G) and p|Ĉ(N) = p0.

(ii) For any µ ∈ Mc(G) and t ∈ D, let µt be the restriction of µ onto C(tN).
Since supp µ is compact and N is open, only finite number of these µt is nonzero.
For every t, supp δt−1 ∗ µt ⊂ N, i.e. δt−1 ∗ µt ∈ Ĉ(N). Given p0 ∈ P(N), these
considerations allow to define a seminorm Q on Mc(G) as follows:

(4.2) Q(µ) = ∑
t∈D

p0(δt−1 ∗ µt).

First of all, this sum is finite for any µ ∈ Mc(G), so it is well defined. Next, the
restriction of Q onto every Mt (in notations of Lemma 4.5) is the composition of
p0 and a translation by δt−1 , so it is continuous. By Lemma 4.5, Q is continuous
on Mc(G). Of course, it need not in general be a C∗-seminorm.

If now p is any C∗-seminorm on Mc(G), then p(u ∗ µ) = p(µ ∗ u) = p(µ)
for any unitary element u ∈ Mc(G) and any µ ∈ Mc(G). In particular, p(δt ∗ µ) =
p(µ) for all t ∈ G, µ ∈ Mc(G).
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Let now p|Ĉ(N) = p0. Using notations introduced above, we have now:

(4.3) p(µ) 6 ∑
t∈D

p(µt) = ∑
t∈D

p(δt−1 ∗ µt) = ∑
t∈D

p0(δt−1 ∗ µt) = Q(µ).

Thus, p 6 Q, so pmax = sup{p ∈ P(G) : pĈ(N) = p0} 6 Q < ∞. Since
pmax is bounded by a continuous seminorm on Mc(G), it is itself continuous.
And obviously it has the C∗-property since it is the supremum of a family of
C∗-seminorms.

(iii) Let r = max(q, pmax). This is a C∗-seminorm, and r|Ĉ(N) = p0; so, by
(ii) r 6 pmax. By definition of pmax, we have r = pmax, that is, q 6 pmax.

LEMMA 4.7. Let π ∈ K̂ and let χπ be the character of π. Define a measure χ̃π on
G by χ̃π( f ) =

∫
K

f χπ , f ∈ C(G). Then χ̃π is central in Mc(G).

Proof. Since the linear span of delta-functions is dense in Mc(G), it is suf-
ficient to prove that χ̃π commutes with δt for all t ∈ G. For t ∈ G, let ξ̃t =

δt ∗ χ̃π ∗ δ−1
t ; we need to show that ξ̃t = χ̃π . By direct calculation, using the nor-

mality of K, we get that ξ̃t( f ) =
∫
K

f (u)χπ(t−1ut)du for all f ∈ C(G). Denote

ξt(u) = χπ(t−1ut), then the identity ξ̃t = χ̃π is equivalent to ξt = χπ , which we
will continue to prove.

First, ξt is central in Mc(K), i.e. ξt(s−1us) = ξt(u) for all s, u ∈ K. To prove
this, take any s ∈ K and choose (by normality of K) such s′ ∈ K that s′t = ts.
We know that χπ is central as every character; then ξt(s−1us) = χπ(t−1s−1ust) =
χπ(s′−1t−1uts′) = χπ(t−1ut) = ξt(u).

It is known that then ξt = ∑
σ∈K̂

λt,σχσ with some λt,σ ∈ C, the series con-

verging in L2(K), and

σ(ξ̃t) =
∫
K

ξt(x)σ(x)dx = (dim σ)−1λt,σI

for every σ ∈ K̂ ([15], 28.49, 28.50). If σ 6= π, then (see Lemma 4.6)

‖σ(ξ̃t)‖ = pmax
σ (ξ̃t) = pmax

σ (δt ∗ χπ ∗ δ−1
t ) = pmax

σ (χπ) = ‖σ(χπ)‖ = 0,

so λt,σ = 0. Thus, ξt = λt,πχπ . Finally, from ξt(e) = χπ(t−1et) = χπ(e) we
deduce that λt,π = 1 and ξt = χπ , which proves the lemma.

THEOREM 4.8. Every norm continuous representation T of G is a finite direct sum
of representations Tπ such that Tπ |K is a multiple of a single irreducible representation
π ∈ K̂.

Proof. For π ∈ K̂, let dπ = dim π. In notations of the previous lemma,
define Tπ(µ) = dπT(χ̃πµ) for all µ ∈ Mc(G). It is known ([15], 27.24) that χ̃π χ̃σ =
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d−1
π χ̃π if π = σ and 0 otherwise. This implies, together with centrality of χ̃π , that

Tπ(µν) = dπT(χ̃πµν) = dπT(dπ χ̃2
π µν) = d2

πT(χ̃πµ)T(χ̃πν) = Tπ(µ)Tπ(ν),

so Tπ is a representation of G. Clearly it is a subrepresentation of T on the image
of χ̃π . If we consider only restrictions to K, then Tπ is known to be a multiple of
π, and the images of Tπ are orthogonal for different π ∈ K̂ ([15], 27.44). Thus,
T =

⊕
π∈K̂

Tπ , and from Lemma 2.12 it follows that Tπ is nonzero only for a finite

number of π.

Before we can formulate corollaries on the structure of Ĉ(G), let us describe
the seminorms on Ĉ(N). In Notations (3.1), by Lemmas 4.3, 2.11 and 4.4, we have

(4.4) Ĉ(N) = Ĉ(Rn × K) = Ĉ(Rn) ⊗
max

Ĉ(K) = C(Rn) ⊗
max

Ĉ(K) = C(Rn, Ĉ(K)).

Thus, every µ ∈ Ĉ(N) may be considered as a continuous function from Rn to
Ĉ(K) = ∏

π∈K̂
C∗π(K). A defining system of seminorms on Ĉ(N) has then the fol-

lowing form: for k ∈ N and σ = {π1, . . . , πm} ⊂ K̂

(4.5) pk,σ(µ) = sup
|x|6k

max
π∈σ
‖µ(x)‖C∗π(K),

where |x| is any fixed norm in Rn.

PROPOSITION 4.9. For every σ ⊂ K̂ and k ∈ N, pmax
k,σ = max{pmax

k,π : π ∈ σ}.

Proof. It is clear that on Ĉ(N), we have pk,π 6 pk,σ for all π ∈ σ. By Lem-
ma 4.6(iii), pmax

k,π 6 pmax
k,σ and pmax

k,σ > max{pmax
k,π : π ∈ σ}.

To prove the converse inequality, choose a representation T such that pmax
k,σ =

‖T‖. By the preceding theorem we have a direct sum decomposition T =
⊕

π∈s
Tπ

over some finite set s ⊂ K̂.
For every π ∈ s, Tπ |N is a direct product of a representation ρ of V ' Rn

and of Tπ |K which is a multiple of π. Since we are interested only in the norm of
Tπ |N , we can assume that Tπ |K = π. For ρ, there is a compact set M ⊂ Rn so that
ρ(t)(x) = eitx for t ∈ V, x ∈ M. Then Tπ |N can be written as

T(t,κ)(x) = eitxπ(κ) for t ∈ V,κ ∈ K, x ∈ M.

Since ‖Tπ |N‖ 6 ‖T|N‖ = pk,σ, it follows that ρ(t)(x) = 0 if |x| > k, so
M ⊂ {x : |x| 6 k}. But then ‖Tπ |N‖ 6 pk,π .

Now by Lemma 4.6(iii) ‖Tπ‖ 6 pmax
k,π , and then

pmax
k,σ = ‖T‖ =

∥∥∥⊕
π∈s

Tπ

∥∥∥ = max
π∈s
‖Tπ‖ 6 max

π∈s
pmax

k,π ,

which proves the statement.
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COROLLARY 4.10. For a SIN-group G, Ĉ(G)= ∏
π∈K̂

Cπ where Cπ = lim
←−

k

C∗pmax
k,π

(G)

if V 6= {0} and Cπ = C∗pmax
π

(G) otherwise.

Proof. First of all, the set

Pmax(G) = {pmax
k,σ : k ∈ N, σ ⊂ K̂}

is cofinal inP(G) by Lemma 4.6. Proposition 4.9 shows that the order onPmax(G)

is the natural order on N and inclusion of subsets of K̂. Thus,

Ĉ(G) = lim
←−

k∈N,σ⊂K̂

∏
π∈σ

C∗pmax
k,π

(G).

From the other side, using (4.1), we have

∏
π∈K̂

Cπ = lim
←−
σ⊂K̂

∏
π∈σ

Cπ = lim
←−
σ⊂K̂

∏
π∈σ

lim
←−
k∈N

C∗pmax
k,π

(G) = lim
←−
σ⊂K̂

(
lim
←−
k∈N

∏
π∈σ

C∗pmax
k,π

(G)
)

.

Now it is easy to see that the natural map between these two inverse limits is an
isomorphism.

COROLLARY 4.11. The category PF of locally convex spaces which are direct
products of Fréchet spaces, contains C(G) and Ĉ(G) for all SIN-groups G. Every space in
this category is stereotype. If A, B ∈ PF are direct products of Fréchet pro-C∗-algebras,
then A ⊗

max
B ∈ PF.

Proof. Due to decomposition (3.1), C(G) is homeomorphic to C(N)D as a
locally convex space. Every C(N) is a Fréchet space because N is sigma-compact;
thus, C(G) ∈ PF. Every Cπ in Lemma 4.10 is a countable inverse limit of Banach
spaces, so it is a Fréchet space, thus Ĉ(G) ∈ PF. Direct product of Fréchet spaces
is stereotype by 4.4 and 4.20 of [1].

Next, if A = ∏ Aα and B = ∏ Bβ where every Aα, Bβ is a Fréchet pro-C∗-
algebra, then

A ⊗
max

B = ∏
(

Aα ⊗
max

Bβ

)
,

and every Aα ⊗
max

Bβ is Fréchet. This shows that PF is closed under maximal

tensor products.

5. STRICT ALGEBRAS AND MOORE GROUPS

In this section we consider a category Moore which includes the algebras
C(G), Ĉ(G) for every Moore group G (a group is called Moore if all its irreducible
representations are finite-dimensional). This category consists of Hopf algebras
with respect to a topological tensor product �, satisfying the algebraic definition
of a Hopf algebra in a tensor category.
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Recall the following general definitions of an algebra, coalgebra and a Hopf
algebra in a tensor category. We will write C for the unit object, because in our
categories it is the space of the complex numbers.

DEFINITION 5.1. An algebra in a tensor category with the tensor product ⊗
and the unit object C is an object A with morphisms m : A⊗ A→ A (multiplica-
tion) and ı : C→ A (unit), such that:
(alg.1) m(m⊗ id) = m(id⊗m),
(alg.2) m(id⊗ ı) = id, m(ı⊗ id) = id.

A coalgebra is an object A with morphisms ∆ : A→ A⊗ A (comultiplication)
and ε : A→ C (counit) such that:

(coal.1) (∆⊗ id)∆ = (id⊗∆)∆,
(coal.2) (id⊗ ε)∆ = id, (ε⊗ id)∆ = id.

Recall that for every algebra A, A⊗ A is also an algebra. A Hopf algebra is
an object A which is an algebra and a coalgebra with an additional morphism
S : A→ A (antipode) such that:

(hopf.1) ∆ and ε are algebra homomorphisms, i.e.

∆m = mA⊗A(∆⊗∆) and εm = mC⊗C(ε⊗ ε).

(hopf.2) m(S⊗ id)∆ = m(id⊗ S)∆ = εı.

To indicate the tensor product we use the terms⊗-algebra,⊗-coalgebra and
⊗-Hopf algebra. In this section we consider the category Ste of stereotype locally
convex spaces with two tensor products: injective � and projective ~. These
tensor products are related by the identity (X~Y)? = X?�Y? ([1], Theorem 7.6).
Ste is a tensor category with both ([1], Theorem 7.7). As expected, if A is a �-
algebra (~-algebra), then A � A is also a �-algebra (respectively A~ A is a ~-
algebra) ([1], Theorems 10.15, 10.22). For any locally compact group G, C(G) is a
�-Hopf ∗-algebra, and Mc(G) is a ~-Hopf ∗-algebra ([1], 10.24).

If A is a linear topological space and a⊗-algebra, in analytical language this
means that its multiplication m : A× A → A may be extended to a continuous
map m : A⊗ A → A. The notations m, ı, ∆, S and ε will be used by default for
the multiplication, unit, comultiplication, antipode and counit in any algebra or
coalgebra.

DEFINITION 5.2. An involution on an algebra A is an anti-homomorphism
∗ : A → A such that ∗∗ = id. If A is an algebra with involution then so is
A⊗ A, with involution ∗ ⊗ ∗. An algebra morphism ϕ is a ∗-homomorphism if
ϕ(a)∗ = ϕ(a∗). A ⊗-Hopf ∗-algebra is a ⊗-Hopf algebra with involution such that
∆ and ε are ∗-homomorphisms.

It is clear that with the usual involution C(G) is a �-Hopf ∗-algebra and
Mc(G) is a ~-Hopf ∗-algebra. This is a particular case of a general theorem ([1],
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10.23): the conjugate space A? to a �-Hopf algebra A is a ~-Hopf ∗-algebra, and
vice versa. Recall that the structural maps on A? are given by conjugation:

mA? = ∆∗A, ∆A? = m∗A, ıA? = ε∗A, εA? = ı∗A, SA? = S∗A,

and, for all µ ∈ A?, a ∈ A,

(5.1) µ∗(a) = µ((Sa)∗).

In principle, the stereotype injective tensor product � differs from the in-
jective tensor product ⊗̌ in the usual theory of locally convex spaces ([22], Sec-
tion VII.2). But they coincide for Fréchet spaces, if one of the spaces has the
approximation property (AP for short), and for their direct products ([1], The-
orem 7.21 and the last formula in the proof of Lemma 8.6). This class of spaces
may be equivalently described as spaces with the AP which are direct products
of Fréchet spaces (i.e. are in category PF, see Corollary 4.11), since AP is inher-
ited by complemented subspaces ([8], p. 61). In particular, these tensor products
coincide if both factors are C(G) where G is a SIN-group, since 1) C(G) ∈ PF;
2) AP is preserved by projective limits of Banach spaces ([8], p. 59), and C(K) for
a compact space K has AP.

This allows to establish a link with the theory of strict Banach algebras. This
notion was first introduced by N. Varopoulos under the term injective algebras.

DEFINITION 5.3. A Banach algebra A is called strict if its multiplication can
be extended to a continuous linear map from A⊗̌A to A (where ⊗̌ is the injective
tensor product).

For C∗-algebras, this property is equivalent to the following one ([4], Theo-
rem 6):

DEFINITION 5.4. A C∗-algebra A is said to be of bounded degree if there exists
a natural number n such that all irreducible representations of A are finite-dimen-
sional and their dimensions do not exceed n.

O. Aristov had proved in Theorem 6 of [4] that a C∗-algebra is strict if and
only if it is of bounded degree, and in Theorem 7 of [4] that this is also equivalent
to topological isomorphism of A ⊗̌ A and A ⊗

min
A, where ⊗

min
is the minimal C∗-

tensor product. There are many other equivalent properties of C∗-algebras of
bounded degree ([18], Theorem 2.5). Now the following theorem follows:

THEOREM 5.5. Let A = lim
←−

Ap be a stereotype pro-C∗-algebra, A ∈ PF, and let
every Ap be a strict C∗-algebra. Then A is a �-algebra.

Proof. Since ⊗̌ commutes with inverse limits, A ⊗̌ A = lim
←−

Ap ⊗̌ Aq over

p, q ∈ P(A). Every pair (p, q) is majorated by either (p, p) or (q, q), so the set
(p, p), p ∈ P(A), is cofinal and hence A ⊗̌ A = lim

←−
Ap ⊗̌ Ap. For every p, mul-

tiplication is a continuous map mp : Ap ⊗̌ Ap → Ap. These maps clearly agree
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with the inverse structure, so they define a continuous map of the inverse lim-
its m : A ⊗̌ A → A. Obviously m(a ⊗ b) = ab, so we have proved that A is a
⊗̌-algebra.

Since every Ap is of bounded degree, it is nuclear; then it has the approx-
imation property ([8], p. 59). Since projective limits of Banach spaces preserve
the approximation property ([8], p. 59), A has this property too. It follows that
A ⊗̌ A = A� A, and the theorem is proved.

DEFINITION 5.6. Let A = lim
←−

Ap be a pro-C∗-algebra and let every Ap be a

strict C∗-algebra. Then A is called a strict pro-C∗-algebra.

These tensor products also coincide with the maximal tensor product:

LEMMA 5.7. If A, B ∈ PF are pro-C∗-algebras and one of them is strict then
A� B = A ⊗

max
B.

Proof. Similarly to the proof of Theorem 5.5, we can show that A � B =
A ⊗̌ B = lim

←−
Ap ⊗̌ Bq. By Theorem 7 of [4], Ap ⊗̌ Bq = Ap ⊗

min
Bq. Since a strict

C∗-algebra is nuclear, we have also Ap ⊗
min

Bq = Ap ⊗
max

Bq. Finally,

A� B = lim
←−

Ap ⊗̌ Aq = lim
←−

Ap ⊗
max

Aq = A ⊗
max

A.

LEMMA 5.8. If G is a Moore group and p ∈ P(G), then the algebra C∗p(G) =

C∗p(Mc(G)) (defined in Notations 2.3) is of bounded degree.

Proof. Step 1. It is known ([20], Theorem 12.4.27) that a Moore group is
equal to the projective limit of Lie Moore groups. By Theorem 1 of [25], every
norm continuous representation of G may be factored through one of the quotient
groups in this limit, so we can assume that G is itself a Lie group.

Step 2. By Theorem 12.4.27 of [20], G is a finite extension of a central group
G1 (a group is called central if its quotient over the center is compact). By Theo-
rem 4.4 of [13] G1 is equal to the direct product Rm ×G2, where G2 has a compact
open normal subgroup K. Let Z be the center of G1, and let H = ZK. Then H is
normal in G1 and contains Z; it also contains Rm × K, so it is open in G1. Thus
G1/H is discrete and compact, hence finite. As G/G1 = (G/H)/(G1/H) is also
finite, we see that G/H = F is finite too.

Suppose we have proved the theorem for the subgroup H. Take any p ∈
P(G) and consider the algebra C∗p(G). If τ is an irreducible representation of
C∗p(G), then the corresponding representation of G is also irreducible; since G is
a Moore group, τ is finite-dimensional. Denote |F| = m. By Theorem 1 of [7],
the restriction of τ onto H decomposes into at most m irreducible representations
of H. Every component τi in this decomposition is continuous with respect to p
and therefore generates a representation of C∗p(H), which is also irreducible. By
assumption dim τi is at most n = deg C∗p(H), so dim τ 6 mn, what proves the
lemma (assumed we have proved it for H).
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Step 3. It remains now to prove the theorem for the subgroup H, that is,
a group representable as H = ZK, where the subgroup Z is central and K is
compact and normal. Let π : H → B(E) be a (norm-continuous) representation
of H on a space E. Let ρ = π|K, σ = π|Z, and let Cπ , Cρ, Cσ be the C∗-algebras
generated by π and by these restrictions ρ, σ respectively.

Since ρ and σ commute, Cπ is a continuous image of the maximal tensor
product Cρ ⊗

max
Cσ, so every irreducible representation of Cπ generates an irre-

ducible representation of Cρ ⊗
max

Cσ. This tensor product may be described explic-

itly. As it is shown in Theorem 2.11, Cσ is isomorphic to the algebra C(M) for
some compact set M ⊂ Ẑ. By Lemma 2.12, Cρ is isomorphic to a finite direct sum

of matrix algebras: Cρ =
m⊕

j=1
Mnj(C). Thus,

Cρ ⊗
max

Cσ =
m
⊕

j=1
C(M)⊗Mnj(C)

(here ⊗ is just the algebraic tensor product). For every j, a representation of
C(M) ⊗ Mnj(C) is irreducible if and only if its restriction onto 1 ⊗ Mnj(C) is
irreducible. Thus, the dimension of such a representation is at most n2

j . Since
the summands in this sum commute, it is easy to see that any irreducible rep-
resentation of Cρ ⊗

max
Cσ has dimension at most n2

1 · · · n2
m, and this concludes the

proof.

COROLLARY 5.9. If G is a Moore group, then Ĉ(G) is a �-algebra.

PROPOSITION 5.10. For a discrete group G which is not a Moore group, Ĉ(G) is
not an �-algebra.

Proof. According to Theorem 4.1, Ĉ(G) is the Banach algebra C∗(G). From
the proof of Theorem 7.21 of [1] one can see that C∗(G) ⊗̌C∗(G) is imbedded into
C∗(G)� C∗(G) as a dense subspace. Thus, if C∗(G) is an �-algebra, it is also a
⊗̌-algebra, i.e. it is strict. It follows that it is of bounded degree, so the dimensions
of all irreducible representations of G must be bounded by a common constant; a
fortiori, they are finite-dimensional, so G is a Moore group.

In the following lemma we prove that A?♦ is automatically a �-Hopf ∗-
algebra under certain conditions, which hold, in particular, for A = C(G) on a
Moore group G (see further Corollary 5.12). One of the conditions is that the
antipode S is a ∗-antihomomorphism, i.e. S(a∗) = S(a)∗ (besides the usual con-
dition S(ab) = S(b)S(a)). This is equivalent to the identity S2 = id ([6], 4.1), and
holds, in particular, for every commutative or cocommutative Hopf algebra.

LEMMA 5.11. Let A be a �-Hopf ∗-algebra such that:
(i) its antipode is a ∗-antihomomorphism;

(ii) Â = A?♦ is a strict pro-C∗-algebra;
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(iii) (A? ~ A?)♦ = Â ⊗
max

Â.

Then Â with structural maps extended by continuity from A? is a �-Hopf ∗-algebra.

Proof. By Theorem 10.23 of [1], A? is a ~-Hopf algebra. Immediate calcu-
lation shows that ∆A? , εA? and SA? commute with involution. Thus, ∆A? and
εA? are ∗-homomorphisms and by the universality property they are extended to
∗-homomorphisms of respective C∗-envelopes.

To show that SA? is continuous in the topology of Â, take a seminorm p ∈
P(A?) and denote pS(a) = p(SA? a). Then pS is a seminorm, and

pS(a∗a)= p(SA?(a∗a))= p(SA?(a)SA?(a∗))= p(SA?(a)SA?(a)∗)= p(SA?(a))2= pS(a)2,

so pS ∈ P(A?). This implies that SA? is continuous in the topology generated by
all p ∈ P(A?), and this is the topology of Â. So it can be extended by continuity
to Â.

The axioms (alg.1,2), (coal.1,2) and (hopf.1) hold obviously. For (hopf.2),
note that Â ⊗

max
Â = Â � Â, and by assumption Â is a �-algebra. This implies

that the morphisms mÂ, id⊗ SÂ, SÂ ⊗ id are well defined (on Â� Â), and then
by density we get the identity (hopf.2).

COROLLARY 5.12. For any Moore group G, Ĉ(G) is a �-Hopf ∗-algebra.

Proof. We can apply Lemma 5.11 with A = C(G), because C(G)� C(G) =
C(G× G) ([1], Theorem 8.4), and with Theorem 4.3 we have for A? = Mc(G):

(Mc(G)~Mc(G))♦ = (C(G)� C(G))?♦ = (C(G× G))?♦ = Mc(G× G)♦

= Ĉ(G× G) = Ĉ(G) ⊗
max

Ĉ(G) = Mc(G)♦ ⊗
max

Mc(G)♦.

DEFINITION 5.13. Let Moore denote the subcategory of Hopf �-algebras A
such that:

(i) the dual algebra Â is well defined;

(ii) ̂̂A = A.
Morphisms in Moore are morphisms of �-Hopf ∗-algebras.

THEOREM 5.14. A 7→ Â is a contravariant functor on Moore.

Proof. If ϕ : A → B is a morphism in Moore, then ϕ̂ is defined in the fol-
lowing natural way. The conjugate map ϕ? : B? → A? is a morphism of ~-Hopf
∗-algebras, so in particular this is a ∗-homomorphism. By universality it may be
extended to a ∗-homomorphism of respective C∗-envelopes ϕ̂ : B̂→ Â.

By Section 7.3, Section 7.4 of [1] there are natural continuous maps iA : A?~
A? → Â � Â and iB : B? ~ B? → B̂ � B̂, identical on elementary tensors. By
assumption Hopf structures on Â and B̂ are well defined, what means that there
are comultiplications ∆ Â : Â → Â � Â and ∆ B̂ : B̂ → B̂ � B̂. On A? and B?

respectively, we have ∆ Â = iA ◦∆A? and ∆ B̂ = iB ◦∆B? .
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Consider the maps ∆ Â ◦ ϕ̂ and (ϕ̂� ϕ̂) ◦∆ B̂ from B̂ to Â� Â. On the dense
subspace B? ⊂ B̂, they equal respectively iA ◦∆A? ◦ ϕ∗ and iA ◦ (ϕ∗ ~ ϕ∗) ◦∆B?

(the latter holds since ∆B?(B?) ⊂ B? ~ B?). But these maps are equal since ϕ∗ is a
morphism of ~-coalgebras. Thus, ∆ Â ◦ ϕ̂ = (ϕ̂� ϕ̂) ◦∆ B̂, i.e. ϕ̂ is a morphism of
�-coalgebras.

If ξ = ψ ◦ ϕ, then ξ∗ = ϕ∗ ◦ ψ∗, so ξ̂ = ϕ̂ ◦ ψ̂. This proves that the functor̂
is contravariant. And finally, since ̂̂A = A, this is a duality on Moore.

In Section 6 we will show that every algebra C(G) and Ĉ(G), G being a
Moore group, is contained in Moore.

6. DUALITY THEOREMS

In this section we prove the main Theorem 6.4. The key task is to describe
the space of characters of K(G), for a Moore group G. Then it follows that the
dual algebra of Ĉ(G) is C(G), so that C(G) is a reflexive �-Hopf ∗-algebra.

LEMMA 6.1. Let G be a compact group. For every nonzero involutive character χ
of K(G) there is t ∈ G such that χ( f ) = f (t) for all f ∈ K(G).

Proof. Among the representations corresponding to seminorms p there are,
in particular, all irreducible unitary continuous representations. It follows that
the algebra K(G) contains their coefficients, i.e. the classical space T(G) of trigo-
nometric polynomials ([15], 27.7).

Let χ be an involutive character of the algebra K(G). Its restriction onto
T(G) is also an involutive character, and it is known ([15], 30.5) that then χ( f ) =
f (t) for some point t ∈ G and all f ∈ T(G). As T(G) is dense in K(G) by
Lemma 3.3(v), this is true for all f ∈ K(G) as well.

LEMMA 6.2. In the notations (3.1), every nonzero involutive continuous character
χ of the algebra K(N) is of the type χ( f ) = f (t) for some point t ∈ N.

Proof. By Lemma 3.7, the algebras K(V) and K(K) may be considered as
subalgebras in K(N) (since each of them contains the constant 1 function). Re-
strictions of ϕ onto K(V) and K(K) are characters of these algebras. By Lem-
mas 2.11 and 6.1 there are v0 ∈ V, κ0 ∈ K such that ϕ( f ) = f (v0) for all
f ∈ K(V), ϕ( f ) = f (κ0) for all f ∈ K(K). Consequently, ϕ( f ) = f (v0κ0) for all
f in K(V) · K(K), and by Lemma 3.7, since ϕ is continuous, for all f ∈ K(G) as
well.

THEOREM 6.3. Let G be a Moore group, and let H be the set of nonzero involutive
continuous characters of the algebra K(G). Then every h ∈ H is of the type h( f ) = f (t)
for some point t ∈ G. If H is endowed with the weak topology generated by K(G), then
this identification is a homeomorphism.
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Proof. By definition, H is a subset of K(G)? = Ĉ(G)??, but since Ĉ(G) is
stereotype, we have H ⊂ Ĉ(G).

Consider the canonical projection p : G → D (in notations (3.1)). It gener-
ates a homomorphism p : Mc(G) → Mc(D), which is by universality extended
to p : Ĉ(G) → Ĉ(D) (we will denote all these maps by the same letter). The con-
jugate map p∗ : K(D) → K(G) acts on f ∈ K(D) as (p∗ f )(t) = f (p t) = f (tN),
for any t ∈ G. In particular, for the indicator function Is of a point s ∈ D we
have p∗ Is = IsN . One can notice that this is a homomorphism (with pointwise
multiplicaton); thus, ph is a character of K(D) for every h ∈ H.

For the discrete group D, Ĉ(D) = C∗(D) and K(D) is the Fourier–Stieltjes
algebra B(D) (see Lemma 4.1; the latter algebras equal as sets but may have dif-
ferent topologies). The class of Moore groups is closed under passing to the quo-
tients ([20], Vol. II, p. 1452), so D is a Moore group too. It is known that every dis-
crete Moore group is a finite extension of an abelian group ([20], Theorem 12.4.26
and p. 1397); in particular, it is amenable. It follows that B(G) = A(G), the
Fourier algebra of D.

By Eymard’s theorem, every character of A(D) is evaluated at a point d ∈ D,
so we have ph = δd for some d ∈ D. Now for any s ∈ D we have h(IsN) =
h(p∗ Is) = (ph)(Is) = δd(Is), so h(IsN) = 1 if sN = dN and 0 otherwise.

For any f ∈ K(G), we have then h( f ) = h( f )h(IdN) = h( f IdN). For t ∈ G,
f ∈ K(G), let us denote by tf the function tf (x) = f (xt−1). By Lemma 3.9,
IdNK(G) = dK(N) ≡ {df : f ∈ K(N)}.

Then d(f g) = df dg, so ψ( f ) = h(df ) is a character of K(N). By Lemma 6.2,
ψ( f ) = f (ν) for some ν ∈ N. It follows that h( f ) = ψ(d−1

f ) = (d−1
f )(ν) = f (νd)

for f ∈ dK(N), but for arbitrary f ∈ K(G) we have also h( f ) = h( f IdN) =
( f IdN)(νd) = f (νd), and this proves the equality G = H.

To show that this is homeomorphism when H is endowed with the weak
topology of Ĉ(G), it is equivalent to prove that K(G) is a regular algebra of func-
tions on G, i.e. it separates points and closed sets. First of all, K(G) contains
ItN for any t ∈ G, what implies that every coset tN is open in H. So we can
further restrict ourselves to G = N = Rn × K. On the compact subgroup K,
the imbedding into H is continuous and injective, so this is a homeomorphism,
and it implies that K(K) is a regular algebra. For Rn, this can be verified di-
rectly since K(Rn) is the Fourier transform of Mc(Rn); it contains, for example,
f (t) = (exp(i e(t1 + · · ·+ tn))− 1)/(int1 · · · tn) for any ε > 0 (the Fourier trans-
form of the indicator of the cube [0, ε]n). These functions separate 0 from any
closed set in Rn. Now, since on N we have the product topology, the statement
follows from the fact that K(Rn) · K(K) ⊂ K(N).

We can now return to the diagram (1.1):

THEOREM 6.4. For any Moore group G, ̂̂C(G) = C(G), and the dual structure of
a �-Hopf ∗-algebra coincides with the natural structure of C(G). This is illustrated by
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the following diagram:

C(G) � ? // Mc(G)

C∗−env

��

K(G)

C∗−env

OO

Ĉ(G)
�?oo

Proof. Let j denote the canonical inclusion of G into Ĉ(G). This map is con-
tinuous but it need not be a homeomorphism. If K ⊂ G is compact, then j(K) is
compact in Ĉ(G); the seminorm pK( f ) = sup

ϕ∈j(K)
|ϕ( f )| = sup

ϕ∈K
| f (t)| on K(G) has

the C∗-property and is continuous by definition of topology on K(G).
Conversely, let p be a continuous C∗-seminorm on K(G). Then C∗p(K(G)) is

a commutative C∗-algebra, thus isomorphic to C(K), where K is its spectrum, i.e.
the set of its involutive continuous characters in the weak*-topology. If ip is the
canonical map fromK(G) to C∗p(K(G)), then i∗p maps continuously K to G, which
is the spectrum of K(G) by Theorem 6.3. Moreover, i∗p is injective since ip(K(G))

is dense in C∗p(K(G)). By a well-known theorem, this is a homeomorphism of K
onto i∗p(K). Thus,K(G)♦ and C(G) are inverse limits of equal systems of algebras:

K(G)♦ = lim
←−

p∈P(K(G))

C∗p(K(G)) = lim
←−

K⊂G

C(K) = C(G).

The Hopf structure of C(G) extends that of K(G), what can be verified directly
by evaluating on δ-functions.

Now, from the previous results follow:

THEOREM 6.5. There is a category Moore whouse objects are �-Hopf ∗-algebras
reflexive with respect to ̂, and the morphisms are morphisms of �-Hopf ∗-algebras.
Moore contains the algebras C(G) and Ĉ(G) for all Moore groups G. The mapping
A 7→ Â is a contravariant duality functor on Moore.

7. MORE PROPERTIES OF THE MAXIMAL TENSOR PRODUCT

In this section, we show that among C∗-algebras, every ⊗
max

-algebra is also

a �-algebra; in particular, Ĉ(G) for a discrete group is a ⊗
max

-Hopf algebra if and

only if G is a Moore group. This means that we could not widen the class of
groups in category Moore if we considered ⊗

max
instead of �.

THEOREM 7.1. A C∗-algebra A is strict if and only if it is a ⊗
max

-algebra.
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This theorem is proved exactly in the same way as it is done by Aristov [4]
for minimal tensor products. For completeness, we repeat the argument below,
including proof of the following proposition which is stated as obvious in [4].

PROPOSITION 7.2. Let A be a C∗-algebra and let a1, . . . , am ∈ A be such that
aia∗j = a∗i aj = 0 if i 6= j. Then ∥∥∥ m

∑
i=1

ai

∥∥∥ 6 max
i=1,...,m

‖ai‖.

Proof. For any a ∈ A, define S0(a) = a and Sn(a) = Sn−1(a)∗Sn−1(a) for
n = 1, 2, . . . . Then, by induction, S(ai) satisfy the same conditions as ai:

Sn(ai)Sn(aj)
∗ = Sn−1(ai)

∗Sn−1(ai)Sn−1(aj)
∗Sn−1(aj) = 0 if i 6= j,

and similarly Sn(ai)
∗Sn(aj) = 0 if i 6= j.

These equalities imply that∥∥∥∑
i

Sn(ai)
∥∥∥2

=
∥∥∥∑

i,j
Sn(aj)

∗Sn(ai)
∥∥∥ =

∥∥∥∑
i

Sn(ai)
∗Sn(ai)

∥∥∥ =
∥∥∥∑

i
Sn+1(ai)

∥∥∥,

so that by induction ∥∥∥∑ ai

∥∥∥2n

=
∥∥∥∑ Sn(ai)

∥∥∥.

Now, as ‖Sn(a)‖ = ‖Sn−1(a)‖2, we have ‖Sn(a)‖ = ‖a‖2n
and∥∥∥∑ ai

∥∥∥ 6 (∑ ‖Sn(ai)‖
)1/2n

=
(

∑ ‖ai‖2n
)1/2n

.

The right-hand side tends to max ‖ai‖ as n→ ∞, what proves the proposition.

Proof of the Theorem 7.1. If A is strict, then its multiplication m extends to a
continuous operator from A ⊗

min
A to A; since there is a continuous map from

A ⊗
max

A to A ⊗
min

A, the multiplication is continuous on A ⊗
max

A also.

For the inverse statement, we follow reasoning of Aristov. In [3] it is proved
that a C∗-algebra is strict if and only if it is of bounded degree. Thus, we need
to show that every ⊗

max
-algebra is of bounded degree. Suppose that A is a ⊗

max
-

algebra and there is an irreducible representation π of A of dimension at least
n. Let {ei}n

i=1 be an orthonormal system in the space H where π acts, and let εi
be the corresponding coordinate functionals: εi(v) = 〈v, ei〉, v ∈ H. The operator

q =
n
∑

i=1
εiei is the orthogonal projector onto the span of e1, . . . , en, and in particular

it is self-adjoint.
By Lemma 1 of [4] there exist elements ai ∈ A, i = 1, . . . , n (in notations of

[4], ai = vi1) such that:

‖ai‖ = 1; aia∗j = a∗i aj = 0 if i 6= j; qπ(ai)q = π(ai)q = ε1ei.
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Take x = ∑
i

a∗i ⊗ ai ∈ A ⊗
max

A. Then

qπ(m(x))q = ∑
i

qπ(a∗i ai)q = ∑
i
(π(ai)q)∗π(ai)q = ∑

i
(ε1ei)

∗ε1ei

= ∑
i

εie1 ◦ ε1ei = ∑
i

ε1e1 = nε1e1.

Thus, n = ‖qπ(m(x))q‖ 6 ‖m(x)‖. At the same time, the elements a∗i ⊗ ai satisfy
conditions of Proposition 7.2:

(a∗i ⊗ ai)
∗(a∗j ⊗ aj) = aia∗j ⊗ a∗i aj, (a∗i ⊗ ai)(a∗j ⊗ aj)

∗ = a∗i aj ⊗ aia∗j ,

and this is zero as i 6= j. By Proposition 7.2, ‖x‖ 6 max ‖a∗i ⊗ ai‖ = 1. This
means that ‖m‖ > n, so if m is a continuous operator then A must be of bounded
degree.

Similarly to Lemma 5.10, we have a corollary:

COROLLARY 7.3. For a discrete group G which is not a Moore group, Ĉ(G) is not
an ⊗

max
-algebra.

Proof. By Lemma 4.1, Ĉ(G) = C∗(G) is a C∗-algebra. If it is a ⊗
max

-algebra,

then by Theorem 7.1 it is strict, and in particular, all its irreducible representations
are finite-dimensional; this means that G is a Moore group.
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