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ABSTRACT. Let A be a Banach algebra. We give a new characterization of the
property A∗ = A∗A, called the left strong dual factorization property when
one assumes that A has a bounded approximate identity. Without the assump-
tion of the existence of a bounded approximate identity, we prove that this
property implies the equivalence between the given norm of A and the norm
inherited from RM(A), the right multiplier algebra of A. Secondly, we present
a complete description of the strong topological centres of Nα(E) of α-nuclear
operators on a Banach space E. Using this description, we characterize the Ba-
nach spaces E such that Nα(E) has the left and right strong dual factorization
property.
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1. INTRODUCTION

A.T.-M. Lau and A. Ülger in [15] were the first who studied the properties
A∗ = A∗A or A∗ = AA∗ for a Banach algebra A with a BAI (bounded approx-
imate identity), which we call here the left and right strong dual factorization
property, respectively. These properties are particularly interesting if A is weakly
sequentially complete. In the case of the group algebra L1(G) and the Fourier
algebra A(G), respectively, where G is a locally compact group, the left or right
strong dual factorization property are equivalent to the discreteness and the com-
pactness of G, respectively. Moreover, A.T.-M. Lau and A. Ülger in [15] proved
that a weakly sequentially complete Banach algebra A with a sequential bounded
approximate identity which enjoys the left or right strong dual factorization prop-
erty is unital. These two properties have also been used by A.T.-M. Lau and A.
Ülger to study topological centres [15]. More recently, the author in [27], charac-
terized these properties using the notion of strong topological centre. These new
objects were the key to the study of Arens regularity of the Fourier algebra on
weakly amenable groups in [25].



304 DENIS POULIN

This paper is the first step of a program which studies the strong dual factor-
ization property for general Banach algebras. It is suspected that the strong dual
factorization property implies the existence of a bounded approximate identity.
However, we are far from proving this. We prove that proper abstract Segal al-
gebras cannot enjoy it. Consequently, the norm of a faithful Banach algebra A
such that A∗ = A∗A is equivalent to the norm inherited from RM(A), the right
multiplier algebra of A. Recently, the author studied the notion of strong topolog-
ical centre [27] and linked it to the strong dual factorization property. It has been
proved in [15], that A(c0), the algebra of approximable operators on c0, has the
left but not the right strong dual factorization property. This suggests that there
might exist a Banach space E such that E∗ does not have the bounded approx-
imation property such that A(E) has the left or right strong dual factorization
property. Combining these two facts, we study the strong topological centres of
the algebra of α-nuclear operators as M. Daws did in [5] for the topological cen-
tres. In the case where α is the injective tensor norm, Nα(E) is A(E). The special
attention we put on A(E) comes from the fact that all α-nuclear operator algebras,
except A(E), are proper abstract Segal algebra. We characterize for which Banach
space E the algebra A(E) has the left or right strong dual factorization property.

This paper is organized as follows. In the next section, we establish our
notation and recall some preliminary definitions and results. In Section 3, we
present the definitions of the three levels of dual factorization property, which
generalize the definition by A.T.-M. Lau and A. Ülger. We obtain a new char-
acterization of the left and right strong dual factorization property for a Banach
algebra A having a BAI. In Section 4, we study the strong dual factorization prop-
erty for faithful Banach algebras without BAI and prove that no proper abstract
Segal algebra enjoys it. Consequently, we obtain that the left, respectively right,
strong dual factorization property of a Banach algebra A implies the equivalence
of the norm of A with the norm of its right, respectively left, multiplier algebra.
In Section 5, we present the definition of the strong topological centres and some
related results. Following the path used by M. Daws in [5], we obtain prelimi-
nary results used in subsequent sections. In Section 6, we characterize the strong
topological centres of Nα(E) where E∗ has the bounded approximation property.
In Section 7, assuming that the integral operators and the nuclear operators on E∗

coincide, we characterize the strong topological centres of Nα(E). We also char-
acterize the Banach spaces E for which Nα(E) has the left or right strong dual
factorization property.

2. PRELEMINAIRIES

Through out this paper, A denotes a Banach algebra. Let � and 4 denote
the left and right Arens product, respectively. The left Arens product is defined
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by
〈m�n, f 〉 = 〈m, n� f 〉, 〈n� f , a〉 = 〈n, f�a〉, 〈 f�a, b〉 = 〈 f , ab〉.

Similarly, one can define the right Arens product and check that

m�n = w∗-lim
α

w∗-lim
β

mαnβ and m4n = w∗-lim
β

w∗-lim
α

mαnβ,

where (mα) and (nβ) are nets in A∗∗ converging weak∗ to m and n, respectively.
The left and right topological centres are defined, respectively, by

Zl(A∗∗) = {m ∈ A∗∗ : m�n = m4n, ∀n ∈ A∗∗} and

Zr(A∗∗) = {m ∈ A∗∗ : n�m = n4m, ∀n ∈ A∗∗}.

Using the definition of Arens products, it is easy to see that

Zl(A∗∗) = {m ∈ A∗∗ : λm : n 7→ m�n is w∗-w∗-continuous} and

Zr(A∗∗) = {m ∈ A∗∗ : ρm : n 7→ n4m is w∗-w∗-continuous}.

A mixed unit Γ ∈ A∗∗ is an element such that m = m�Γ = Γ4m for all m ∈ A∗∗.
It is well known that a Banach algebra A has a bounded approximate identity
(BAI) if and only if A∗∗ has a mixed unit. We define the sets A∗A and AA∗,
respectively, by

A∗A = { f · a : f ∈ A∗, a ∈ A} and AA∗ = {a · f : f ∈ A∗, a ∈ A}.

The linear span of A∗A is denoted by 〈A∗A〉 and 〈A∗A〉 denotes the closed linear
span of A∗A. Similar definitions hold for 〈AA∗〉 and 〈AA∗〉.

Let E be a Banach space. The set B(E) denotes the set of all bounded linear
operators on E. We denote the canonical embedding of E into its second dual E∗∗

by κE. Let LM(A) and RM(A) be the left and the right multiplier algebra of A,
respectively. They are defined, respectively, by

LM(A) = {T ∈ B(A) : T(ab) = T(a)b, ∀a, b ∈ A} and

RM(A) = {T ∈ B(A) : T(ab) = aT(b), ∀a, b ∈ A}.

Both left and right multipliers are closed subalgebras of B(A) and B(A)op,the
opposite algebra of B(A) and are thus Banach algebras. For a ∈ A, the linear
maps b 7→ ab and b 7→ ba will be denoted by La and Ra. The left and right regular
representations of A in B(A) given by a 7→ La and a 7→ Ra are injective if A is left
and right faithful respectively. Let Γ be a fixed mixed unit, then T 7→ T∗∗(Γ) is
an isomorphism, from LM(A) into A∗∗, onto its image.

We shall consider F (E), the finite rank operators, and its closure A(E), the
approximable operators, in B(E). We denote by I(E) the integral operators with
the integral norm ‖ · ‖I , N(E) the nuclear operators with the norm ‖ · ‖N and
W(E) the weakly compact operators. All those are Banach algebras with respect
with their own norms and are linked as follow.

F (E) ⊆ N(E) ⊆ A(E) ⊆W(E) and A(E) ⊆ I(E) ⊆W(E).
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An operator ideal is an ideal of B(E) containing F (E) which is a Banach algebra
with respect to some norm. A closed operator ideal is an operator ideal which
is closed in B(E). For example, A(E) and W(E) are closed operator ideals but
not F (E), N(E) and I(E). B. Johnson proved that the algebras of left and right
multipliers, respectively, of operator ideals are isometrically isomorphic to B(E)
([4], Theorem 2.5.13).

Since we are interested in some operator ideals of B(E), the definitions and
results concerning tensor norms are not given in their full generality. We will
follow the notation of [28]. We refer the reader to [28] and [6] for more details
and proofs on the topic.

Let E be a Banach space. The projective tensor norm π on E∗⊗ E is defined by

π(τ) = inf
{ r

∑
i=1
‖ fi‖ · ‖xi‖ : τ =

r

∑
i=1

fi ⊗ xi

}
(τ ∈ E∗ ⊗ E).

The completion of (E∗ ⊗ E, π) is denoted by E∗⊗̂πE and it is called the projective
tensor product of E∗ and E. The injective tensor norm ε is defined on E∗ ⊗ E by

ε(τ) = sup
{∣∣∣ n

∑
i=1
〈m, xi〉〈g, yi〉

∣∣∣ : m ∈ E∗∗, g ∈ E∗, ‖m‖ = ‖g‖ = 1
}

,

where τ =
n
∑

i=1
xi ⊗ yi ∈ E∗ ⊗ E. The completion of (E∗ ⊗ E, ε) is denoted by

E∗⊗̂εE. With the identification of F (E) with E∗ ⊗ E, it is easy to check that A(E)
is exactly E∗⊗̂εE.

Following the terminology of [28], a tensor norm α is a finitely generated
uniform crossnorm. The completion of E∗ ⊗ E with respect to α is denoted by
E∗⊗̂αE. We also denote by αt and α∗ the transpose and the dual tensor norm of
α, respectively. The injective and projective tensor norm are tensor norms and
symmetric, i.e. εt = ε and πt = π. Moreover , ε∗ = π and π∗ = ε.

DEFINITION 2.1. Let α be a tensor norm. Since α(τ) 6 π(τ) for τ ∈ E∗ ⊗ E,
the formal identity map Iα : E∗⊗̂πE → E∗⊗̂αE is norm decreasing. Using (Iα)∗,
we identify (E∗⊗̂αE)∗ with a subspace of B(E∗), denoted Bα∗(E∗). The elements
of Bα∗(E∗) are called α∗-integral operators and the norm ‖ · ‖α∗ is given using the
usual norm for a dual Banach space.

The set of ε-integral operators on E∗ is B(E∗) and the π-integral operators
are the usual integral operators on E∗.

DEFINITION 2.2. Let E be a Banach space and let α be a tensor norm. Define
the norm-decreasing map Jα : E∗⊗̂αE→ B(E) by

Jα( f ⊗ x)(y) = 〈 f , y〉x

for x, y ∈ E and f ∈ E∗. Equipped with the quotient norm, denoted ‖ · ‖Nα , the
image of Jα is the set of α-nuclear operators denoted by Nα(E).
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The set of ε-nuclear operators is A(E) and the set of π-nuclear operator is
N(E).

A Banach space E has the bounded approximation property if there exists M >
0 such that for every compact subset K ⊆ E and every δ > 0 there exists a finite
rank operator S : E → E such that ‖S‖ < M and ‖x− Sx‖ 6 δ for every x ∈ K.
It is well known that A(E) has a bounded approximate identity if and only if E∗

has the bounded approximation property.
We finish this section with two results that will be needed later. Their proofs

can be found in [5].

PROPOSITION 2.3. Let E be a Banach space. Let T ∈ B(E), and let α be a tensor
norm. The following are equivalent:

(i) T is an α-integral operator,
(ii) T∗ is an αt-integral operator,

(iii) T∗∗ is an α-integral operator.
Furthermore, ‖T‖α = ‖T∗‖αt holds.

THEOREM 2.4. Let E, F, G be Banach spaces.
(i) If T ∈ I(E, F) and S ∈W(F, G), then ST ∈ N(E, G).

(ii) If S ∈ W(E, F) and T ∈ I(F, G) then κGTS ∈ N(E, G∗∗). Moreover, if E∗ has
the approximation property, then TS ∈ N(E, G).

3. DEFINITION, EXAMPLES AND CHARACTERIZATION

In this section, we present the definitions of the three levels of the dual fac-
torization property for a Banach algebra A as well as examples. We then present
a different approach than the one used in [15] to study the strong dual factoriza-
tion property for Banach algebra having a BAI. From this approach, we obtain a
new characterization of this property and extend a result of Baker–Lau–Pym con-
cerning the quotient map between A∗∗ and (A∗A)∗ for a Banach algebra A with
a BAI.

DEFINITION 3.1. Let A be a Banach algebra. We say that:
(i) A has the left strong dual factorization property if A∗ = A∗A;

(ii) A has the left dual factorization property if A∗ = A∗A;
(iii) A has the left weak dual factorization property if A∗ = 〈A∗A〉.

The right and two sided versions are defined analogously.

Of course, when A has a BAI, (i), (ii) and (iii) are the same. Obviously, (i)
implies (ii), which implies (iii).

Now, we present some examples to illustrate these properties .

EXAMPLE 3.2. (i) Any faithful reflexive Banach algebra A has the left and
right weak dual factorization property. We only prove the left version since the
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right one is similar. Suppose that A∗ 6= 〈A∗A〉. Then by the Hahn–Banach theo-
rem, there exists a non-zero m ∈ A∗∗ = A such that m|〈A∗A〉 = 0. In particular,

0 = 〈m, f · a〉 = 〈a�m, f 〉

for any f ∈ A∗ and a ∈ A . This implies that a�m = 0 for all a ∈ A which is a
contradiction, since A is faithful.

(ii) The Banach algebra l2(I), where I is an index set, equipped with the point-
wise multiplication has the dual factorization property. We have that l2(I) · l2(I)
= l1(I) = l2(I).

(iii) The Banach algebra A(c0) has the left strong dual factorization property
but not the right one ([15], Example 2.5).

(iv) Any Arens regular Banach algebra with a BAI has the strong dual factor-
ization property ([29], Theorem 3.1).

The list of examples above does not cover all possibles cases. Here, we did
not present a faithful Banach algebra without BAI with the strong dual factoriza-
tion property. We will deal with this case in Section 4. Another missing example
is a Banach algebra A with the weak dual factorization property, but without the
dual factorization property. Such an example is unknown at this moment.

We now pass to the study of the strong dual factorization property of Ba-
nach algebras having a BAI. This has been done first in [15] where there are many
characterizations of it. However, all these characterizations rely on Lemma 2.1 of
[15] which states that the left and right strong dual factorization property, respec-
tively, of a Banach algebra A with a BAI (eα) is equivalent to the weak conver-
gence of the nets ( f4eα) and (eα� f ), respectively, to f . Our approach is inspired
by Theorem 1.1 of [1] which states that (A∗A)∗ is isomorphic to the Banach al-
gebra HomA,r(A∗, A∗) of bounded right A-module homomorphisms on A∗. The
link between HomA,r(A∗, A∗) and (A∗A)∗ is also used by M. Neufang in [23] to
prove that RM(A) can be identified with the topological centre of (A∗A)∗, which
can be defined analogously to the left topological centre of A∗∗, for Banach alge-
bras with the Fκ property and the Mazur property of level κ, where κ > ℵ0 is a
cardinal. Here, we present Proposition 4.1 of [23] which we will use later and also
establish our notation through this section.

PROPOSITION 3.3 ([23], Proposition 4.1). Let A be a Banach algebra with a
BRAI {eα}α∈I . Define ρ : (A∗A)∗ → HomA,r(A∗, A∗) by

〈ρ(m)( f ), a〉 = 〈m, f · a〉

for m ∈ (A∗A)∗, f ∈ A∗ and a ∈ A. For a left unit Γ in (A∗∗,�), define τΓ :
HomA,r(A∗, A∗)→ (A∗A)∗ by

〈τΓ(φ), g〉 = 〈Γ, φ(g)〉

for φ ∈ HomA,r(A∗, A∗) and g ∈ A∗A. Then ρ and τΓ are algebra homomorphisms
which are inverse to each other.
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The following diagram illustrates the situation, where Γ is a fixed left unit in
(A∗∗,�). In this diagram, π is the restriction map. We define a homomorphism

(A∗∗,�) π // (A∗A)∗

ρ

��
HomA,r(A∗, A∗)

τΓ

OO
(3.1)

from (A∗∗,�) to HomA,r(A∗, A∗) that will make the diagram commute.
Define Φ : (A∗∗,�) → HomA,r(A∗, A∗) by Φ(m) =mT where mT( f ) =

m� f for m ∈ A∗∗ and f ∈ A∗. We now add the map Φ to the previous diagram
and obtain the following.

A∗∗
π //

Φ

&&MMMMMMMMMMM (A∗A)∗

ρ

��
HomA,r(A∗, A∗)

τΓ

OO
(3.2)

Next, we prove that this diagram commutes.

LEMMA 3.4. Let A be a Banach algebra with a BRAI. Then Φ = ρ ◦ π.

Proof. Let m ∈ A∗∗ and mT : A∗ → A∗ be defined by mT( f ) = m� f . Let ρ
and τΓ as in Proposition 3.3. We have

〈τΓ(Φ(m)), f · a〉 = 〈Γ, (Φ(m))( f · a)〉 = 〈Γ, mT( f · a)〉 = 〈Γ, m�( f · a)〉
= 〈Γ, (m� f )4a〉 = 〈a�Γ, m� f 〉 = 〈a4m, f 〉
= 〈m, f · a〉 = 〈π(m), f · a〉

for f ∈ A∗ and a ∈ A.

The definition of Φ holds for general Banach algebras, since we only used the
module action of A∗∗ on A∗. In this generality, the following proposition ad-
dresses the injectivity and surjectivity of Φ. These two properties of Φ character-
ize natural properties of the Banach algebra A.

PROPOSITION 3.5. Let A be a Banach algebra. Then

(i) ker(Φ) = 〈A∗A〉⊥; in particular, Φ is injective if and only if A∗ = 〈A∗A〉.
(ii) Φ is surjective if and only if A has a BRAI.

Proof. The first assertion is obvious from the definition of Φ. Now, let us
prove the second assertion. Suppose that Φ is surjective. In particular, there is
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Γ ∈ A∗∗ such that Φ(Γ) = id. Thus, f =Γ T( f ) = Γ� f for any f ∈ A∗. For all
n ∈ A∗∗,

〈n, f 〉 = 〈n, Γ� f 〉 = 〈n�Γ, f 〉.
So, Γ is a left unit for (A∗∗,�); therefore A has a bounded right approximate
identity.

If A has a BRAI, then Lemma 3.4 and Theorem 1.1 of [1] give the conclu-
sion.

Proposition 3.5(ii) gives us a lot of information about HomA,r(A∗, A∗) when
A has a BRAI. If we are interested in particular properties of (A∗A)∗ or in the
projection map π, it is useful to look at HomA,r(A∗, A∗). We have that RM(A)
is embedded into different algebras, for example we always have a canonical in-
jective anti-homomorphism between RM(A) and HomA,r(A∗, A∗). Furthermore,
the injective anti-homomorphism between RM(A) and (A∗∗,�) is independent
of the choice of a left unit Γ in A∗∗. The following diagram, which is easily seen
to commute, shows the complete picture of the situation when the existence of a
BRAI is assumed.

(A∗∗,�) π //

Φ

''PPPPPPPPPPPPPPPPPPPPPPPPPP
(A∗A)∗

ρ

��
HomA,r(A∗, A∗)

τΓ

OO

RM(A)
* 


77oooooooooooK+

XX22222222222222222222222

A
?�

κA

OO

+ �

88rrrrrrrrrrr

Next, we generalize Theorem 1.3(i) of [1], which affirms that, if A has a BAI,
π is injective on A regarded as a subalgebra of A∗∗.

PROPOSITION 3.6. Let A be a Banach algebra with a BRAI. Then the map π :
A∗∗ → (A∗A)∗ is injective on Zr(A∗∗) and on RM(A), regarded as a subalgebras of
(A∗∗,�).

Proof. By Lemma 3.4, we only need to show that Φ is injective on Zr(A∗∗)
and RM(A). First, consider the case of Zr(A∗∗). Let m1, m2 ∈ Zr(A∗∗) be such
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that Φ(m1) = Φ(m2). Let n ∈ A∗∗. We have that m1 T( f ) = m2 T( f ) for all f ∈ A∗.
Thus,

〈n4m1, f 〉 = 〈n�m1, f 〉 = 〈n, m1 T( f )〉 = 〈n, m2 T( f )〉 = 〈n�m2, f 〉 = 〈n4m2, f 〉.

Since this is true for an arbitrary f ∈ A∗, we conclude that n4m1 = n4m2. In
particular for n = Γ, where Γ is a left unit, and so we have that m1 = m2. The
second assertion is clear from the definition of Φ and the discussion before the
previous diagram.

We are grateful to the referee who indicated us that the first conclusion of
Proposition 3.6 can also be deduced from Proposition 3.15 of [14].

Lau–Ülger mention, in [15], that the characterization of Proposition 2.11 in
[15] may be not easy to use, since it is hard to determine the set M1 := {m ∈
A∗∗ : A · m ⊆ A}. One checks directly that RM(A) ⊆ M1. Therefore, a natural
question is: When does M1 coincide with RM(A)? In fact, the answer is a new
characterization of the left strong dual factorization property.

THEOREM 3.7. Let A be a Banach algebra with a BRAI. Then A∗A = A∗ if and
only if M1 = RM(A) in (A∗∗,�).

Proof. We only need to show that M1 ⊆ RM(A). Since Φ is injective by
Proposition 3.5 and since the diagram commutes, it is enough to verify that Φ(M1)
⊆ RM(A) in HomA,r(A∗, A∗). But this holds by Lemma 3.2.11 of [27].

Now, suppose that M1 = RM(A). Note that

(A∗A)⊥ ⊆ M1 = RM(A).

Hence, the conclusion is obtained easily by Proposition 3.6.

The approach used in this section to study the strong dual factorization
property can also be used to study (A∗A)∗ (see Chapter 3 of [27]).

4. STRONG DUAL FACTORIZATION PROPERTY WITHOUT BAI

In this section, we first recall the definition of an abstract Segal algebra and
present some preliminary results. After that, we show that there is no proper
right abstract Segal algebra with the left strong dual factorization property. As a
consequence of this theorem, we obtain that the left or right, respectively, strong
dual factorization property of a Branch algebra A implies the equivalence of the
norm of A with its right and left multiplier algebra norm, respectively.

DEFINITION 4.1. Let (A, ‖ · ‖A) be a Banach algebra. A Banach algebra
(B, ‖ · ‖B) is a left or right abstract Segal algebra, respectively, in A if the follow-
ing conditions are satisfied:

(i) The algebra B is a dense left or right ideal of A, respectively;
(ii) There is a constant C > 0 such that ‖b‖A 6 C‖b‖B for each b ∈ B;
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(iii) There is a constant M > 0 such that, respectively,

‖ab‖B 6 M‖a‖A‖b‖B,(4.1)

‖ba‖B 6 M‖a‖A‖b‖B,(4.2)

for all a ∈ A and for all b ∈ B.
A Banach algebra (B, ‖ · ‖B) is a symmetric abstract Segal algebra in A, if it is a

left and right abstract Segal algebra in A.

EXAMPLE 4.2. The following are abstract Segal algebras.
(i) Any proper Segal algebra of L1(G) where G is an infinite non-discrete lo-

cally compact group.
(ii) Any pth-Schatten class, in particular N(H), the algebra of nuclear opera-

tors and the algebra of Hilbert–Schmidt operators, HS(H), over an infinite di-
mensional Hilbert space H, are abstract Segal algebras in their closures in B(H).

(iii) The Figa-Talamanca–Herz Lebesgue algebra Ar
p(G), where G is an infinite

locally compact group, is an abstract Segal algebra in the Figa-Talamanca–Herz
algebra Ap(G).

The following is due to S. McKilligan, however, her argument can be easily
adapted to the cases of left and right abstract Segal algebras.

LEMMA 4.3 ([21], Theorem 2.2). Let (A, ‖ · ‖A) be a Banach algebra and (B, ‖ ·
‖B) a right abstract Segal algebra in A. Then each element of B∗B extends uniquely to
an element of A∗. Thus, B∗B can be identified with a subset of A∗.

Proof. Let φ ∈ B∗ and b, c ∈ B. Observe that

|〈φ · b, c〉| = |〈φ, bc〉| 6 ‖φ‖B∗‖bc‖B 6 M‖φ‖B∗‖b‖B‖c‖A,

where M is a constant. This inequality shows that φ · b is bounded on B with
respect to the norm of A. Since B is dense in A, φ · b can be extended in a unique
way to A∗.

A natural question is: When can B∗B be identified with a subset of A∗A?
The proof of Lemma 1 in [22] gives a partial answer, and the argument still holds
for abstract symmetric Segal algebras.

COROLLARY 4.4. Let (A, ‖ · ‖A) be a Banach algebra with a BRAI. Let (B, ‖ · ‖B)
be an abstract Segal algebra in A. Then B∗B can be identified with a subset of A∗A.

Proof. By Cohen’s factorization theorem, B = BA. So, B∗B = B∗(BA) =
(B∗B)A. Let h ∈ B∗B. Then h = f · a, for some f ∈ B∗B and a ∈ A. By Lemma 4.3,
there is an extension f̃ ∈ A∗ such that f̃ |B = f . One checks that f̃ · a ∈ A∗A
extends h and the extension is unique by Lemma 4.3.

With Lemma 4.3, we have all we need to prove the main theorem of this
section. This result is a new fact on the strong dual factorization property.
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THEOREM 4.5. Let (A, ‖ · ‖A) be a Banach algebra. Then there is no proper right
abstract Segal algebra (B, ‖ · ‖B) in A such that B∗ = B∗B.

Proof. Suppose there is a proper right abstract Segal algebra (B, ‖ · ‖B) in
A such that B∗ = B∗B. Let i : (B, ‖ · ‖B) → (A, ‖ · ‖A) be the natural inclusion
map which is continuous by the definition of a right abstract Segal algebra. Let
P : A∗ → B∗ be the adjoint of i. So, P( f ) = f |B for f ∈ A∗. By the density of
B, P is injective. In view of Lemma 4.3 and the hypothesis that B∗ = B∗B, P is
surjective and thus, a homeomorphism. The operator P∗ : B∗∗ → A∗∗ is also a
homeomorphism. Hence, there are constants D1 and D2 such that

D1 ‖m‖B∗∗ 6 ‖P∗(m)‖A∗∗ 6 D2 ‖m‖B∗∗

for all m ∈ B∗∗. But, P∗(b) = i∗∗(b) = i(b) for all b ∈ B.

All the algebras listed in Example 4.2 do not have the left or the right strong
dual factorization property. We would like to mention, however, that the pth-
Schatten classes being reflexive do have the weak dual factorization property.

The strong dual factorization property is, indeed, very a strong property.
For example, for the Fourier algebra A(G), the strong dual factorization property
implies that A(G) is unital. However, in general, we can only show the following.

THEOREM 4.6. Let A be a faithful Banach algebra. If A has the left, respectively
right, strong dual factorization property, then the norm of A is equivalent to the norm of
RM(A), respectively LM(A).

Proof. Suppose that the norm of A is not equivalent to the norm of its right
multiplier algebra. Therefore, A is a proper right abstract Segal algebra in RA, the
closure of its right regular representation, and so we obtain a contradiction due
to Theorem 4.5.

Note that for a discrete group G, L1(G) is unital, and so has the strong dual
factorization property. In this case, L1(G) does not have proper Segal algebras.
It is tempting to suspect that a Banach algebra A enjoying the strong dual factor-
ization property does not have proper abstract Segal algebras. However, this is
false. If A = K(H), then as a C∗-algebra, it is Arens regular and has a BAI; it thus
has the strong dual factorization property ([29], Theorem 3.1). But the algebra of
Hilbert–Schmidt operators is a proper abstract Segal algebra in K(H) when H is
an infinite dimensional Hilbert space.

COROLLARY 4.7. Let E be a Banach space. Let α be a tensor norm. If Nα(E) has
the left or right strong dual factorization property, then α = ε, i,e, Nα(E) = A(E).

Proof. We only prove the right version, the left one is identical. By Theo-
rem 4.6, the α-norm has to be equivalent to the norm of LM(Nα(E)) = B(E) by
Theorem 2.5.13 of [4]. Thus, Nα(E) is norm closed in B(E) which is the case only
for A(E) = Nε(E).



314 DENIS POULIN

REMARK 4.8. It is clear that the set B∗B can be replaced by 〈B∗B〉 in Lem-
ma 4.3, Corollary 4.4, Theorem 4.5 and Theorem 4.6.

5. STRONG TOPOLOGICAL CENTRES OF α-NUCLEAR OPERATOR ALGEBRA

In this section, we present briefly the notion of the left and right strong topo-
logical centre and some related results. We then restrict our study of these two
objects to the class of α-nuclear operator algebras. By representing Nα(E)∗∗ in
B(E∗∗), we obtain inclusions which are the start of our approach in the two next
sections.

The strong topological centres were first introduced in [27] to compare two
class of Banach algebras in terms of Arens regularity. As we will see in Theo-
rem 5.4, they can be used to characterize the left and right strong dual factoriza-
tion properties. These objects have been used recently in [25] to prove that the
Fourier algebra over any infinite locally compact weakly amenable group can-
not be Arens regular. For information on strong topological centres, we refer the
reader to [24], [25] and [27].

DEFINITION 5.1. Let A be a Banach algebra. The left strong topological centre
and the right strong topological centre of A are defined, respectively, by

SZl(A∗∗) = {m ∈ A∗∗ : λm = T∗∗ for some T ∈ B(A)} and

SZr(A∗∗) = {m ∈ A∗∗ : ρm = T∗∗ for some T ∈ B(A)}.

REMARK 5.2. We would like to mention that another pair of strong topo-
logical centres, denoted by SZt(A∗∗,�) and SZt(A∗∗,4), were introduced and
studied in [14].

From the definition of the topological centres, it is clear that SZl(A∗∗) and
SZr(A∗∗) are, generally proper, closed subalgebras of Zl(A∗∗) and Zr(A∗∗), re-
spectively, since the condition λm = T∗∗, for m ∈ Zl(A∗∗) is more restrictive.
Moreover, this condition hides an algebraic one as the following lemma shows.

LEMMA 5.3 ([13], Theorem 17). Let A be a Banach algebra. Then

SZl(A∗∗) = Zl(A∗∗) ∩ {m ∈ A∗∗ : m�A ⊆ A}, and

SZr(A∗∗) = Zr(A∗∗) ∩ {m ∈ A∗∗ : A4m ⊆ A}.

Note that in the case where A has a BAI, we have that SZl(A∗∗) = Zl(A∗∗) ∩
LM(A) and SZr(A∗∗) = Zr(A∗∗)∩RM(A) ([27], Theorem 4.2.3). We now present
the result that motivates the use of strong topological centres in the study of the
left and right strong dual factorization properties.

THEOREM 5.4 ([27], Theorem 4.2.12). Let A be a Banach algebra with a BAI.
Then A has the left, respectively right, strong dual factorization property if and only if
SZl(A∗∗) = LM(A), respectively, SZr(A∗∗) = RM(A).
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By Corollary 4.7, we can restrict our study to the injective tensor norm.
However, we prefer to present a general approach to studying the strong topo-
logical centres of the algebras Nα(E) as this requires almost no extra work.

Our approach to determine the strong topological centres of Nα is heavily
inspired by [5]. Let E be a Banach space and let A = Nα(E). Then E is a natural
left A-module, and E∗ and E∗∗ become right and left A-module, respectively.
Therefore, we define a module action of A on E∗ ⊗ E and on E∗∗ ⊗ E∗ by

( f ⊗ x) · a = f · a⊗ x, a · ( f ⊗ x) = f ⊗ a · x,

(m⊗ f ) · a = m⊗ f · a, a · (m⊗ f ) = a ·m⊗ f ,

for a ∈ A, x ∈ E, f ∈ E∗ and m ∈ E∗∗.
We define the Arens representation as detailed in Section 1.4 of [26] for the

general case and in Section 2.1 of [5] for the specific case of the Banach algebras
Nα(E). Let φ1 : E∗∗⊗̂πE∗ → A∗ be defined by 〈φ1(m ⊗ f ), a〉 = 〈a · m, f 〉 for
a ∈ A, m ∈ E∗∗ and f ∈ E∗ and extend it by continuity and linearity. Let θ1 = φ∗1 .
By Theorem 2.3 of [5], θ1 is a norm-decreasing homomorphism between (A∗∗,�)
and (B(E∗∗), ◦).

We expose the situation in the following diagram. Let ι be the inclusion map
and ν(T) = T∗∗ for T ∈ B(E).

(Nα(E))∗∗
θ1 // B(E∗∗)

Nα(E)
?�

κNα

OO

� � ι // B(E)
?�

ν

OO

By the density of F (E) in Nα(E) and the continuity of each map in the previous
diagram, one can show easily that this diagram commutes. We state this obser-
vation in the following lemma for easier reference late on.

LEMMA 5.5. Let E be a Banach space. Let α be a tensor norm and T ∈ Nα(E).
Then the previous diagram commutes, i.e. θ1(κNα(T)) = ν(T).

To simplify the notation, if S is a subset of B(E), we define Sa := {T∗ ∈
B(E∗) : T ∈ S}. With this notation, ν(S) = Saa.

LEMMA 5.6. Let E be a Banach space. Let T ∈ B(E∗). If U∗ ◦ T is weak∗-weak∗-
continuous for every U ∈ F (E), then T ∈ B(E)a.

Proof. Let { fβ}β∈I ∈ E∗ converge to f in the weak∗ topology. Let x, x0 ∈
E \ {0} such that x 6= x0. By the Hahn–Banach theorem there exists g ∈ E∗ such
that 〈g, x0〉 = 1. Then

lim
β
〈T( fβ), x〉 = lim

β
〈T( fβ), (g⊗ x)x0〉 = lim

β
〈((g⊗ x)∗ ◦ T)( fβ), x0〉

= 〈((g⊗ x)∗ ◦ T)( f ), x0〉 = 〈T( f ), x〉.
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Thus, T is weak∗-weak∗-continuous.

We start by studying the left strong topological centre. Observe that we can
represent (A∗∗,4) in the Banach algebra of bounded left A-module homomor-
phisms on A∗ denoted by HomA,l(A∗, |A∗) via the anti-homomorphism Ψ, and
we have

Ψ(SZl(A∗∗)) ⊆ LM(A) in HomA,l(A∗, A∗),
where Ψ : A∗∗ → HomA,l(A∗, A∗) is given by Ψ(m)( f ) = f4m for m ∈ A∗∗ and
f ∈ A∗. For Nα(E), we represent its second dual in B(E∗∗) by θ1 , which also
contains LM(Nα(E)) = B(E) ([4], Theorem 2.5.13), via ν. We should expect that
θ1(SZl(Nα(E)∗∗)) ⊆ ν(B(E)). By Lemma 5.3 and 5.5, our goal is to identify the
elements in B(E∗∗) which consider Nα(E)aa as a left or right ideal. An answer
to this question is unknown to the author in the case of a non-reflexive Banach
space E, not even for B(E). However, we present next a necessary condition,
which seems to be the first result about this problem.

LEMMA 5.7. Let E be a non reflexive Banach space, and let α be a tensor norm.
Then

{T ∈ B(E∗∗) : T ◦ Nα(E)aa ⊆ Nα(E)aa} ⊆ {T ∈ B(E∗∗) : T(κE(E)) ⊆ κE(E)} and

{T ∈ B(E∗∗) : Nα(E)aa ◦ T ⊆ Nα(E)aa} ⊆ B(E∗)a.

Moreover, the inclusions are equalities if α = ε, i.e. Nα(E) = A(E).

Proof. Let T ∈ B(E∗∗), f ∈ E∗ and x ∈ E. It is easy to obtain that

T ◦ ( f ⊗ x)∗∗ = κE∗( f )⊗ T(κE(x)) and ( f ⊗ x)∗∗ ◦ T = T∗(κE∗( f ))⊗ κE(x).

If T is such that T ◦ Nα(E)aa ⊆ Nα(E)aa, then T ◦ ( f ⊗ x)∗∗ ∈ F (E)aa. Thus, from
the previous equalities, T(E) ⊆ E, which proves the first assertion. The second
assertion is obtained similarly. Finally suppose that Nα(E) = A(E). We only
need to prove the reverse inclusion. First, let T ∈ B(E∗∗) be such that T(κE(E)) ⊆
κE(E). Let Uβ ∈ F (E) converging in norm to U ∈ A(E). Then T ◦Uβ converges
to T ◦U, hence T ◦U ∈ A(E)aa, as the norm of B(E) is the same as the norm of
B(E∗∗). We obtain the second equality with a similar argument.

In the proof of Proposition 5.8 of [5], it is proved that

θ1(Zl((Nα(E))∗∗)) ⊆ Bαt(E∗)a ⊆ B(E∗)a.

A combination of this fact with the Lemma 5.3 and Lemma 5.7 gives that

θ1(SZl((Nα(E))∗∗)) ⊆ B(E∗)a ∩ {T ∈ B(E∗∗) : T(κE(E)) ⊆ κE(E)} = B(E)aa.

A priori, it seems that we lost information, but this is not the case as the next
proposition shows. Before, let us define the following sets. Let E be a Banach
space and α be a tensor norm. Then

Z0
1(E, α) = {T∗ ∈ Bαt(E∗)a : T ◦ κ∗E ◦ S∗∗ = κ∗E ◦ T∗∗ ◦ S∗∗ (S ∈ Nα(E)∗)} and

Z0
2(E, α) = {T ∈ Bα(E∗∗) : T∗∗(κE(E)) ⊆ κE(E), T ◦ S∗ ∈W(E)aa (S ∈ Nα(E)∗)}.
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PROPOSITION 5.8. Let E be a Banach space, and let α be a tensor norm. Then

θ1(SZl((Nα(E))∗∗)) ⊆ Bα(E)aa;

θ1(SZr(Nα(E)∗∗)) ⊆ Z0
2(E, α) ∩W(E)aa.

Proof. From the discussion before this proposition, we have that

θ1(Zl((Nα(E))∗∗)) ⊆ Bαt(E∗)a ∩ B(E)aa.

It follows immediately, from Proposition 2.3, that

θ1(Zl((Nα(E))∗∗)) ⊆ Bα(E)aa.

Let us prove the inclusion involving the right strong topological centre. By Propo-
sition 5.8 of [5],

θ1(Zr(Nα(E)∗∗)) ⊆ Z0
2(E, α).

Therefore, by Lemma 5.3 and Lemma 5.7, we have that

θ1(SZr(Nα(E)∗∗)) ⊆ Z0
2(E, α) ∩ B(E∗)a.

Hence, T ∈W(E)aa by Lemma 5.10 of [5].

Note that, if we add the hypothesis that Nα(E)∗ ⊆ W(E∗), then by Theo-
rem 5.11 of [5]

Z0
1(E, α) ∩ B(E)aa = Bαt(E∗)a ∩ B(E)aa = Bαt(E).

In the particular case of α = ε, we have trivially that A(E)∗ = I(E∗) ⊆W(E∗), but
Bαt(E) = B(E), which shows that we cannot be more specific than Proposition 5.8.

6. WHEN THE DUAL HAS THE BOUNDED APPROXIMATION PROPERTY

In this section, our aim is to present a complete description of the left and
right strong topological centre of Nα(E)∗∗ with the extra conditions that E∗ has
the bounded approximation property and α is an accessible tensor norm. More-
over, we characterize the Banach spaces E such that A(E) has the strong right
dual factorization with the same assumption on E∗ and α.

Let E be a Banach space. For T ∈ B(E∗∗), define ν(T) ∈ B(E∗) and Q(T) ∈
B(E∗∗), respectively, by

ν(T) = κ∗E ◦ T∗ ◦ κE∗ , Q(T) = ν(T)∗.

We define a bilinear operator ? on B(E∗∗) by T ? S = Q(T) ◦ S for T, S ∈ B(E∗∗).
Note that B(E∗∗) equipped with ? is a Banach algebra by Proposition 2.5 of [5].
The assumption of α to be accessible mentioned above is due to the following
theorem.
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THEOREM 6.1 ([5], Theorem 5.17). Let E be a Banach space such that E∗ has
the bounded approximation property. Let α be an accessible tensor norm, and let A =
Nα(E). There exists a homomorphism, ψ1 : (Bα(E∗∗), ◦) → (A∗∗,�), which is also an
isomorphism onto its range, such that θ1 ◦ ψ1 = IdBα(E∗∗). There also exists a bounded
homomorphism ψ2 : (Bα(E∗∗), ?) → (A∗∗,4) such that θ1 ◦ ψ2 = Q. For i = 1, 2,
ψi(T∗∗) = κA(T) for T ∈ A = Nα(E).

The maps ψi, for i = 1, 2, are defined as follow. Let Γ ∈ A(E)∗∗ = I(E∗)∗

with θ1(Γ) = IdE∗∗ . For T ∈ Bα(E∗∗) and S ∈ Bα∗(E∗) = A∗,

〈ψ1(T), S〉 = 〈Γ, η(T ◦ S∗)〉, 〈ψ2(T), S〉 = 〈Γ, η(T) ◦ S〉,

where η(T) = (κE)
∗ ◦ T∗ ◦ κE∗ for T ∈ B(E∗∗). Define:

Z1(E, α) = {T∗ ∈ Bαt(E∗)a : T ◦ S ∈ Nα∗(E∗),

κE∗ ◦ T ◦ (κE)
∗ ◦ S∗∗ = T∗∗ ◦ S∗∗, S ∈ Bα∗(E∗)};

Z2(E, α) = {T ∈ Bα(E∗∗) : T(E∗∗) ⊆ κE(E), T ◦ S∗ ∈ Nα∗(E∗)a, S ∈ Bα∗(E∗)};
X1(E, α) = lin{η(T ◦ S∗), S ∈ Bα∗(E∗), T ∈ Bα(E∗∗)};
X2(E, α) = lin{T ◦ S : S ∈ Bα∗(E∗), T ∈ Bαt(E∗)}.

In Theorem 5.18 and Theorem 5.19 of [5], M. Daws uses these sets to describe the
topological centres as follow:

Zl(Nα(E)∗∗) = {ψ2(T) + φ : T ∈ Z1(E, α), φ ∈ X1(E, α)⊥},

Zr(Nα(E)∗∗) = {ψ1(T) + φ : T ∈ Z2(E, α), φ ∈ X2(E, α)⊥}.

LEMMA 6.2. Let E be a Banach space such that E∗ has the bounded approximation
property, and let α be an accessible tensor norm. Then for A = Nα(E), (X1(E, α)) =

〈A∗∗�A∗〉 and X2(E, α) = 〈A∗4A∗∗〉.
Proof. Since E∗ has the bounded approximation property,

Nα(E)∗∗ = ψ1(Bα(E∗∗))⊕ ker(θ1).

Recall that Nα(E)∗ = Bα∗(E∗), again as E∗ has the bounded approximation prop-
erty. By Proposition 5.12 of [5], Nα(E)∗∗�ker(θ1) = 0 which implies that

ker(θ1)�Bα∗(E∗) = 0.

Thus, Nα(E)∗∗�Bα∗(E∗) = ψ1(Bα(E∗∗))�Bα∗(E∗). Let T ∈ Bα(E∗∗) and S ∈
Bα∗(E∗). Then

ψ1(T)�S = η(θ1(ψ1(T)) ◦ S∗) = η(T ◦ S∗).

Let us prove the other statement. For Φ ∈ Nα(E)∗∗, we have θ1(Φ)∗ ∈ Bαt(E∗∗∗).
Thus, ν(θ1(Φ)) ∈ Bαt(E∗). In particular for S ∈ Bα∗(E∗), S4Φ = ν(θ1(Φ)) ◦ S.
Hence, we get that 〈A∗4A∗∗〉 ⊆ X2(E, α). Moreover, for any T ∈ Bαt(E∗), there
exists a Φ ∈ Im(θ1) such that T∗ = θ1(Φ), as Bαt(E∗)a ⊆ Bα(E∗∗) = Im(θ1). Then
ν(θ1(Φ)) = ν(T∗) = T which gives us the missing inclusion.
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It is an easy consequence of the definition of the Arens products that, for a
Banach algebra A, (A∗∗�A∗)⊥ and (A∗4A∗∗)⊥ are, respectively, in Zl(A∗∗) and
Zr(A∗∗), which explains, by Lemma 6.2, why X⊥1 and X⊥2 appear in the descrip-
tion of topological centres given by M. Daws.

THEOREM 6.3. Let E be a Banach space such that E∗ has the bounded approxima-
tion property. Let α be an accessible tensor norm. Then

SZl(Nα(E)∗∗) = {ψ2(T) + Φ : Φ ∈ (X1(E, α))⊥, T ∈ Z1(E, α) ∩ Bα(E)aa} and

SZr(Nα(E)∗∗) = {ψ1(T) + φ : T ∈ Z2(E, α) ∩W(E)aa, φ ∈ X2(E, α)⊥}.

Proof. To simplify the notation, let A = Nα(E). By Theorem 5.18 of [5], we
have that

Zl(A∗∗) = {ψ2(T) + Φ, Φ ∈ (X1(E, α))⊥, T ∈ Z1(E, α)}.

By Lemma 6.2, (X1(E, α))⊥ = (A∗∗�A∗)⊥ which is in SZl(A∗∗). By Lemma 5.3,
it is enough to determine what is

ψ2(Z1(E, α)) ∩ {m ∈ A∗∗ : m · A ⊆ A}.

Let m be an element of this set. Then there exists T ∈ Bαt(E∗) such that m =
ψ2(T∗). Moreover, for each U ∈ Nα(E), there is S ∈ Nα(E) such that m�κA(U) =
κA(S). Hence,

S∗∗= θ1(κA(S))= θ1(m�κA(U))= θ1(ψ2(T∗)) ◦U∗∗=(Q)(T∗) ◦U∗∗=T∗ ◦U∗∗.

The last equality is obtained by Lemma 5.7 of [5]. In particular, U∗ ◦ T is w∗-
continuous for every U ∈ F (E), and so T ∈ Bα(E)a by Lemma 5.6 and Lemma 2.3.
We deduce that

SZl(A∗∗) = Zl(A∗∗) ∩ {m ∈ A∗∗ : m · A ⊆ A}

⊆ {ψ2(T) + Φ, Φ ∈ (X1(E, α))⊥, T ∈ Z1(E, α) ∩ Bα(E)aa}.

We can reverse this argument since Nα(E) is an operator ideal.
Now, we prove the equality concerning SZr(A∗∗). Since,

Zr(A∗∗) = {ψ1(T) + φ : T ∈ Z2(E, α), φ ∈ X⊥2 }

by Theorem 5.19 of [5] and X2(E, α) = 〈A∗4A∗∗〉 by Lemma 6.2, we need to
determine for which T ∈ Z2(E, α), the inclusion Nα(E)�ψ1(T) ⊆ Nα(E) holds.
By Lemma 5.7, we have that a such T is in B(E∗)a ∩ Z2(E, α). We deduce that
T ∈W(E)aa by Lemma 5.10 of [5]. Therefore,

SZr(Nα(E)∗∗) ⊆ {ψ1(T) + φ : T ∈ Z2(E, α) ∩W(E)aa, φ ∈ X2(E, α)⊥}.

One can easily show the reverse inclusion using the fact that Nα(E) is an operator
ideal in B(E).
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COROLLARY 6.4. Let E be a Banach space such that E∗ has the bounded approxi-
mation property. Then

SZl(A(E)∗∗) = {ψ2(T∗) : T ∈ B(E)a and T ◦ S ∈ N(E∗), ∀S ∈ I(E∗)} and

SZr(A(E)∗∗) = {ψ1(T) : T ∈W(E)aa}.
Proof. Using Theorem 6.3, we get that

SZr(A(E)∗∗) = {ψ1(T) + φ : T ∈ B(E∗∗) ∩W(E)aa, T ◦ S∗ ∈ N(E∗)a

for S ∈ I(E∗), φ ∈ X2(E, α)⊥}.

Since E∗ has the bounded approximation property, A(E) has a BAI and so
X2(E, α)⊥ = 0 by Lemma 6.2. Moreover, for S ∈ I(E∗) and T ∈ W(E)aa, we
automatically have that T ◦ S∗ ∈ N(E∗)a by Theorem 2.4. The proof for the left
strong topological centre is similar.

Corollary 6.4 is a generalization of Theorem 4.1.8 of [27] which proves un-
der the extra assumption I(E∗) = N(E∗) that SZr(A(E)∗∗) = W(E)aa. In view of
Corollary 4.7, the right strong dual factorization property of Nα(E) is only possi-
ble when α = ε, i.e. for A(E).

COROLLARY 6.5. Let E be a Banach space such that E∗ has the bounded approxi-
mation property. Then A(E) has the right strong dual factorization property if and only
if E is reflexive.

Proof. Fix a mixed unit Γ in A(E)∗∗. Then θ1(Γ) = IdE∗∗ . Suppose that
A(E) has the right strong dual factorization property. Then Γ ∈ SZr(A(E)∗∗) by
Theorem 5.4. Hence by Corollary 6.4, there is a T ∈W(E)aa such that ψ1(T) = Γ.
However,

(IdE)
∗∗ = IdE∗∗ = θ1(Γ) = θ1(ψ1(T)) = T.

Thus, IdE ∈W(E) and so E is reflexive. The converse is trivial.

7. WHEN EVERY INTEGRAL OPERATORS ARE NUCLEAR

In this section, we slightly modify our assumption by assuming that α is
totally accessible and E∗ is such that I(E∗) = N(E∗). With these assumptions, we
completely describe SZl(Nα(E)∗∗) and SZr(Nα(E)∗∗). We also characterize for
which Banach space E, A(E) has the left strong and left weak dual factorization
property, respectively. The condition I(E∗) = N(E∗) is satisfied by many Banach
spaces, in particular if E∗ has the Radon–Nikodym property. However, the con-
verse is false as it is shown in Example 5.32 of [5] with the dual of the James tree
space.
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THEOREM 7.1. Let E be a Banach space such that I(E∗) = N(E∗). Let α∗ be a
totally accessible tensor norm. Then

SZl(Nα(E)∗∗) = θ−1
1 (Z0

1(E, α) ∩ Bα(E)aa) and

SZr(Nα(E)∗∗) = θ−1
1 (Z0

2(E, α) ∩W(E)aa).

Proof. By Theorem 5.34 of [5], we have

Zl(Nα(E)∗∗) = θ−1
1 (Z0

1(E, α)) and Zr(Nα(E)∗∗) = θ−1
1 (Z0

2(E, α)).

Let m ∈ Nα(E)∗∗ such that θ1(m) ∈ Z0
1(E, α) ∩ Bα(E)aa. Then there is T ∈ Bα(E)

such that θ1(m) = T∗∗. Let U ∈ Nα(E). Since Nα(E) is an ideal in B(E), T ◦U =
S ∈ Nα(E) and so

θ1(m�κNα(U)) = T∗∗ ◦U∗∗ = (T ◦U)∗∗.

Hence, m�U ∈ Nα(E), because θ1 is an isometry by the assumption that α is to-
tally accessible. We obtain the conclusion of the first assertion by Proposition 5.8.

Let us prove the equality involving the strong right topological centre. It is
enough, by Proposition 5.8, to prove that

θ−1
1 (Z0

2(E, α) ∩W(E)aa) ⊆ SZr(Nα(E)∗∗).

Let m be an element of the set on the left side in the previous inclusion. Then
m ∈ Zr(Nα(E)∗∗) as mentioned at the beginning of the proof. Let T ∈W(E) such
that T∗∗ = θ1(m) and U ∈ Nα(E). We have

θ1(κNα(U)4m) = θ1(κNα(U)�m) = U∗∗ ◦ T∗∗ = (U ◦ T)∗∗.

Since Nα(E) is an operator ideal and θ1 is an isometry, we have that κNα(U)4m
is an element of Nα(E) and obtain the conclusion by Lemma 5.3.

THEOREM 7.2. Let E be a Banach space such that I(E∗) = N(E∗). Then

SZl((A(E))∗∗) = X ∩ B(E)aa

where X = {T ∈ B(E∗∗) : 〈T, u〉 = 0, u ∈ E∗∗⊗̂πE∗, Jπ(u) = 0}.
Proof. By Corollary 5.36 of [5], we have that

Zl((A(E))∗∗) = X ∩ B(E∗)a.

Note that we identify isometrically A(E)∗∗ with X via θ1. By Proposition 5.8,
we obtain that SZl(A(E)∗∗) ⊆ X ∩ B(E∗)a ∩ B(E)aa = X ∩ B(E)aa. To prove
the reverse inclusion, remark that LM(A(E)) = B(E), and so X ∩ B(E)aa ⊆
SZl(A(E)∗∗).

Before we characterize the left strong dual factorization property of A(E),
we need the following lemma.
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LEMMA 7.3. Let E be a Banach space such that E∗ has the bounded approximation
property. Then the following diagram commutes:

(A(E))∗∗
θ1 // B(E∗∗)

LM(A(E))
?�

Ω

OO

oo // B(E)
?�

ν

OO

Proof. Since E∗ has the bounded approximation property, A(E) has a BAI.
Let Γ be a fixed mixed unit such that θ1(Γ) = IdE∗∗ and let T ∈ B(E). Define
LT ∈ LM(A(E)) by letting LT(S) = T ◦ S for S ∈ A(E). Then Ω(T) = (LT)

∗∗(Γ).
In particular, Ω(Id) = L∗∗Id (Γ) = Γ. To prove that this diagram commutes, we
need to prove that θ1((LT)

∗∗(Γ)) = T∗∗. This will be done in 4 steps. Let m ∈ E∗∗,
f , g ∈ E∗ and x, e ∈ E.

Step 1.

〈 f · (g⊗ T(x)), e〉 = 〈 f , (g⊗ T(x)) · e〉 = 〈 f , 〈g, e〉T(x)〉 = 〈 f , T(x)〉〈g, e〉
= 〈T∗( f ), x〉〈g, e〉 = 〈T∗( f ), (g⊗ x) · e〉 = 〈T∗( f ) · (g⊗ x), e〉.

Step 2.

〈T∗( f ) · (g⊗ x), m〉 = 〈(g⊗ x) ·m, T∗( f )〉 = 〈φ1(m⊗ T∗( f )), g⊗ x〉.

Step 3.

〈(LT)
∗(φ1(m⊗ f )), g⊗ x〉 = 〈φ1(m⊗ f ), LT(g⊗ x)〉 = 〈φ1(m⊗ f ), g⊗ T(x)〉

= 〈(g⊗ T(x)) ·m, f 〉 = 〈m, f · (g⊗ T(x))〉
= 〈φ1(m⊗ T∗( f )), g⊗ x〉 by Steps 1 and 2.

Step 4.

〈θ1((LT)
∗∗(Γ))(m), f 〉 = 〈(LT)

∗∗(Γ), φ1(m⊗ f )〉 = 〈Γ, (LT)
∗(φ1(m⊗ f ))〉

= 〈Γ, φ1(m⊗ T∗( f ))〉 by Step 3

= 〈θ1(Γ)(m), T∗( f )〉 = 〈IdE∗∗(m), T∗( f )〉
= 〈m, T∗( f )〉 = 〈T∗∗(m), f 〉.

COROLLARY 7.4. Let E be a Banach space such that E∗ has the bounded approxi-
mation property. Then A(E) has the left strong dual factorization property if and only if
I(E∗) = N(E∗).

Proof. Since E∗ has the bounded approximation property, A(E) has a BAI.
If A(E) has the left strong dual factorization property, then by Theorem 5.4 and
Lemma 7.3, we have

SZl(A(E)∗∗) = LM(A(E)) = B(E)aa.
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In particular, Id∗ ◦ S ∈ N(E∗) for all S ∈ I(E∗) by Corollary 6.4, which gives
I(E∗) = N(E∗). The converse is obtained by combining Theorem 7.2, Lemma 7.3
and Theorem 5.4.

The previous result is a generalization of Example 2.5 in [15], where
A.T.-M. Lau and A. Ülger proved that A(c0) has the left strong dual factoriza-
tion property. Their proof uses the fact that l1 has the Radon–Nikodym property
to conclude that I(l1) = N(l1), which is a sufficient and necessary condition by
Corollary 7.4.

THEOREM 7.5. Let E be a Banach space. Then A(E) has the left weak dual factor-

ization property if and only if I(E∗) = N(E∗)
‖·‖I .

Proof. Let U ∈ A(E) and T ∈ I(E∗). Then T�U = U∗ ◦ T ∈ N(E∗) by
Theorem 2.4.

Suppose that A∗ = 〈A∗A〉. Then

I(E∗) = 〈I(E∗)�A(E)〉‖·‖I ⊆ N(E∗)
‖·‖I ⊆ I(E∗).

To prove the converse, suppose that I(E∗) = N(E∗)
‖·‖I . By the density of F (E∗)

in N(E∗) and ‖ · ‖I 6 ‖ · ‖N , we have that I(E∗) = F (E∗)
‖·‖I . The equality

F(E∗) = F(E∗)�F(E)

holds since (n ⊗ f )�(g ⊗ x) = f (x)(n ⊗ g) for n ∈ E∗∗, f , g ∈ E∗ and x ∈ E.
Hence,

I(E∗) = F (E∗) = F (E∗)�F (E)
‖·‖I ⊆ I(E∗)�A(E)

‖·‖I

⊆ 〈I(E∗)�A(E)〉‖·‖I ⊆ N(E∗)
‖·‖I

= I(E∗).

Under the assumption that E∗ has the bounded approximation property,
Theorem 7.5 gives us directly that A(E) has the left strong dual factorization

property if and only if I(E∗) = N(E∗)
‖·‖I . This is less than Corollary 7.4, where

we obtained that every integral operator is nuclear.
Theorem 7.5 allows us to give the first non-reflexive Banach algebra with

the weak dual factorization property.

EXAMPLE 7.6. In [8], the authors construct a Banach space Z such that Z
has the approximation property but not the bounded approximation property,
thus Z∗ also does not have the bounded approximation property. Consequently,
A(Z) does not have bounded approximation identities. Moreover, Z can be such
that Z∗ is separable. In particular, Z∗ has the Radon–Nikodym property. Thus,
I(Z∗) = N(Z∗). Theorem 7.5 gives us directly that A(Z) has the weak dual
factorization property.
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8. OPEN PROBLEMS

Let A be a Banach algebra. Concerning the problems tackled in this paper
a certain number of questions remain unsolved. Here we have collected some of
them in the form of remarks and questions.

(1) The only concrete examples of Banach algebras with the dual factorization
property are reflexive. Of course, Theorem 7.5 gives a condition on a Banach
space E such that A(E) has the weak dual factorization property. However, we
do not know any Banach space E such that N(E∗) is a proper subspace of I(E∗)

and I(E∗) = N(E∗)
‖·‖I .

(2) Is there a Banach algebra with the weak dual factorization property, but
without the dual factorization property? An affirmative answer to (2) would
yield an affirmative answer to (1) as well.

(3) Does the strong dual factorization property of a Banach algebra A imply
the existence of a BAI ?

We would like to mention here that, so far, we only have that the norm of
A must be equivalent to RM(A)-norm. However, this is not enough to ensure
the existence of a BAI, as shown by Willis in [30]. One can easily prove that the
strong dual factorization property of A(E) implies that I(E∗) = N(E∗) using a
similar argument as in proof of Theorem 7.5. However, we do not know if this is
sufficient.

(4) If the answer to (3) is "no", what are the conditions on A to get a positive
answer?
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