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ABSTRACT. A pair of commuting operators (S, P) defined on a Hilbert space
H for which the closed symmetrized bidisc Γ = {(z1 + z2, z1z2) : |z1| 6
1, |z2| 6 1} ⊆ C2 is a spectral set is called a Γ-contraction in the literature.
A Γ-contraction (S, P) is said to be pure if P is a pure contraction, i.e., P∗n → 0
strongly as n→ ∞. Here we construct a functional model and produce a set of
unitary invariants for a pure Γ-contraction. The key ingredient in these con-
structions is an operator, which is the unique solution of the operator equation
S− S∗P = DPXDP, where X ∈ B(DP), and is called the fundamental opera-
tor of the Γ-contraction (S, P). We also discuss some important properties of
the fundamental operator.
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1. INTRODUCTION AND PRELIMINARIES

The closed symmetrized bidisc Γ is polynomially convex. Thus, a pair of
commuting bounded operators (S, P) is a Γ-contraction if and only if ‖p(S, P)‖ 6
‖p‖∞,Γ, for any polynomial p. The Γ-contractions were introduced by Agler and
Young in [3] and have been thoroughly studied in [4], [7] and [15]. An under-
standing of this family of operator pairs has led to the solution of a special case
of the spectral Nevanlina–Pick problem [5], [8], which is one of the problems that
arise in H∞ control theory [19]. Also they play a pivotal role in the study of com-
plex geometry of the set Γ (see [6], [9]).

Spectral sets and complete spectral sets for a bounded operator T on a
Hilbert space H or for a tuple of bounded operators have been well-studied for
long and several important results are known (see [14], [17], [22]). Dilation the-
ory for an operator or a tuple of operators is well-studied too and has made some
rapid progress in the last twenty years through Arveson [12], Popescu [23], [24],
Muller and Vasilescu [21], Pott [25] and others.
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Sz.-Nagy and Foias developed the model theory for a contraction [26]. They
found the minimal unitary dilation of a contraction and it has become a power-
ful tool for studying an arbitrary contraction. By von Neumann’s inequality, an
operator T is a contraction if and only if ‖p(T)‖ 6 ‖p‖∞,D for all polynomials
p, D being the open unit disc in the complex plane. This property itself is very
beautiful and so is the concept of spectral set of an operator. A compact subset X
of C is called a spectral set for an operator T if

‖π(T)‖ 6 sup
z∈X
‖π(z)‖ = ‖π‖∞,X ,

for all rational functions π with poles off X. If the above inequality holds for
matrix valued rational functions π, then X is called a complete spectral set for
the operator T. Moreover, T is said to have a normal ∂X-dilation if there is a
Hilbert space K containing H as a subspace and a normal operator N on K with
σ(N) ⊆ ∂X such that

π(T) = PHπ(N)|H,

for all rational functions π with poles off X. It is a remarkable consequence of
Arveson’s extension theorem that X is a complete spectral set for T if and only
if T has a normal ∂X-dilation. Rephrased in this language, the Sz.-Nagy dilation
theorem says that if D is a spectral set for T then T has a normal ∂D-dilation.
For T to have a normal ∂X-dilation it is necessary that X be a spectral set for T.
Sufficiency has been investigated for many domains in C and several interesting
results are known including success of such a dilation on an annulus ([1]) and its
failure in triply connected domains ([2], [18]). When (T1, T2) is a commuting pair
of operators for which D2 is a spectral set, Ando’s theorem provides a simulta-
neous commuting unitary dilation of (T1, T2). Such classically beautiful concepts
led Agler and Young to the following definitions.

DEFINITION 1.1. A commuting pair (S, P) is called a Γ-unitary if S and P
are normal operators and the joint spectrum σ(S, P) of (S, P) is contained in the
distinguished boundary bΓ defined by

bΓ = {(z1 + z2, z1z2) : |z1| = |z2| = 1} ⊆ Γ.

DEFINITION 1.2. A commuting pair (S̃, P̃) on N is said to be a Γ-unitary
extension of a Γ-contraction (S, P) on H if H ⊆ N , (S̃, P̃) is a Γ-unitary, H is a
common invariant subspace of both S̃ and P̃ and S̃|H = S, P̃|H = P.

DEFINITION 1.3. A commuting pair (S, P) is called a Γ-isometry if it has a
Γ-unitary extension. A commuting pair (S, P) is a Γ-co-isometry if (S∗, P∗) is a
Γ-isometry.

DEFINITION 1.4. Let (S, P) be a Γ-contraction on H. A pair of commuting
operators (T, V) acting on a Hilbert space N ⊇ H is called a Γ-isometric dilation
of (S, P) if (T, V) is a Γ-isometry, H is a co-invariant subspace of both T and V
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and T∗|H = S∗, V∗|H = P∗. Moreover, the dilation will be called minimal if

N = span{Vnh : h ∈ H and n = 0, 1, 2, . . . }.

Thus (T, V) is a Γ-isometric dilation of a Γ-contraction (S, P) if and only if (T∗, V∗)
is a Γ-co-isometric extension of (S∗, P∗).

A Γ-contraction (S, P) acting on a Hilbert space H is said to be pure if
P is a pure contraction, i.e., P∗n → 0 strongly as n → ∞. The class of pure
Γ-contractions plays a pivotal role in deciphering the structure of a class of Γ-
contractions. In Theorem 2.8 of [7], Agler and Young proved that every
Γ-contraction (S, P) acting on a Hilbert space H can be decomposed into two
parts (S1, P1) and (S2, P2) of which (S1, P1) is a Γ-unitary and (S2, P2) is a Γ-
contraction with P being a completely non-unitary contraction. This shows an
analogy with the decomposition of a single contraction. Indeed, ifH1 is the max-
imal subspace of H which reduces P and on which P is unitary, then H1 reduces
S as well and (S1, P1) is same as (S|H1 , P|H1). Also both S and P are reduced
by the subspace H2, the orthocomplement of H1 in H, and (S2, P2) is same as
(S|H2 , P|H2). The functional model and unitary invariants we produce here give
a good vision of those Γ-contractions (S, P) for which the part (S2, P2) described
above is a pure Γ-contraction.

The program that Sz.-Nagy and Foias carried out for a contraction had two
parts. The dilation was the first part which was followed by a functional model
and a complete unitary invariant. For a Γ-contraction, the first part of that pro-
gram was carried out in [7] by Agler and Young. The second half is the content
of this article.

For a contraction P defined on a Hilbert space H, let ΛP be the set of all
complex numbers for which the operator I − zP∗ is invertible. For z ∈ ΛP, the
characteristic function of P is defined as

(1.1) ΘP(z) = [−P + zDP∗(I − zP∗)−1DP]|DP .

Here the operators DP and DP∗ are the defect operators (I − P∗P)1/2 and (I −
PP∗)1/2 respectively. By virtue of the relation PDP = DP∗P ([26], Section I.3),
ΘP(z) maps DP = RanDP into DP∗ = RanDP∗ for every z in ΛP.

For a pair of commuting bounded operators S, P on a Hilbert space H with
‖P‖ 6 1, we introduced in [15] the notion of the fundamental equation. For the
pair S, P it is defined as

(1.2) S− S∗P = DPXDP, X ∈ B(DP),

and the same for the pair S∗, P∗ is

(1.3) S∗ − SP∗ = DP∗YDP∗ , Y ∈ B(DP∗).

In the same paper we also proved the existence and uniqueness of solutions of
such equations when (S, P) is a Γ-contraction ([15], Theorem 4.2). The unique
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solution was named the fundamental operator of the Γ-contraction because it led
us to a new characterization for Γ-contractions ([15], Theorem 4.4).

In Section 2, we discuss some interesting properties of the fundamental op-
erator. In Section 3, we construct a functional model for a pure Γ-contraction
(S, P) and this is the main content of this paper. The fundamental operator F∗ of
(S∗, P∗) is taken as the key ingredient in that construction. In Section 4, we pro-
duce a set of unitary invariants for pure Γ-contractions. For the unitary equiv-
alence of two pure Γ-contractions (S, P) and (S1, P1) on Hilbert spaces H and
H1 respectively, we produce here a set of unitary invariants which consists of
two things mainly. The first one demands the coincidence of the characteristic
functions of P and P1. The second condition is the unitary equivalence of the fun-
damental operators F∗ and F∗1 of (S∗, P∗) and (S∗1 , P∗1 ) by the same unitary from
DP∗ to DP∗1

that is involved in establishing the coincidence of the characteristic
functions of P and P1.

2. AUTOMORPHISMS AND THE FUNDAMENTAL OPERATOR

For a Γ-contraction (S, P) we find out an explicit form of the fundamental
operator of τ(S, P), where τ is an automorphism of the open symmetrized bidisc

G = {(z1 + z2, z1z2) : |z1| < 1, |z2| < 1}.

It is well-known, see [10] and [20], that any automorphism τ of G is given as
follows:

(2.1) τ(z1+z2, z1z2)=τm(z1+z2, z1z2)=(m(z1)+m(z2), m(z1)m(z2)), z1, z2∈D,

where m is an automorphism of the disc D. Recall that the joint spectrum σ(S, P)
of a Γ-contraction (S, P) is contained in Γ. Thus if τ is a C2-valued holomorphic
map in a neighbourhood N(Γ) of Γ mapping Γ into itself, then by functional
calculus (see [27]), (Sτ , Pτ) := τ(S, P) is well defined as a pair of commuting
bounded operators.

LEMMA 2.1. For (S, P) and τ as above, (Sτ , Pτ) is a Γ-contraction.

Proof. We show that Γ is a spectral set of (Sτ , Pτ). Let f be a polynomial
over C in two variables. Then

‖ f (Sτ , Pτ)‖ = ‖ f ◦ τ(S, P)‖ 6 ‖ f ◦ τ‖∞,Γ = sup
z∈Γ

| f (τ(z))| 6 ‖ f ‖∞,Γ ,

since τ(z) ∈ Γ for all z ∈ Γ and hence (Sτ , Pτ) is a Γ-contraction.

The following is the main result of this section.

THEOREM 2.2. Let (S, P) be a Γ-contraction defined on a Hilbert space H and
let τ be an automorphism of G. Let τ = τm as in (2.1) and m be given by m(z) =
β(z− a)/(1− az) for some a ∈ D and β ∈ T. Let F and Fτ be the fundamental
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operators of (S, P) and (Sτ , Pτ) respectively. Then there is a unitary U : DPτ → DP
such that

Fτ = U∗((1+ |a|2)− aF− aF∗)−1/2β(F+ a2F∗− 2a)((1+ |a|2)− aF− aF∗)−1/2U.

Proof. We have

τ(s, p) = τ(z1 + z2, z1z2) =
(

β
( z1 − a

1− az1
+

z2 − a
1− az2

)
, β2 (z1 − a)(z2 − a)

(1− az1)(1− az2)

)
=
(

β
(z1 + z2)− 2az1z2 + |a|2(z1 + z2)− 2a

1− a(z1 + z2) + a2z1z2
, β2 z1z2 − a(z1 + z2) + a2

1− a(z1 + z2) + a2z1z2

)
=
(

β
(1 + |a|2)s− 2ap− 2a

1− as + a2 p
, β2 p− as + a2

1− as + a2 p

)
.

It is obvious that τ can be defined on the open set Γa = {(z1 + z2, z1z2) : |z1| <
1/|a| , |z2| < 1/|a|}, which contains Γ. Clearly

(Sτ , Pτ)=τ(S, P)

=(β((1+|a|2)S−2aP−2a)(I−aS+a2P)−1, β2(P−aS+a2)(I−aS+a2P)−1).

Here

D2
Pτ

= (I − P∗τ Pτ)

= I − (I − aS∗ + a2P∗)−1(P∗ − aS∗ + a2)(P− aS + a2)(I − aS + a2P)−1

= (I − aS∗ + a2P∗)−1[(I − aS∗ + a2P∗)(I − aS + a2P)

− (P∗ − aS∗ + a2)(P− aS + a2)](I − aS + a2P)−1

= (I − aS∗ + a2P∗)−1[−a(1− |a|2)(S− S∗P)− a(1− |a|2)(S∗ − P∗S)

(1− |a|4)(I − P∗P)](I − aS + a2P)−1

= (1− |a|2)(I − aS∗ + a2P∗)−1[(1 + |a|2)(I − P∗P)

− a(S− S∗P)− a(S∗ − P∗S)](I − aS + a2P)−1

= (1− |a|2)(I − aS∗ + a2P∗)−1[(1 + |a|2)D2
P − aDPFDP − aDPF∗DP]

(I − aS + a2P)−1, (since S− S∗P = DPFDP)

= (1− |a|2)(I − aS∗ + a2P∗)−1DP[(1 + |a|2)− aF− aF∗]DP(I − aS + a2P)−1.

Now we show that the operator (1+ |a|2)− aF− aF∗ defined on DP is invertible.
Since F ∈ B(DP), it is enough to show that (1 + |a|2) − aF − aF∗ is bounded
below, i.e.,

inf
‖x‖61

〈((1 + |a|2)− aF− aF∗)x, x〉 > 0,

or equivalently
sup
‖x‖61

|a〈Fx, x〉+ a〈F∗x, x〉| < (1 + |a|2).
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Since the numerical radius of F is not greater than 1,

sup
‖x‖61

|a〈Fx, x〉+ a〈F∗x, x〉| 6 2|a| < (1 + |a|2)

as 1 + |a|2 − 2|a| = (1 − |a|)2 > 0 for a ∈ D and consequently the operator
(1 + |a|2 − aF− aF∗) is invertible.

Let X = (1− |a|2)1/2[(1+ |a|2)− aF− aF∗]1/2DP(I− aS + a2P∗)−1. Then X
is an operator from H to DP. Also D2

Pτ
= X∗X and RanX = DP as (1 + |a|2)−

aF− aF∗ is invertible. Now define

U : DPτ → RanX = DP

DPτ h 7→ Xh.

Clearly U is onto. Moreover,

‖UDPτ h‖2 = ‖Xh‖2 = 〈X∗Xh, h〉 = 〈D2
Pτ

h, h〉 = ‖DPτ h‖2.

So U is a surjective isometry i.e., a unitary. Also

Sτ − S∗τ Pτ = β[((1 + |a|2)S− 2aP− 2a)(I − aS + a2P)−1 − (I − aS∗ + a2P∗)−1

((1 + |a|2)S∗ − 2aP∗ − 2a)(P− aS + a2)(I − aS + a2P)−1)]

= (I − aS∗ + a2P∗)−1β[(I − aS∗ + a2P∗)((1 + |a|2)S− 2aP− 2a)

− ((1 + |a|2)S∗ − 2aP∗ − 2a)(P− aS + a2)](I − aS + a2P)−1

= (I−aS∗+a2P∗)−1β[(1−|a|2)(S−S∗P)+2a2(S∗−P∗S)−a2(1+|a|2)

(S∗ − P∗S)− 2a(I − P∗P) + 2a|a|2(I − P∗P)](I − aS + a2P)−1

= (I − aS∗ + a2P∗)−1β[(1− |a|2)(S− S∗P) + a2(1− |a|2)(S∗ − P∗S)

− 2a(1− |a|2)(I − P∗P)](I − aS + a2P)−1

= (1−|a|2)(I−aS∗+a2P∗)−1β[(S−S∗P)+a2(S∗−P∗S)−2a(I−P∗P)]

(I − aS + a2P)−1

= (1− |a|2)(I − aS∗ + a2P∗)−1β[DPFDP + a2DPF∗DP − 2aD2
P]

(I − aS + a2P)−1, (since S− S∗P = DPFDP)

= (1− |a|2)(I − aS∗ + a2P∗)−1βDP[F + a2F∗ − 2a]DP(I − aS + a2P)−1

= X∗[((1 + |a|2)− aF− aF∗)−1/2β(F + a2F∗ − 2a)

((1 + |a|2)− aF− aF∗)−1/2]X

= DPτ U∗[((1 + |a|2)− aF− aF∗)−1/2β(F + a2F∗ − 2a)

((1 + |a|2)− aF− aF∗)−1/2]UDPτ .

Again since Sτ − S∗τ Pτ = DPτ Fτ DPτ and Fτ is unique, we have

Fτ =U∗((1+|a|2)−aF−aF∗)−1/2β(F+a2F∗−2a)((1+|a|2)−aF−aF∗)−1/2U.
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Here is an interesting result which relates the fundamental operator of a
Γ-contraction (S, P) with that of (S∗, P∗).

PROPOSITION 2.3. Let (S, P) be a Γ-contraction onH and let F, F∗ be the funda-
mental operators of (S, P) and (S∗, P∗) respectively. Then PF = F∗∗P|DP .

Proof. Since F ∈ B(DP) and F∗ ∈ B(DP∗), both PF and F∗∗P|DP are in
B(DP,DP∗). For DPh ∈ DP and DP∗h′ ∈ DP∗ , we have

〈PFDPh, DP∗h′〉 = 〈DP∗PFDPh, h′〉
= 〈PDPFDPh, h′〉, (since PDP = DP∗P)

= 〈P(S− S∗P)h, h′〉, (since S− S∗P = DPFDP)

= 〈(PS− PS∗P)h, h′〉 = 〈(SP− PS∗P)h, h′〉 = 〈(S− PS∗)Ph, h′〉
= 〈DP∗F∗∗DP∗Ph, h′〉, (since S∗ − SP∗ = DP∗F∗DP∗)

= 〈F∗∗PDPh, DP∗h′〉.

Hence PF = F∗∗P|DP .

3. FUNCTIONAL MODEL

In [26], Sz.-Nagy and Foias showed that every pure contraction P defined
on a Hilbert spaceH is unitarily equivalent to the operator P = PHP(Mz ⊗ I)|DP∗

on the Hilbert space HP = (H2(D)⊗DP∗)	MΘP(H2(D)⊗DP), where Mz is the
multiplication operator on H2(D) and MΘP is the multiplication operator from
H2(D)⊗DP into H2(D)⊗DP∗ corresponding to the multiplier ΘP, which is the
characteristic function of P defined in Section 1. This is known as Sz.-Nagy–Foias
model for a pure contraction. Here analogously we produce a model for a pure
Γ-contraction.

THEOREM 3.1. Every pure Γ-contraction (S, P) defined on a Hilbert space H is
unitarily equivalent to the pair (S1, P1) on the Hilbert space HP = (H2(D)⊗DP∗)	
MΘP(H2(D)⊗DP) defined as S1 = PHP(I⊗ F∗∗+ Mz⊗ F∗)|HP and P1 = PHP(Mz⊗
I)|HP .

REMARK 3.2. It is interesting to see here that the model space for a pure
Γ-contraction (S, P) is same as that of P and the model operator for P is the same
given in Sz.-Nagy-Foias model.

To prove the above theorem, we define an operator W in the following way:

W : H → H2(D)⊗DP∗

h 7→
∞

∑
n=0

zn ⊗ DP∗P∗
nh.
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It is obvious that W embeds H isometrically inside H2(D) ⊗ DP∗ (see proof of
Theorem 4.6 of [15]) and its adjoint L : H2(D)⊗DP∗ → H is given by

L( f ⊗ ξ) = f (P)DP∗ξ, for all f ∈ C[z], and ξ ∈ DP∗ .

Here we mention an interesting and well-known property of the operator L which
we use to prove the above theorem.

LEMMA 3.3. For a pure contraction P, the identity

L∗L + MΘP M∗ΘP
= IH2(D)⊗DP∗

holds.

Proof. As observed by Arveson in the proof of Theorem 1.2 in [11], the op-
erator L satisfies the identity

L(kz ⊗ ξ) = (I − zP)−1DP∗ξ for z ∈ D, ξ ∈ DP∗ ,

where kz(w) = (1− 〈w, z〉)−1. Therefore, for z, w in D and ξ, η in DP∗ , we obtain
that

〈(L∗L + MΘP M∗ΘP
)kz ⊗ ξ, kw ⊗ η〉

= 〈L(kz ⊗ ξ), L(kw ⊗ η)〉+ 〈M∗ΘP
(kz ⊗ ξ), M∗ΘP

(kw ⊗ η)〉

= 〈(I − zP)−1DP∗ξ, (I − wP)−1DP∗η〉+ 〈kz ⊗ΘP(z)∗ξ, kw ⊗ΘP(w)∗η〉

= 〈DP∗(I − wP∗)−1(I − zP)−1D∗Pξ, η〉+ 〈kz, kw〉〈ΘP(w)ΘP(z)∗ξ, η〉
= 〈kz ⊗ ξ, kw ⊗ η〉.

The last equality follows from the following well-known identity,

1−ΘP(w)ΘP(z)∗ = (1− wz)DP∗(1− wP∗)−1(1− zP)−1DP∗ ,

where ΘP is the characteristic function of P. Using the fact that the vectors kz
forms a total set in H2(D), the assertion follows.

Proof of Theorem 3.1. It is evident from Lemma 3.3 that

L∗(H) = W(H) = HP = (H2(D)⊗DP∗)	MΘP(H2(D)⊗DP).

Let T = I ⊗ F∗∗ + Mz ⊗ F∗ and V = Mz ⊗ I. For a basis vector zn ⊗ ξ of H2(D)⊗
DP∗ and h ∈ H we have

〈L(zn ⊗ ξ), h〉 =
〈

zn ⊗ ξ,
∞

∑
k=0

zk ⊗ DP∗P∗
kh
〉
= 〈ξ, DP∗P∗

nh〉 = 〈PnDP∗ξ, h〉.

This implies that

L(zn ⊗ ξ) = PnDP∗ξ, for n = 0, 1, 2, 3, . . . .
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Therefore

〈L(Mz ⊗ I)(zn ⊗ ξ), h〉 =
〈

zn+1 ⊗ ξ,
∞

∑
k=0

zk ⊗ DP∗P∗
kh
〉

= 〈ξ, DP∗P∗
n+1h〉 = 〈Pn+1DP∗ξ, h〉.

Consequently, LV = PL on vectors of the form zn ⊗ ξ which span H2 ⊗DP∗ and
hence

LV = PL.
Therefore V∗ leaves the range of L∗ (isometric copy ofH) invariant and V∗|L∗H =
L∗P∗L which is the copy of the operator P∗ on range of L∗. Also

LT(zn ⊗ ξ) = L(I⊗F∗∗+Mz⊗F∗)(zn⊗ξ)=L(I⊗F∗∗ )(z
n⊗ξ)+L(Mz⊗F∗)(zn⊗ξ)

= L(zn ⊗ F∗∗ ξ) + L(zn+1 ⊗ F∗ξ) = PnDP∗F∗∗ ξ + Pn+1DP∗F∗ξ.

Again SL(zn ⊗ ξ) = SPnDP∗ξ. Therefore for showing LT = SL, it is enough to
show that

PnDP∗F∗∗ + Pn+1DP∗F∗ = SPnDP∗ = PnSDP∗ i.e., DP∗F∗∗ + PDP∗F∗ = SDP∗ .

Let H = DP∗F∗∗ + PDP∗F∗ − SDP∗ . Then H is defined from DP∗ → H. Since F∗ is
a solution of (1.3), we have

HDP∗=DP∗F∗∗DP∗+PDP∗F∗DP∗−SD2
P∗=(S−PS∗)+P(S∗−SP∗)−S(I−PP∗)=0.

Hence H = 0. So we have

DP∗F∗∗ + PDP∗F∗ = SDP∗

and therefore
L(I ⊗ F∗∗ + Mz ⊗ F∗) = SL.

This shows that T∗ leaves L∗(H) invariant as well as T∗|L∗(H) = L∗S∗L. Thus HP
is co-invariant under I ⊗ F∗∗ + Mz ⊗ F∗ and Mz ⊗ I. Hence HP is a model space
and PHP(I ⊗ F∗∗ + Mz ⊗ F∗)|HP and PHP(Mz ⊗ I)|HP are model operators for S
and P respectively.

4. A SET OF UNITARY INVARIANTS FOR PURE Γ-CONTRACTIONS

The characteristic function of a contraction is a classical complete unitary
invariant devised by Sz.-Nagy and Foias [26]. In [23], Popescu gave the character-
istic function for an infinite sequence of non-commuting operators. The same for
a commuting contractive tuple of operators was invented by Bhattacharyya, Es-
chmeier and Sarkar [13]. Popescu’s characteristic function for a non-commuting
tuple, when specialized to a commuting one, gives the same function. Given two
contractions P and P1 on Hilbert spacesH andH1, the characteristic functions of
P and P1 are said to coincide if there are unitary operators σ : DP → DP1 and
σ∗ : DP∗ → DP∗1

such that the following diagram commutes for all z ∈ D:
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DP1 DP∗1ΘP1(z)

σ σ∗

DP DP∗
ΘP(z)

-

-

? ?

The following result is due to Sz.-Nagy and Foias.

THEOREM 4.1. Two completely non-unitary contractions are unitarily equivalent
if and only if their characteristic functions coincide.

Let (S, P) and (S1, P1) be two pure Γ-contractions on Hilbert spaces H and
H1 respectively. As we mentioned in Section 1, the complete unitary invariant
that we shall produce has two contents namely the equivalence of the funda-
mental operators of (S∗, P∗) and (S∗1 , P∗1 ) and the coincidence of the characteristic
functions of P and P1.

PROPOSITION 4.2. If two Γ-contractions (S, P) and (S1, P1) defined on H and
H1 respectively are unitarily equivalent then so are their fundamental operators F and F1.

Proof. Let U : H → H1 be a unitary such that US = S1U and UP = P1U.
Then clearly UP∗ = P∗1 U and consequently

UD2
P = U(I − P∗P) = (U − P∗1 UP) = (U − P∗1 P1U) = D2

P1
U,

which implies that UDP = DP1U. Let V = U|DP . Then V ∈ B(DP,DP1) and
VDP = DP1 V. Now

DP1 VFV∗DP1 = VDPFDPV∗ = V(S− S∗P)V∗ = S1 − S∗1 P1 = DP1 F1DP1 .

Thus F1 = VFV∗ and the proof is complete.

The next result is a partial converse to the previous proposition for pure
Γ-contractions.

PROPOSITION 4.3. Let (S, P) and (S1, P1) be two pure Γ-contractions on H and
H1 respectively such that the characteristic functions of P and P1 coincide. Also suppose
that the fundamental operators F∗ of (S∗, P∗) and F1∗ of (S∗1 , P∗1 ) are unitarily equivalent
by the unitary from DP∗ and DP∗1

that establishes the coincidence of the characteristic
functions of P and P1. Then (S, P) and (S1, P1) are unitarily equivalent.

Proof. Let µ1 : DP → DP1 and η1 : DP∗ → DP∗1
be unitaries such that the

following diagram
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DP1 DP∗1ΘP1(z)

µ1 η1

DP DP∗
ΘP(z)

-

-

? ?

commutes for all z ∈ D and η1F∗ = F1∗η1. Let us define

η = (I ⊗ η1) : H2(D)⊗DP∗ → H2(D)⊗DP∗1
.

Since η1ΘP = ΘP1 µ1, we have for any f ∈ H2(D)⊗DP

η(RanMΘp f ) = η1ΘP f = ΘP1 µ1 f = MΘP1
(µ1 f ).

Therefore,

η(HP) = HP1 , as HP = Ran(MΘP)
⊥ and HP1 = Ran(MΘP1

)⊥.

Now clearly
η(Mz ⊗ IDP∗ )

∗ = (Mz ⊗ IDP∗1
)∗η,

which shows that η(HP) i.e., HP1 is co-invariant under Mz ⊗ IDP∗1
and PHP(Mz ⊗

IDP∗ )|HP coincides with PHP1
(Mz ⊗ IDP∗1

)|HP1
, i.e., P defined on H coincides with

P1 defined onH1.
Again

η(I ⊗ F∗∗ + Mz ⊗ F∗)∗ = η(I ⊗ F∗ + M∗z ⊗ F∗∗) = I ⊗ η1F∗ + M∗z ⊗ η1F∗∗
= I ⊗ F1∗η1 + M∗z ⊗ F1

∗
∗η1 = (I ⊗ F1∗ + M∗z ⊗ F1

∗
∗)(I ⊗ η1)

= (I ⊗ F1
∗
∗ + Mz ⊗ F1∗)

∗(I ⊗ η1),

which shows that S(≡ PHP(I⊗ F∗∗ + Mz⊗ F∗)|HP) and S1(≡ PHP1
(I⊗ F1

∗
∗+ Mz⊗

F1∗)|HP1
) are unitarily equivalent. Hence (S, P) and (S1, P1) are also unitarily

equivalent and the proof is complete.

Combining the last two propositions we obtain the main result of this sec-
tion.

THEOREM 4.4. Let (S, P) and (S1, P1) be two pure Γ-contractions on Hilbert
spacesH andH1 respectively and let F∗ and F1∗ be the fundamental operators of (S∗, P∗)
and (S∗1 , P∗1 ). Then (S, P) is unitarily equivalent to (S1, P1) if and only if the characteris-
tic functions of P and P1 coincide and F∗ and F1∗ are unitarily equivalent by the unitary
from DP∗ and DP∗1

that establishes the coincidence of the characteristic functions of P
and P1.
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Proof. Since (S, P) and (S1, P1) are unitarily equivalent, so are (S∗, P∗) and
(S∗1 , P∗1 ). Now we apply Proposition 4.2 to the Γ-contractions (S∗, P∗) and (S∗1 , P∗1 )
to have the unitary equivalence of F∗ and F1∗.
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